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Abstract

We naturally extend Bollobás’s classical method and result about the chromatic number
of random graphs χ(G(n, p)) ∼ n/ logb n (for p constant, b = 1/(1− p)) [6] to the chromatic
number of random signed graphs to obtain χ(G(n, p, q)) ∼ n/ logb n (for p constant, b =
1/(1 − p), q = o(1)). In the process, we will give a sufficient condition for the type of
graph structures on which this method is applicable. We also give a sufficient bound on q
under which a.a.s. the chromatic number of G(n, p, q) is unchanged before and after adding
negative edges.
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Chapter 1

Introduction

1.1 History

The problem of graph colouring, or how many colours are needed to colour the vertices
of a graph so that no two adjacent vertices share a colour, has a long history. Its oldest
and arguably most well-known version, the Four-Colour Problem, originally posed by de
Morgan to his friend Hamilton in 1852, asks whether every planar map can be coloured in
four colours. It puzzled mathematicians for more than a century before being proven true
by Appel and Haken in 1976 [3]. Directly or indirectly thanks to the four-colour problem,
graph colouring has become one of the cornerstones of graph theory.

It is obvious that no fewer colours should be needed to colour a graph than any of its
subgraphs. However, there are many infinite collections of graphs with small chromatic
numbers (like bipartite graphs). One may argue that this is due to their edges being
carefully chosen. A natural question, then, would be: “How would the chromatic number of
a uniformly random graph grow based on its number of vertices?” A more general version
of question was first answered by Bollobás in 1988 [6], based on a model of random graphs.

Questions related to the “typical” behaviour of graphs, such as the above, pushed a
number of mathematicians to independently start studying random graphs in the late 1950s.
The main model that they used is now commonly known as the Erdős-Rényi model. Those
two were the first to exploit its probabilistic properties, establishing what we now know as
the probabilistic method [7]. Erdős and Rényi’s original model in 1959 was G(n,m), where
every graph on n (labelled) vertices and m edges appears with equal probability [10]. What
we now call the Erdős-Rényi model can also denote G(n, p), where every edge is present in
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the graph independently with probability p. In other words, for a given graph G0 with n
vertices and m edges,

P{G(n, p) = G0} = pm(1− p)(
n
2)−m.

In particular, when p = 1
2
, G(n, p) is uniform over the set of graphs on n vertices. This

allows the properties of uniformly random graphs to be studied, which is exactly what
Bollobás did for their chromatic number [6]. Indeed, he obtained that, for 0 < p < 1
constant, the chromatic number of G(n, p) is a.a.s. (asymptotically almost surely, meaning
the ratio of the two sides of the following expression converges to 1 in probability)

χ(G(n, p)) ∼ n

2 log 1
1−p

n
.

Our thesis is deeply related to Bollobás’s analysis and result. We will be looking at
a particular generalization of graph colouring which stems from a generalization on the
concept of a graph itself. Graphs can be seen as representing a network of objects with
relationships between them. For example, in the colouring problem for maps, the graph
can be seen as representing adjacency of entities on the map. However, adjacency does not
indicate whether the relationship is positive or negative, in for example a social network.
This is precisely why Harary, in 1953 [13], introduced signed graphs. Signed graphs are
simply graphs where each edge is labelled positive or negative, which are supposed to
represent the type of relationship between its endpoints. As many concepts in graph theory
are extended to signed graphs, Zaslavsky, in 1982 [20], gives the first extension of chromatic
number to signed graphs, based on the chromatic polynomial (which is a polynomial pG(x),
such that pG(n) outputs the number of colourings of G with n colours, if n ∈ N).

Since then, there have been a number of different definitions of signed colourings [16]
[18], because it is not obvious how should negative edges exclude colours when the total
number of colours is non-even. However, a common theme is that, when the number
of colour used is even, all definitions correspond to a colouring which maps the vertices
to {−k, . . . ,−1, 1, . . . , k} for a 2k-colouring, where positive edges forbid same-coloured
endpoints, and negative edges forbid opposite-colour endpoints. Since the odd numbers do
not affect the asymptotic behaviour, we will be restricting signed colourings to only using
an even number of colours.

Finally, we need a model of random signed graphs. In 2012, El Maftouhi et al. [17]
defined G(n, p, q) random signed graphs and gave results on their balance. This is very
similar to the G(n, p) model, but here p denotes the probability that two vertices are
positively adjacent, and q the probability that they are negatively adjacent.
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This naturally extends the Erdős-Rényi model, under which the asymptotic behaviour of
the chromatic number has a known result. Therefore, G(n, p, q), after a slight modification,
is the model that we will be using to study the asymptotic behaviour of the chromatic
number of random signed graphs, establishing analogies with G(n, p) along the way.

Our thesis naturally extends long-established methods and results onto signed graphs,
with some practical applications. In general, random signed graphs form an infinite testing
ground for theories and algorithms about signed graphs. In our case, knowing the asymptotic
behaviour of random signed graphs can help test the accuracy of approximation algorithms
for signed colouring. We also give some ideas of applications for signed colouring itself in
2.2.1.

1.1.1 Outline

The thesis will roughly be divided as follows. In particular, the main work is in Chapter 3
and in Section 4.2.

In Chapter 2, we will give the necessary background on random graphs (Section
2.1), probability theory (Section 2.3), and signed graphs (Section 2.2). In particular,
we recommend all readers to have a look at Subsection 2.1.2, where we give some standard
results on random graphs, since the results and the discussions there will be important for
the main results of the thesis.

In Chapter 3, we will introduce the G(n, p, q) model of random signed graphs, define a
signed analogue to independent sets and derive its expectation (Section 3.1), and show that
the signed chromatic number is unchanged for small q (Section 3.2). The model was first
introduced by El Maftouhi et al [17], while the rest of the chapter is original work.

In Chapter 4, we will first cover Bollobás’s use of martingales in finding the chromatic
number of G(n, p) random graphs [6], generalized as a method of martingales (Section 4.1,
then apply it to the signed chromatic number of signed random graphs (Section 4.2), to
obtain the main result Thereom 4.2.3:

Theorem (Chromatic Number of G(n, p, q)). Let 0 < p = p(n) < 1 be asymptotically
bounded away from 0, 1, q = o(1), and b = 1

1−p
. Then there exist functions b1 = b1(n) and

b2 = b2(n), such that b1 ∼ b2 ∼ b, and a.a.s.

n

2 logb1 n
≤ χ(G(n, p, q)) ≤ n

2 logb2 n
.
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The generalization of the method and application to signed graphs are original work.

Finally, in Chapter 5, we summarize the thesis and give some open problems for future
research (Section 5.1).

4



Chapter 2

Background Tools

We will start by giving some background on the standard methods and results relevant to our
work. They mainly fall into three areas, namely random (unsigned) graphs, (non-random)
signed graphs, and probability theory. Since we shall make extensive use of standard
notation for probability theory in this thesis, we point to [5] and [19] for basic definitions
and notations.

2.1 Random Graphs

The contents of this section are well-known in the study of random graphs. We point to [1]
and [7] for reference and further reading. Defined formally, the Erdős-Rényi model that we
will consider, G(n, p), is as follows.

Definition 2.1.1. Let (Ω,F ,P) be the probability space consisting of
(
n
2

)
i.i.d. (independent

and identically distributed) Ber(p) random variables {Xe}e∈E(Kn). Then G(n, p), mapping
from Ω = {0, 1}E(Kn) to the set of graphs on n vertices, is such that for e ∈ E(Kn),{

e ∈ E(G(n, p)), Xe = 1;

e /∈ E(G(n, p)), else.

In other words, we flip a coin independently for every edge of Kn to decide whether to
add that edge to G(n, p), with a probability p of being added.
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2.1.1 Standard Tools

In studying random graphs, one of the most common tasks is to investigate the behaviour
of some graph property of G(n, p) as n → ∞. Ideally, we would like to be able to
make statements about the probability of G(n, p) containing some properties, such as
connectedness, having a perfect matching, being Hamiltonian, etc., as n → ∞, but this
probability is often hard to compute, due to dependences between the events involved.
Expectations, on the other hand, are often easy to compute due to linearity. This motivates
the first-moment method, one of the most basic and common approaches to random graph
problems.

Proposition 2.1.2 (First-Moment Method). Suppose a sequence of non-negative random
variables {Xn}n≥1 is such that

lim
n→∞

EXn = 0.

Then, for all fixed ϵ > 0, Xn → 0 in probability, meaning

lim
n→∞

P{Xn ≥ ϵ} = 0.

In particular, if Xn ∈ N, then limn→∞ P{Xn = 0} = 1.

This is a direct corollary of a result from probability theory. Intuitively, non-negativity
coupled with an expectation going to 0 “squeezes” the sequence to 0.

Proposition 2.1.3 (Markov’s inequality). Let X be a non-negative random variable. Then,
for all c > 0,

P{X ≥ c} ≤ EX

c
.

Proof. Write
EX = E{X · 1X≥c}+ E{X · 1X<c}.

Note E{X · 1X≥c} ≥ E{c1X≥c} = cP{X ≥ c}, while E{X · 1X<c} ≥ 0. Thus

EX ≥ cP{X ≥ c} =⇒ EX

c
≥ P{X ≥ c}.
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Proof of First-moment Method. For every n, by Markov’s inequality

P{Xn ≥ ϵ} ≤ EXn

ϵ
.

Since ϵ is constant,

lim
n→∞

P{Xn ≥ ϵ} ≤ 1

ϵ
lim
n→∞

EXn = 0.

The first moment method shows that the expectations of the absolute values going to 0
force the sequence to converge to 0 in probability, a much stronger statement. A natural
question would be whether the expectations going to ∞ forces the sequence to be large
with high probability. This turns out to be false.

Example 2.1.4. Consider a sequence of random variables {Xn}n≥1 where Xn is n2 with
probability 1

n
and 0 with probability 0. Then EXn = n → ∞, but Xn actually converges to

0 in probability.

Before we explain how to deal with this situation, let us first introduce the Landau
notation, which is a standard notation for analysing asymptotics and which we will use
extensively throughout the thesis.

Definition 2.1.5. Let f(n) and g(n) be two functions from N to R. We say

1. f(n) = o(g(n)) if limn→∞
|f(n)|
|g(n)| = 0;

2. f(n) = O(g(n)) if lim supn→∞
|f(n)|
|g(n)| < ∞;

3. f(n) ∼ g(n) if limn→∞
|f(n)|
|g(n)| = 1;

4. f(n) = Ω(g(n)) if lim infn→∞
|f(n)|
|g(n)| > 0;

5. f(n) = ω(g(n)) if limn→∞
|f(n)|
|g(n)| = ∞;

6. f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).
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In particular, a function is o(1) if it is asymptotically 0, it is ω(1) if it is asymptotically
∞, and f(n) ∼ g(n) if f(n) = (1 + o(1))g(n) (in other words, f(n)− g(n) = o(g(n))). In
that case, f(n) and g(n) are asymptotically the same. Furthermore, note that the equality
symbol, whenever Landau notation is involved, is not symmetric.

Let us now go back to dealing with how to bound a sequence of random variables away
from 0. If the second moments E{X2

n} of the sequence (which is no smaller than the square
of the first moment) turn out to be asymptotically the same as the squares of the first
moments (EXn)

2, and both go to infinity, then it turns out that the sequence itself will
also follow its expectation to infinity, at the same “rate”.

Proposition 2.1.6 (Second-Moment Method). Suppose a sequence of random variables
{Xn}n≥1 is such that the expectation of each Xn is defined, and furthermore

E{X2
n} = (1 + o(1))(EXn)

2 = ω(1).

Then there exists a sequence {ϵn}n≥0, such that ϵn = o(EXn), and

lim
n→∞

P{|Xn − EXn| ≥ ϵn} = 0.

This is another direct corollary of a result from probability theory. Intuitively, a smaller
variance forces the random variable to be around its expectation, and E{X2

n} ∼ (EXn)
2

makes the variance small (indeed, the variance, being their difference, is o((EXn)
2)).

Proposition 2.1.7 (Chebyshev’s nequality). Let X be a random variable whose expectation
is defined. Let σ =

√
var(X)} be the standard deviation of X. Then, for all c > 0,

P{|X − EX| ≥ cσ} ≤ 1

c2
.

Proof. Applying Markov’s inequality Proposition 2.1.3 to (X − EX)2 and c2σ2, we get

P{|X − EX| ≥ cσ} = P{(X − EX)2 ≥ c2σ2} ≤ E{(X − EX)2}
c2σ2

=
1

c2
.
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Proof of Second-Moment Method. Let σn denote the standard deviations of EXn. Without
loss of generality σn ̸= 0 for all n. For any sequence {ωn}n≥1 non-zero such that ωn → ∞
as n → ∞, we have by Chebyshev’s inequality

P{|Xn − EXn| ≥ ωnσn} ≤ 1

ω2
n

→ 0.

Choose ωn =
√

|EXn|
σn

. We first show

lim
n→∞

√
|EXn|
σn

= ∞.

Indeed
(EXn)

2

σ2
n

=
(EXn)

2

E{X2
n} − (EXn)2

=
(EXn)

2

o(1)(EXn)2
= ω(1).

Now, it suffices to confirm

ϵn := ωnσn =
√

|EXn|σn = EXn

√
σn

|EXn|
= o(EXn),

which is true as
√

|EXn|
σn

= ω(1).

Those two methods focused on the limiting moments of random variables, instead of
directly working with limiting probabilities. Although more difficult, it is not impossible
do the latter, by actually computing the limiting distribution. One way to achieve this is,
again, through moments. This is known as the method of moments.

Theorem 2.1.8 (Method of Moments). Let {Xn}n≥0 be a sequence of random variables.
Let X be a random variable with distribution µ. Suppose all their moments exist,

lim
n→∞

E{Xr
n} = EXr (2.1.1)

for all r ≥ 1, and furthermore suppose that µ is the unique probability measure with its
sequence of moments (in other words, if Y is a random variable and E{Xr} = E{Y r} for

all r ≥ 1, then X ∼ Y ). Then Xn
D−→ X.
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In particular, (2.1.1) holds if and only if

lim
n→∞

E{(Xn)r} = E(X)r

for all r ≥ 1 where (x)r = x(x− 1) · · · (x− r+1) = Γ(x+1)
Γ(x−r+1)

is the falling factorial (if x ≥ r

is non-negative integer then (x)r is the number of r-permutations in a set of x elements).

Sketch of Proof. This is Theorem 30.2 from [5]. Because the proof in [5] uses some prelimi-
nary results, we will cite those results without proof and so only give a sketch here.

Given limn→∞ E{X2
n} is convergent, the set {E{X2

n}}n≥0 is bounded by some constant
K > 0, so by Markov’s inequality Proposition 2.1.3, for all ϵ > 0,

P{|Xn| >
K

ϵ
} ≤ E{Xn}

K/ϵ
≤ ϵ.

Let µn denote the distribution of Xn for each n ≥ 0. The above implies that the sequence of
distributions {µn}n≥0 is tight. This means that every subsequence of {µn} has a convergent
subsubsequence that converges weakly (Theorem 25.10 from [5]).

