
Explaining Expert Search and Team
Formation Systems with ExES

by

Kiarash Golzadeh

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Kiarash Golzadeh 2024

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Expert search and team formation systems operate on collaboration networks with nodes
representing individuals, labeled with their skills, and edges denoting collaboration rela-
tionships. Given a query corresponding to a set of desired skills, these systems identify
experts or teams that best match the query. However, state-of-the-art solutions to this
problem lack transparency and interpretability. To address this issue, we propose ExES,
an interactive tool designed to explain black-box expert search systems. Our system lever-
ages saliency and counterfactual methods from the field of explainable artificial intelligence
(XAI). ExES enables users to understand why individuals were or were not included in the
query results and what individuals could do, in terms of perturbing skills or connections,
to be included or excluded in the results. Based on several experiments using real-world
datasets, we verify the quality and efficiency of our explanation generation methods. We
demonstrate that ExES takes a significant step toward interactivity by achieving an aver-
age latency reduction of 50% in comparison to an exhaustive approach while maintaining
over 82% precision in producing saliency explanations and over 70% precision in identifying
optimal counterfactual explanations.

iii

Acknowledgements

I would like to express my sincere gratitude and thanks to my supervisor, Professor Lukasz
Golab, for his invaluable support, patient mentorship, and exceptional guidance during my
research endeavors.

I would like to thank Professor Jaroslaw Szlichta, Professor Mehdi Kargar, and Professor
Morteza Zihayat Kermani for their thoughtful advice and for guiding me throughout this
research.

I would also like to thank Professor Robin Cohen and Professor Jian Zhao who served
as the readers of this thesis for their valuable time.

iv

Dedication

I dedicate this thesis to my family.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 4

1.3 Motivating Example . 5

1.4 Thesis Overview . 6

2 Related Work 8

2.1 Expert Search Solutions . 8

2.2 Team Formation Solutions . 9

2.3 Explainable AI Solutions . 11

vi

2.3.1 Post-hoc explainability techniques 12

2.3.2 Explainable AI in Graph-based Models 15

2.3.3 Explainable AI in Ranking Models 15

3 The ExES Framework 17

3.1 Preliminaries . 17

3.2 System Overview . 18

3.3 Explaining Expert Search Systems . 19

3.4 Saliency Explanations . 20

3.5 Counterfactual Explanations . 23

3.5.1 Counterfactual Skill Explanations 24

3.5.2 Counterfactual Query Explanations 28

3.5.3 Counterfactual Collaboration Explanations 28

3.6 Complexity . 30

3.6.1 Saliency Explanations . 30

3.6.2 Counterfactual Explanations . 33

3.7 Explaining Team Formation Systems . 34

4 Evaluation 38

4.1 Metrics . 38

4.2 Experimental Setting . 39

4.2.1 Environment . 39

4.2.2 Datasets . 39

4.3 Experiments . 40

4.3.1 Expert Search Experiments . 41

4.3.2 Team Formation Experiments . 44

4.3.3 Parameter Sensitivity Analysis . 46

4.4 Case Study . 48

vii

5 Conclusion and Future Directions 54

5.1 Summary . 54

5.2 Future Work . 54

References 56

viii

List of Figures

1.1 An overview of Expert Search workflow. 5

1.2 Typical explanations for selection of P6 . 6

2.1 A toy example to demonstrate how LIME works [63] 13

2.2 A toy example demonstrating SHAP feature attributions [48] 14

3.1 ExES Architecture . 19

3.2 SHAP values for skills of selected expert 21

3.3 SHAP values for collaborations of selected expert 22

3.4 List of counterfactual skill explanations . 27

3.5 List of counterfactual collaboration explanations 31

3.6 Visualization of Counterfactual collaboration explanation 32

3.7 Example for team formation output. The user wants to explain why “Rayid
Ghani” (indicated with an orange circle) was excluded from the team. . . . 35

3.8 Example counterfactual explanation for team formation 36

4.1 Parameter sensitivity analysis on explanation metrics 47

4.2 Skill SHAP values for Yann LeCun’s relevance status 48

4.3 Collaboration SHAP values for Yann LeCun’s relevance status 50

4.4 Counterfactual skill explanations to make Yoshua Bengio get into top-10 . 51

4.5 Counterfactual query explanations to make Yoshua Bengio get into top-10 52

4.6 Counterfactual collaboration explanations to explain Chapelle’s selection for
the team . 52

ix

List of Tables

2.1 A taxonomy of Expert Search Solutions . 8

2.2 A taxonomy of Team Formation Solutions 10

3.1 Symbols used in this thesis . 18

3.2 Time Complexity of Saliency Explanation methods 33

3.3 Time Complexity of Counterfactual Explanation methods 33

4.1 Dataset statistics . 40

4.2 Latency and size comparison for generating explanations for Expert Search 42

4.3 Precision@1 and Precision@5 of generated saliency explanations by ExES
for Expert Search . 43

4.4 Precision and Precision* of generated explanations by ExES for Expert Search 43

4.5 Latency and size comparison for generating explanations for Team Formation 45

4.6 Precision@1 and Precision@5 of generated saliency explanations by ExES
for Team Formation . 46

4.7 Precision and Precision* of generated explanations by ExES for Team For-
mation . 46

x

Chapter 1

Introduction

1.1 Motivation

The expert search problem takes in a collaboration network as input, with nodes rep-
resenting individuals, node labels corresponding to skills held by these individuals, and
edges denoting collaboration relationships. When given a query consisting of a set of de-
sired skills, the output is a ranked list of individuals who best match the query. The expert
search process has become a fundamental process, both in academia and industry [33, 29].
These systems enable expertise seekers to find the most knowledgeable people in their do-
main, ensuring a good fit for their particular requirements. Expert search has attracted
considerable attention in various contexts such as:

• Academic domain [80]: Academic expert search systems aim to find key scholars
in specific research topics. The academic collaboration networks include researchers,
faculty members, and students who publish in established venues as experts. The
connections formed through previous collaborative research projects are considered
as edges. Typical users of these systems would be supervisors, university admission
committees, and researchers. They utilize the system to find potential new collabo-
rators or to seek expert advice for their academic endeavors.

• Medical fields [74]: Expert search systems are found beneficial in the healthcare
system, where patients should be assigned to the best clinician, regarding their disease
contexts. Medical collaboration networks contain clinicians and physicians and their
skills would be their medical specialties. Cooperation and collaboration in these

1

networks are considered when clinicians provide diagnosis recommendations for each
other’s patients when requested.

• Social media [8]: Expert search in social media refers to identifying potential user
profiles with enough expertise on that topic, based on their discussions and shared
content. In this domain, expert search systems would be helpful for marketers and
social media analysts to find their ideal influencers for content promotion. Social
expert search systems consider the users’ peers in social media whom they interact
with, such as followers, connections, or friends as links in the collaboration network.

• Organizations [37]: In the context of organizations, expert search tools locate em-
ployees in an organization who know the solution to specific issues in the organization.
Here, the experts are employees and workers of the organization. They are repre-
sented in a hierarchical graph where the links depict managerial and peer-working
relationships, which constitute the collaboration network.

• Legal domain [3]: In legal expert search, the objective is to enable citizens to find
lawyers based on their expertise to assist them in their legal cases or inquiries. The
collaboration network consists of lawyers who have participated in various cases, and
collaborations are indicated by lawyers working on the same case or cases with similar
circumstances.

• Question answering [57, 23]: Expert search plays an important role in question
routing in community question-answering (CQA) platforms such as StackOverflow
and Quora. By accurately identifying experts, it ensures that questions are directed
to technically-equipped individuals who can provide valuable answers, thereby in-
creasing user engagement on these platforms. In CQA-related expert search, the
collaboration network contains platform users, having their skill profiles built upon
their previous answer contributions, and the past interactions between experts serve
as the links within this network.

Typically, a second step ensues, referred to as team formation [62], in which a subgraph is
returned, spanning said experts along with potentially other individuals. In cases where
single individuals fall short of possessing the required knowledge, expertise, or capacity for
a project, forming a team of experts proves to be significantly useful. An optimal team,
in addition to covering required skills, can also benefit other aspects such as productivity
and good communication among team members.

In terms of the collaboration network, the selected experts for a team should be closely
connected to each other, indicating prior collaborations, either directly or through a small

2

number of intermediaries. Such connectivity increases team cohesion and enhances the
likelihood of selected members getting along with each other positively. Team formation
applications include scenarios such as:

• Recruiting software developers [65]: Team formation is particularly valuable in
technology companies for locating and hiring talented software developers to collabo-
ratively work on software projects. In such contexts, the collaboration network could
include collaborative code hosting networks such as GitHub, or software-related CQA
networks such as StackOverflow.

• Forming academic collaborations [31]: Using team formation methods could be
helpful for gathering a productive research group. This is especially crucial when
working on multi-dimensional research topics, where a diverse set of skills and per-
spectives is necessary for success.

State-of-the-art solutions for expert search combine a variety of factors during expert
ranking and team selection in non-obvious ways, including skills and the network structure
[62, 31]. As a result, while these solutions are effective, they lack transparency, making
it difficult to debug them and limiting their practical uptake. However, since the expert
search methods have been broadly applied to real-world contexts, it is crucial to confirm
their transparency.

In general, to overcome the opaqueness of AI tools, explainable artificial intelligence
(XAI) methods have been widely developed to bring transparency and trust to these black-
box tools. XAI methods exist for a variety of tasks, including classification and recommen-
dation engines. Particularly, XAI approaches have been commonly developed to create
saliency and counterfactual explanations, where saliency explanations reveal the reasons
behind a prediction, and counterfactuals reveal minimal input changes needed to alter a
decision [27, 7]. However, we are not aware of any specific applications of these methods
to the domains of expert search and team formation. This brings us to the first research
question: How can we address the explainability gap in expert search and team
formation systems?

Beyond addressing the explainability issue, another key challenge resides in managing
a vast search space for generating explanations. Real-world collaboration networks exhibit
complexity due to their large scale and diverse skill sets. Thus, devising a well-structured
pruning method to narrow down the search space for the candidate explanations is crucial
for maintaining system interactivity. This raises our second research question: How can
we efficiently navigate the exponential search space given the large nature of
collaboration networks?

3

1.2 Contribution

To fill the gaps described above, we propose ExES: an interactive tool to explain black-box
expert search systems. Our contributions and demonstration goals are outlined as follows.

1. Framework Formulation. Our explainability framework casts expert search and
team formation as binary classification problems, utilizing the social network to derive
interpretable features. For expert search explanations, we define the relevance status
binary function, which is true when an individual is identified as an expert, and
false otherwise. For team formation tasks, we define the membership status binary
function, which is true if and only if an individual is taken into the resulting team.
This approach allows us to adapt saliency and counterfactual explanation methods
from explainable AI to this novel problem. Specifically, saliency methods identify
important skills and network connections that were influential in expert selection,
while counterfactual methods serve as career advancement tools, by finding skills
and network connections that, when added, can turn non-experts into experts for
a given query. ExES is model-agnostic, meaning it does not require access to the
system’s inner workings and only needs to probe the expert search system with
different perturbations of the input and observe how the output changes.

2. Inference Pruning Strategies.

We developed an efficient implementation of the above explanation framework, ex-
ploiting the inherent structure of the expert search problem to prune the search space
of candidate explanations. We took advantage of a keyword embedding model [79],
to learn semantic relationships between the network’s skills, and a link prediction
model [52] on the network’s collaborations, in our pruning strategies. Employing
these models allowed us to narrow down the expansive list of potential explanations,
thereby reducing computational overhead, ensuring system responsiveness, and al-
lowing real-time user interaction.

3. Explanation Evaluation. We report extensive experiments, assessing the effec-
tiveness of ExES on various models and datasets. Results showcase that ExES not
only provides concise insights on expert search/team formation model behaviors but
also highlights its superior performance compared to exhaustive explanation base-
lines, proving the effectiveness of its pruning strategies. We demonstrate that ExES
achieves an average latency reduction of 50% while maintaining over 82% precision
in generating saliency explanations, and over 70% precision in identifying optimal
counterfactual explanations.

4

P1 (DB, Distributed Systems)
P2 (AI, HCI)

P3 (Vision, GAN, Diffusion Models)

P4 (ML, Vision, Gen AI)

P7 (ML, Graphics)

P8 (DB, Data Mining)

P4 (DB, Stream Processing)

P5 (DB)
P6 (AI, DB, XAI)

Query$

(XAI, AI, Data Mining)

Expert Search
System

Collaboration Network

Expert Search

Members:
P2, P6, P8

1. P6
2. P2

.

.

.

Team Formation

Figure 1.1: An overview of Expert Search workflow.

1.3 Motivating Example

Here, to motivate our approach, we demonstrate a toy example. Figure 1.1 illustrates the
typical workflow of an expert search system on a portion of a collaboration network in
academia. In this example, nodes represent researchers and edges denote co-authorship
links. Node labels are written in parentheses. Given a sample query including keywords
“XAI”, “AI”, and “Data Mining”, sample outcomes for expert search and team formation
tasks are generated by the black-box model.