For contradiction suppose {Xn} does not converge in distribution to X. In other words,
there exists x ∈ R such that µ({x}) = 0 (i.e. P{X < x} = P{X ≤ x}), but there exists a
subsequence nk where

lim
k→∞

|µnk
((−∞, x])− µ((−∞, x])| > 0.

By Theorem 25.10 from [5] {µnk
} has a weakly convergent subsubsequence {µnkℓ

} to some
distribution ν. Let Y have distribution ν. Due to the choice of {µnk

}, ν ̸= µ, however for
all r ≥ 1

E{Xr} = lim
ℓ→∞

E{Xr
nkℓ

} = E{Y r}.

But this means X ∼ Y since the moments of X uniquely determine the distribution of X,
a contradiction.

E(X)r is more straightforward to compute than EXr particularly when X =
∑

k Xk

for some Bernoulli random variables {Xk}. In that case, as by definition (X)r counts the
number of r-permutations in the set {Xk : Xk = 1}, we have

(X)r =
∑

(k1,...,kr) distinct

r∏
j=1

Xkj =⇒ E(X)r =
∑

(k1,...,kr) distinct

E


r∏

j=1

Xkj

 .
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A very nice note about the method of moments is that whether X is the unique distribution
with its sequence of moments depends solely on X, and this would work regardless of the
sequence of random variables whose convergence we are trying to determine. Thus it is
easy to identify distributions which are known to work as limiting distributions.

Proposition 2.1.9. Given λ > 0, the Poisson distribution Pois(λ) is the unique distribution
with its moments.

Sketch of Proof. This results stems from Theorem 30.1 from [5] which ultimately comes
from the fact that characteristic functions characterize distributions. Theorem 30.1 from
[5] states that, if X is a random variable such that E{|X|r} < ∞ for all r ≥ 1, and

∞∑
r=0

E{Xr}tr

r!
< ∞ (2.1.2)

for t ∈ (−ϵ, ϵ) where ϵ > 0, then the distribution of X is the unique distribution with its
sequence of moments. In particular, (2.1.2) holds wherever the moment generating function
MX(t) = E{etX} is analytic, as its Maclaurin series is (2.1.2).

Now let us consider X ∼ Pois(λ). Recall for k ≥ 0,

P{X = k} =
λke−λ

k!
.

This means for t ∈ R,

MX(t) = E{etX} =
∞∑
k=0

etkλke−λ

k!
= e−λeλe

t

which is clearly analytic for all t ∈ R.

Corollary 2.1.10. Let {Xn}n≥0 be a sequence of random variables and suppose, for all
r ≥ 1,

lim
n→∞

E{(Xn)r} = λr

for some λ > 0. Then Xn
D−→ Pois(λ).
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Proof. By the method of moments Theorem 2.1.8 and the fact that Pois(λ) is the unique
distribution with its moments Proposition 2.1.9, it suffices to show that for X ∼ Pois(λ),
E(X)r = λr. There are many ways to derive this result; the following gives it some intuition.

It is known that Bin(n, λ/n) ⇒ Pois(λ) as n → ∞. Let Xn ∼ Bin(n, λ/n) and
X ∼ Pois(λ). Fix r ≥ 1. Then

lim
n→∞

E{(Xn)r} = E{(X)r}.

It is known that Xn =
∑n

k=1 Yk, where Yk are i.i.d. Ber(λ/n) (the number of successes
after n independent trials, each with probability λ/n). Then

E{(Xn)r} = E

 ∑
(k1,...,kr) distinct

r∏
j=1

Ykj

 =
∑

(k1,...,kr) distinct

r∏
j=1

(λ/n)

= λr · n(n− 1) · · · (n− r + 1)

nr
,

and clearly limn→∞
n(n−1)···(n−r+1)

nr = 1.

The Poisson distribution is commonly encountered as the limiting distribution for
sequences of random variables related to random graphs, partly because of its link to
binomial distributions. When Xn are sums of identical Bernoulli random variables whose
dependence becomes negligible as n → ∞, which often happens as the graph becomes large,
one may expect {Xn} to converge to a Poisson distribution.

We will now use the above methods to prove some standard results about G(n, p)
relevant to this thesis.

2.1.2 Standard Results

In general, Friedgut and Gallai in 1996 [11] obtained that if a property about G(n, p)
is monotonic, meaning any supergraph of a graph with that property also has it (by
working with negations, this also works with properties closed under subgraph), then that
property will have a threshold p0(n), meaning that G(n, pn) will have that property a.a.s. if
pn ≫ p0(n), and G(n, pn) will a.a.s. not have that property if pn ≪ p0(n). In other words,
as one moves p from 0 to 1, properties will “pop into existence” as p crosses thresholds.
This idea of thresholds is omnipresent in random graphs. The two results that we present
below are threshold results.
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The first result, due to Bollobás and Erdős from 1976 for fixed 0 < p < 1 [8], will be
about the independence number of G(n, p) (which we will denote by α(G(n, p))), for any
p. More precisely, we will compute the expected number of independent sets of size r for r
inside a range of values. Then, the first moment method can easily obtain an upper bound
on the independence number (by observing that the expected number of independent sets
goes to 0 for larger r). Similarly, one could use the second moment method to obtain a
lower bound on the independence number, but we will actually obtain a much stronger
result later.

For r possibly a function of n, let E ′(n, r) denote the expected number of independent
sets of size r in G(n, p). Then

E ′(n, r) =

(
n

r

)
(1− p)(

r
2).

The result is that, as long as p is asymptotically away from 0, 1, by varying r by a constant,
one can change E ′(n, r) from asymptotically 0, to a constant power of n. The former would
bound α(G(n, p)) from above a.a.s. using the first moment method.

Proposition 2.1.11. Let 0 < p = p(n) < 1 be asymptotically bounded away from 0, 1
(i.e. lim sup p < 1 and lim inf p > 0) and let b := 1

1−p
. Suppose that c = c(n) > 0 is such

that c = o(n). Let
r = r(n) = 2 logb(ecn/(2 logb n)).

If there exists a constant C1 ∈ R such that lim sup(1 − 2 log c
log b

) ≤ C1, then, for each ϵ > 0
constant,

E ′(n, r) = o(nC1+ϵ).

If there exists a constant C2 ∈ R such that lim inf(1 − 2 log c
log b

) ≥ C2, then, for each ϵ > 0
constant,

E ′(n, r) = ω(nC2−ϵ).

Note that since

2 logb(ecn/(2 logb n)) = 2 logb n− 2 logb logb n+ 2 logb(e/2) + 2 logb c,

in the case where c is a constant (which is what we will usually have), modifying c changes
r additively by a constant amount and r ∼ 2 logb n.
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Furthermore, note that log b is asymptotically bounded away from 0,∞ due to p being
asymptotically bounded away from 0, 1. As c → ∞, 1− 2 log c

log b
→ −∞ so E ′(n, r) = o(1) for

some choice of constant c (more precisely, any c >
√
b would work). On the other hand, as

c → 0, 1− 2 log c
log b

→ ∞ so E ′(n, r) is polynomial in n for some choice of constant c (more

precisely, any c < b
1−γ
2 gives E ′(n, r) = ω(nγ)).

Therefore, by varying c by a constant amount, one can choose C1, C2 to be arbitrarily
large or small (negative) constants, adjusting E ′(n, r) from asymptotically 0 to polynomial
in n, as long as p is asymptotically away from 0, 1. The fact that Proposition 2.1.11 allows
for the weaker assumption on p being asymptotically bounded away from 0, 1 (as opposed
to p being constant) is the main reason why we can keep using this weaker assumption
throughout the thesis.

Proof. Note that c = o(n) means r(n) ∼ 2 logb n = O(
√
n), so

(
n
r

)
∼ nr

r!
. Thus

E ′(n, r) =

(
n

r

)
(1− p)(

r
2)

= (1− o(1))
nr

r!
exp

{
log(1− p)r(r − 1)

2

}
= (1− o(1))

nr

r!
exp

{
−(r − 1) log(ecn/(2 logb n))

}
= (1− o(1))

(en)r

rr
√
2πr

(
ecn

2 logb n

)−(r−1)

= (1− o(1))
en

r
√
2πr

(
2 logb n

cr

)r−1

Now note (recall 2 logb n ∼ r)(
2 logb n

cr

)r−1

= exp

{
(r − 1) log

(
2 logb n

cr

)}
= exp

{
2 log n

log b
(1− o(1)) log

(
1 + o(1)

c

)}
= n

2
log b

(− log c+log(1+o(1)))(1−o(1)) = n− 2 log c
log b

(1+o(1))

so

E ′(n, r) = (1− o(1))
e

√
2π · 2 3

2

· n
1− 2 log c

log b
(1+o(1))

(logb n)
3/2

.

In particular, if there exists C1 ∈ R such that lim sup(1 − 2 log c
log b

) ≤ C1, then E ′(n, r) =

o(nC1+ϵ). If there exists C2 ∈ R such that lim inf(1 − 2 log c
log b

) ≥ C2, then E ′(n, r) =

ω(nC2−ϵ).
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Recall that for any ϵ > 0, choosing c =
√
b+ ϵ gives E ′(n, r) = o(1), which means by the

first moment method Proposition 2.1.2, G(n, p) a.a.s. contains no independent set of size

2 logb

(
en(

√
b+ ϵ)

2 logb n

)

= 2 logb n− 2 logb logb n+ 2 logb

(
e(
√
b+ ϵ)

2

)

for any fixed ϵ. Thus a.a.s. each colour class has size less than 2 logb n − 2 logb logb n +
2 logb(e

√
b/2), so a.a.s.

χ(G(n, p)) ≥ n

2 logb n− 2 logb logb n+ 2 logb(e
√
b/2)

.

We will later see that it is possible to asymptotically achieve this lower bound. In other
words, we can partition “almost” every vertex of G(n, p) into colour classes with size close
to α(G(n, p)).

For the second result, we will give an outline on proving the threshold for perfect
matchings (we will only consider even n, which is equivalent to a matching covering all but
at most one vertex). The strategy is as follows.

We first take an arbitrary bipartite subgraph of G(2n, p) with parts of size n, G(n, n, p),
by conditioning G(2n, p) to be a subgraph of Kn,n. We will first show that for some pn, the
limiting distribution of the number of isolated vertices is Poisson, for parameters spanning
λ > 0. Then, we will outline a proof for the fact that for pn in that range, isolated vertices
are the only thing preventing G(n, n, p) from having a perfect matching.

Proposition 2.1.12. Let p = p(n) = logn+c
n

where c is constant. Let Xn denote the number

of isolated vertices in G(n, p) and let X ∼ Pois(2e−c). Then Xn
D−→ X.

Proof. For 1 ≤ k ≤ 2n, let Yn,k denote the indicator on whether the k-th vertex of G(n, n, p)
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is an isolated vertex. Then Xn =
∑2n

k=1 Yn,k. Fix r ≥ 1,

E{(Xn)r} =
∑

(k1,...,kr) distinct

E


r∏

j=1

Yn,kj


=

r∑
ℓ=0

∑
(k1, . . . , kr) with ℓ in first part

P{k1, . . . , kr isolated}

=
r∑

ℓ=0

(
n

ℓ

)(
n

r − ℓ

)
r!(1− p)nℓ+n(r−ℓ)−ℓ(r−ℓ)

=
r∑

ℓ=0

nrr!

ℓ!(r − ℓ)!
(1− o(1))(1− p)nr−O(1)

= (1− o(1))nr exp{(nr −O(1))(−p+O(p2))}
r∑

ℓ=0

(
r

ℓ

)
= (1− o(1))nr2r exp{−r(log n+ c) +O(p)} = (1− o(1))nr−r(2e−c)r(n

1
n )O(1)

∼ (2e−c)r = E{(X)r}

so by Corollary 2.1.10 Xn
D−→ X.

This is an example of a sum of dependent Bernoulli random variables (each vertex being
isolated or not) whose “dependency” becomes negligible as n → ∞. Each vertex had a
probability

(1− p)n−1 =

(
1− log n+ c

n

)n−1

= exp
{
− log n− c+O((log n/n)2)

}
∼ 2e−c

2n

to be isolated, so if these were actual independent Bernoulli then by the proof of Corollary
2.1.10 their sum should also converge to Pois(2e−c).

Recall that a characterization of a graph G with (A,B)-perfect matchings (|A| = |B|
are a bipartition of V (G)) is that neither A nor B contains S with fewer neighbours than
|S|. This is the Hall’s theorem. The following is a consequence of it.

Proposition 2.1.13. Suppose G (A,B)-bipartite with |A| = |B| = n fails Hall’s condition.
Then there exists S ⊆ A or S ⊆ B such that
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• |N(S)| = |S| − 1,

• |S| ≤ ⌈n
2
⌉, and

• every vertex in N(S) has at least two neighbours in S.

Proof. We will prove that taking the smallest S (least |S|) that fails Hall’s condition works.

• If |S| > |N(S)|+ 1 then one can remove a vertex from S: let v ∈ S, then

|N(S \ {v})| ≤ |N(S)| < |S| − 1 = |S \ {v}|

so S \ {v} still fails Hall’s condition.

• Assume |N(S)| = |S| − 1 and without loss of generality S ⊆ A. If |S| > ⌈n
2
⌉ then

|N(S)| ≥ ⌈n
2
⌉, so |B \N(S)| = n−|N(S)| = n−|S|+1 < n

2
≤ |S|, but its neighbours

cannot be in S, i.e.

N(B \N(S)) ⊆ A \ S =⇒ |N(B \N(S))| ≤ n− |S| < |B \N(S)|

so B \N(S) still fails Hall’s condition and is smaller than S.

• If v ∈ N(S) has only one neighbour u ∈ S then S \ {u} has at most

|N(S) \ {v}| = |N(S)| − 1 < |S| − 1 = |S \ {u}|

neighbours so S \ {u} still fails Hall’s condition.

Now, if |S| = 1 then it is an isolated vertex. It can be shown that for pn in the right
range (which contains logn+c

n
for c constant), a.a.s. S cannot exist for |S| ≥ 2. This would

prove that the threshold for perfect matchings is logn
n

. In fact, if pn ≥ c logn
n

for c > 1 then

G(n, pn) has a perfect matching a.a.s. and if pn ≤ c logn
n

for c < 1 then G(n, pn) a.a.s. has
no perfect matching (since it would contain isolated vertices). Such a threshold is known as
a sharp threshold. Unlike thresholds, sharp thresholds are known to not always exist even
for monotonic properties.
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Lemma 2.1.14. For p = p(n) = logn+c
n

where c is constant, a.a.s. G(n, n, p) contains no S
as described in Proposition 2.1.13 of size 2 or more.

Proof. Let A denote the first part and B the second part of G(n, n, p). When |S| = 2, S
has one neighbour so S,N(S) form what we call a cherry. We expect to have

2
∑

x1,x2∈A

∑
y∈B

P{N({x1, x2}) = {y}}

= 2

(
n

2

)
np2(1− p)2(n−1)

≤ n3p2 exp{−p(2n− 2)} = n3p2 exp{−2(log n+ c) + 2p}

= n3−2p2e−2c exp{o(1)} =
(log n)2

n
e−2c(1 + o(1)) = o(1)

cherries, so by the first moment method Proposition 2.1.2 a.a.s. there are no cherries.

Now let Xk denote the number of sets S from Proposition 2.1.13 of size k ≥ 3. We will
show

E{
⌈n
2
⌉∑

k=3

Xk} = o(1)

which will show by the first moment method that a.a.s. there are no S of size 3 or more.
Note

E{Xk} ≤ 2

(
n

k

)(
n

k − 1

)((
k

2

)
p2

)k−1

(1− p)k(n−k+1)

where 2 is from interchanging A,B;
(
n
k

)
≤ ( en

k
)k from the number of choices of S ⊆ A;(

n
k−1

)
≤ ( en

k−1
)k−1 from N(S) ⊆ B;

(
k
2

)
p2 ≤ k2

2
p2 from the fact that every v ∈ N(S)

has at least two neighbours in S (this is the only inequality); and (1 − p)k(n−k+1) ≤
exp{−(n− k + 1)pk} ≤ exp{−npk/2} (recall k ≤ ⌈n/2⌉) from the fact that S must have
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no neighbours outside N(S). Then

E{Xk} ≤ 2

(
en

k

)k (
en

k − 1

)k−1
(
k2

2

)k−1

p2(k−1) exp{−(n− k + 1)pk}

≤ 2en

k

(
k2

k(k − 1)

)k−1(
en(log n+ c)

2n

)2(k−1)

exp{−n

2
pk}

≤ 2en

k

(
1 +

1

k − 1

)k−1

(e(log n+ c))2(k−1) exp

{
− log n

2
k

}
≤ 2e2n

(
(e(log n+ c))2

n
1
2

)k

The sum of geometric series with o(1) ratios is asymptotically the first term, so

∞∑
k=3

(
(e(log n+ c))2

n
1
2

)k

=

(
(e(log n+ c))2

n
1
2

)3

/(1− o(1)) = o(1/n),

so
⌈n
2
⌉∑

k=3

E{Xk} ≤ 2e2n
∞∑
k=3

(
(e(log n+ c))2

n
1
2

)k

= o(1).

Corollary 2.1.15 (Threshold for Perfect Matching). Let p = p(n) and let ωn be an arbitrary
sequence going to infinity. G(2n, p) a.a.s. contains a perfect matching if p > logn+ωn

n
, and

G(n, p) a.a.s. does not contain a perfect matching if p < logn−ωn

n
. In particular, logn

n
is a

sharp threshold for perfect matchings.

Proof. Let c ∈ R be fixed and let p = p(n) = logn+c
n

. Trivially

P{G(2n, p) contains a PM} ≤ P{G(2n, p) contains no isolated vertices}

Fix an arbitrary n vertices in V (G) and let G(n, n, p) be the random bipartite subgraph of
G(2n, p) induced by that bipartition. Then by Proposition 2.1.13 and Lemma 2.1.14

P{G(2n, p) contains a PM} ≥ P{G(n, n, p) contains a PM}
= P{G(n, n, p) contains no isolated vertices} − o(1)

≥ P{G(2n, p) contains no isolated vertices} − o(1)
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Therefore, by Proposition 2.1.9

lim
n→∞

P{G(2n, p) contains a PM} = lim
n→∞

P{G(2n, p) contains no isolated vertices}

= P{Pois(2e−c) = 0} = e−2e−c

.

Now, let p′ > logn+ωn

n
. Since G(2n, p) containing a perfect matching is a monotonic property,

by embedding G(2n, p) as a subgraph of G(2n, p′) for each n, which can be done for ωn > c
(which is eventually true),

lim
n→∞

P{G(2n, p′) contains a PM} ≥ lim
n→∞

P{G(2n, p) contains a PM} = e−2e−c

and this is true for any c ∈ R. By choosing c → ∞ we can make e−2e−c → 1.

Similarly, let p′ < logn−ωn

n
. By embedding G(2n, p′) as a subgraph of G(2n, p) for each

n, which can again be done for −ωn < c (which is also eventually true),

lim
n→∞

P{G(2n, p′) contains a PM} ≤ lim
n→∞

P{G(2n, p) contains a PM} = e−2e−c

We will later (in Section 3.2) make use of this threshold on perfect matchings to study
when does the signed chromatic number stay unchanged from the unsigned chromatic
number (of its positive subgraph).

2.2 Signed Graphs

Signed graphs were first introduced by Harary in 1953 [13] to represent notions of like and
dislike in social networks. Most of the results in this introductory part are due to him.

Definition 2.2.1. A signed graph G is an unsigned underlying graph, denoted G =
(V (G), E(G)), labelled with an edge sign

σ : E(G) → {−1, 1}.

We use E+(G) to denote the set of positive edges, E−(G) the set of negative edges,
G+ = (V (G), E+(G)) the positive subgraph, and G− = (V (G), E−(G)) the negative subgraph.
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One can imagine the vertices to be people, positive edges to represent friendship and
negative edges to represent enemies. The foremost property exclusive to signed graphs,
studied by Harary, is that of balance. The idea is that if one thinks of friendship as a
transitive property, of friends of enemies as enemies, and of enemies of enemies as friends,
then a friendship network is balanced if and only if nobody is both somebody’s friend and
enemy.

Definition 2.2.2. Given a signed graph G, the sign of a multiset of edges S is defined to
be

σ(S) =
∏
e∈S

σ(e)

the product of the signs of the edges in S.

We say G is balanced if all walks in G have their sign determined by their endpoints.

The fundamental result obtained by Harary in [13], intuitively, states that a social
network is balanced if and only if the people can be divided into two camps, where two
people in the same camp can never be enemies, and two people in opposite camps can never
be friends. Furthermore, this is if and only if the network is precisely a network of only
friends, but with some friends “flipped” into enemies. This latter notion of “flipping” is
formalized as follows.

Definition 2.2.3. Given a signed graph G and v ∈ V (G), a vertex switch at v, denoted
hv(G), is a signed graph with the same vertex and edge sets as G, but

σhv(G)(e) =

{
σG(e), e not incident to v;

−σG(e), e incident to v.

We say two graphs are switch equivalent if one can be obtained from a sequence of vertex
switches on the other.

One should imagine a switched vertex as a friend who suddenly decided to join the
enemy’s camp, so all of their former friends are now enemies and all former enemies are
now friends.
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Theorem 2.2.4 (Fundamental Theorem of Signed Graphs [13]). For a signed graph G, the
following are equivalent.

1. G is balanced.

2. All paths in G have their sign determined by their endpoints.

3. There exists H ⊆ V (G), such that G[H], G[V \ H] both contain no negative edges,
while there are no positive edges with one end in H and the other outside.

4. G is switch equivalent to G labelled all-positive.

Proof. 1 =⇒ 2: Paths are walks.

2 =⇒ 3: First assume that G is connected. Fix v ∈ V (G). Let H be the set of
vertices in G reachable from v via a positive path. Then for uw ∈ E(G[H]), we can prove
by induction on d = min{d(v, u), d(v, w)} that σ(uw) = 1.

If d = 0 then v ∈ {u,w}, so there exists a positive path between u,w. By 2, as uw is
another path between u,w, σ(uw) = 1.

If d > 0 then without loss of generality suppose d(v, u) = d, achieved by some path P .
Then w is not reached by P since else d(v, w) ≤ d− 1, so P ∪ {uw} is a path. By IH P is
positive, and by 2 P ∪ {uw} is positive so σ(uw) = 1.

If G is not connected then apply 2 to every component of G and take H to be the union
of the H from every component.

3 =⇒ 4: We show G can be obtained by G′, where G′ is G relabelled all-positive,
by vertex switching every vertex in H once in any order. Call the obtained graph hH(G).
Indeed,

σhH(G)(e) =

{
σG′(e) = 1, its endpoints are switched a total even number of times;

−σG′(e) = −1, its endpoints are switched a total odd number of times.

If e ∈ G[H], then both endpoints are switched once, so σhH(G)(e) = 1; if e ∈ G[V \ H],
then both endpoints are not switched, so σhH(G)(e) = 1; if e ∈ δ(H), then one endpoint
is switched once while is other is not switched, so σhH(G)(e) = −1. Thus σG ≡ σhH(G) so
G = hH(G)..
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4 =⇒ 1: Any all-positive graph is balanced (all walks are positive). After switching any
vertex, all walks with exactly one endpoint at that vertex gets their sign flipped, since that
vertex is incident to an odd number of edges in the walk. The other walks are unaffected
since the switched vertex is incident to an even number of edges in the walk. Thus if the
original graph were balanced, then the switched graph is also balanced. Thus all graphs
switch equivalent to an all-positive graph are balanced.

We will now extend vertex colouring to signed graphs.

2.2.1 Signed Colouring

Signed colouring was first introduced by Zaslavsky in 1982 [20] in the context of a signed
extension of the chromatic polynomial. Other definitions of signed colouring include that
introduced by Máčajová et al in 2014 [16] and by Naserasr et al in 2020 [18]. The main
problem is that it is non-obvious how negative edges should interact with an odd number of
colours. A common theme, however, is that a signed colouring needs to be consistent under
vertex switching. In other words, the signed chromatic number should not change after
vertex switching, and a colouring of the signed graph before the switch should induce a
colouring of the switched graph. With these in mind, we give a definition of an even signed
colouring. This is equivalent to previous definitions restricted to even numbers of colours.

Definition 2.2.5. Given a signed graph G, a (proper even) signed (vertex) colouring of G
in 2k colours is a map

c : V (G) → {−k,−(k − 1), . . . ,−1, 1, 2, . . . , k},

such that for all uv ∈ E(G),
c(u) ̸= σ(uv)c(v).

We use χ(G) to denote the signed chromatic number of G, the minimal 2k for which the
above c exists, when G is a signed graph. Recall that χ(G) also denotes the unsigned
chromatic number when G is an unsigned graph.

In other words, colours are signed, with a positive edge forbidding the same colour,
while a negative edge forbids opposite colours. In fact, we can formally prove that this is
the only way to define an even signed colouring consistent under switching, where positive
edges forbid neighbours from having the same colour. Indeed, let G be an arbitrary signed

23



graph and c be a mapping from V (G) to {−k,−(k − 1), . . . ,−1, 1, . . . , k}. Suppose that c
satisfies that for every positive edge uv,

c(u) ̸= c(v),

and further suppose that after any vertex v ∈ V (G) is switched, the above holds for c′

where c′(u) = c′(u)∀u ̸= v but c′(v) = −c(v). Then since, after the switch, the constraint
becomes about the originally negative edges, any v ∈ V (G) needs to also satisfy

−c(v) = c′(v) ̸= c′(u) = c(u)

if uv ∈ E(G) is negative, which is precisely our definition.

The following are some applied examples that motivate signed colouring.

• The vertices are tasks to be scheduled to two machines. Positive edges join tasks that
cannot be scheduled on the same machine at the same time, while negative edges
join tasks that cannot be scheduled on different machines at the same time. Positive
colours represent time slots for one machine and negative colours represent those for
the other.

• The vertices are players to be put into teams which play one round against each other
in pairs. Positive edges join players who do not want to be in the same team, while
negative edges join players who do not to play against each other. Opposite colours
represent teams playing against each other.

It is clear that, given c a signed colouring of G, if v ∈ V (G) is switched, then it suffices to
colour v with −c(v) instead to obtain a colouring of hv(G). This implies that for balanced
signed graphs G whose underlying graph has an even chromatic number, χ(G) = χ(G).
We shall see that in general the best upper bound on the signed chromatic number is
χ(G) ≤ 2χ(G). For the lower bound, note that an all negative graph G has χ(G) = 2 (by
colouring all vertices with 1). In other words, χ(G) cannot lower bound χ(G) and we need
to instead use the trivial χ(G+) (due to G+ ⊆ G, as G+ is the positive subgraph of G).

Proposition 2.2.6 (Máčajová et al 2014 [16]). For a signed graph G,

χ(G+) ≤ χ(G) ≤ 2χ(G+) ≤ 2χ(G),

with all inequalities having infinitely many tight examples.
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Note that χ(G+) and χ(G+) only differ by up to 1 due to us only defining even signed
chromatic numbers.

Proof. Since G+ ⊆ G, χ(G+) ≤ χ(G) (as there are fewer restrictions to satisfy). Any
all-positive graph achieves this bound. The 2χ(G+) ≤ 2χ(G) bound is similar.

If c is a proper unsigned colouring of G+, i.e. a mapping

c : V (G) → {1, . . . , k}, c(u) ̸= c(w)∀uw ∈ E(G+),

then the signed colouring on G

c′ : V (G) → {−k, . . . ,−1, 1, . . . , k}, v 7→ c(v)∀v ∈ V (G)

satisfies
c(u) ̸= c(w)∀uw ∈ E(G), σ(uw) = 1,

and clearly c(u) ̸= −c(w) for any u, v ∈ V (G) since both colours are positive. Thus c is a
proper signed colouring on G so χ(G) ≤ 2χ(G+).

For a graph achieving χ(G) = 2χ(G+), fix n ≥ 1 and consider G = Kn,...,n a complete
n-partite graph with each part having size n. Order the parts and the vertices in each.
Label the i-th vertex in the j-th part vi,j, with 1 ≤ i, j ≤ n. Define G by assigning (for
j ̸= j′)

σ(vi,jvi′,j′) =

{
−1, i = i′ > 1;

1, i ̸= i′ or i = i′ = 1.

In other words, G[{v1,1, v1,2, . . . , v1,n}] is a positively labelled Kn, G[{vi,1, vi,2, . . . , vi,n}] is
a negatively labelled Kn for i > 1, and all vi,j, vi′,j′ for i ̸= i′, j ̸= j′ are joined positively
(and there is no edge between vi,j, vi′,j′ when j = j′). Clearly G+ can be n-coloured as an
unsigned graph, by colouring each part in a distinct colour. Thus

2χ(G+) ≤ 2n.

Suppose
c : V (G) → {−k, . . . ,−1, 1, . . . , k}

is a signed colouring of G, and for contradiction suppose k < n.

Let ci := c(v1,i). Then since v1,1, . . . , v1,n are all-positively adjacent, c1, . . . , cn are all
distinct. For each n ≥ i > 1, since less than n distinct absolute values are used by c, there
exist two vertices in G[{vi,1, . . . , vi,n}] coloured using the same absolute value. But since
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that subgraph is an all-negative Kn, those two vertices must have used the same colour,
call it di.