Given the collaboration graph in Figure 1.1, ExES can be applied to explain the se-
lection process of experts and team members. For instance, consider a scenario where a
user wants to investigate why P6 was selected as the top expert by the black-box expert
ranker. Figure 1.2 shows typical explanations generated by ExES to explain this decision.
It underscores the positive (colored in green) and negative (colored in red) impacts of input
features, such as skills, network collaborations, and query keywords, through saliency ex-
planations (the opacity of colored features shows their degree of importance). Specifically,
skills like AI, XAI, Data Mining, ML, and DB are identified as having positive influences on
p6’s selection, while others like Vision, Stream Processing, Gen AI, and Diffusion Models
have a negative impact. Notably, ExES considers not only p6’s skills but also the skills of
their network neighbors, for the explanations. Additionally, collaborations between p6 and
p2, as well as between p6 and p8, have the strongest positive impacts, whereas connections
between p6 and p3, and between p5 and p4, have the greatest negative impact. Meanwhile,
ExES offers counterfactual explanations, demonstrating minimal alterations to these input

5

Collaboration Network

Why P6 was selected by the black-box ranker?

Saliency
Counterfactual

The expert ranker would not select P6 if:

P6 did not possess "XAI". (Skill counterfactual)
The query included "Data-Profiling". (Query counterfactual)
There wasn't any collaboration between P6 and P8. (Collaboration counterfactual)

P1 (DB, Distributed Systems)
P2 (AI, HCI)

P3 (Vision, GAN, Diffusion Models)

P4 (ML, Vision, Gen AI)

P7 (ML, Graphics)

P8 (DB, Data Mining)

P4 (DB, Stream Processing)

P5 (DB)
P6 (AI, DB, XAI)

Query

(XAI, AI, Data Mining)

Figure 1.2: Typical explanations for selection of P6

features that would result in P6 not being selected as a top expert by the black-box ranker.

1.4 Thesis Overview

The structure of this thesis is as follows:

In Chapter 2, we review the literature on proposed solutions for Expert Search and
Team Formation problems. Following this, we describe the fundamentals of explainable
AI methods, including saliency and counterfactual explanations. After that, we provide
the related work in explaining graph-based and ranking models, which have inspired our
proposed solution.

In Chapter 3, we begin with defining the core concepts of expert search and team forma-
tion tasks, and presenting an outline of the ExES key components. Then, we formulate the
expert search problem as a binary classification task, which enables us to generate saliency
and counterfactual explanations for the expert search task. Subsequently, we describe the
algorithms for producing each type of explanation, declaring the pruning strategies to re-
duce the search space for explanations. We continue by discussing the time complexity
of our explanation generation approaches and comparing pruned and exhaustive searches.

6

Lastly, we define the binary classification task that we use for explaining team formation
systems.

In Chapter 4, we begin with defining the setting of our experiments, followed by the
experimental results that establish the efficiency and efficacy of explanations produced by
ExES.

In Chapter 5, we conclude by summarizing our findings and outlining future work
directions for extending the explainability of expert search and team formation systems.

7

Chapter 2

Related Work

2.1 Expert Search Solutions

We categorize proposed solutions for expert search into three categories: Document-based,
Graph-based, and hybrid solutions. The classification of the related literature is provided
in Table 2.1.

The first solutions for Expert Search were document-based approaches. These ap-
proaches used language models to capture expertise levels from available textual sources of
expertise, such as documents authored by experts. These models then predict the probabil-
ity of an individual being an expert in a given topic [5]. We can categorize the document-
based solutions into document-centric and profile-centric solutions. The document-centric
models work by retrieving textual documents that are most relevant to the query and
then ranking their authors according to the relevance scores of their matching documents
[55, 51, 6]. On the other hand, profile-centric models learn representation vectors for each
individual and then directly rank experts according to the query [46, 76, 4]. More re-
cently, [12] suggested combining classic document-centric approaches with a novel profiling

Table 2.1: A taxonomy of Expert Search Solutions

Approach References

Document-based [5, 55, 51, 6, 13, 46, 76, 4, 17, 12]
Graph Representation Learning [9, 34, 59]

Hybrid Models [58, 35]

8

technique, where entities within documents are linked to a knowledge graph, and their
PageRank scores are incorporated into expert profiles.

A critical challenge in document-based solutions is the mismatch between query key-
words and terms in the document corpus. For instance, experts in “Artificial Intelligence
(AI)” may not use the term “AI” in their authored documents, but use words with related
concepts such as “ML”, “neural”, or “loss”. To overcome this issue, [13] presented statis-
tical and word embedding-based methods and [17] proposed attention-based classification
networks to obtain skill translations and capture semantic similarity between keyword
queries and raw documents.

However, aside from the implicit textual semantics of the expertise sources, the explicit
relations between their authors should be taken into account as well. The linking edges
among the network components reveal a lot of valuable information about the potential
relevance and expertise propagation over the network [15]. Nevertheless, the aforemen-
tioned methods overlooked the structure of the collaboration network and the connections
and relationships between individuals. Through the introduction of graph analysis meth-
ods, many studies have been conducted by including graph-based representations in the
search process [9, 34, 59]. These approaches use procedures such as DeepWalk [60], PageR-
ank [10], and HITS [41] scores to reflect local and global structure information from the
collaboration network.

Finally, hybrid expert search models have drawn significant attention in recent years.
These methods have been developed to combine features extracted from the documents and
features obtained from the collaboration network to formulate recommendations [58, 35].

While having a comprehensive list of studies concentrating on enhancing the accuracy
of expert search systems, to the best of our knowledge, there is no effort to explain the out-
comes of these systems. ExES addresses this gap by providing understandable explanations
for the search results.

2.2 Team Formation Solutions

The task of expert search is generally extended to team formation, where the goal is to find
a set of candidates, as a subgraph of the collaboration network, who can collectively cover
the required skills of the query while being able to collaborate effectively with each other.
The effectiveness of team collaborations is majorly measured through node distances in
the collaboration network. However, the criteria for measuring effectiveness vary across
different approaches, resulting in diverse answers. For instance, some methods focus on

9

Table 2.2: A taxonomy of Team Formation Solutions

Approach References
Graph Optimization [43, 36, 83, 10]
Integer Programming [56, 21]

Neural Methods [68, 30, 14, 38]

pairwise distances between team members, while others designate a node as the connection
node around which the team is built, and calculate the sum of distances between members
and the connection node. The proposed solutions to the team formation problem can
be categorized into three classes: graph optimization approaches, integer programming
optimizations, and neural methods. Table 2.2 displays a classification of the references.

In the graph optimization category, an initial solution was introduced by [43] which
minimized the communication cost among the team members. They presumed an ap-
propriate team to be optimal in two heuristic functions; specifically in having the shortest
diameter or being a minimum spanning tree. Subsequently, several research were conducted
to refine the heuristic functions and improve the overall team quality. [36] considered the
optimization heuristic to be the sum of distances between the candidates in the subgraph.
[83] formulated the team formation task by taking experts’ authority into account and
introducing the heuristic objective function as a combination of communication cost and
authority weights. [10] proposed a new metric based on a random walk with restart, to
define the proximity between nodes in the collaboration network. This metric takes the
network’s structural properties into account and leads to presenting robust answers.

Another way to solve the team formation problem is using integer programming op-
timization. In this regard, [56] applied facility location analysis, a well-known task in
Operation Research, to team formation and leveraged integer programming to optimize
the assignment of experts to tasks with varied skill requirements. Additionally, [21] ad-
dressed multi-aspect team formation by formulating it as an integer linear programming
problem, using a heuristic approach to optimize the allocation of teams to tasks.

However, a major drawback of the optimization solutions is their scalability. The pro-
posed optimization models have been shown to be a reduced version of the Group Steiner
tree task [16, 42] which is an NP-hard problem [43]. In addition, the integer-programming-
based optimizations are NP-hard as well. In this regard, researchers have considered de-
signing data-driven methods and neural network architectures to identify teams. The goal
of these methods is to estimate a mapping function from the space of skills to the space of
individuals. [68] trained an autoencoder architecture processes the collaboration network’s
adjacency matrix to learn latent representations of individuals, thus identifying experts who

10

can learn from other team members. To mitigate the overfitting issue of non-variational
autoencoders, [30] improved the neural networks by using variational autoencoders.

Using contrastive learning is common for training team formation neural networks,
where given a query, the model learns to prefer ground-truth teams (teams included in the
dataset, deemed successful) over unsuccessful ones. To illustrate the concept of success in
teams, a collaboration leading to publication in a top-tier venue is considered successful
in the academic domain. Similarly, in the software domain, jointly contributing to a
high-starred repository demonstrates a successful collaboration. However, since datasets
usually only contain successful teams and collaborations, [14] introduced and compared
three negative sampling scenarios specifically team formation, to enhance the contrastive
learning process. Additionally, [38] employed graph attention networks to address the
evolution of collaboration networks through time, while reducing the computation time of
team identification.

This review reveals that Graph Optimization methods typically form teams by opti-
mizing node distances. On the other hand, Integer Programming approaches focus on
selecting team members to maximize task allocation metrics such as diversity, personality
compatibility, commitment, balanced load, and leadership qualities of the members [25].
Ultimately, neural methods integrate both stated aspects into their decision process.

Although there is significant research on developing team formation systems, [22] is
the state-of-the-art work on explaining team formation systems. However, their method
only supports team formation systems that use integer linear programming (ILP), limit-
ing its generalizability. In addition, their work only covers contrastive explanations, which
compare the output teams’ characteristics (such as diversity, coherence, and member sat-
isfaction) against unformed teams, rather than addressing the impact of system inputs.
ExES fills these gaps by reflecting the effect of input features on the resulting team, both
factually and counterfactually.

2.3 Explainable AI Solutions

Research on Explainable AI has flourished over the last few years [28]. Explainability
approaches are categorized in various taxonomies, according to their characteristics. For
instance, based on their applicable scope, they are classified into intrinsic vs post-hoc
approaches. Intrinsic methods, also known as interpretable-by-design, focus on designing
model architectures in a manner that ensures transparency. Examples of such models
are decision trees and rule-based classifiers. These methods incorporate transparency as a

11

fundamental aspect of the model’s architecture. On the other hand, post-hoc explainability
methods concentrate on explaining the outcomes of existing trained ML models.

Another pivotal taxonomy differentiates between local and global explanation methods.
Local methods focus on explaining individual instances or decisions made by the model,
while global methods aim to provide an understanding of the model’s overall behavior and
logic.

Finally, explanation methods could be classified into factual and counterfactual expla-
nation methods. Factual explanation techniques, which are referred to as feature-based or
saliency methods, are primarily concerned with finding the most important input features
for individual predictions. Conversely, counterfactual explanations seek minimal pertur-
bations to the input features which causes an alteration in the predictions. The ExES
framework is classified into post-hoc and local categories and is capable of producing both
factual and counterfactual explanations.

In the remainder of this section, we review the existing literature of three research
directions–post-hoc explainability techniques, explaining graph-based machine learning
tools, and interpreting ranking models. Since ExES is a post-hoc explainability tool, we
found inspiration in saliency and counterfactual explanation methods. We further reviewed
related XAI projects in graph neural networks as ExES processes data inputs with simi-
lar structures — graph-based data. Furthermore, we investigate explainability in ranking
tasks because the core functions of ExES — expert search and team formation — are
essentially based on ranking. We derived the idea of adapting our core tasks into binary
classification from these related works.

2.3.1 Post-hoc explainability techniques

Post-hoc explainability methods are applied to interpret the predictions made by black-box
models, such as ensemble methods and deep neural networks, after they are fully developed.
In this regard, a common approach is to construct simpler, more interpretable models that
approximate the functionality of the original complex black-boxes.

To this end, a variety of techniques have been explored in the XAI literature. LIME [63]
and SHAP [48] are two prominent tools for post-hoc explanation. These perturbation-based
methods provide local explanations for any black-box classifier, without any assumptions
about the internal mechanisms of the model.

LIME [63] generates explanations by learning an interpretable white-box model, re-
ferred to as surrogate model, locally around each individual prediction and estimating the

12

Figure 2.1: A toy example to demonstrate how LIME works [63]

feature attributions using the surrogate model. Typically, a sparse linear model is cho-
sen as the surrogate model and the feature weights are considered as feature attributions.
More specifically, given a black-box classifier f , a data point to explain x, and a family
of possible explanations G, LIME trains the surrogate model by optimizing the following
function:

argmin
g∈G

L(f, g, πx) + Ω(g) (2.1)

where πx(x
′) is the proximity measure that defines the distance between inputs x and x′

(e.g., cosine or l2 distance), and Ω(g) is the model complexity of g (e.g., number of non-zero
weights in a linear model). the loss function L measures how close the explanation is to
the prediction of the original model.