Now for i, i′ > 1, i ̸= i′, if di = di′ then there exist vi,j, vi,j′ , vi′,k, vi′,k′ all coloured di.
This is impossible since j ̸= k or j ̸= k′ must be true, so vi,j, vi′,k or vi,j, vi′,k′ would be
joined positively. Thus all di are distinct. Similarly, if di = cj then since there exist vi,k, vi,k′
both coloured di, while v1,j is coloured cj = di, either j ̸= k or j ̸= k′ must be true, so
v1,j, vi,k or v1,j, vi,k′ must be joined positively. Thus all di are distinct from c1, . . . , cn. But
then {c1, . . . , cn, d2, . . . , dn} ⊆ {−k, . . . ,−1, 1, . . . , k} which is impossible since the left side
has n+ n− 1 = 2n− 1 elements while the right has at most 2(n− 1) elements.

Thus c uses at least 2n colours, i.e.

2n ≤ χ(G) ≤ 2χ(G+) ≤ 2n

so χ(G) = 2χ(G+).

Due to the very specific construction of the example, one may naturally suspect that
it is rare that χ(G) = 2χ(G+), or that even χ(G) > αχ(G+) for any α > 1 might be rare.
This motivates our investigation using random signed graphs. Another noteworthy fact is
that the example has

|E(G)| = n2n(n− 1)

2
= (1− o(1))

n4

2
, |E(G−)| = (n− 1)n(n− 1)

2
= (1− o(1))

n3

2

so |E(G−)| ∼ |E(G)|
n

. This means that having few negative edges does not directly prevent
a graph from having χ(G) = 2χ(G+). This means that our upcoming choice of q = o(1)
(where q is the probability that an edge in the random signed graph is labelled negative) is
meaningful.

2.3 Probability Theory

The study of random graphs employs many advanced tools from probability theory. Here,
we will be introducing conditional expectations and martingales along with standard results,
which are crucial to our proof. We point to [5], [9], and [19] for reference and further reading.
Recall that a probability space involves a sample space Ω, a σ-algebra F over Ω called
the event space, and a probability measure P : F → [0, 1]. In particular, in preparation
for conditional expectations and martingales, the theory of σ-algebras requires special
attention.
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2.3.1 σ-Algebras and Measurability

Intuitively, a σ-algebra F over Ω is a collection of subsets of Ω, closed under certain
operations as to allow the definition of a measure over F . The pair (Ω,F) is then called a
measurable space.

Definition 2.3.1. Given a set Ω, a σ-algebra F (over Ω) is a non-empty collection of
subsets of Ω satisfying the following axioms:

1. If E ∈ F then E∁ ∈ F (closure under complement).

2. If Ej ∈ F for all j ≥ 1 then
⋃∞

j=1 Ej ∈ F (closure under countable union).

For a measure defined on F , axiom 2 ensures that addition is well-defined, and axiom 1
ensures that subtraction is well-defined.

Note that axioms 1 and 2 imply that if Ej ∈ F for all j ≥ 1, then (
⋃∞

j=1E
∁
j )

∁ =⋂∞
j=1Ej ∈ F . This is equivalent to axiom 2 (given axiom 1).

Since F is non-empty, there exists E ∈ F , and by axiom 1 E∁ ∈ F , so by axiom 2
E ∪ E∁ = Ω ∈ F . By axiom 1 Ω∁ = ∅ ∈ F . Either of these is equivalent to the non-empty
assumption.

To give some examples of σ-algebras, the smallest is F = {∅,Ω} and the largest is
F = 2Ω the power set of Ω. The more interesting ones often sit somewhere in between. In
particular, an important type of σ-algebra is the smallest one containing some given sets.

Definition 2.3.2. Given Ω and C a collection of subsets of Ω, the σ-algebra generated by
C, denoted σ(C), is the intersection of all σ-algebras over Ω containing C.

One can easily check that σ(C) is a σ-algebra.

It is often hard to check for closure under countable union. Luckily, it turns out that
we can break down that axiom into two weaker parts.
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Definition 2.3.3. Given a set Ω, a π-system I (over Ω) is a collection of subsets of Ω
closed under finite intersection, meaning, if A,B ∈ I, then A ∩B ∈ I.

It is clear that, by induction, closure under intersection of any two sets implies closure
under intersection of any finite number of sets. Some definitions give non-emptiness as part
of the definition of a π-system, but it will not be necessary for our purposes.

Definition 2.3.4. Given a set Ω, a λ-system D (over Ω) is a non-empty collection of
subsets of Ω satisfying the following axioms:

1. If E ∈ F then E∁ ∈ F (closure under complement).

2. If Ej ∈ F for all j ≥ 1, and Ej ∩ Ei = ∅ for all j ̸= i, then
⊔∞

j=1Ej ∈ F (closure
under disjoint countable union).

Note that, similar to σ-algebras, since F is non-empty, E,E∁ ∈ F =⇒ E⊔E∁ = Ω ∈ F ,
which is sometimes stated as an axiom instead of non-emptiness. Furthermore, given
A,B ∈ F , B ⊆ A, we have A∁ ∈ F (by axiom 1) and B ∩ A∁ = ∅ so B ∪ A∁ ∈ F (by
axiom 2), so A \B = (A∁ ∪B)∁ ∈ F (by axiom 1) (closure under complement of subsets).
When Ω ∈ F is stated as an axiom, closure under complement of subsets is sometimes given
instead of closure under complement.

One can clearly see the analogy between the axioms for a λ-system and those for a
σ-algebra. Indeed, λ-systems only requiring closure under disjoint countable union is the
only thing preventing λ-systems to be equivalent to σ-algebras, and the closure under finite
intersection axiom of π-systems fixes exactly that.

Proposition 2.3.5. Given a set Ω, a collection of subsets F is a σ-algebra if and only if it
is both a π-system and a λ-system.

Proof. First assume F is both a π-system and a λ-system. Then it is non-empty and we
check the axioms:

1. If E ∈ F then E∁ ∈ F (this axiom is the same).
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2. Suppose Ej ∈ F for all j ≥ 1. Then for every j > 1, Ej \ (
⋃j−1

i=1 Ei) = (
⋃j

i=1Ei) \
(
⋃j−1

i=1 Ei) ∈ F (by closure under complement of subsets).

Call A1 := E1 and Aj := Ej \ (
⋃j−1

i=1 Ei) for j > 1. Then Aj ∈ F for all j ≥ 1 and
they are all disjoint (Ai ⊆ Ei for all i ≥ 1, and Aj ∩ Ei = ∅ for all j > i). Thus by
closure under disjoint countable union

⊔∞
j=1Aj ∈ F .

Finally
⋃∞

j=1 Ej =
⊔∞

j=1 Aj since clearly
⊔∞

j=1Aj ⊆
⋃∞

j=1 Ej, and if x ∈
⋃∞

j=1Ej then

let j0 be the least j for which x ∈ Ej. Then x ∈ Aj = Ej \ (
⋃j−1

i=1 Ei) so x ∈
⋃∞

j=1 Aj.

Thus F is a σ-algebra. The only if direction is clear.

The usefulness of this proposition is clear: in order to generate a σ-algebra from a
π-system, it suffices to generate a λ-system.

Theorem 2.3.6 (Dynkin’s π-λ theorem). If I is a π-system and I ⊆ D which is a λ-system,
then σ(I) ⊆ D.

Equivalently, since σ-algebras are themselves λ-systems, σ(I) is precisely the smallest
λ-system containing I. Similar to σ(I), it is easy to check that any intersection of λ-systems
(over the same set) is a λ-system.

Proof. Let D0 be the smallest λ-system containing I. If it is also a π-system then by
Proposition 2.3.5 D0 is a σ-algebra so σ(I) = D0 ⊆ D (by minimality of both σ(I) and
D0). Thus we check that D0 is a π-system.

For every A ∈ D0, define

DA := {B ∈ D0 : A ∩B ∈ D0}.

Since A ∈ DA, it is non-empty. We check that it is a λ-system:

1. If E ∈ DA then A∩E ∈ D0 and A∩E ⊆ A, so A∩E∁ = A \ (A∩E) ∈ D0 by closure
under complement of subsets. So E∁ ∈ DA (E∁ ∈ D0 is obvious).

2. If Ej ∈ DA for all j ≥ 1, and Ej ∩ Ei = ∅ for all j ̸= i, then A ∩ Ej ∈ D0 for all
j ≥ 1 and those are disjoint as well, so

⊔∞
j=1(A ∩ Ej) = A ∩ (

⊔∞
j=1Ej) ∈ D0. So⊔∞

j=1Ej ∈ DA (
⊔∞

j=1 Ej ∈ D0 is obvious).
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Thus DA is a λ-system. First assume A ∈ I. Then by closure under finite intersection
A ∩B ∈ I ⊆ D0 for all B ∈ I, so I ⊆ DA. This means D0 ⊆ DA by minimality of D0, but
DA ⊆ D0 by definition, so DA = D0.

Now, take any B ∈ D0 = DA. Then A ∈ DB by definition (since A ∩B ∈ D0) and that
is true for any A ∈ I, so I ⊆ DB. Again by minimality of D0, DB = D0. Thus, for any
B,C ∈ D0, C ∈ DB i.e. B ∩ C ∈ D0 so it is a π-system.

Another important concept related to measurable spaces (Ω,F) is functions between
measurable spaces. In particular, random variables and Lebesgue-measurable functions are
examples of those.

Given a pair of measurable spaces (S,G), (Ω,F) and a function X : Ω → S, we want F
to be “rich enough” to describe the behaviour of X on G. More precisely, given any B ∈ G,
we want X−1(B), its preimage, to be measurable, i.e. to be in F .

The idea is that we want F to give us enough information about X. Of course, if we
know ω then we know X(ω). However, the idea is that by knowing whether ω is in A for
every A ∈ F , we also know X(ω) (or more precisely the membership of X(ω) in every set
we care about, i.e. G), without ever directly knowing ω. For a concrete example, picture a
pseudo-random dice thrower which takes the amount of time passed since midnight scaled
to [0, 1), ω ∈ [0, 1), as input, and outputs X(ω), for some X : [0, 1) → {1, . . . , n}. It is clear
that one can know what X(ω) is without knowing ω precisely, as long as one knows whether
ω ∈ X−1({k}) for every k ∈ {1, . . . , n}. In this example, just σ(X−1({1}), . . . , X−1({n}))
is sufficient to describe the behaviour of X.

Definition 2.3.7. Given (Ω,F) and (S,G) measurable spaces, a function

X : Ω → S

is called (F-)measurable (w.r.t. G) (written X ∈ mF and X : (Ω,F) → (S,G)) if, for all
B ∈ G,

X−1(B) ∈ F .

If furthermore both Ω and S are topological spaces, and both F = B(Ω) and G = B(S),
then X is called a Borel function, where

B(S) = σ({O ⊆ S : O open})

is the σ-algebra consisting of the Borel sets in S. In that case, (S,G) is called a Borel space.

When (Ω,F ,P) is a probability space and (S,G) is a Borel space, X is called an
(S-valued) random variable.
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Intuitively, a real-valued random variable X is simply a random number in R. The
measurability requirements ensure that we have a probability space sufficiently equipped
to talk about the probabilistic properties of X. Else, we might not have a P{X ∈ B} for
every Borel set B. We care about Borel sets in particular, because, for many spaces S
(including R), B(S) encompass virtually all the interesting sets, despite B(S) being the
minimal choice if one wants to at least include open sets.

Furthermore, it is not difficult to show that continuous functions are Borel, and that
the composition of f : (S1,F1) → (S2,F2) with g : (S2,F2) → (S3,F3) is g ◦ f : (S1,F1) →
(S3,F3). This shows that Borel functions of random variables are still random variables.
Intuitively, if we have a random outcome, then any function applied to that random
outcome is still just another random outcome. If the function is nice enough (Borel),
then the same collection of events which was sufficient to have complete knowledge of the
previous random outcome also gives complete knowledge of the new random outcome. For
an example as to why the function applied to the random variable needs to be Borel, let
X : (Ω,F) → (R,B(R)) be uniformly random in [0, 1], and let A ⊆ [0, 1] be a non-Borel set.
Then X is a random variable, but not necessarily 1A(X), as 1A(X)−1({1}) = X−1(A) is
not known to be in F , since A /∈ B(R).

In general, given a function X : Ω → S, with (S,G) being a measurable space, one
might be interested in the smallest σ-algebra needed on Ω so that X is measurable. In
other words, that σ-algebra consists of all subsets of Ω “discernable” by looking at the
outcome of X in terms of membership in G.

Definition 2.3.8. Given X : Ω → S, with (S,G) measurable space, define the σ-algebra
generated by X (under G)

σ(X) := σ({X−1(B) : B ∈ G}).

Also note that when σ takes multiple arguments, e.g. σ(X, C), we mean σ(σ(X)∪ σ(C)).
With these definitions and results, we will now move on to conditional expectations and

martingales, which rely heavily on measurability.

2.3.2 Conditional Expectation

Conditional expectations, intuitively, are simply the “best guess” possible for the value
of a random variable, given the information known. For example, that guess, given zero
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information, is just the usual expectation. For a non-trivial example, if we try to guess the
result of a dice throw given that it is even, we would be guessing 4, the expectations of
even throws, instead of 3.5, the overall expectation.

An intuitive way to define conditional expectation could be as follows. Given a probability
space (Ω,F ,P), a random variable X, and an event A ∈ F with non-zero probability, the
expectation of X conditioning on A is

EA{X}
P{A}

.

Indeed, EA{X} integrates X over ω for which A happens, and P{A} is the area of such ω,
so the above is the average value of X when A happens. For the dice throw example, X is
the outcome of the dice throw, A = {even}, so

EA{X} =
1

6
(2 + 4 + 6) =

4

2

while P{A} = 1
2
.

A big drawback, however, is that this definition only works with conditioning on the
occurrence or not of one event. What if we would like to condition on the outcome of
multiple events (for example, even and ≥ 3), or even on the value of another random
variable? The result should be a random variable, completely determined by the outcome
of these events or by the value of that random variable that we are conditioning on. This
motivates the following definition.

Definition 2.3.9. Given a probability space (Ω,F ,P), a σ-algebra G ⊆ F , and a random
variable X with finite expectation, the conditional expectation of X w.r.t. G is any random
variable Y ∈ mG, satisfying

EA{Y } = EA{X}

for all A ∈ G. We denote Y = E{X | G}. Furthermore, for Z another random variable, we
use the shorthand

E{X | σ(Z)} = E{X | Z}.

Let us break down this definition. As an aid, let us consider the example of X being
the outcome of a dice throw, and G = σ({even}, {≥ 3}). The random variable Y satisfies
two things.
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First, it needs to be G-measurable. In other words, knowledge of G (the occurrence
or not of every event in G) is sufficient to determine the value of Y . In the example,
G = σ({even, {≥ 3}}), so knowing whether the dice throw was even and whether it was no
less than 3 is sufficient to know Y :

{even} ∩ {X ≥ 3} =⇒ Y = 5;

{odd} ∩ {X ≥ 3} =⇒ Y = 4;

{even} ∩ {X < 3} =⇒ Y = 2;

{odd} ∩ {X < 3} =⇒ Y = 1.

Second, it needs to agree with X in expectation on G. What this means is that for any
event in G, the intuitive definition of conditional expectation applies. When the outcomes
of everything in G become known, the value of Y also becomes known and it is equal to the
expectation of X conditioning (with the intuitive definition) on those outcomes, i.e. the
average value of X on those outcomes, as the example above shows.