L(f, g, πx) =
∑
x′∈X′

πx(x
′)(f(x)− f(x′))2

where X ′ is the sampled set of perturbed data points in the neighborhood of x.

Figure 2.1 shows a toy example to provide intuition on how LIME works. In this
example, the black-box f is a binary classifier, and its decisions are shown by blue or pink
regions. To explain the instance x shown by the bold red cross, LIME samples other data
points in the neighborhood of x, gets their predictions using f , weighs them based on their
proximity to x, and then trains the surrogate linear model, which is shown by the black
dashed line.

13

Figure 2.2: A toy example demonstrating SHAP feature attributions [48]

On the other hand, SHAP [48] uses intuition from Shapley values [70] in game theory
to compute the contribution of each feature to the prediction. In SHAP, ϕj(x), the contri-
bution of feature j to x’s prediction (known as SHAP values), is calculated by the expected
change in the model prediction when including j in an arbitrary coalition of features. The
SHAP method explains the prediction f(x) as the sum of SHAP values, plus the expected
outcome if all features were unknown (referred to as the base value ϕ0):

f(x) = ϕ0 +
M∑
j=1

ϕj(x)

Figure 2.2 displays how SHAP values explain the output as a sum of feature attributions
ϕi of each feature for a single prediction.

However, since forming all coalitions of the input features is not practical, SHAP applies
an extension of LIME by introducing its own definition of proximity and sampling method
and ignoring the model complexity by setting the Ω to 0. In SHAP, the sampled data
points in the neighborhood of x, X ′, are generated by considering a subset of x’s features
and masking the other features. The proximity measure πx(x

′) is computed using the
formula:

πx(x
′) =

M − 1(
M
|x′|

)
|x′|(M − |x′|)

(2.2)

where M is the total number of features and |x′| denotes the number of features in the
subset.

Transitioning to another prevalent explanation technique, Counterfactual Explana-
tions aim to find minimal changes in the input that lead to getting a different prediction
from the model [61]. These explanations allow system users to delve into what-if scenar-
ios regarding the model’s decisions. Formally, given a black-box classifier f , a data point

14

to explain x, and a set of counterfactual examples X ′ where for each x′ ∈ X ′ we have
f(x′) ̸= f(x), a minimal counterfactual example x∗ is defined as:

x∗ = argmin
x′∈X′

D(x, x′)

in which D is the distance function, which shows the dissimilarity between x and x′. X ′

is also referred to as the search space for counterfactuals. Furthermore, the counterfactual
explanation E shows the perturbation needed for turning x into x′. For instance, with
numerical vectors, the counterfactual explanation would be E = x′ − x.

Counterfactual explanations are categorized into synthetic and instance-based based
on the search space X ′. In instance-based explanations, X ′ is a subset of real-world data
points. This ensures high plausibility, but the global minimal explanation might not be
found within the limited search space. Conversely, there is no constraint onX ′ when finding
synthetic explanations. They may include synthetic data points — those not present in
the original dataset — leading to minimal but potentially less plausible explanations [26].

2.3.2 Explainable AI in Graph-based Models

Explainability approaches for explaining decisions in graph analysis tasks and graph neural
networks (GNNs) have been thoroughly investigated [82]. These studies involve explaining
decisions for tasks like node classification, link prediction, and graph classification. In graph
analysis, the relevant input features can include graph nodes, node attributes, edges, or
subgraphs. As a result, explanation methods illuminate the importance and influence of
these features in driving the models’ predictions and overall outcomes.

In the factual explanation domain, GNNExplainer [81] identifies a subgraph and a sub-
set of node attributes as explanations by learning edge and feature masks such that the
mutual information (MI) with GNN’s predictions are maximized. PGExplainer [49] em-
braces the same MI importance concept, but employs the GNN node embeddings to train
a model which predicts the probability of edge existence in the mask. On the counter-
factual side, [47] find minimal graph adjacency matrix perturbations to change the GNN
prediction.

2.3.3 Explainable AI in Ranking Models

Due to the significant advancements in neural ranking models, a variety of solutions have
been proposed to shed light on the black-box rankers. For saliency explanations, [71, 11]

15

adapted LIME [63] to explain the relevance of a document to a query. [50] extracted
important words from top-k documents to explain the preference pairings in ranked lists.

In the category of counterfactual explanations, [64] demonstrated an efficient framework
to explain a document ranking system that provided document and query perturbations,
in addition to instance-based counterfactual explanations.

In addition, counterfactual explanations are found beneficial for interpreting top-ranked
recommendations by recommender systems. [24, 75, 73] find minimal actionable perturba-
tions on the information network that flip the recommendation decision.

16

Chapter 3

The ExES Framework

We begin this chapter by defining the preliminaries of expert search and team formation
systems and the notations that we use throughout this thesis (Section 3.1). We then
present an overview of the architecture of ExES (Section 3.2). Following this, we declare
the formulation of the black-box as a binary classification task (Section 3.3, and after that
we describe the methodologies for generating saliency (Section 3.4) and counterfactual
(Section 3.5) explanations. Later on, we analyze the time complexity of ExES procedures,
with and without the pruning strategies (Section 3.6). Finally, we formulate the team
formation explanations, denoting the differences from expert search formulations 3.7.

3.1 Preliminaries

Let S = {s1, s2, . . . , sl} be the universe of skills, and G = (P,E) be a node-labeled
collaboration network, with individuals P = {p1, p2, . . . , pn} as nodes, and connections
E = {(pi1 , pj1), (pi2 , pj2), . . . , (pim , pjm)} between individuals as edges. Each pi possesses a
set of skills Si, for Si ⊂ S. We define the node-label matrix of G as LG = {0, 1}n×l, where
LG
ij = 1 if and only if sj ∈ Si, and 0 otherwise. Also we refer to the adjacency matrix of G

as AG = {0, 1}n×n, in which AG
ij = 1 if and only if (pi, pj) ∈ E, and 0 otherwise.

Given a query q consisting of a set of skills (q ⊂ S) and a value of k1, the objective of
the expert search problem is to identify the top k experts that best match q. Let Rpi(q,G)

1In this work, we assume that k is determined by the user. However, ExES could potentially assist the
user in selecting an optimal value for k. For example, if non-experts could become experts by applying a
few modifications (see Section 3.5), we could infer that the initial k was set lower than optimal.

17

Table 3.1: Symbols used in this thesis

Notation Description

S Universal set of skills
Si Skill set of individual pi
G Collaboration Network
LG Node-label matrix of collaboration network G
AG Adjacency matrix of collaboration network G

Rpi(q,G) Rank of pi with respect to query q and network G
Cpi(q,G) Relevance status of pi with respect to query q and network G
F(q,G) Team formed for query q and network G
Mpi(q,G) Membership status of pi with respect to query q and network G
N (pi) Neighborhood of pi
SN (pi) Skills included in the neighborhood of pi
d Neighborhood radius
b Beam size
t Number of candidate features
γ Maximum explanation size

be the rank of expert pi, with respect to query q and the collaboration network G, produced
by a solution to the expert search problem.

Furthermore, the goal of the team formation problem is to find a subset of nodes fromG,
such as T = {pT1 , pT2 , . . . , pTk

} ⊂ P , so that q ⊂
⋃k

i=1 STi
. We refer to the team formation

system as F , where F(q,G) is the formed team given the query q and the collaboration
network G.

A glossary of relevant notations is presented in Table 3.1.

3.2 System Overview

Figure 3.1 shows the architecture of ExES. A user issues a query of keywords, representing
the desired skills, to a black-box expert search/team formation system, which outputs a
ranked list or a team of experts (recall Figure 1.1). The user selects an individual from the
collaboration graph whose presence or absence in the output is to be explained. ExES then
repeatedly probes the expert search system using perturbed inputs and applies saliency

18

Expert Search SystemSaliency / Counterfactual
Explainer

Pruning Tools

Web App

Keyword
Embedding Model

Link Prediction
Model

Collaboration
Network

ExESUsers

Figure 3.1: ExES Architecture

and counterfactual explanation methods. Along the way, ExES uses pruning strategies—
keyword embedding similarity and link prediction—to speed up the explanation search.
Finally, various types of explanations are displayed. In Sections 3.4 and 3.5, we discuss the
details of the explanation and pruning methods.

3.3 Explaining Expert Search Systems

Inspired by methods such as PageRank [10] and graph neural networks [62, 31], state-of-
the-art expert search systems consider a variety of signals from the collaboration network
when ranking a given node pi: its skills, the skills of its collaborators and the network
structure around it. This is because expertise “propagates” throughout the collaboration
network: even if pi itself does not possess skill si, it may indirectly hold some expertise
in, or be able to easily acquire si, if its collaborators are experts in si [69, 15]. The goal
of ExES is to explain the decision-making process of black-box expert search systems, in
terms of these network features, given that we can only probe the system and observe its
output.

In ExES, we consider the following network features: the skills requested in the query,
the skills held by each node, and the edges in the collaboration network. Later in this
section, we will discuss pruning strategies that prioritize the network structure around a
given node to find the most influential features.

Next, we describe how to assess feature importance in the context of expert search.
The first step is to cast this problem as a binary classification problem, inspired by prior

19

work in explainable information retrieval [71, 64]. To do so, given a query q against a
collaboration graph G, we ask, for a given node pi, whether Rpi(q,G) ≤ k. Let Cpi(q,G)
be the resulting relevance status, true if pi was deemed to be an expert (i.e., ranked inside
the top-k) and false otherwise. This formulation allows us to use approaches for post-
hoc classifier explanations through feature perturbations. In particular, ExES implements
saliency methods, also known as feature attribution methods, that assign an importance
score to each feature, as well as counterfactual methods that identify minimal perturbations
to the input that would flip the model’s output.

3.4 Saliency Explanations

For saliency, we use SHAP [48], a popular explanation method that computes an impor-
tance score for each feature by probing a model with various perturbations of the inputs.
Intuitively, the higher the score, the more likely it is that a change to this feature would
change the model’s prediction, which in our case is the relevance status Cpi(q,G).

To explain the relevance status of node pi (with respect to some query) using SHAP, a
trivial approach is to find the SHAP value for all input features, i.e., every query keyword,
every skill assigned to every node, and every edge in the collaboration network. When
confronted with large real-world collaboration networks, we require pruning methods to
deliver explanations to users at interactive speeds. Specifically, we focus on the network
structure in the neighborhood of pi, defined as the induced subgraph of nodes located
within a distance threshold d from pi (see Sections 4.3.1 and 4.3.3 for details and analysis
on choosing d). We refer to the neighborhood of pi as N (pi), and denote the skills included
in the neighborhood as SN (pi). Thus, when it comes to skills, the features that will be
scored by SHAP are the skills mentioned in the query as well as the skills in SN (pi).

Example. Here, we demonstrate an example of the saliency explanations of expert
skills, on the DBLP collaboration network. Details about datasets are further provided
in Section 4.2.2. In this example on expert search in the academic collaboration network,
given the query “social graph” and k = 10, the user wants to explain the relevance status
of “Jure Leskovec”, ranked 10th. Figure 3.2 displays the SHAP values of Leskovec’s skills
in a plot, named the force plot. In the force plot, SHAP values of skills are shown on the
X-axis. The base value shows the expected value of the relevance status for an expert with
pi’s collaborations, and the current relevance status is shown by f(inputs) on the plot.
Each arrow’s size shows the SHAP value of the corresponding skill, where green arrows
show positive impact and red arrows show negative impact on the ultimate relevance status.

20

Figure 3.2: SHAP values for skills of selected expert

According to the plot, the skills graph, social and community have the most positive effects,
and skills user and content negatively impact Leskovec’s position inside the top-k.

Likewise, we only consider edges within a distance threshold d of pi to narrow down
the search space. Furthermore, ExES uses the following strategy to select influential edges
for SHAP scoring. We initialize a queue Q of impactful experts with pi, and an empty set
I of impactful links. Starting from pi, in each iteration, we expand the first unexpanded
impactful expert from Q, denoted as px, and calculate the SHAP values of its incident
edges. For edges (px, py) with absolute SHAP values beyond a specified threshold τ , we
add them to I, and append py to the end of Q. This threshold is defined to limit the
branching factor at each stage. In the end, we calculate the SHAP values of only the
potentially impactful links in I.

Example. For the same query and expert in the aforementioned example, we demon-
strate the saliency explanations for edges in the collaboration network. Figure 3.3 shows
the SHAP values of Leskovec’s connections (only those selected by the pruning rules) using
a node-link diagram, where green edges show a positive effect and red edges show a nega-
tive effect toward the relevance status. Edge opacity indicates the degree of importance of
each edge, and the size of the nodes shows the rank of the corresponding node with respect
to this query. The higher the expert is in the ranking, the larger the node is in the plot.
This plot shows that while some of Leskovec’s neighbors, like Prem Melville, might not
attain high ranks, their presence contributes to Leskovec’s relevance for the query, securing
a position in the top-k.