For our purposes, since Ω will be a finite set, the existence and uniqueness of a conditional
expectation are obvious (since the value of Y is determined for every atomic event in G).
The reference cited [19] contains a general proof of those facts.

Analogous to the usual expectation, conditional expectations are also linear.

Proposition 2.3.10 (Linearity of conditional expectation). Given a probability space
(Ω,F ,P), a σ-algebra G ⊆ F , random variables X, Y with finite expectation, and a ∈ R,

aE{X | G}+ E{Y | G} = E{aX + Y | G}.

Proof. We remark that aE{X | G} + E{Y | G} meets the definition. Indeed it is G-
measurable (as a Borel function of G-measurable functions) and agrees with aX + Y on
any A ∈ G by linearity of expectation.

A property unique to conditional expectations is the tower property. Intuitively, it means
that when we repeatedly do conditional expectations on nested σ-algebras, the smallest
(coarsest, the one with the least information) one dominates.
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Proposition 2.3.11 (Tower property). Given a probability space (Ω,F ,P), a random
variable X with finite expectation, and σ-algebras H ⊆ G ⊆ F , we have

E{E{X | G} | H} = E{X | H} = E{E{X | H} | G}.

In particular, E{E{X | G}} = E{X}.

Proof. Second equality: Since E{X | H} is already G-measurable (for all B Borel, E{X |
H}−1(B) ∈ H ⊆ G), its conditional expectation w.r.t. G is itself.

First equality: E{X | H} is H-measurable. For all A ∈ H, EA{E{X | H}} = EA{X}
by definition, and EA{X} = EA{E{X | G}} by definition as well since A ∈ H ⊆ G, so

EA{E{X | H}} = EA{E{X | G}}.

This shows E{X | H} meets the definition for E{E{X | G} | H}.

A second important property is the fact that conditioning on a σ-algebra that is
independent to both the random variable and what is currently known will bring no
new “information”. In other words, if G is independent from X and H simultaneously,
conditioning on σ(G,H) is no different from conditioning on just H.

Proposition 2.3.12. Let H,G be σ-algebras and X be a random variable, such that G is
independent from σ(X,H). Then

E{X | σ(H,G)} = E{X | H}.

In particular, E{X | G} = E{X}.

Proof. Since E{X | H} ∈ mH ⊆ mσ(H,G), it suffices to prove that for all E ∈ σ(H,G),

EE{X} = EE{E{X | H}}. (2.3.1)

Call D the collection of sets where this equality holds. Define I := {A∩B : A ∈ H, B ∈ G}.
Note I is a π-system (if A1, A2 ∈ H and B1, B2 ∈ G, then A1 ∩ A2 ∈ H, B1 ∩ B2 ∈ G and
(A1 ∩B1) ∩ (A2 ∩B2) = (A1 ∩ A2) ∩ (B1 ∩B2) ∈ I). Also, for all A ∈ H, B ∈ G,

EA∩B{X} = P{B}EA{X} = P{B}EA{E{X | H}} = EA∩B{E{X | H}}.
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The middle equality is because A ∈ H; the first and third equalities are because B is
independent from σ(X,H) while X1A,E{X | H}1A ∈ mσ(X,H), so they are independent
from 1B. Thus I ⊆ C. We now check D is a λ-system:

1. If E ∈ D, then

EE∁{X} = E{X} − EE{X} = E{E{X | H}} − EE{E{X | H}} = EE∁{E{X | H}}

so E∁ ∈ D.

2. If Ej ∈ C for all j ≥ 1 and Ej ∩Ei = ∅ then note that by linearity and definition of C

E{X1⋃j
i=1 Ei

} =

j∑
i=1

E{X1Ei
} =

j∑
i=1

E{E{X | H}1Ei
} = E{E{X | H}1⋃j

i=1 Ei
}

for all j ≥ 1. Furthermore X1⋃j
i=1 Ei

and X | H}1⋃j
i=1 Ei

are both dominated (one by

|X| and the other by |E{X | H}|). Thus by dominated convergence

E{X1⋃∞
j=1 Ej

} = lim
j→∞

E{X1⋃j
i=1 Ei

}

= lim
j→∞

E{E{X | H}1⋃j
i=1 Ei

} = E{E{X | H}1⋃∞
j=1 Ej

}

so
⋃∞

j=1Ej ∈ D.

Thus D is a λ-system containing I. By Dynkin’s π-λ theorem Theorem 2.3.6 σ(I) ⊆ D.
Since H,G ⊆ I, σ(H,G) ⊆ σ(I) ⊆ D so equality (2.3.1) holds on σ(H,G).

G being independent from σ(X,H) is necessary, and neither G being independent
from X,H nor even the three being pairwise independent is strong enough. Indeed a
counterexample can be constructed from any three pairwise but not mutually independent
events. Consider for example the probability space of two independent fair coin throws.
Let A = {HH, TT}, B = {first is H}, C = {last is T}. A,B, A,C and B,C are all pairwise
independent. However, let X = 1A, H = σ(B) and G = σ(C). Clearly G,H, X are pairwise
independent, but σ(G,H) contains full information about X.
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2.3.3 Martingales

We are now almost ready to introduce martingales. A martingale, intuitively, is a sequence
of random variables, indexed by time (so it is a random process), such that the expected
value at any future point, conditioning on all the information available at present, is equal
to the value at present. Examples include:

• The amount of money a gambler has while playing a fair game.

• The x-position of a particle in Brownian motion.

The sequence consisting of the sets of “information” at every point in time is formalized by
a filtration.

Definition 2.3.13. Given a probability space (Ω,F ,P), a filtration {Fk}k≥0 is an increasing
sequence of sub-σ-algebras of F , such that F0 = {∅,Ω}.

As we can see, at time 0 no information is available, and the sequence is increasing,
i.e. one gains information as time advances. Note that F0 = {∅,Ω} is purely by convention,
as one can just add this F0 in front of any increasing sequence of σ-algebras.

Recall that a random variable X is measurable w.r.t. a σ-algebra F when its value
(more precisely, the membership of X(ω) in every Borel set) is completely determined by
the membership of ω in every E ∈ F . Thus, X ∈ mFt if and only if the value of X is
completely determined at time t. Similarly, E{X | Ft} is simply the “best guess” for the
value of X, given the information available at time t.

A martingale w.r.t. a filtration, then, is a sequence of random variables such that the
“best guess” for its value at a future time, is simply its value at the present time. In other
words, if the current time is t (i.e. we can condition on Ft), and s ≥ t (i.e. Xs is a future
value), then the “best guess” for Xs at time t (which is by definition E{Xs | Ft}), is simply
Xt.

Definition 2.3.14. Given a probability space (Ω,F ,P) with filtration {Fk}k≥0, amartingale
(w.r.t. filtration {Fk}k≥0) is a sequence of random variables {Xk}k≥0, such that

E{Xj | Fk} = Xk

for all j ≥ k ≥ 0.
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Back to the two examples above,

• Xt is the amount of money after playing t games, and the events Ft are the outcomes
of the first t games.

• Xt is the position of the Brownian particle at time t, and Ft = σ(X1, . . . , Xt) is simply
the path of the particle up to time t. Note that {Xt} being a martingale is essentially
saying, for s ≥ t,

E{Xs | X1, . . . , Xt} = Xt.

In other words, the best guess for the future x-position of a Brownian particle is its
current position.

Notice that the F0 condition forces X0 to be a.s. constant. Furthermore,

E{Xt} = E{E{Xt | F0}} = E{X0}

for any t ≥ 0 by definition. Thus X0 = E{Xt} a.s. for every t ≥ 0, i.e. X0 is the expectation
of the martingale.

Imagine a martingale where the difference between consecutive terms is bounded.
Because a martingale is not expected to increase or decrease, its probability to increase
or decrease by any ϵ > 0 is also bounded: If |Xk+1 − Xk| ≤ c then P{Xk+1 ≥ Xk − ϵ |
Fk},P{Xk+1 ≤ Xk + ϵ | Fk} cannot be less than ϵ

c+ϵ
. Indeed, if Xk+1 ≥ Xk − ϵ then

Xk+1 −Xk ≤ c, and if Xk+1 < Xk − ϵ then Xk+1 −Xk < −ϵ, so

0 = E{Xk+1 −Xk | Fk} < cP{Xk+1 ≥ Xk − ϵ | Fk} − ϵ(1−P{Xk+1 ≥ Xk − ϵ | Fk})

which rearranges to

P{Xk+1 ≥ Xk − ϵ | Fk} >
ϵ

c+ ϵ
.

This means
P{Xk+1 < Xk − ϵ | Fk},P{Xk+1 > Xk + ϵ | Fk} ≤ c

c+ ϵ
.

Therefore, the probability for the martingale to have wandered far above or below its
expectation, i.e. the probability that it increased much more often than it had decreased
or vice versa, should shrink very fast. This is the intuition behind the Azuma-Hoeffding
inequality.
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Theorem 2.3.15 (Azuma-Hoeffding inequality [4] [14]). Suppose {Xk}k≥0 is a martingale
and |Xk −Xk−1| ≤ ck a.s. for all k ≥ 1. Then for all N ≥ 1 and all a > 0,

P{Xk −X0 ≥ a} ≤ exp

{
−a2

2
∑N

k=1 c
2
k

}
,

P{X0 −Xk ≥ a} ≤ exp

{
−a2

2
∑N

k=1 c
2
k

}
.
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Chapter 3

Model of Random Signed Graphs

Recall that the Erdős-Rényi model of random graphs, G(n, p), consists of n vertices, with
every pair of vertices joined by an edge independently with a probability p. A natural
extension to signed graphs would be to simply take G(n, p), and randomly label the edges
positive or negative independently.

Definition 3.0.1. Let (Ω,F ,P) be the probability space consisting of
(
n
2

)
Ber(p) random

variables {Xe}e∈E(Kn), and another
(
n
2

)
Ber(q) random variables {Ye}e∈E(Kn), all indepen-

dent. Then G(n, p, q), mapping from Ω = {0, 1}E(Kn) to the set of graphs on n vertices, is
such that for e ∈ E(Kn),

e ∈ E(G(n, p)), σ(e) = −1, Xe = 1, Ye = 1;

e ∈ E(G(n, p)), σ(e) = 1, Xe = 1, Ye = 0;

e /∈ E(G(n, p)), else.

In other words, we take G(n, p) and flip a coin independently for every edge to determine
its sign, with a probability q for it to be negative. This is slightly different from El Maftouhi’s
[17] model, in that they define G′(n, p′, q′), with

p′ = P{uv ∈ E(G), σ(uv) = 1}, q′ = P{uv ∈ E(G), σ(uv) = −1}.

Clearly, their model would correspond to G(n, p′ + q′, q′

p′+q′
) in our definition, and ours to

G′(n, p(1− q), pq) in theirs. All of our results can be restated under their model G′(n, p, q)
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by replacing every p with p + q and every q with q
p+q

. We are using a modified model

because we want the edge probability to be one parameter, so that b = 1
1−p

only depends
on p, as we will see in the next section.

The study of the unsigned chromatic number of G(n, p) (which we undertake in detail in
Chapter 4) is intrinsically linked to its independence number. This is because, for unsigned
graph colourings, each colour class is an independent set. For signed colourings, it would
not suffice to only look at individual colour classes since opposite colours interact with each
other. However, it would be very natural to look at a signed colour class consisting of all
vertices coloured with the same absolute value. The kind of sets that signed colour classes
can take is precisely what we will call signed independent sets.

3.1 A Signed Analogue to Colour Classes

Definition 3.1.1. Given a signed graph G, S ⊆ V (G) is a signed independent set if there
exists H ⊆ S such that H,S \H are independent sets in G+, and there are no negative
edges between H and S \H.

One can easily check that by colouringH with colour i and S\H with −i, signed independent
sets are precisely the kind of sets that can take the same absolute value in a signed colouring.
However, an issue arises when we want to talk about signed independent sets of some fixed
size. If we only talk about the size of S, then H ⊆ S can be of any size, and the rarity
of such S in G(n, p, q) will largely depend on the size of H. Taking inspiration from the
unsigned case, where we consider the number of independent sets of size r, we want both
H and S \H to have size r, as they are both independent sets in G+. This motivates the
actual object of interest in our investigation of G(n, p, q).

Definition 3.1.2. Given a signed graph G, the pair {H,S \H} is a special independent
pair (of size 2r) if S is a signed independent set of size 2r, and H ⊆ S has size r.

Note that the same signed independent set S could potentially contain multiple special
independent pairs. Furthermore, for convenience, when V (G) is ordered, we use H for
the set in the pair with the smaller least vertex and use S \H for the one with the larger
least vertex. Analogous to the unsigned case, we start our investigation of the signed
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chromatic number of a random signed graph by computing the expected number of special
independent pairs close to maximal size.

Note that a special independent pair of size 2r in a signed graph G contains in particular
two independent sets of size r in G+, so this maximal size is no more than twice the
(unsigned) independence number of G+. We can prove that we do expect many special
independent pairs near this size.

Proposition 3.1.3. Let 0 < p = p(n) < 1 be asymptotically bounded away from 0, 1. Let
b = 1

1−p
and q = q(n) = o(1). Suppose that c = c(n) > 0 is such that there exists constant

C ∈ R, such that lim inf 2(1− 2 log c
log b

) ≥ C. Let

r = r(n) = 2 logb(ecn/(2 logb n)).

Let X denote the number of special independent pairs of size 2r in G(n, p, q). Then, for
each ϵ > 0 constant,

E(n, r) := EX = ω(nC−ϵ).

Proof. To get a special independent pair of size 2r, there are
(
n
2r

)
choices for S and 1

2

(
2r
r

)
choices for H ⊆ S (since H always has the smaller least vertex among H and S \H). Given
a fixed choice of H,S \ H, for them to be a special independent pair, r2 negative edges
need to be missing between H and S \H and

(
r
2

)
positive edges need to be missing inside

H and S \H. Thus

E(n, r) =
1

2

(
n

2r

)(
2r

r

)
(1− p(1− q))2(

r
2)(1− pq)r

2

=
n!

2(n− 2r)!(r!)2
(1− p(1− q))r

2−r(1− pq)r
2

=
n!

2(n− 2r)!(r!)2
(1− p+ pq)−r((1− p+ pq)(1− pq))r

2

=
n2r(1− o(1))

2(r!)2
(1− p+ pq)−r(1− p+ p2q(1− q))r

2

and, similarly to the unsigned case,

(1− p+ p2q(1− q))r
2 ≥ (1− p)r

2

= exp{r2 log(1− p)} =

(
ecn

2 logb n

)−2r

.
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Note

(1−p+pq)−r = exp

{
log(1− p+ pq)

2 log(ecn/(2 logb n))

log(1− p)

}
=

(
ecn

2 logb n

)2 log(1−p+pq)/ log(1−p)

and clearly log(1− p+ pq)/ log(1− p) = 1− o(1). So

E(n, r) ≥ n2r−2r((2/ec) logb n)
2r(1− o(1))

2(r!)2
(1− p+ pq)−r

=
((2/ec) logb n)

2r

2(r!)2

(
ecn

2 logb n

)2(1−o(1))

=
((2/ec) logb n)

2r

2(r!)2
ω(n2−ϵ).

Note r! ∼ (r/e)r
√
2πr = ((2/e) logb(ecn/(2 logb n)))

r
√
2πr, so

((2/ec) logb n)
2r

(r!)2
= (1− o(1))

(
logb n

c logb(ecn/(2 logb n))

)2r

/(2πr)

= Ω((log n)−1)c−2r

= Ω((log n)−1) exp{(−2 log c/ log b)(1− o(1))2 log n}

= Ω((log n)−1)n− 4 log c
log b

(1−o(1))

Thus E(n, r) = ω(nC−ϵ).

Note that the b used in here depends on the edge probability, not just the positive edge
probability. This justifies our choice of modifying G(n, p, q) from [17] so that p is the edge
probability and not the positive edge probability.

One cannot help but notice that Proposition 3.1.3 is almost exactly analogous to the
lower bound part of Proposition 2.1.11, from the derivation to the result itself. Indeed, this
asymptotic lower bound on E(n, r) is at worst a subpolynomial away from being the square
of the lower bound on E ′(n, r) from Proposition 2.1.11 applied to G(n, p) ∼ G(n, p, q).

For a fixed signed graph G, if G+ has ℓ independent sets of size r, then G has at most(
ℓ
2

)
= Θ(ℓ2) special independent pairs of size 2r and this can only be achieved if those

independent sets are disjoint, and there are no negative edges between any pair of those
independent sets. If one wanted to apply Proposition 2.1.11 to G+ ∼ G(n, p(1− q)), the
positive subgraph of G(n, p, q), then b would be slightly smaller compared to G(n, p), but

lim inf

(
1− 2 log c

log 1
1−p(1−q)

)
= lim inf

(
1− 2 log c

log 1
1−p

)
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given that p is asymptotically away from 0, 1. In that case, the lower bound on the expected
number of independent sets of size r in G+ given by Proposition 2.1.11 is no different
from those in G(n, p, q), so the bound on E(n, r) from G(n, p, q) is also almost the square

of E ′(n, r) from G+. The fact that they almost achieve the maximal order of magnitude
suggests that the negative edges have a small impact when q = o(1), which hints at
χ(G(n, p, q)) ∼ χ(G+), and that the independent sets in G(n, p) tend to be mostly disjoint,
which is the foundation of Bollobás’s analysis in Section 4.1.

3.2 Signed Chromatic Number Unchanged for Small q

Although it is true that the order of magnitude of the signed chromatic number will not
change by labelling the negative edges with q = o(1) (as we shall show later), it does not
mean that it will be the same as the unsigned chromatic number. Nonetheless, we can
prove separately that for small enough q, a.a.s. the signed chromatic number of G(n, p, q) is
equal (up to adding one new colour due to the unsigned chromatic number being odd) to
the unsigned chromatic number of its positive subgraph G+.

Intuitively, given an unsigned colouring c of G+, its colour classes would also work on a
signed colouring of G(n, p, q) if and only if there exists a way to match them in pairs, such
that there are no negative edges between the colour classes of the same pair. These pairs
would become the signed independent sets. This sounds strikingly like a perfect matching
in some auxiliary graph.

Indeed, we can consider an auxiliary graph where the vertices are the colour classes of
c, and two colour classes are adjacent if and only if there are no negative edges between
the colour classes in G(n, p, q). Given n, p, q, although this auxiliary graph is not exactly
G(n′, p′) (its number of vertices is not constant and the edge probability also depends on
the endpoints), we can find n′, p′ such that a.a.s. the subgraph of G(n′, p′) induced by the
vertex set of our auxiliary graph can be embedded as a subgraph of our auxiliary graph,
such that G(n′, p′) having a perfect matching implies that our auxiliary graph also has a
perfect matching.

Proposition 3.2.1. Let 0 < p = p(n) < 1 be asymptotically bounded away from 0, 1 and
b = 1

1−p
. Suppose there exists C ∈ R constant such that a.a.s.

χ(G(n, p(1− q))) ≤ n

2 logb n− 2 logb logb n+ C

43



(this C exists by Theorem 4.1.2). If

q ≤ 1

4p logb n

for all large enough n, then a.a.s. χ(G+) = χ(G) (i.e. χ(G+) ≤ χ(G) ≤ χ(G+) + 1), where
G ∼ G(n, p, q), and G+ denotes its positive subgraph.

Proof. Let c be an optimal unsigned colouring of G+. Then recall from Proposition 2.1.11
a.a.s. each colour class of c has size no more than

r(n) = 2 logb n− 2 logb logb n+ C ′

(the upper bound on the independence number of G+) for some constant C ′ ≥ C depending
only on p. Define an auxiliary (unsigned) graph Γn on χ(G+) vertices, such that vertices i, j
are adjacent if and only if there are no negative edges between the i-coloured and j-coloured
colour classes. Then, since c uses no more than n

2 logb n−2 logb logb n+C
colours, and (let Si, Sj

denote the colour classes for i, j) a.a.s.

P{i ∼ j in Γn} = (1− pq)|Si||Sj | ≥ (1− pq)(2 logb n−2 logb logb n+C′)2 =: p′.

Thus there exists a coupling of Γn and G(χ(G+), p′), such that a.a.s. Γn is a supergraph
of G(χ(G+), p′) on the same vertex set, so there exists a further coupling with G(n′, p′)
(n′ = ⌊ n

2 logb n−2 logb logb n+C
⌋), so that a.a.s. Γn is a supergraph of the subgraph induced by

the first χ(G+) vertices of G(n′, p′). Thus G(n′, p′) contains a perfect matching convering
all but at most one vertex implies a.a.s. Γn contains a perfect matching covering all but
at most one vertex, which implies there exists a relabelling of c (using at most one more
colour) which turns it into a signed colouring of G(n, p, q). Note

p′ = (1− pq)(2 logb n−2 logb logb n+C′)2 = exp{−pq(2 logb n− 2 logb logb n+ C ′)2}.

By Corollary 2.1.15, we know a.a.s. G(n′, p′) contains a perfect matching a.a.s. if (ωn is any
sequence that goes to infinity)

p′ = exp{−pq(2 logb n− 2 logb logb n+ C ′)2} ≥ log n′ + ωn

n′

⇐⇒ q ≤ log(log n′ + ωn)− log n′

−p(2 logb n− 2 logb logb n+ C ′)2
,

which is true if q ≤ 1
4p logb n

for large enough n.
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In theory, we can also find n′′, p′′ such that a.a.s. G(n′′, p′′) can be embedded as an
induced subgraph of our auxiliary graph, such that G(n′′, p′′) not having a perfect matching
implies that our auxiliary graph also does not. However, from this to concluding that
a.a.s. the signed chromatic number of G(n, p, q) needs to increase, we further need union
bounding over the number of optimal colourings of G+.
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Chapter 4

The Martingale Method

We are now ready to discuss the main idea behind the focus of the thesis. Recall from
Proposition 2.1.11 that for 0 < p(n) < 1 asymptotically bounded away from 0, 1, q = o(1),
G ∼ G(n, p), c = c(n) bounded,

r = r(n) = 2 logb(ecn/(2 logb n)),

there exists a choice of c such that a.a.s. there exists no independent set of size r in G+.
Thus there exists some constant C such that a.a.s.

χ(G) ≥ n

r
=

n

2 logb n− 2 logb logb n+ C
.

Our aim is to show that a.a.s.

χ(G) ≤ n

2 logb n− 2 logb logb n+ C ′

for another constant C ′.

We will now outline the main ideas used by Bollobás in [6] to bound χ(G(n, p)). Suppose
that, for some r, every large enough (nα order for some α = α(n) < 1) subgraph of G
contains an independent set of size r. Then, since we can keep colouring those r-independent
sets in distinct colours until there are fewer than nα vertices left,

χ(G) ≤ n− nα

r
+ nα =

n+ (r − 1)nα

r
≤ n

r − 1

for n large enough.
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We want to show that we precisely have the above hold a.a.s. for G(n, p). Note that a
nα-subgraph of G(n, p(n)) is G(nα, p(n)) which is simply another Erdős-Rényi graph with
p asymptotically bounded away from 0, 1. Thus, if we want to apply the expected number
of independent sets of size r that we computed in Proposition 2.1.11, we would be working
with nα and with

r(nα) = 2 logb n
α − 2 logb logb(n

α) + C

= 2α logb n− 2 logb logb n− 2 logb α + C.

This looks strikingly close to

2 logb n− 2 logb logb n+ C ′

for another C ′ constant, but we need to deal with the factor of α. As we shall see in
Corollary 4.1.3, it turns out that choosing α(n) = logb n−1

logb n
gets rid of α. Thus, if we can show

that for any α(n) = ω( 1
logn

) (which would encompass our choice of α above), a.a.s. every

nα-sized subgraph of G(n, p) contains an independent set of size r(nα), then

χ(G(n, p)) ≤ n

2 logb n− 2 logb logb n+ C ′ − 1
.

Note that this strategy also works for G(n, p, q), by replacing independent sets of size r
with special independent pairs of size 2r. However, we will not be able to get this sharp of
a bound, as we shall see in the final result Theorem 4.2.3.

A direct way to show that this containment holds a.a.s. is to show that the probability
that G(nα, p) (p = p(n)) does not have an independent set of size r(nα), union bound over
all choices of nα-subgraphs in G(n, p), is o(1). In other words, we want to show(

n

nα

)
P{G(nα, p) has no independent set of size r(nα)}

≤nnα

P{G(nα, p) has no independent set of size r(nα)}

is o(1) for any α = ω( 1
logn

) < 1.

The main effort in [6] revolves around proving this bound (albeit for fixed p). Recall
that the Azuma’s inequality Theorem 2.3.15 concentrates the value of a martingale with
bounded increments around its expectation with a very good probability. The key idea,
then, is to construct a martingale {Xt}t≥0 with bounded increments and with

XN = χ(G(n, p)),
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such that after applying Azuma’s inequality, the resulting probability is small enough that
the union bound above is indeed o(1).

To this end, we must first turn graph invariants into martingales. So far, in Subsection
2.3.3, we have seen a couple of examples of martingales and both are essentially sums
of independent random variables. We shall now introduce a completely different way to
construct martingales: in fact, any multivariate function taking random inputs can be
turned into one.

Definition 4.0.1. Let (Ω,F ,P) be a probability space. For n ≥ t ≥ 1, let Xt : Ω → St

be St-valued random variables (in particular St are topological spaces with Borel space
(St,B(St))), and let

f : S1 × · · · × Sn → R

be a Borel function. Then define

Yt = Yt(f,X1, . . . , Xn) :=


E{f(X1, . . . , Xn)}, t = 0;

E{f(X1, . . . , Xn) | X1, . . . , Xt}, n ≥ t ≥ 1;

f(X1, . . . , Xn), t > n.

{Yt}t≥0 is called the Doob’s martingale.

Note that by the tower property Proposition 2.3.11 {Yt}t≥0 is a martingale w.r.t. {Ft}t≥0

where Ft = σ(X1, . . . , Xt) for 1 ≤ t ≤ n, and Ft = σ(X1, . . . , Xn) for t > n. Indeed for
n ≥ s ≥ t,

E{Ys | Ft} = E{E{f(X1, . . . , Xn) | X1, . . . , Xs} | X1, . . . , Xt}
= E{f(X1, . . . , Xn) | X1, . . . , Xt} = Yt

and note that for t > n, Yt = Yn.

Intuitively, this martingale is constructed from our “best guess” for the value of a
function taking random inputs, having knowledge of the first t inputs. Since this is already
our best guess, we should not expect this guess to increase or decrease after obtaining new
information (it can increase or decrease with arbitrary probability, but the expected change
is 0).

In the context of random graphs (either G(n, p) or G(n, p, q)), a common and useful
example of a Doob’s martingale is the edge-exposure martingale. Here, f is any graph
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invariant, and Xt are the Bernoulli variables which decide the membership (and sign) of
edges in the graph.

Definition 4.0.2. Let G(n, p) (resp. G(n, p, q)) be a random graph (resp. signed graph)
with associated Bernoulli random variables Xe (resp. Xe, Ye) for e ∈ E(Kn) ordered. Let f
be a given graph (resp. signed graph) invariant defined as a function from the set of graphs
(resp. signed graphs) on n vertices to R.

Let N =
(
n
2

)
. The edge-exposure martingale of G(n, p) (resp. G(n, p, q)) w.r.t. the

graph (resp. signed graph) invariant is the Doob’s martingale {Yt(f,Xe1 , . . . , XeN )}t≥0

(resp. {Yt(f, (Xe1 , Ye1), . . . , (XeN , YeN )}t≥0) for 1 ≤ t ≤ N . We denote the edge-exposure
martingale of G(n, p) (resp. G(n, p, q)) by Yt(G(n, p)) (resp. Yt(G(n, p, q))).

In other words, after seeing the “status” of every edge in order, we consider the current
“best guess” for the value of our graph invariant (in our case, the (signed) chromatic number).
At Y0 (i.e. when we have seen no edges), this guess is simply the expectation of the graph
invariant, and at Y(n2)

(i.e. when we have seen every edge) this guess is the actual value of

the graph invariant, as a random variable.

Note that by grouping all unused edges incident to the same vertex together into one
random variable, one can similarly define a vertex-exposure martingale. The advantage
of edge-exposure is that the random variables involved are simpler and identical, while
vertex-exposure uses fewer terms before reaching the desired graph invariant (n as opposed
to
(
n
2

)
).

Recall that the idea is to apply Azuma’s inequality Theorem 2.3.15 to bound the
probability that some edge-exposure martingale deviates far from its mean. A naive idea,
which also serves as an example of an edge-exposure martingale, would be to simply use
the number of independent sets of size r (resp. number of special independent pairs of size
2r) as our (signed) graph invariant.

Call the martingale from the signed case {Yt}t≥0 and the unsigned case {Y ′
t }t≥0. Let Xr

denote the number of special independent pairs of size 2r in G(n, p, q) and let X ′
r denote
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the number of independent sets of size r in G(n, p). Then

Yt =


E(n, r) = E{Xr}, t = 0;

E{Xr | existence and sign of e1, . . . , et}, 1 ≤ t ≤
(
n
2

)
;

Xr,
(
n
2

)
< t.

Y ′
t =


E ′(n, r) = E{X ′

r}, t = 0;

E{X ′
r | existence e1, . . . , et}, 1 ≤ t ≤

(
n
2

)
;

X ′
r,

(
n
2

)
< t.

However, recall that Azuma’s inequality Theorem 2.3.15 requires that the martingale has
a.s. bounded increments. For the martingales defined above, if no edge is added among the
first

(
n
2

)
− 1, which occurs with non-zero probability, whether the last edge is there or not

changes the number of independent sets on the order of Θ(nr−2). Thus those martingales
would not work with Azuma’s inequality.