21

Figure 3.3: SHAP values for collaborations of selected expert

22

3.5 Counterfactual Explanations

To explain the relevance status of a node pi counterfactually, we seek small perturbations
to the search query q and the collaboration network G that flip Cpi(q,G). That is, we
identify changes that would turn experts (ranked in the top-k) into non-experts (ranked
outside the top-k) and vice versa. ExES explores perturbations to skill sets, the search
query, and collaborations in the network.

Explanation Minimality. Given the importance of generating human-friendly expla-
nations, a good explanation should include a concise set of features by intuition2 [78, 54].
Hence, the concept of minimality is a key aspect of ExES, which we formalize in this
section.

Given an explanation E , we define the size of E by the number of changes made to the
collaboration network or the query within E . Therefore, the objective is to derive optimal
explanations such as E∗ with the minimum number of total perturbations to the input
parameters. This could be formulated as:

E∗ = argmin
E
|E|

However, given the expansive sizes of real-world collaboration networks, we need to
prune the search space for explanations, by selecting a subset of nodes, skills, or edges
for the perturbations. We describe the method for search space pruning and selecting
candidate features for every explanation type in detail.

Generating Explanations. Algorithm 1 presents the core framework for generating
counterfactual explanations. It employs beam search with a specified beam width, b, and
expands potential perturbations up to a maximum size, γ. Here, γ serves as a controlling
parameter, which prevents the search algorithm from pursuing expansions with large sizes,
thereby ensuring that the search process concludes within a reasonable timeframe. The
search process continues until it finds top e minimal explanations within the search space.

In line 1, we select t candidate features to include in the perturbations. These features
involve skills added/removed from individuals, query keywords, or edges added/removed
from the collaboration network. These feature selections are guided by the word embedding

2In this work, we define the notion of minimality based on the literature. In related work on counter-
factual explanations, minimality is typically referred to as sparsity (explanation size) [26], minimizing the
number of different features between counterfactual and original data points. However, different use cases
might prioritize additional metrics, such as robustness or fidelity, at the expense of explanation size. We
reserve the consideration of multiple objectives in explanation minimality for future work.

23

model W or the link prediction model L (see Sections 3.5.1, 3.5.2, and 3.5.3 for details on
how these t features are chosen).

In line 2-4, we initialize the result explanations set E , the beam search queue which
contains an empty perturbation, and the initial relevance status for the target individual
pi.

During the while loop (line 5), the beam search algorithm iteratively expands the
perturbation states in queue, until e explanations are found or the queue is empty. Each
iteration begins with initializing expandedQueue, which contains the expanded states,
with an empty set. Then, we expand every state in queue by appending each candidate
perturbation to it (line 9). After applying the perturbations to G or q (line 10), we compute
the new rank and relevance status (lines 11, 12). A perturbation that changes the relevance
status is considered successful and added to E (lines 13, 14). Furthermore, perturbations
not exceeding γ are queued in expandedQueue, along with their new rank, for further
expansion (lines 16 and 17).

After that, the top b states are selected from expandedQueue, based on the new rank
(line 21), and passed to queue for the next iteration (lines 23 and 24). The sorting direction
is determined based on the initial relevance; i.e. if the initial relevance is 1, the sorting
direction is descending, otherwise it is ascending. After the search has ended, the generated
explanations in E are returned (line 27).

Below, we outline three types of counterfactual explanations supported by the ExES
framework.

3.5.1 Counterfactual Skill Explanations

We consider adding or removing skills to the skill set of pi or collaborators in pi’s neigh-
borhood. Given a query q, adding skills that are directly in q or similar to those in q, to pi
or their neighborhood collaborators, should move pi up in the ranking, and removing such
skills should do the opposite.

However, due to the large space of candidate skills, the search space of the above per-
turbations needs to be pruned. To do this, we train a word embedding model, denoted
W , such as Word2Vec [53], which learns representations for skills to identify similar or
dissimilar skills. We train W on the textual expertise corpus from which the collabora-
tion network labels were assigned. We use W to limit the skills that are included in the
perturbations, to maintain efficiency. In addition, taking this contextual similarity into
account can improve the actionability of our explanations. For instance, we can make sure
the skills we suggest for individuals would be relevant to their original skill sets.

24

Algorithm 1 The core for generating counterfactual explanations

Input: Collaboration network G, Query q, Ranker R, Relevance status function C, Word embedding W ,
Link prediction model L, expert pi, Number of explanations e ≥ 1, Number of candidate features
t ≥ 1, Beam width b, Maximum perturbation size γ

Output: List of e explanations E
1: candidateFeatures← getCandidateFeatures(t, G,W,L) ▷ Depends on the explanation type
2: E ← ∅
3: queue← {∅}
4: initialRelevance← Cpi(q,G)
5: while |E| < e and |queue| > 0 do
6: expandedQueue← ∅
7: for all perturbation ∈ queue do
8: for all feature ∈ candidateFeatures do
9: expandedPerturbation← perturbation ∪ {feature}
10: G′, q′ ← Apply(perturbation,G, q)
11: newRank ← Rpi

(q′, G′)
12: newRelevance← Cpi

(q′, G′)
13: if newRelevance ̸= initialRelevance then
14: E ← E ∪ expandedPerturbation
15: end if
16: if |expandedPerturbation| < γ then
17: expandedQueue← expandedQueue ∪ {⟨newRank, expandedPerturbation⟩}
18: end if
19: end for
20: end for
21: expandedQueue← selectTopK(expandedQueue, b)
22: queue← ∅
23: for i ∈ [0, b) do
24: queue← queue ∪ {expandedQueue[i][1]}
25: end for
26: end while
27: return E

25

Let E be a counterfactual explanation, which contains a perturbation to the node skills
of the collaboration network G. Let G′ be the perturbed collaboration network and the
node-label matrix of G′ be LG′

. We define the difference matrix ∆L = LG′ − LG.

Skill addition. For a counterfactual explanation that includes skill additions to pi’s
neighborhood N (pi), the explanation would be in the form of:

E = {(px, sy)|∆Lxy = 1, px ∈ N (pi)}

Skill removal. For counterfactual explanations that contain removing skills from pi’s
neighborhood N (pi), the explanation would be in the form of:

E = {(px, sy)|∆Lxy = −1, px ∈ N (pi)}

Therefore, to find the minimal explanations E∗ , we solve the following optimization
problem:

∆L
∗ = argmin

∆L

||∆L||0

s.t Cpi(q,G′) ̸= Cpi(q,G)

Then, the minimal explanation would be

E∗ = {(px, sy)|∆∗
Lxy ̸= 0}.

To determine which skills to add, we start by selecting the t most similar skills to the
query and Si, based on W . Then, using beam search, we find minimal combinations of
skills that improve pi’s ranking. We use a similar approach to find minimal skills to remove
from experts, starting from skills in SN (pi) that are the most similar to the query, followed
by the beam search.

Example. As an example, consider the query “database management quality” on the
DBLP collaboration network with k = 10, where “Divesh Srivastava” is ranked 11th, i.e.,
outside the top-k. Suppose the user wants to counterfactually explain why this individual
was ranked outside the top-10. Figure 3.4 shows a list of skill addition explanations. These
skills are either added to the target individual (Divesh Srivastava), or their neighbors (Bei
Yu, Songtao Guo, Christina Tziviskou). Also, as an example, we see that adding the
analytics skill improves Divesh Srivastava’s rank for this query to fifth.

26

Figure 3.4: List of counterfactual skill explanations

27

3.5.2 Counterfactual Query Explanations

To produce counterfactual explanations for the relevance status of a node pi in terms of
the search query, we consider query augmentation. Query augmentation is a commonly
employed technique, aimed at improving the recall of search systems [77]. This method
bridges the gap between the query and ranked items by adding relevant terms to the
query. It effectively addresses issues such as ambiguity, vocabulary mismatch, and absence
of specific terms in the initial query. Query augmentation has also proven effective in
explaining ranking models [72]. It is worth noting that since the input queries for expert
search are typically brief and consist of a few keywords, perturbing the queries through
keyword removal is often impractical. Removal of keywords might change the query’s
intent, resulting in vague and improper queries. Plus, such limited perturbations through
keyword removal fail to yield successful counterfactuals in most cases. Therefore, we only
consider keyword addition to the query, where adding skills from Si into q should improve
pi’s ranking, and adding skills unrelated to Si into q should do the opposite.

Let q′ ⊂ q be a perturbed query. In this case, the corresponding explanation E would be
q′−q, which is the set of keywords added to q. Hence, we find minimal query perturbations
by solving the following optimization problem:

q′∗ = argmin
q′

|q′ − q|

s.t Cpi(q′, G) ̸= Cpi(q,G)

Then, the minimal explanation would be E∗ = q′∗ − q.

To find query augmentations that improve the ranking of pi to bring pi into the top-k
list, we again prune the search space by identifying t most similar skill keywords to the
expert skill set Si and the query q, according to the keyword embedding model W . We
then use beam search to find counterfactual perturbations. To find counterfactual query
explanations that evict an expert pi from the top-k list, we run the aforementioned method,
starting with skills similar to the query, however, different from Si.

3.5.3 Counterfactual Collaboration Explanations

Finally, to create counterfactual explanations for Cpi(q,G) in terms of collaborations, we
consider the introduction of new connections to pi’s neighborhood (adding edges to G) or
the removal of current connections (deleting edges from G). Intuitively, pi’s ranking can

28

improve if we add an edge for a node in pi’s neighborhood to an expert for the given query
q, and vice versa.

Let E be a counterfactual explanation, which contains a perturbation to the edges of
the collaboration network G. Let the perturbed collaboration network be G′, and the
adjacency matrix of G′ be AG′

. We define the difference matrix ∆A = AG′ − AG.

Collaboration addition. For counterfactual explanations involving the addition of
collaborations, the explanation format would be:

E = {(px, py)|∆Axy = 1, x ∈ N (pi) ∧ y /∈ N (pi)}

Collaboration removal. For a counterfactual explanation that includes collaboration
removals, the explanation would be in the form of:

E = {(px, py)|∆Axy = −1, x ∈ N (pi) ∧ y ∈ N (pi)}

Hence, we find minimal collaboration perturbations in the corresponding search space
by solving the following optimization problem:

∆∗
A = argmin

∆A

||∆A||0

s.t Cpi(q,G′) ̸= Cpi(q,G)

Then, the minimal explanation would be

E∗ = {(px, py)|∆∗
Axy ̸= 0}.

To prune the search space of collaboration explanations, we leverage a link prediction
model, such as Graph Auto-encoder (GAE) [39], denoted L, trained on the collaboration
network connections. Surveys on link prediction methods [45] highlight GAE’s strong
performance in achieving high link prediction accuracy on real-world graphs, alongside
its ease of implementation [1]. Moreover, ExES works independently from the internal
mechanisms of the L, prioritizing its prediction accuracy. These factors led to our decision
to employ GAE as the link prediction model in ExES. We employ L as a recommender for
potential future collaborations between experts, to eliminate less promising collaborations
from the search space of counterfactuals. This helps us to reduce the size of the search
space and maintain efficiency. Further, by considering edges with a high probability of
being formed in the perturbations, ExES can hold a strong level of actionability.

29

We use an iterative strategy based on beam search to construct these explanations
efficiently. To improve pi’s ranking, we locate the most likely candidates for future collab-
orations within N (pi), using the link prediction model L. Then, we start forming minimal
sets of these new collaborations, by expanding sets with the greatest improvement in pi’s
ranking, using beam search. Furthermore, to identify minimal sets for edge removal, we
apply a similar beam search method by progressively expanding sets of edges in N (pi)
whose elimination worsens pi’s ranking the most.

Example. As an example, we revisit the previous scenario from Section 3.5.1 with the
query “database management quality” on the DBLP collaboration network, with k = 10,
and “Divesh Srivastava” as the target individual for explanation. The user can request
explanations using collaboration additions. Figure 3.5 shows a list of counterfactual col-
laboration additions that place Divesh Srivastava inside the top-10. Figure 3.6 visualizes
an example counterfactual explanation, having the added edge highlighted.

3.6 Complexity

In this section, we analyze the time complexity of ExES for each explanation type.

3.6.1 Saliency Explanations

According to [48], the time complexity of calculating SHAP values of a prediction with M
input features is O(2M × T), where T is the running time of the black-box for one pass.
Since ExES builds saliency explanations on top of the SHAP algorithm, we list the time
complexity of each saliency explanation method of ExES in table 3.2. In the provided
statements, Tranking is the time complexity of running the black-box ranker for one pass.

When computing SHAP values for skills to explain the relevance status of pi, the original
input would include all skills possessed by individuals in G, a total of

∑n
i=1 |Si| features. In

the worst case, this would be equal to |P |× |S|. However, ExES bounds the feature set for
SHAP value computation by only considering the skills of individuals within pi’s neighbor-
hood. This reduces the number of input features for SHAP to

∑
x|px∈N (pi)

|Sx| = |SN (pi)|.

Similarly, for calculating SHAP values of collaborations in G, the original features
would be every edge in G; therefore, the size of input features for SHAP is |E| which is
extremely large in real-world collaboration networks. ExES limits the input features by
only including edges within the neighborhood of pi, N (pi). Since the effective edges are

30

Figure 3.5: List of counterfactual collaboration explanations

31

Figure 3.6: Visualization of Counterfactual collaboration explanation

32

Table 3.2: Time Complexity of Saliency Explanation methods

Explanation Type
Time Complexity

with Pruning without Pruning

SHAP values of experts’ skills O(2|SN(pi)
| × Tranking) O(2|P |×|S| × Tranking)

SHAP values of query keywords O(2|q| × Tranking) O(2|q| × Tranking)
SHAP values of Collaborations O(2|N (pi)| × Tranking) O(2|E| × Tranking)

Table 3.3: Time Complexity of Counterfactual Explanation methods

Explanation Type
Time Complexity

with Pruning without Pruning

Skill Counterfactuals O(TW + b× t× γ × |N (pi)| × Tranking) O(2|S|×|P | × Tranking)
Query Counterfactuals O(TW + b× t× γ × Tranking) O(2|S| × Tranking)

Collaboration Counterfactuals O(TL + b× t× γ × |N (pi)| × Tranking) O(2|E| × Tranking)

selected using a breadth-first search, the number of effective edges selected for SHAP is at
most |N (pi)|, which is way smaller than |E|.

Notice that ExES doesn’t apply any pruning method for calculating SHAP values of
query keywords. Thus, the time complexity would be the same for ExES and exhaustive
searches.

3.6.2 Counterfactual Explanations

We compare the time complexity of generating counterfactual explanations with and with-
out the pruning strategies in Table 3.3.

When generating counterfactuals, the exhaustive strategy involves calculating the new
ranking and relevance status for every subset of the search space (ordered by the pertur-
bation size) and then picking the minimal perturbations that flip the relevance status.

For skill addition counterfactuals, the size of the search space is determined by the
count of missing skill-individual pairs in G, which is equal to

∑
i∈P |S − Si|. Conversely,

for skill removal counterfactuals, it corresponds to the number of existing skill-individual
pairs, which is

∑
i∈P |Si|. These numbers could be equal to |S|× |P | in the worst case. For

query counterfactuals, the search space contains every missing keyword from the query,
with a maximum size of |S − q|. For collaboration addition counterfactuals, the search

33

space contains every missing edge, which has a size of
(
n
2

)
− |E|, and for collaboration

removal counterfactuals, it includes all existing edges, which has the size of |E|.
On the other hand, as stated in Section 3.5, ExES uses beam search as the base algo-

rithm for generating counterfactual explanations. We recall b as the beam size, and γ as
the maximum explanation size.

According to [67], the time complexity for a beam search procedure with beam size
b, branching factor w, and maximum depth γ is O(b × w × γ). For skill counterfactuals,
ExES limits the search to the target expert’s neighborhood N (pi) and selects t keywords
as potential skill perturbations, making the search space and branching factor t ×N (pi).
For query counterfactual, the search space and branching factor is t, corresponding to the
t keywords added to the query. In the context of collaboration counterfactuals, ExES
narrows down the potential added/or removed edges to manage the search space, selecting
t perturbed edges for both additions and removals involving N (pi), maintaining the search
space and branching factor at t.

We can observe that pruning the search space effectively manages the running time
of ExES by reducing the exponential runtime of the exhaustive strategy to a polynomial
runtime. In Table 3.3, TW represents the runtime of the keyword embedding model to
identify t potential keywords, and TL represents the runtime of the link prediction model
to find t potential edges for the perturbations.

3.7 Explaining Team Formation Systems

State-of-the-art neural solutions for the team formation problem solve the expert search
task as an initial step. In the second step, these solutions then assemble closely connected
experts and output a subgraph of the collaboration network.

ExES is capable of providing insights into the team composition. Similar to the expert
search explanations (see Section 3.3), we cast the team formation problem as a binary
classification task. Given a query q and a collaboration network G, we ask whether node pi
is included in the team or not. We defineMpi(q,G), referred to as the membership status,
which is true whenever pi is selected by the team formation system F for the team (i.e.,
pi ∈ F(q,G)), and false otherwise. ExES can take advantage of any of the stated saliency
and counterfactual explanation methods to explain why an expert pi was included in a
constructed team T , or vice versa, it can explain why an individual was not selected in
T . To do so, the membership status is used as the explanation target, instead of relevance
status in all explanation methods described in sections 3.4 and 3.5.

34

Figure 3.7: Example for team formation output. The user wants to explain why “Rayid
Ghani” (indicated with an orange circle) was excluded from the team.

35

Figure 3.8: Example counterfactual explanation for team formation

36

Example. As an example, consider the query “social graph pattern mining” on the
DBLP collaboration network. The output team includes “Jure Leskovec,” “Jiawei Han,”
and “Marko Grobelnik,” as depicted in Figure 3.7, where team members are indicated by
blue-colored nodes and non-members by gray nodes. The user can select the team mem-
bers to explain their selection for the team, or other individuals who were not chosen, to
explain their exclusion from the team. For instance, Figure 3.8 illustrates a counterfactual
explanation that includes ”Rayid Ghani” as a member of the team.

The time complexity of generating explanations for team formation systems remains
consistent with the principles defined in Section 3.6. However, in this context, Tranking

is substituted with TteamFormation, the time complexity of executing the team formation
procedure for a single pass.

37

Chapter 4

Evaluation

In this section, we provide an overview of our comprehensive experiments designed to show-
case the effectiveness and efficiency of ExES in offering easy-to-understand explanations
for both the expert search and team formation systems.

4.1 Metrics

To evaluate the performance of ExES, we utilize the following metrics:

• Explanation Size: The size of an explanation serves as a crucial factor in assessing
its quality. When generating saliency explanations, providing the feature attribution
for every input feature would be a valid explanation. However, users prefer shorter
explanations due to their ease of comprehension. Moreover, in the case of counter-
factual explanations, smaller and simpler counterfactuals are easier to interpret and
act upon2. For instance, in scenarios such as skill recommendations, it is easier for
individuals to learn as few skills as possible.

• Latency: Latency refers to the time required to calculate all explanations for a
target individual. This encompasses calculating feature attributions for every input
feature in saliency explanations (recall Section 3.4), and generating the top e minimal
explanations in counterfactual scenarios (recall Section 3.5). ExES is designed to
accomplish this within a brief, reasonable timeframe.

• Precision: ExES aims to balance its search space reduction with precision. We
evaluate ExES’s precision by comparing its explanations against those generated

38

by an exhaustive search baseline on the unpruned space. Ideally, the generated
explanations should be similar to those produced without pruning.

Saliency explanations. In evaluating saliency explanations, we aim to ensure
that important features identified by ExES are similarly deemed important by the
exhaustive explanation baseline (i.e. receive non-zero feature attribution values). To
measure this, we utilize thePrecision@kmetric. Given a set of saliency explanations
generated by ExES, this metric measures the proportion of the top-k important
features (ranked by the absolute value of their feature attributions) that also receive
non-zero attributions in the corresponding exhaustive explanations.

Counterfactual Explanations. In the scope of counterfactual explanations, an
explanation is deemed optimal if it is included in ground-truth explanations gen-
erated by the exhaustive baseline, or if its size matches the minimal explanation
size identified by the baseline. Given a set of counterfactual explanations and their
corresponding ground-truth explanations, the Precision is defined as:

Precision =
Number of optimal explanations

Number of total explanations

Furthermore, we label explanations as nearly-optimal if their size exceeds the optimal
size by at most one unit. We calculate the ratio of nearly-optimal explanations found
by ExES in a variable named Precision*:

Precision* =
Number of nearly-optimal explanations

Number of total explanations

4.2 Experimental Setting

4.2.1 Environment

ExES consists of a web app frontend, developed with VueJS, and a backend REST API,
developed with Flask and Python 3.10.12. We deployed the frontend and backend server
and ran all of our evaluation experiments on an Ubuntu virtual machine, with an Intel
Core i9-7920X CPU, 128 GB of RAM, and a GeForce RTX 4090 GPU.

4.2.2 Datasets

We evaluated ExES on two well-known datasets: DBLP and GitHub. However, since these
datasets do not provide pre-constructed collaboration networks, we construct the networks

39

Table 4.1: Dataset statistics

Dataset # Nodes # Edges # Skills

DBLP 17630 128809 1829
GitHub 3278 15502 863

from their raw data. Importantly, ExES is designed to operate on any node-labeled col-
laboration network (with properties defined in Section 3.1). The processes involved in
dataset creation and node labeling are independent of the core functionalities of the expert
search/team formation systems, as well as of ExES itself.

In DBLP [44], the collaboration network comprises academic researchers as nodes and
paper co-authorship as edges. We extracted expert skills from their paper titles and ab-
stracts. Using TF-IDF on the keywords, we assigned skills to individuals when their TF-
IDF values surpassed the threshold θtfidf . This threshold ensured an average of 15 skills per
expert. We established this threshold after testing various levels during dataset creation.
Higher thresholds resulted in fewer skills per expert, which limited the potential experts
for given queries. In contrast, lower thresholds increased the number of skills assigned to
each person, thereby reducing the distinctiveness between individuals and hindering the
black-box’s ability to distinguish experts from non-experts.

The GitHub dataset includes GitHub users as nodes and project collaborations as edges.
The skill sets of these users were deduced by applying the same TF-IDF methodology and
threshold to the descriptions and tags of each user’s repositories. Detailed statistics for
both datasets are provided in Table 4.1.

4.3 Experiments

To evaluate the performance of ExES using the aforementioned metrics, we first prepared
a set of queries to run the expert search and team formation models on them. For each
dataset, we generated 100 random queries, by sampling between 3 and 5 keywords uniformly
from the universe of skills (S) of the corresponding dataset. This uniform sampling method
guarantees diversity in the queries, thereby ensuring a broad range of experts and teams
are retrieved for our analysis.

40

4.3.1 Expert Search Experiments

ExES is designed to work properly for any expert search black-box, satisfying the con-
ditions defined in Section 3.1. However, to select the black-box expert search model, we
implemented an expert search system, inspired by the ideas from several state-of-the-art
solutions [31, 14, 32]. The chosen architecture leverages graph convolutional networks [40]
to learn representations of the experts. The model was trained in a contrastive learning
process; for each query from the dataset (e.g., paper titles in DBLP, or project keywords
in GitHub), the participants of that query are considered more relevant than randomly
selected individuals.

To evaluate the explanations for expert search models, we first ranked experts for
each query using the pre-trained model, having k = 10. Then, from the total retrieved
individuals, we sampled 100 experts within the top-k and 100 non-experts ranked between
k+1 and 2k. We applied all saliency and counterfactual explanation methods (see Sections
3.4 and 3.5) for each sampled individual to explain their ranking. We ran this series
of experiments with beam size b = 30, maximum explanation size γ = 5, number of
required explanations e = 5, and number of candidate features t = 10. In addition, the
neighborhood distance threshold d was set to 1 for Skill Saliency, skill counterfactual, and
collaboration addition counterfactual explanations, ensuring an individual’s neighborhood
contains themselves and their immediate collaborators. For Collaboration Saliency and
collaboration removal counterfactual explanations, we extended the neighborhood depth
to 2 to incorporate 2-hop collaborations. We also set τ in calculating Collaboration SHAP
values equal to 0.1. In Section 4.3.3, we will discuss how variations in these parameters
affect the performance and outcomes of ExES.

We compared ExES’s explanations against those created by a baseline that conducted
an exhaustive search over the explanation search space. It is important to note that in
saliency query explanations, there is no corresponding pruning method, hence no exhaus-
tive baseline for comparison. To maintain efficiency during experimentation, we imposed
a timeout of 1000 seconds for generating each explanation.

Furthermore, in terms of skill addition counterfactuals (recall Section 3.5.1), the ex-
haustive search algorithm involves probing the black-box system by adding every skill into
each node of the collaboration network. This creates a substantial search space, making
it infeasible to run the exhaustive baseline within practical time constraints. To effec-
tively assess this scenario, we conducted two separate baseline tests. The first, which we
denote as the Exhaustive neighborhood baseline, utilizes the entire network for potential
node perturbations while adopting the pruned skill set from ExES as the candidate skills
for addition. The metrics for this baseline are represented as N in our tables. Conversely,

41

the second baseline, referred to as the Exhaustive skills baseline, retains the universe of
skills (S) as potential additional skills but limits modifications to the neighborhood of the
target expert. The results corresponding to this baseline are denoted as S in our tables.