A natural question, then, would be: “How do we guarantee a.s. bounded increments for
a Doob’s martingale?” The intuitive idea would be to simply use some f such that

sup
x1,...,xk,x

′
k,...,xn

{|f(x1, . . . , xk, . . . , xn)− f(x1, . . . , x
′
k, . . . , xn)|} ≤ ck

for each 1 ≤ k ≤ n. In other words, for each k, after fixing every other position but the
k-th, the amount of variation in f from changing the k-th position is bounded by ck (which
does not depend on how the other positions are fixed).

Unfortunately, this would not suffice if X1, . . . , Xn were not independent. Intuitively,
one can imagine a scenario where all X1, . . . , Xn are in fact determined by X1, so different
choices of X1 could potentially produce vastly different f(X1, . . . , Xn), even though for
X2, . . . , Xn fixed, varying X1 only changes f by little. It turns out that independence on
X1, . . . , Xn is exactly what is missing, which we get for free with edge-exposure martingales.

Proposition 4.0.3. Let f, {Yt}t≥0, X1, . . . , Xn be as in the definition of Doob’s martingale
Definition 4.0.1, with X1, . . . , XN independent. Assume that for some k ∈ {1, . . . , n}, there
exists ck ≥ 0 constant such that we have

sup
xi∈Si∀1≤i≤k,x′

k∈Sk

{|f(x1, . . . , xn)− f(x1, . . . , xk−1, x
′
k, xk+1, . . . , xn)|} ≤ ck

(x′
k is at the k-th position). Then a.s. |Yk − Yk−1| ≤ ck.
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Proof. Define

U := sup
xk∈Sk

|E{f(X1, . . . , Xn) | X1, . . . , Xk} − E{f(X1, . . . , xk, . . . , Xn) | X1, . . . , Xk−1}|.

By definition |Yk − Yk−1| ≤ U . Furthermore, since X1, . . . , XN are independent, Xk is
independent from σ(X1, . . . , Xk−1, f(X1, . . . , xk, . . . , Xn)). Thus by Proposition 2.3.12

E{f(X1, . . . , xi, . . . , Xn) | X1, . . . , Xk−1} = E{f(X1, . . . , xi, . . . , Xn) | X1, . . . , Xk}.

This means

U = sup
xk∈Sk

|E{f(X1, . . . , Xn)− f(X1, . . . , xi, . . . , XN) | X1, . . . , Xk}|

≤ sup
xk∈Sk

E{|f(X1, . . . , Xn)− f(X1, . . . , xi, . . . , Xn)| | X1, . . . , Xk}

≤ sup
xi∈E

E{ck | Fk} = ck.

This means that it suffices to find a graph invariant which varies by a bounded amount
whenever one edge of the graph is changed. For example, one can consider the number of
independent sets of size r which share fewer than two vertices with any other independent
set of size r. In that case, adding one edge at most removes one independent set, and
removing one edge adds at most one independent set, so Proposition 4.0.3 applies with
ck = 1. The signed graph case is exactly the same, with special independent pairs of size 2r
and with no intersection of more than one vertex between the unions of the pairs.

Let Y ′
r denote the number of such “almost disjoint” independent sets (resp. Yr and

special independent pairs). A possible issue is that E{Xr} and E{X ′
r} might be hard to

compute and/or much smaller than E(n, r), E ′(n, r). We will show later that in fact

E{Yr} = (1− o(1))E(n, r),

E{Y ′
r} = (1− o(1))E ′(n, r).

For now, we will show that as long as that expectation is large enough (to be precise,
asymptotically at least nγ for γ > 1.5), Azuma’s inequality would give us exactly the desired
result, namely that we can decompose almost the entire vertex set into independent sets (or
special independent pairs) of the right size. Note that the next two results apply regardless
whether the graph is signed or not.

First, we directly apply Azuma’s inequality to get a very strong bound on the probability
that the graph invariant is small, given that it is lower bounded by some edge-exposure
martingale with bounded increments whose expectation is polynomial in n.
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Lemma 4.0.4. Suppose there exists C > 0 constant, such that for all n, {Yt}t≥0 is an edge-
exposure martingale with increments bounded by C. Further suppose that Y0 ≥ (1− o(1))nγ

for some γ > 0. Set N =
(
n
2

)
and let Zn be any graph invariant such that Zn ≥ YN . Then,

for any 1 > α > 0,

P{Zn ≤ (1− α)(1− o(1))nγ} ≤ exp

{
−α2(1− o(1))n2(γ−1)

2C2

}
.

Proof. By the Azuma-Hoeffding inequality Theorem 2.3.15, setting a = αY0, we get

P{Zn ≤ (1− α)(1− o(1))nγ} ≤ P{YN ≤ Y0 − a} ≤ exp

{
− a2

2
∑N

k=1C
2

}

= exp

{
−α2(1− o(1))n2γ

2NC2

}

= exp

{
−α2(1− o(1))n2(γ−1)

2C2

}
.

Now, we can apply this small probability to the union bound mentioned before to show
that, if this graph invariant counts the number of some structure, then almost the entirety
of the graph can be cut into disjoint copies of this structure.

Theorem 4.0.5. Suppose that there exists some Zn which denotes the number of structures
Hn in G(n, p) (or G(n, p, q)), and some γ > 1.5, for which Lemma 4.0.4 holds. Then, for
any β = β(n) such that nβ → ∞ (i.e. β = ω( 1

logn
)), a.a.s. one can find disjoint copies of

Hnβ covering all but at most nβ vertices in G(n, p) (or G(n, p, q)).

Proof. Fix n and β. Note that every nβ-subgraph of Gn is Gnβ , so by applying Lemma 4.0.4
to nβ, we get that, with Znβ denoting the number of copies of Hnβ in Gnβ (i.e. the number
of copies in a given nβ-subgraph of Gnβ), and with α = 0.5, we get, for large enough n,

P{Znβ = 0} ≤ P{Znβ ≤ 0.5(1− o(1))nγβ} ≤ exp

{
−0.25(1− o(1))n2β(γ−1)

2C2

}
.
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Thus, union bounding over all such subgraphs of G, we get that the probability that there
exists an nβ-subgraph of G without Hnβ is at most (let ϵ := γ − 1.5 > 0)

nnβ

exp

{
−0.25(1− o(1))n2β(γ−1)

2C2

}
= exp{−Θ(n2β(γ−1)) + nβ log n}

= exp{−Θ(nβ+2βϵ) + nβ log n} = exp{−ω(nβϵ)}

which is o(1) since nβ → ∞. Thus a.a.s. every nβ-subgraph of G contains a copy of Hnβ , so
by repeatedly obtaining this copy and removing it, until there are fewer than nβ vertices
left, we get that a.a.s. all but a subgraph of size nβ can be decomposed into disjoint copies
of Hnβ .

This is what we term the martingale method. Assume that Hn are some induced graph
structure to be counted. Then for any 0 < β = β(n) (which we can make converge to 1),
a.a.s. all but nβ vertices of the graph can be covered by Hnβ as long as the following hold:

1. The count of Hn can be lower bounded by some edge-exposure martingale with
bounded increments.

2. This edge-exposure martingale has expectation Ω(nγ) for γ > 1.5.

Now, it remains to show that the number of “almost disjoint” independent sets (resp. special
independent pairs) indeed has expectation Ω(nγ), apply the martingale method, and
conclude with the upper bound on the chromatic number.

4.1 Bollobás’s Analysis

We start with the unsigned case, which was first done by Bollobás in 1988 [6].

Lemma 4.1.1. Let 0 < p = p(n) < 1 be asymptotically bounded away from 0, 1 and b = 1
1−p

.

Assume r ∼ 2 logb n and, in G(n, p), let Y ′
r denote the number of independent sets S, such

that |S| = r and there is no other independent set of size r sharing two vertices or more
with S. Then EY ′

r ∼ E ′(n, r).
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Proof. Let AS denote the event that a given S ⊆ V (G) of size r forms an independent
set. For ℓ = 2, . . . , r − 1 let Zℓ(S) denote the number of independent sets of size r sharing
exactly ℓ vertices with S. Finally let Z(S) :=

∑r−1
ℓ=2 Zℓ(S). Then Y ′

r counts the number of
sets S for which {Z(S) = 0} ∩ AS holds. So

EY ′
r =

∑
S⊆V (G)

P{AS}P{Z(S) = 0 | AS}

=

(
n

r

)
(1− p)(

r
2)(1−P{Z(S0) ≥ 1 | AS0})

= E ′(n, r)(1−P{Z(S0) ≥ 1 | AS0})

with S0 := {1, . . . , r}. Let A := AS0 , Z := Z(S0) and Zℓ := Zℓ(S0) for ℓ = 2, . . . , r − 1. By
Markov’s inequality we know P{Z ≥ 1 | AS} ≤ E{Z | AS}. Thus

EY ′
r = E ′(n, r)(1−P{Z ≥ 1 | A}) ≥ E ′(n, r)(1− E{Z | A}).

Now it suffices to show E{Z | A} = o(1). Note E{Z | A} =
∑r−1

ℓ=2 E{Zℓ | A}. We know

E{Zℓ | A} =

(
n− r

r − ℓ

)(
r

ℓ

)
(1− p)(

r
2)−(

ℓ
2),

as we choose ℓ vertices in the intersection, r − ℓ vertices outside the intersection, and all
but

(
ℓ
2

)
(which are already missing) internal edges among the chosen vertices need to be

missing. So for 2 ≤ ℓ ≤ r − 2

f(ℓ) : =
E{Zℓ+1 | A}
E{Zℓ | A}

=
(n− 2r + ℓ)!(r − ℓ)!(r − ℓ)!ℓ!

(n− 2r + ℓ+ 1)!(r − (ℓ+ 1))!(r − (ℓ+ 1))!(ℓ+ 1)!
(1− p)−(

ℓ+1
2 )+(

ℓ
2)

=
(r − ℓ)2

(n− 2r + ℓ+ 1)(ℓ+ 1)
(1− p)−ℓ =

(r − ℓ)2

(n− 2r + ℓ+ 1)(ℓ+ 1)
bℓ.

If ℓ ≤ logb n
2

then bℓ ≤ n1/2, while note (r−ℓ)2

(n−2r+ℓ+1)(ℓ+1)
= o(n−5/6) independent of ℓ. So

f(ℓ) = o(n−1/3) for ℓ in that range. On the other hand note

f(ℓ+ 1)

f(ℓ)
=

(r − ℓ− 1)2(n− 2r + ℓ+ 1)(ℓ+ 1)(1− p)−(ℓ+1)

(r − ℓ)2(n− 2r + ℓ+ 2)(ℓ+ 2)(1− p)−ℓ

=

(
1− 1

r − ℓ

)2(
1− 1

n− 2r + ℓ+ 2

)(
1− 1

ℓ+ 1

)
1

1− p
> 1
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as long as 1− 1
r−ℓ

, 1− 1
n−2r+ℓ+2

, 1− 1
ℓ+1

> (1−p)
1
4 , which is true as long as n is large enough

and logb n
2

< ℓ < r−K for some constant K depending only on lim infn p(n) > 0. Thus f(ℓ)

is increasing from logb n
2

to r −K. For all r −K ≤ ℓ ≤ r − 2, note

f(ℓ) ≥ 4

(n− r − 1)(r − 1)
br−K =

4(1− o(1))

bKn logb n
n2(1−o(1)) = ω(n5/6)

independent of ℓ (note lim sup b(n) < ∞). Furthermore as f(ℓ) is increasing between r−K
and logb n

2
, E{Zℓ | A} is upper bounded in that range by the endpoints E{Zr−K | A} and

E{Z(logb n)/2 | A}. For 1 ≤ k ≤ K,

E{Zr−k | A} = E{Zr−1 | A}
k∏

ℓ=2

E{Zr−ℓ | A}
E{Zr−ℓ+1 | A}

= E{Zr−1 | A}
k∏

ℓ=2

(f(r − ℓ))−1 = (o(n−5/6))k−1E{Zr−1 | A}.

For 2 ≤ k ≤ logb n
2

,

E{Zk | A} = E{Z2 | A}
k−1∏
ℓ=2

E{Zℓ+1 | A}
E{Zℓ | A}

= E{Z2 | A}
k−1∏
ℓ=2

f(ℓ) = (o(n−1/3))k−2E{Z2 | A}.

Thus

E{Zℓ | A} ≤


(o(n−1/3))ℓ−2E{Z2 | A}, 2 ≤ ℓ ≤ logb n

2
;

E{Zr−K | A}+ E{Z(logb n)/2 | A},
logb n

2
< ℓ < r −K;

((o(n−5/6))r−ℓ−1E{Zr−1 | A}, r −K ≤ ℓ ≤ r − 1.

Thus

E{Z | A} =
r−1∑
ℓ=2

E{Zℓ | A}

≤ E{Z2 | A}
(logb n)/2∑

ℓ=2

(o(n−1/3))ℓ−2 + E{Zr−1 | A}
K∑
k=1

(o(n−5/6))k−1

+

(
r −K − logb n

2

)
(E{Z2 | A}(o(n−1/3))(logb n)/2−2 + E{Zr−1 | A}(o(n−5/6))K−1)

≤ (E{Z2 | A}+ E{Zr−1 | A})(1 + o(1)).
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Finally,

E{Z2 | A} =

(
n− r

r − 2

)(
r

2

)
(1− p)(

r
2)−1 ≤ nr−2r2(1− p)−1n−2r(1−o(1)) = o(1)

and

E{Zr−1 | A} = (n− r)r(1− p)(
r
2)−(

r−1
2 ) = (n− r)r(1− p)r−1 = (n− r)rn−2(1−o(1)) = o(1)

so E{Z | A} = o(1).

Note that for the unsigned case, similar to what we did for Proposition 2.1.11, everything
would work by assuming p constant. The slightly more general case is useful in the signed
case, as the positive subgraph of G(n, p, q) is G(n, p(1− q)), and it would be hard to embed
G(n, p, q) as a subgraph of G(n, p, q′) for q′ > q, without resorting to non-constant p. This
relaxation also shows exactly what stops working when p → 0 or p → 1.

Recall from Proposition 2.1.11 that by manipulating the constant term in r, one can
make E ′(n, r) = ω(nγ) for any γ. Thus the same is true for the expected number of “almost
disjoint” independent sets of size r. Since the edge-exposure martingale defined by the
number of such sets has bounded increments and the right expectation, the martingale
method would apply here.

Theorem 4.1.2. Let 0 < p = p(n) < 1 be asymptotically bounded away from 0, 1 and
b = 1

1−p
. Let C constant be such that C = 2 logb(ec/2) where c is another constant such

that lim inf(1− 2 log c
log b

) > 1.5 and let

r = r(n) = 2 logb n− 2 logb logb n+ C.

Then, for any β = ω( 1
logn

), a.a.s. all but nβ vertices of G(n, p) can partitioned into

independent sets of size r(nβ).