Table 4.2: Latency and size comparison for generating explanations for Expert Search

Category Target Explanation Method Dataset
Latency (s) Explanation Size

ExES Exhaustive ExES Exhaustive

Saliency
—

Skill SHAP
DBLP 3.17 147.77 22.4 97.30
GitHub 1.11 147.22 21.6 43.82

Query SHAP
DBLP 0.13

—
2.76

—
GitHub 0.19 3.52

Collaboration SHAP
DBLP 11.29 98.02 13.17 174.96
GitHub 7.23 76.57 4.24 144.78

Counterfactual

Experts

Skill Removal
DBLP 57.53 917.06 2.23 1.53
GitHub 5.74 14.93 1.68 1.36

Query Augmentation
DBLP 0.36 0.21 1.17 1.00
GitHub 0.35 0.13 1.21 1.00

Collaboration Removal
DBLP 17.18 671.95 2.09 1.73
GitHub 12.25 154.25 2.31 2.23

Non-experts

Skill Addition
DBLP 79.92

N: 213.27
1.97

N: 1.41
S: 173.83 S: 1.22

GitHub 5.16
N: 15.24

2.21
N: 1.63

S: 13.19 S: 1.18

Query Augmentation
DBLP 0.71 0.93 1.35 1.00
GitHub 0.51 0.64 1.06 1.00

Collaboration Addition
DBLP 6.17 159.79 1.33 1.12
GitHub 1.51 11.82 1.54 1.03

Results. Table 4.2 presents the average latency and explanation sizes for ExES’s algo-
rithms alongside those of the exhaustive baseline, across the DBLP and GitHub datasets.
Note that for saliency explanations, the explanation size shows the number of features
having non-zero feature attribution values. Since the exhaustive baseline takes every fea-
ture into account, the exhaustive explanation size is not necessarily less than the saliency
explanation sizes of ExES.

In our efficiency analysis, ExES demonstrated an average latency reduction of 52% for
explaining expert search systems compared to the exhaustive search method. We observed
that pruning the search space reduces the running time for finding saliency explanations,
and counterfactual skill and collaboration explanations. In counterfactual query explana-
tions, we observe that our pruning strategy reduces the latency for turning non-experts into

42

Table 4.3: Precision@1 and Precision@5 of generated saliency explanations by ExES for
Expert Search

Category Explanation Method Dataset Precision@1 Precision@5

Saliency

Skill SHAP
DBLP 0.85 0.70
GitHub 0.81 0.64

Collaboration SHAP
DBLP 1.00 0.98
GitHub 1.00 0.99

Table 4.4: Precision and Precision* of generated explanations by ExES for Expert Search

Category Target Explanation Method Dataset
Explanations

Precision Precision*

ExES Exhaustive

Counterfactual

Experts

Skill Removal
DBLP 383 265 0.87 0.98
GitHub 465 385 0.98 0.99

Query Augmentation
DBLP 470 470 0.85 0.97
GitHub 435 475 0.81 0.96

Collaboration Removal
DBLP 301 230 0.93 1.00
GitHub 242 226 0.83 0.98

Non-experts

Skill Addition
DBLP 387

N: 270 N: 0.87 N: 0.97
S: 420 S: 0.43 S: 0.85

GitHub 375
N: 295 N: 0.91 N: 0.96
S: 440 S: 0.32 S: 0.73

Query Augmentation
DBLP 456 460 0.59 0.91
GitHub 440 475 0.64 0.94

Collaboration Addition
DBLP 441 460 0.73 0.95
GitHub 400 470 0.59 0.89

experts. However, the reverse direction exhibits an overhead without latency reduction.
the pruning method seems to be an overhead, without reducing the latency. This likely
stems from the fact that to turn experts into non-experts, adding an arbitrary keyword
to the query is sufficient. However, selecting the additional keywords using the keyword
embedding model is useful for sustaining the plausibility and validity of the counterfactual
queries. This approach ensures the chosen keywords closely relate to the original query,
thus maintaining the relevance and meaningfulness of the counterfactual queries.

Table 4.3 demonstrates the Precision@1 and Precision@5 for Skill-based and
Collaboration-based saliency explanations for Expert Search. The results confirm that,
on average, ExES achieves a Precision@1 of 0.91 and a Precision@5 of 0.82. This means
that 91% of the features identified as most important, and 82% of the top-5 important
features, are correctly recognized as important by ExES. Table 4.4 shows the number of

43

total counterfactual explanations generated by ExES (with pruning) and by the baseline
(without pruning, by exhaustive search) within the time limit, along with the precision
and precision* of explanations created by ExES. Given a total of 100 target experts and
e = 5, the ideal output would involve 500 explanations for each method. However, ExES
may miss some explanations due to pruning of the search space, while the exhaustive
search might not complete within the time limit. This analysis revealed ExES maintains
an average precision of 74% over all counterfactual explanation types. In addition, ExES
maintains an average precision* of 94%, which proves that it could generate nearly-optimal
explanations in 94% of the cases.

Upon examining the precision values, it becomes evident that for Skill Addition coun-
terfactuals, the precision of ExES, in comparison to Exhaustive skillset baselines, drops
below 0.5. This observation leads us to conclude that selecting appropriate candidate key-
words for the search space is crucial in attaining minimal explanations. One potential
action to enhance the probability of taking those appropriate keywords in the search space
is increasing the parameter t. Nevertheless, this approach introduces a trade-off between
latency and precision. A larger t value would lead to ExES behaving more closely to
the Exhaustive skillset baseline, but at the cost of increased computation time. Still, the
precision results indicate that 70% ExES’s skill addition explanations are nearly-optimal.

4.3.2 Team Formation Experiments

As outlined in 3, ExES is capable of explaining the decisions for any team formation
system that meets the criteria specified in Section 3.1. However, for our evaluation, we
selected the method from [32] as our black-box for team member retrieval. This method
receives an expert as the main member, and subsequently constructs the team around the
main member. The search procedure selects the team members in a breadth-first manner
starting from the main member, with the aim to cover all skills in the query. The team
formation system utilizes the expert ranker, as described in 4.3.1, as a tie-breaker between
candidate members at the same distance from the main member, prioritizing individuals
with higher ranks.

To evaluate explanations for team member inclusion and exclusion, we employed the
random queries generated in the previous section. For each query, we randomly selected an
expert from the top-k results and then used our team formation method to build a team
around that expert. Within each formed team, we randomly sampled one team member
to explain their inclusion and one non-member from the main member’s neighborhood to
explain their exclusion.

44

The exhaustive baselines and parameters used for explanation generation are as defined
in Section 4.3.1.

Table 4.5: Latency and size comparison for generating explanations for Team Formation

Category Target Explanation Method Dataset
Latency (s) Explanation Size

ExES Exhaustive ExES Exhaustive

Saliency
—

Skill SHAP
DBLP 8.63 236.53 30.65 93.40
GitHub 2.88 229.80 23.98 40.69

Query SHAP
DBLP 0.24

—
2.65

—
GitHub 0.31 3.52

Collaboration SHAP
DBLP 62.41 645.62 18.38 209.38
GitHub 41.02 79.04 8.62 168.73

Counterfactual

Members

Skill Removal
DBLP 132.18 958.05 1.77 1.31
GitHub 10.12 31.82 1.54 1.26

Query Augmentation
DBLP 0.82 0.46 1.20 1.05
GitHub 0.80 0.35 1.30 1.00

Collaboration Removal
DBLP 35.91 932.63 1.95 1.60
GitHub 22.74 328.47 2.08 1.64

Non-members

Skill Addition
DBLP 181.46

N: 450.35
2.19

N: 1.59
S: 371.57 S: 1.31

GitHub 13.78
N: 28.40

2.88
N: 1.95

S: 24.72 S: 1.58

Query Augmentation
DBLP 0.84 1.28 2.14 1.83
GitHub 0.59 0.75 2.03 1.67

Collaboration Addition
DBLP 13.32 366.51 1.51 1.26
GitHub 4.26 25.33 1.79 1.15

Results. Table 4.5 compares the average latency and explanation sizes for generating
explanations for team formation systems, using ExES and the exhaustive baseline. This
comparison supports our observations from Section 4.3.1. We noted that ExES achieves
an average reduction in latency of 50% for generating team formation explanations, un-
derlining the efficiency of ExES.

Table 4.6 presents the Precision@1 and Precision@5 scores for Skill-based and
Collaboration-based saliency explanations of Team Formation, generated by ExES. Aligned
with the metrics from 4.3.1, our findings show that ExES is able to generate saliency expla-
nations for Team Formation systems, with a Precision@1 of 0.83 and a Precision@5 of 0.72
on average. Furthermore, Table 4.7 displays the number of total explanations generated
by ExES and by the baseline within the time limit, along with the precision and preci-
sion* of explanations created by ExES. Similar to our approach in evaluating expert search
explanations, Exhaustive neighborhood and Exhaustive skillset baselines are employed for

45

Table 4.6: Precision@1 and Precision@5 of generated saliency explanations by ExES for
Team Formation

Category Explanation Method Dataset Precision@1 Precision@5

Saliency

Skill SHAP
DBLP 0.77 0.57
GitHub 0.58 0.51

Collaboration SHAP
DBLP 1.00 0.89
GitHub 1.00 0.91

Table 4.7: Precision and Precision* of generated explanations by ExES for Team Formation

Category Target Explanation Method Dataset
Explanations

Precision Precision*

ExES Exhaustive

Counterfactual

Members

Skill Removal
DBLP 306 210 0.82 0.92
GitHub 405 365 0.92 0.93

Query Augmentation
DBLP 260 260 0.86 0.98
GitHub 199 250 0.82 0.97

Collaboration Removal
DBLP 296 225 0.92 1.00
GitHub 223 215 0.82 0.97

Non-members

Skill Addition
DBLP 350

N: 250 N: 0.81 N: 0.96
S: 405 S: 0.41 S: 0.82

GitHub 348
N: 265 N: 0.90 N: 0.97
S: 410 S: 0.30 S: 0.70

Query Augmentation
DBLP 425 445 0.50 0.90
GitHub 410 455 0.60 1.00

Collaboration Addition
DBLP 410 445 0.69 0.91
GitHub 360 450 0.57 0.83

evaluating Skill Addition counterfactuals. The results indicate that ExES secures an aver-
age precision of 71% and an average precision* of 91% over all counterfactual explanation
types, signifying its effectiveness in obtaining minimal and nearly-optimal explanations,
respectively.

4.3.3 Parameter Sensitivity Analysis

We furthermore conduct a sensitivity analysis on the parameters used in the search pro-
cesses in ExES. These parameters include the beam size b, the number of candidate features
selected in beam search t, the neighborhood radius d, and the threshold in calculating col-
laboration SHAP values τ . We evaluate their impacts on latency, precision, the number of
found explanations, and the explanation size of the explanation methods. To analyze each

46

10 15 20 25 30
Beam size

0

10

20

30

40

50

60

La
te

nc
y

(s
)

Skill Removal
DBLP
GitHub

(a) Effect of b on Latency

10 15 20 25 30
Beam size

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Pr
ec

isi
on

Skill removal

DBLP
GitHub

(b) Effect of b on Precision

10 20 30 40 50 60
Number of candidate features

2

4

6

8

La
te

nc
y

(s
)

Query augmentation
DBLP
GitHub

(c) Effect of t on Latency

10 20 30 40 50 60
Number of candidate features

0.6

0.7

0.8

0.9

Pr
ec

isi
on

Query augmentation
DBLP
GitHub

(d) Effect of t on Precision

0 1 2 3
d

260

280

300

320

340

Ex

pl
an

at
io

ns

Skill addition
DBLP
GitHub

(e) Effect of d on # Expl.

0 1 2 3
d

0

100

200

300

400

La
te

nc
y

(s
)

Skill addition
DBLP
GitHub

(f) Effect of d on Latency

0 1 2 3
d

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Skill addition

DBLP
GitHub

(g) Effect of d on Precision

0.05 0.10 0.15

5

10

15

20

Ex
pl

an
at

io
n

Si
ze

Collaboration SHAP
DBLP
GitHub

(h) Effect of τ on Expl. Size

Figure 4.1: Parameter sensitivity analysis on explanation metrics

parameter, we set the other parameters to the values mentioned in Section 4.3.1.

Results. Figure 4.1 shows eight plots of the parameter sensitivity analysis. Figures
4.1a and 4.1b measure the effect of beam size b on the latency and precision of skill removal
explanations in expert search. We can observe that the runtime and precision increase by
increasing the mentioned parameters. Figures 4.1c and 4.1d measure the effect of the num-
ber of candidate tokens t on the latency and precision of query augmentation explanations
for non-experts in expert search. Figure 4.1c displays an increasing trend in latency for
lower values of t. However, for larger values of t, the set of candidate additional keywords
would contain more keywords, enhancing the likelihood of including effective keywords for
counterfactuals. This allows the search to terminate in the early steps, which reduces the
latency. Figure 4.1d verifies that increasing t enhances the explanation precisions, where
the increase rate declines for large values of t. Plus, Figure 4.1e demonstrates the impact
of neighborhood size d on the number of generated valid Skill Addition explanations in
expert search and the optimal value of d. In this figure, smaller values of d result in ExES
failing to find valid explanations due to restricted search space, while larger values of d
cause ExES to exceed the time limit. Moreover, Figures 4.1f and 4.1g show the tradeoff
between latency and precision (compared with the Exhaustive neighborhood baseline) for

47

(a) With pruning

(b) Without pruning

Figure 4.2: Skill SHAP values for Yann LeCun’s relevance status

different values of d. Finally, Figure 4.1h measures the effect of the threshold τ on explana-
tion size in Collaboration SHAP values in expert search. It demonstrates that increasing
τ leads to achieving smaller explanation sizes, as fewer experts are considered “impactful”
and subject to further expansion.

4.4 Case Study

In this section, we qualitatively analyze the functionality of ExES in explaining expert
search and team formation outcomes. We use the black-box models from 4.3.

In our first scenario, we take the query “deep neural training”, and perform the expert
search on the DBLP collaboration network, having k = 10. After running the expert
search black-box, we observe that “Yann LeCun” is ranked 11th. While this indicates a
strong position among nearly 17000 researchers, we focus on explaining why LeCun was not
ranked in top-10, since he is a prominent figure in the field of machine learning research.
In this scenario, we analyze saliency explanation methods.

First, we find Skill SHAP values, to see which skills in LeCun’s neighborhood may be
preventing him from getting a place in the top-10. Figure 4.2 shows the SHAP values
of skills that either positively or negatively affect LeCun’s relevance status, both with
(generated by ExES) and without (generated by the exhaustive baseline) pruning methods.
According to 4.2a, ExES demonstrates that skills related to Machine Learning and deep
neural networks, such as “classification” and “embedding” positively influence LeCun’s
relevance. Conversely, skills such as “range”, “protein”, “road” and “graph”, which are
more associated with other machine learning applications, are irrelevant to the query and

48

negatively impact LeCun’s relevance.

Comparing the results of ExES with the exhaustive output (Figure 4.2b), we observe
that the exhaustive baseline includes skills such as “recognition” and “categorization” as
the most important positive skills. While these skills do not appear among the top features
in ExES’s results, they share semantic similarities with the top feature highlighted by ExES
(“classification”). On the other hand, the exhaustive baseline finds “spectral” to have
the most negative impact on LeCun’s relevance. This skill, related to image and sound
recognition topics, aligns with the keyword “range”, identified by ExES as having the most
negative effect.

Additionally, we analyze the SHAP values of collaborations in LeCun’s neighborhood,
to identify specific collaborators who positively or negatively influence his relevance to
the query. Figure 4.3 displays the collaboration SHAP values in LeCun’s neighborhood.
According to this figure, collaborations with “Yoshua Bengio”, “Pascal Vincent”, and
“Rob Fergus”, who are all established ML researchers, appear to have a beneficial impact.
However, collaborating with “Laurent Najman”, “Xavier Bresson”, and “Patrick Haffner”
distracts LeCun from the query. This may be due to the specialization of these experts in
applied ML, with a specific focus on computer vision, graph neural networks, and network
systems, respectively.

In our second scenario, we take the same query and k from the first scenario. However, in
this scenario, we aim to explain the relevance of “Yoshua Bengio”, who is ranked 19th, using
counterfactual explanations. We suggest that our counterfactual skill and edge additions
could support career advancements (recall Figures 3.4 and 3.5).

First, we analyze counterfactual skill explanations to determine how Bengio might
achieve a top-10 ranking. Figure 4.4 presents a list of such counterfactual skill explana-
tions, revealing a minimal explanation size of 9. We observe that ExES proposes skills
additions for both Bengio and his network, which demonstrates the importance of neigh-
borhood structure in ranking experts. In these explanations, ExES identifies skills such as
“recognition”, “supervised”, and “machine” to be added to Bengio and his collaborators.
However, the first 7 skill additions remain consistent among our found perturbations, while
the last two additions distinguish one explanation from another.

Next, we analyze counterfactual query explanations that position Bengio within the top
10 ranks. Figure 4.5 compares the query perturbation generated by ExES (Figure 4.5a)
with those generated by the exhaustive baseline and without pruning techniques (Figure
4.5b). In this case, ExES generates an explanation (appending keywords “discriminative”
and “recurrent” to the initial query) of size 2, while the minimal counterfactuals identified
by the exhaustive baseline have a size of 1. Although the counterfactual found by ExES is

49

Figure 4.3: Collaboration SHAP values for Yann LeCun’s relevance status

50

Figure 4.4: Counterfactual skill explanations to make Yoshua Bengio get into top-10

51

(a) With pruning (b) Without pruning

Figure 4.5: Counterfactual query explanations to make Yoshua Bengio get into top-10

(a) Original team (b) Counterfactual explanations and modified team

Figure 4.6: Counterfactual collaboration explanations to explain Chapelle’s selection for
the team

not minimal, it qualifies as nearly-optimal, exceeding the optimal size by one unit. Further-
more, we notice that the counterfactual query generated by ExES maintains relevance to
the initial query (as “discriminative” and “recurrent” are terms associated with ML model
categories). In contrast, appending keywords like “evidence”, “support”, etc. would not
present a logical or meaningful addition to the query.

In the last scenario (Figure 4.6), we investigate a team formation case with the query
“deep neural training supervised”, where the team formation model (recall Section 4.3)
forms a team around Yoshua Bengio. In this case, the output team includes Bengio and
“Olivier Chapelle” (Figure 4.6a). Chapelle has written two books on semi-supervised learn-
ing and has substantial expertise in training with labeled data. We utilize counterfactual

52

collaboration explanations to interpret Chapelle’s selection for the team. Figure 4.6b dis-
plays a list of edge removals, each of which would result in Chapelle being replaced by
another member (Ronan Collobert) within the team. Focusing on the first edge removal,
we see that Deselaers has significant experience in data annotation and labeling medi-
cal images. Eliminating the collaborative link between Deselaers and Chapelle disrupts
the synergistic effect between two experts in supervised training. Therefore, Chapelle is
substituted by Collobert to represent the keyword “supervised”.

53

Chapter 5

Conclusion and Future Directions

5.1 Summary

In this study, we introduced ExES, the first tool specifically designed to generate explana-
tions for expert search and team formation systems. By framing these complex tasks as
binary classification problems, we applied saliency and counterfactual explanation meth-
ods, common in the XAI domain, to these tasks. In advance, to manage the vast search
space for explanations, we established pruning techniques, which contributed to a reduction
in the running time of the algorithms, without compromising precision. We demonstrated
the efficiency and effectiveness of our explanation methods through experiments on two
real-world datasets and benchmarking against an exhaustive explanation baseline.

5.2 Future Work

For future work, we suggest the following extensions:

• Multi-objective counterfactual optimization: The optimization function in
counterfactual explanations could be expanded to include a broader range of param-
eters beyond explanation size. Inspired by the related work [19, 2], the optimization
function could incorporate factors such as fidelity and robustness, in tandem with
explanation size. For instance, by ensuring high fidelity in explanations, we ensure
that explanations generated for one individual can be generalized for other individ-
uals as well. On the other side, one could demand finding perturbations that do not
change the ranking/team significantly, and therefore try to maximize the robustness.

54

• Rule-based Explanations: As outlined in [66, 20], rule-based explainers are a
family of interpretable surrogate models which represent black-box model decisions
as if-then rules. These explainers identify input feature patterns that consistently
lead to specific outcomes. There is potential for extending ExES to generate rule-
based explanations; i.e. identifying skills or connections that are essential for any
individual to be selected by the model, or underscoring key skills or collaborations
that cause any arbitrary individual to be included in the results with high confidence.

• Distributed Implementation: To ensure scalability, implementing a distributed
version of ExES would be beneficial, specifically for reducing explanation latency in
large-scale collaboration graphs.

• User Study: In this thesis, we quantitatively compared the metrics between expla-
nations generated by ExES and the exhaustive baseline and validated the outputs
through a qualitative case study. However, conducting a comprehensive user study
would be beneficial to evaluate the precision and usefulness of ExES’s explanations
in real-world scenarios. In such a study, real end-users with diverse profiles and
backgrounds would test ExES under various configurations, with a key focus on
monitoring their satisfaction with the explanations provided. Specifically, we would
measure users’ preferences for receiving shorter versus longer explanations based on
their intentions for using ExES, their specific queries, and the individuals targeted
by these queries.

• Identifying Data Quality Issues: Due to the rapid evolution of collaboration
networks caused by possible topic drifts and variability of experts’ skills and collabo-
ration ties [18], these networks are prone to data quality issues, such as missing edges
and node labels, or unsuccessful collaborations [32]. We hypothesize that ExES could
help in highlighting these data quality problems; for example, by identifying missing
skills or collaborations involving experts who were overlooked by the black-box expert
search/team formation systems due to these deficiencies. We propose an evaluation
of ExES’ potential in addressing these data quality issues for future studies.

• Extending Application Domains: While this work concentrates on the context of
expert search and team formation, the framework formulation and pruning methods
employed in ExES could be potentially extended beyond these areas. Future research
could explore and assess the effectiveness of ExES’s explanations in other graph
search domains, such as keyword search in relational databases and protein-protein
interaction networks.

55

References

[1] Pytorch Geometric, Implementation of GAE. https://pytorch-geometric.

readthedocs.io/en/latest/_modules/torch_geometric/nn/models/

autoencoder.html#GAE. [Online; accessed 2024-03-08].

[2] Amin Abolghasemi, Suzan Verberne, Leif Azzopardi, and Maarten de Rijke. On
the explainability of exposing query identification. In 6th FAccTRec Workshop on
Responsible Recommendation at RecSys 2023, 2023.

[3] Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert finding in legal community
question answering. In ECIR, pages 22–30, 2022.

[4] Krisztian Balog, Leif Azzopardi, and Maarten De Rijke. Formal models for expert
finding in enterprise corpora. In SIGIR, pages 43–50, 2006.

[5] Krisztian Balog, Leif Azzopardi, and Maarten de Rijke. A language modeling frame-
work for expert finding. Information Processing & Management, 45(1):1–19, 2009.

[6] Mark Berger, Jakub Zavrel, and Paul Groth. Effective distributed representations for
academic expert search. In Proceedings of the First Workshop on Scholarly Document
Processing, pages 56–71, 2020.

[7] Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto, Dino Pe-
dreschi, and Salvatore Rinzivillo. Benchmarking and survey of explanation methods
for black box models. Data Mining and Knowledge Discovery, 37(5):1719–1778, 2023.

[8] Alessandro Bozzon, Marco Brambilla, Stefano Ceri, Matteo Silvestri, and Giuliano
Vesci. Choosing the right crowd: expert finding in social networks. In EDBT, pages
637–648, 2013.

56

https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/models/autoencoder.html#GAE
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/models/autoencoder.html#GAE
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/models/autoencoder.html#GAE

[9] Robin Brochier, Antoine Gourru, Adrien Guille, and Julien Velcin. New datasets and
a benchmark of document network embedding methods for scientific expert finding.
arXiv preprint arXiv:2004.03621, 2020.

[10] Spencer Bryson, Heidar Davoudi, Lukasz Golab, Mehdi Kargar, Yuliya Lytvyn, Piotr
Mierzejewski, Jaroslaw Szlichta, and Morteza Zihayat. Robust keyword search in large
attributed graphs. Information Retrieval Journal, pages 502–524, 2020.

[11] Tanya Chowdhury, Razieh Rahimi, and James Allan. Rank-lime: local model-agnostic
feature attribution for learning to rank. In ICTIR, pages 33–37, 2023.

[12] Paolo Cifariello, Paolo Ferragina, and Marco Ponza. Wiser: A semantic approach for
expert finding in academia based on entity linking. Information Systems, 82:1–16,
2019.

[13] Arash Dargahi Nobari, Mahmood Neshati, and Sajad Sotudeh Gharebagh. Quality-
aware skill translation models for expert finding on stackoverflow. Information Sys-
tems, 87:101413, 2020.

[14] Arman Dashti, Saeed Samet, and Hossein Fani. Effective neural team formation via
negative samples. In CIKM, pages 3908–3912, 2022.

[15] Hongbo Deng, Jiawei Han, Michael R Lyu, and Irwin King. Modeling and exploiting
heterogeneous bibliographic networks for expertise ranking. In Proceedings of the 12th
ACM/IEEE-CS joint conference on Digital Libraries, pages 71–80, 2012.

[16] Stuart E Dreyfus and Robert A Wagner. The steiner problem in graphs. Networks,
1(3):195–207, 1971.

[17] Zohreh Fallahnejad and Hamid Beigy. Attention-based skill translation models for
expert finding. Expert Systems with Applications, 193:116433, 2022.

[18] Hossein Fani, Reza Barzegar, Arman Dashti, and Mahdis Saeedi. A streaming ap-
proach to neural team formation training. In ECIR, pages 325–340, 2024.

[19] Thorben Funke, Megha Khosla, Mandeep Rathee, and Avishek Anand. Zorro: Valid,
sparse, and stable explanations in graph neural networks. TKDE, 2022.

[20] Zixuan Geng, Maximilian Schleich, and Dan Suciu. Computing rule-based explana-
tions by leveraging counterfactuals. PVLDB, 16(3):420–432, 2022.

57

[21] Athina Georgara, Juan A. Rodŕıguez-Aguilar, and Carles Sierra. Allocating teams to
tasks: an anytime heuristic competence-based approach. In European Conference on
Multi-Agent Systems, pages 152–170, 2022.

[22] Athina Georgara, Juan A Rodriguez Aguilar, and Carles Sierra. Building contrastive
explanations for multi-agent team formation. In AAMAS, pages 516–524, 2022.

[23] Negin Ghasemi, Ramin Fatourechi, and Saeedeh Momtazi. User embedding for expert
finding in community question answering. TKDD, 15(4):1–16, 2021.

[24] Azin Ghazimatin, Oana Balalau, Rishiraj Saha Roy, and Gerhard Weikum. Prince:
Provider-side interpretability with counterfactual explanations in recommender sys-
tems. In WSDM, pages 196–204, 2020.

[25] Diego Gómez-Zará, Leslie A DeChurch, and Noshir S Contractor. A taxonomy of
team-assembly systems: Understanding how people use technologies to form teams.
ACM HCI, 4(CSCW2):1–36, 2020.

[26] Riccardo Guidotti. Counterfactual explanations and how to find them: literature
review and benchmarking. Data Mining and Knowledge Discovery, pages 1–55, 2022.

[27] Riccardo Guidotti, Anna Monreale, Fosca Giannotti, Dino Pedreschi, Salvatore Rug-
gieri, and Franco Turini. Factual and counterfactual explanations for black box deci-
sion making. IEEE Intelligent Systems, 34(6):14–23, 2019.

[28] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Gian-
notti, and Dino Pedreschi. A survey of methods for explaining black box models.
ACM computing surveys (CSUR), 51(5), 2018.

[29] Viet Ha-Thuc, Ganesh Venkataraman, Mario Rodriguez, Shakti Sinha, Senthil Sun-
daram, and Lin Guo. Personalized expertise search at linkedin. In 2015 IEEE Inter-
national Conference on Big Data, pages 1238–1247, 2015.

[30] Radin Hamidi Rad, Ebrahim Bagheri, Mehdi Kargar, Divesh Srivastava, and Jaroslaw
Szlichta. Retrieving skill-based teams from collaboration networks. In SIGIR, pages
2015–2019, 2021.

[31] Radin Hamidi Rad, Hossein Fani, Ebrahim Bagheri, Mehdi Kargar, Divesh Srivastava,
and Jaroslaw Szlichta. A variational neural architecture for skill-based team formation.
ACM TOIS, 42(1):1–28, 2023.

58

[32] Yu Hao, Xin Cao, Yufan Sheng, Yixiang Fang, and Wei Wang. Ks-gnn: Keywords
search over incomplete graphs via graphs neural network. Advances in Neural Infor-
mation Processing Systems, 34:1700–1712, 2021.

[33] Omayma Husain, Naomie Salim, Rose Alinda Alias, Samah Abdelsalam, and Alzubair
Hassan. Expert finding systems: A systematic review. Applied Sciences, 9(20):4250,
2019.

[34] Sergio Jimenez, Fabio N Silva, George Dueñas, and Alexander Gelbukh. Proficien-
cyrank: Automatically ranking expertise in online collaborative social networks. In-
formation Sciences, 588:231–247, 2022.

[35] Yong-Bin Kang, Hung Du, Abdur Rahim Mohammad Forkan, Prem Prakash Jayara-
man, Amir Aryani, and Timos Sellis. Expfinder: A hybrid model for expert finding
from text-based expertise data. Expert Systems with Applications, 211:118691, 2023.

[36] Mehdi Kargar and Aijun An. Discovering top-k teams of experts with/without a
leader in social networks. In CIKM, pages 985–994, 2011.

[37] Maryam Karimzadehgan, Ryen W White, and Matthew Richardson. Enhancing ex-
pert finding using organizational hierarchies. In ECIR, pages 177–188, 2009.

[38] Sagar Kaw, Ziad Kobti, and Kalyani Selvarajah. Transfer learning with graph atten-
tion networks for team recommendation. In IJCNN, pages 1–8. IEEE, 2023.

[39] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[40] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks. In ICLR, 2017.

[41] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM (JACM), 46(5):604–632, 1999.

[42] Bernhard H Korte and Jens Vygen. Combinatorial optimization, volume 1. Springer,
2011.

[43] Theodoros Lappas, Kun Liu, and Evimaria Terzi. Finding a team of experts in social
networks. In SIGKDD, pages 467–476, 2009.

59

[44] Michael Ley. The DBLP computer science bibliography: Evolution, research issues,
perspectives. In International symposium on string processing and information re-
trieval, pages 1–10. Springer, 2002.

[45] Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah, Jiliang
Tang, and Dawei Yin. Evaluating graph neural networks for link prediction: Current
pitfalls and new benchmarking. NeurIPS, 36, 2024.

[46] Rennan C. Lima and Rodrygo L. T. Santos. On extractive summarization for profile-
centric neural expert search in academia. In SIGIR, page 2331–2335, 2022.

[47] Ana Lucic, Maartje A Ter Hoeve, Gabriele Tolomei, Maarten De Rijke, and Fabrizio
Silvestri. Cf-gnnexplainer: Counterfactual explanations for graph neural networks. In
AISTATS, pages 4499–4511, 2022.

[48] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predic-
tions. In NeurIPS, page 4768–4777, 2017.

[49] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and
Xiang Zhang. Parameterized explainer for graph neural network. NeurIPS, 33:19620–
19631, 2020.

[50] Lijun Lyu and Avishek Anand. Listwise explanations for ranking models using mul-
tiple explainers. In ECIR, pages 653–668. Springer, 2023.

[51] Craig Macdonald and Iadh Ounis. Voting for candidates: adapting data fusion tech-
niques for an expert search task. In CIKM, pages 387—-396, 2006.

[52] Vı́ctor Mart́ınez, Fernando Berzal, and Juan-Carlos Cubero. A survey of link predic-
tion in complex networks. ACM computing surveys (CSUR), 49(4):1–33, 2016.

[53] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[54] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences.
Artificial intelligence, 267:1–38, 2019.

[55] Saeedeh Momtazi and Felix Naumann. Topic modeling for expert finding using latent
dirichlet allocation. Data Mining and Knowledge Discovery, 3(5):346–353, 2013.

[56] Mahmood Neshati, Hamid Beigy, and Djoerd Hiemstra. Expert group formation using
facility location analysis. Information processing & management, 50(2):361–383, 2014.

60

[57] Mahmood Neshati, Zohreh Fallahnejad, and Hamid Beigy. On dynamicity of expert
finding in community question answering. Information Processing & Management,
53(5):1026–1042, 2017.

[58] N. Nikzad-Khasmakhi, M.A. Balafar, M. Reza Feizi-Derakhshi, and Cina Motamed.
Berters: Multimodal representation learning for expert recommendation system with
transformers and graph embeddings. Chaos, Solitons & Fractals, 151:111260, 2021.

[59] Narjes Nikzad-Khasmakhi, Mohammadali Balafar, M. Reza Feizi-Derakhshi, and Cina
Motamed. Exem: Expert embedding using dominating set theory with deep learning
approaches. Expert Systems with Applications, 177:114913, 2021.

[60] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In SIGKDD, pages 701–710, 2014.

[61] Mario Alfonso Prado-Romero, Bardh Prenkaj, Giovanni Stilo, and Fosca Giannotti. A
survey on graph counterfactual explanations: definitions, methods, evaluation. arXiv
preprint arXiv:2210.12089, 2022.

[62] Radin Hamidi Rad, Shirin Seyedsalehi, Mehdi Kargar, Morteza Zihayat, and Ebrahim
Bagheri. A neural approach to forming coherent teams in collaboration networks. In
EDBT, pages 440–444, 2022.

[63] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I trust you?”:
Explaining the predictions of any classifier. In SIGKDD, pages 1135–1144, 2016.

[64] Joel Rorseth, Parke Godfrey, Lukasz Golab, Mehdi Kargar, Divesh Srivastava, and
Jaroslaw Szlichta. Credence: Counterfactual explanations for document ranking. In
ICDE, pages 3631–3634, 2023.

[65] Peyman Rostami and Mahmood Neshati. T-shaped grouping: Expert finding models
to agile software teams retrieval. Expert Systems with Applications, 118:231–245, 2019.

[66] Cynthia Rudin and Yaron Shaposhnik. Globally-consistent rule-based summary-
explanations for machine learning models: application to credit-risk evaluation.
JMLR, 24(16):1–44, 2023.

[67] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson,
2021.

[68] Anna Sapienza, Palash Goyal, and Emilio Ferrara. Deep neural networks for optimal
team composition. Frontiers in big Data, 2:14, 2019.

61

[69] Pavel Serdyukov, Henning Rode, and Djoerd Hiemstra. Modeling multi-step relevance
propagation for expert finding. In CIKM, pages 1133–1142, 2008.

[70] Lloyd S Shapley. A value for n-person games. Contributions to the Theory of Games,
2(28):307–317, 1953.

[71] Jaspreet Singh and Avishek Anand. Exs: Explainable search using local model ag-
nostic interpretability. In WSDM, pages 770–773, 2019.

[72] Jaspreet Singh and Avishek Anand. Model agnostic interpretability of rankers via
intent modelling. In ACM FAT*, pages 618–628, 2020.

[73] Juntao Tan, Shuyuan Xu, Yingqiang Ge, Yunqi Li, Xu Chen, and Yongfeng Zhang.
Counterfactual explainable recommendation. In CIKM, pages 1784–1793, 2021.

[74] Cem Tekin, Onur Atan, and Mihaela Van Der Schaar. Discover the expert: Context-
adaptive expert selection for medical diagnosis. IEEE Transactions on Emerging Top-
ics in Computing, 3(2):220–234, 2015.

[75] Khanh Hiep Tran, Azin Ghazimatin, and Rishiraj Saha Roy. Counterfactual expla-
nations for neural recommenders. In SIGIR, pages 1627–1631, 2021.

[76] Christophe Van Gysel, Maarten de Rijke, and Marcel Worring. Unsupervised, efficient
and semantic expertise retrieval. In WWW, pages 1069–1079, 2016.

[77] Olga Vechtomova. Query expansion for information retrieval. In Encyclopedia of
Database Systems, pages 2254–2257. 2009.

[78] Sahil Verma, Varich Boonsanong, Minh Hoang, Keegan E Hines, John P Dickerson,
and Chirag Shah. Counterfactual explanations and algorithmic recourses for machine
learning: A review. arXiv preprint arXiv:2010.10596, 2020.

[79] Shirui Wang, Wenan Zhou, and Chao Jiang. A survey of word embeddings based on
deep learning. Computing, 102(3):717–740, 2020.

[80] Xiaoliang Xu, Jun Liu, Yuxiang Wang, and Xiangyu Ke. Academic expert finding
via (k,P)-core based embedding over heterogeneous graphs. In ICDE, pages 338–351,
2022.

[81] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gn-
nexplainer: Generating explanations for graph neural networks. NeurIPS, 32, 2019.

62

[82] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural
networks: A taxonomic survey. IEEE transactions on pattern analysis and machine
intelligence, 45(5):5782–5799, 2022.

[83] Morteza Zihayat, Aijun An, Lukasz Golab, Mehdi Kargar, and Jaroslaw Szlichta.
Authority-based team discovery in social networks. In EDBT, pages 498–501, 2017.

63

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contribution
	Motivating Example
	Thesis Overview

	Related Work
	Expert Search Solutions
	Team Formation Solutions
	Explainable AI Solutions
	Post-hoc explainability techniques
	Explainable AI in Graph-based Models
	Explainable AI in Ranking Models

	The ExES Framework
	Preliminaries
	System Overview
	Explaining Expert Search Systems
	Saliency Explanations
	Counterfactual Explanations
	Counterfactual Skill Explanations
	Counterfactual Query Explanations
	Counterfactual Collaboration Explanations

	Complexity
	Saliency Explanations
	Counterfactual Explanations

	Explaining Team Formation Systems

	Evaluation
	Metrics
	Experimental Setting
	Environment
	Datasets

	Experiments
	Expert Search Experiments
	Team Formation Experiments
	Parameter Sensitivity Analysis

	Case Study

	Conclusion and Future Directions
	Summary
	Future Work

	References