Proof. By Proposition 2.1.11, E ′(n, r) = ω(nγ) for some γ > 1.5. Let {Yt}t≥0 be the
edge-exposure martingale defined by f which maps a graph G to the number of independent
sets of size r which intersect with no other independent set of size r at two vertices or more
in G. Let Zn denote the number of independent sets of size r in G(n, p). Clearly Zn ≥ YN

(N =
(
n
2

)
).
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Then f varies by at most 1 after switching an edge, so by Proposition 4.0.3 {Yt} has
increments bounded by 1. Furthermore by Lemma 4.1.1 E{Y0} = (1−o(1))E ′(n, r) = o(nγ),
so Lemma 4.0.4 holds with Zn counting the number of copies of independent sets of size r
and γ > 1.5, so Theorem 4.0.5 applies, meaning for any 1 > β = β(n) = ω( 1

logn
), a.a.s. all

but nβ vertices of G(n, p) can be covered by disjoint independent sets of size r(nβ).

Corollary 4.1.3 (Chromatic Number of G(n, p)). Let 0 < p = p(n) < 1 be asymptotically
bounded away from 0, 1 and let b = 1

1−p
. Then there exist C1, C2 both constants dependent

on lim sup b (equivalently lim sup p), such that a.a.s.

n

2 logb n− 2 logb logb n+ C1

≤ χ(G(n, p)) ≤ n

2 logb n− 2 logb logb n+ C2

.

Proof. First, by Proposition 2.1.11 and the remarks after, for C1 > lim sup(2 logb(e
√
b/2)),

a.a.s.
χ(G(n, p)) ≥ n

2 logb n− 2 logb logb n+ C1

.

Let C ′ constant be such that C ′ = 2 logb(ec/2) where c is another constant such that
lim inf(1− 2 log c

log b
) > 1.5. Then by Theorem 4.1.2, for β = logb n−1

logb n
(which is ω( 1

logn
)), a.a.s. all

but nβ vertices of G(n, p) can be partitioned into independent sets of size (assume n is
large enough that logb n

β > 0)

r(nβ) = 2 logb n
β − 2 logb logb n

β + C ′

=
2 logb n(logb n− 1)

logb n
− 2 logb

(
logb n(logb n− 1)

logb n

)
+ C ′

= 2 logb n− 2 logb(logb n− 1) + C ′ − 2

> 2 logb n− 2 logb logb n+ C ′ − 2.

In that case, by colouring each of those independent sets its own colour, and by colouring
the remaining nβ vertices in different colours, we can have a colouring of G(n, p) of at most

n− nβ

2 logb n− 2 logb logb n+ C ′ − 2
+ nβ ≤ n

2 logb n− 2 logb logb n+ C ′ − 3

for large enough n. Let C2 = C ′ − 3. Then a.a.s.

χ(G(n, p)) ≤ n

2 logb n− 2 logb logb n+ C2

.
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Notice that we could not have chosen a β constant, since that would have made r(nβ)
smaller than r(n) by a constant factor, as opposed to a constant difference.

4.2 The Signed Case

Let Yr denote the number of special independent pairs {H,S \H} in G(n, p, q) of size 2r,
such that, against any other special independent pair of size 2r {H ′, S ′ \H ′}, we have

|S ∩ S ′| ≤ 1

(note S is the union of the parts). In this case, again, an edge is contained in at most one
“almost disjoint” special independent pair, so removing or adding an edge affects at most
one such special independent pair.

It is worth noting that the unsigned case does not directly imply the signed case. Indeed
in the unsigned case we showed that there are relatively few independent sets of size
r ∼ 2 logb n which intersect each other at more than one vertex, so that is also true in G+.
Thus one can show we mostly have |H∩H ′|, |(S\H)∩H ′|, |H∩(S ′\H ′)|, |(S\H)∩(S ′\H ′)| ∈
{0, 1, r}. However, from this to |S ∩ S ′| ∈ {0, 1, 2r}, we are missing a number of cases. To
show EYr = (1− o(1))E(n, r), we shall formalize the parts of the unsigned case which carry
over, then prove that the intersection cases not covered by the unsigned proof are indeed
rare.

Lemma 4.2.1. Let 0 < p = p(n) < 1 be asymptotically bounded away from 0, 1, b = 1
1−p

,

and q = o(1). Let c = c(n) > 0 be such that log c is bounded and let

r = r(n) = 2 logb(ecn/(2 logb n)) ∼ 2 logb n.

Let q ≥ C/ log n for some C > 0 large dependent on the asymptotic bounds on p, log c. Let
Yr denote the number of special independent pairs {H,S \H} in G(n, p, q) of size 2r, such
that |S ∩ S ′| < 2 for any other {H ′, S ′ \H ′} special independent pair in G(n, p, q) of size
2r. Then EYr ∼ E(n, r).

Proof. We do a set-up analogous to the proof of Lemma 4.1.1. For convenience, we will call
special independent pairs of size 2r hit pairs. Given H,S \H ⊆ V (G), both of size r, with
H having a smaller first vertex than S \H, let AH,S denote the event that {H,S \H} is a
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hit pair. Let Z(H,S) denote the number of other hit pairs whose union shares two or more
vertices with S. Then Yr counts the number of hit pairs {H,S \H} for which Z(H,S) = 0.
In other words

EYr =
∑
H,S

P{AH,S}P{Z(H,S) = 0 | AH,S} ≥
∑
H,S

P{AH,S}(1− E{Z(H,S) | AH,S}).

Clearly E{Z(H,S) | AH,S} does not depend on H,S (by symmetry). Thus let A denote the
event that H = {1, . . . , r}, S \H = {r+1, . . . , 2r} is a hit pair and let Z denote the number
of other hit pairs whose union shares two or more vertices with {1, . . . , 2r}. Furthermore∑

H,S P{AH,S} = E(n, r) by definition. Then

EYr ≥ E(n, r)(1− E{Z | A}).

Thus it suffices to show that E{Z | A} = o(1). For every 0 ≤ i, j, k, ℓ ≤ r, let Zi,j,k,ℓ denote
the number of hit pairs {H ′, S ′ \H ′} ≠ {{1, . . . , r}, {r + 1, . . . , 2r}}, with H ′ having the
least first element, such that

|H ′ ∩ {1, . . . , r}| = i, |(S ′ \H ′) ∩ {1, . . . , r}| = j,

|H ′ ∩ {r + 1, . . . , 2r}| = k, |(S ′ \H ′) ∩ {r + 1, . . . , 2r}| = ℓ.

Since these are counts of independent sets intersecting in G+ the positive subgraph of
G(n, p, q), from the proof of the unsigned case Lemma 4.1.1 applied to G+ (which is
G(n, p(1− q))), we know that

∑
2≤i≤r−1E{Zi,j,k,ℓ | A} = o(1) and same for the sums over

j, k, ℓ. This means we only need to consider when each i, j, k, ℓ ∈ {0, 1, r}.

Thus we actually only have the case where one of i, k, ℓ is r (j cannot be r, and i, ℓ being
both r means {H ′, S ′ \H ′} = {{1, . . . , r}, {r + 1, . . . , 2r}}), and the case 0 ≤ i, j, k, ℓ ≤ 1.
Call Z̃ the sum over the first case and Z ′ the sum over the second.

In the first case, there are 2 choices for the set that is equal to {1, . . . , r} or {r+1, . . . , 2r}
(call this one H1), and fewer than

(
n
r

)
choices for the other set (call this H2). Note H2 has

at most one vertex in {1, . . . , 2r}. For a given {H1, H2} to be a hit pair, H2 must miss
(
r
2

)
positive edges and H1, H2 must miss at least r(r − 1) negative edges between them. These
sets of edges are disjoint and they are disjoint from the edges affected by A. Thus

E{Z̃ | A} < 2

(
n

r

)
(1− p(1− q))(

r
2)(1− pq)r(r−1)

= 2E{Number of independent sets in G+ of size r}(1− pq)r(r−1).

59



We know from Proposition 2.1.11 that E{Number of independent sets in G+ of size r} =
O(nα) for some constant α (dependent on the asymptotic bounds on p and c, but crucially
not on C). However

(1− pq)r(r−1) ≤ exp{−2 log n

log b
pqr(1− o(1))} = n−2(1−o(1))pqr/ log b

and 2pqr/ log b ≥ 4pC(1−o(1))/(log b)2 > α for large enough n, if C > α(lim sup log b)2/4p.
Thus E{Z̃ | A} = o(1).

In the second case, there are no more than 16 choices of i, j, k, ℓ. Given a choice of

i, j, k, ℓ, there are fewer than
(
n
r

)2
choices for H,S \H. For a given {H,S \H} to count,

each must miss
(
r
2

)
positive edges and they must miss at least (r − 1)2 negative edges

between them. Again these sets of edges are disjoint and unaffected by A. Thus

E{Z ′ | A} < 16

(
n

r

)2

(1− p(1− q))2(
r
2)(1− pq)(r−1)2

= 16(E{Number of independent sets in G+ of size r})2(1− pq)(r−1)2 .

Similar to the previous case, (E{Number of independent sets in G+ of size r})2 = O(n2α),
and

(1− pq)(r−1)2 ≤ n−2(1−o(1))pqr/ log b,

with 2pqr/ log b > 2α for n large enough, if C > 2α(lim sup log b)2/4p (which also satisfies
the previous bound on C). So E{Z ′ | A} = o(1).

All in all
E{Z | A} = E{Z̃ | A}+ E{Z ′ | A}+ o(1) = o(1).

Notice that compared to the unsigned case Lemma 4.1.1, our Lemma Lemma 4.2.1
introduced a restriction on q. Intuitively, having q = 0 and the fact that many independent
sets of size r in G+ ∼ G(n, p(1 − q)) are disjoint (which allowed our colouring in the
unsigned case) would mean that any pair of them can form a special independent pair of
size 2r, causing a lot of overlap.

Now, exactly the same as in the unsigned case, we have an edge-exposure martingale
with unit increments, with expectation polynomial in n, such that its N -th term (N =

(
n
2

)
)

lower bounds the number of special independent pairs of size r in G(n, p, q). The martingale
method applies in exactly the same way here.
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Theorem 4.2.2. Let 0 < p = p(n) < 1 be asymptotically bounded away from 0, 1, q = o(1),
and b = 1

1−p
. Let C constant be such that C = 2 logb(ec/2) where c is another constant such

that lim inf 2(1− 2 log c
log b

) > 1.5 and let

r = r(n) = 2 logb n− 2 logb logb n+ C.

Assume q ≥ C′

logn
for some constant C ′ large enough (dependent on C and on the asymptotic

bounds on p) so that Lemma 4.2.1 applies. Then, for any β = ω( 1
logn

) ≤ 1, a.a.s. all but nβ

vertices of G(n, p, q) can be partitioned into special independent pairs of size 2r(nβ).

Proof. By Proposition 3.1.3, due to our choice of C, E(n, r) = ω(nγ) for some γ > 1.5. Let
f be a function which maps a signed graph G to the number of special independent pairs
of size 2r which intersect with no other special independent pair of size 2r at two vertices
or more in G. For each n ≥ 1, let {Yt}t≥0 be the edge-exposure martingale defined by f on
G(n, p, q). Let Zn denote the number of special independent pairs of size 2r in G(n, p, q).
Clearly Zn ≥ YN (N =

(
n
2

)
).

Also, f varies by at most 1 after switching an edge, so by Proposition 4.0.3 {Yt} has
increments bounded by 1. Furthermore by Lemma 4.2.1 E{Y0} = (1− o(1))E(n, r) = o(nγ),
so Lemma 4.0.4 holds with Zn counting the number of copies of special independent pairs
of size 2r and γ > 1.5, so Theorem 4.0.5 applies, meaning for any 1 > β = β(n) = ω( 1

logn
),

a.a.s. all but nβ vertices of G(n, p, q) can be covered by disjoint special independent pairs
of size r(nβ).

Since the main work of the proof was done in Lemma 4.2.1, and in the martingale
method Lemma 4.0.4 and Theorem 4.0.5, the main underlying ideas are the same as the
proof for the unsigned version Theorem 4.1.2. The main difference lies in the restriction on
q, since our Lemma Lemma 4.2.1 does not apply to small q.

Note that by Corollary 4.1.3, the positive subgraph of G(n, p, q) has chromatic number
approximately

n

2 logb′ n− 2 logb′ logb′ n+ C
,

where b′ = 1
1−p(1−q)

. This chromatic number will serve as the lower bound for the signed

chromatic number of G(n, p, q), while all our results on its upper bound stem from the
expected number of special independent pairs Proposition 3.1.3, which uses b = 1

1−p
> b′.
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Due to that, as well as the issue of having to treat q by case, our concluding corollary will
have to be slightly weaker than the unsigned version.

Theorem 4.2.3 (Chromatic Number of G(n, p, q)). Let 0 < p = p(n) < 1 be asymptotically
bounded away from 0, 1, q = o(1), and b = 1

1−p
. Then there exist functions b1 = b1(n) and

b2 = b2(n), such that b1 ∼ b2 ∼ b, and a.a.s.

n

2 logb1 n
≤ χ(G(n, p, q)) ≤ n

2 logb2 n
.

Proof. First, by Proposition 2.2.6 and by Theorem 4.1.2, we know that for some C1

dependent on lim sup b (in fact C1 > lim sup(2 logb(e
√
b/2))), a.a.s.

χ(G(n, p, q)) ≥ χ(G(n, p(1− q))) ≥ n

2 logb′ n− 2 logb′ logb′ n+ C1

for b′ = 1
1−p(1−q)

, so the left inequality in the statement is true if we choose b1 ∼ b′ ∼ b such
that

2 log n

log b1
= 2 log n

(
1

log b′
− logb′ logb′ n

log n
+

C1

2 log n

)
.

For b2, let C ′ constant be such that C ′ = 2 logb(ec/2) where c is another constant such
that lim inf 2(1− 2 log c

log b
) > 1.5. For now, we first assume q > C′′

logn
where C ′′ large enough

(dependent on C ′ and on asymptotic bounds on p, so ultimately on asymptotic bounds on
p) is such that Theorem 4.2.2 applies. Then by Theorem 4.2.2, for β = logb n−1

logb n
(which is

ω( 1
logn

)), a.a.s. all but nβ vertices of G(n, p) can be partitioned into special independent

pairs of size 2r(nβ), where (assume n is large enough that logb n
β > 0)

r(nβ) = 2 logb n
β − 2 logb logb n

β + C ′

=
2(logb n)(logb n− 1)

logb n
− 2 logb

(
(logb n)(logb n− 1)

logb n

)
+ C ′

= 2 logb n− 2 logb(logb n− 1) + C ′ − 2

> 2 logb n− 2 logb logb n+ C ′ − 2.

In that case, by colouring each of those special independent pairs with two opposite colours,
and by colouring the remaining nβ vertices in colours of distinct absolute value, we can
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have a colouring of G(n, p, q) of at most

n− nβ

2 logb n− 2 logb logb n+ C ′ − 2
+ 2nβ ≤ n

2 logb n− 2 logb logb n+ C ′ − 3

for large enough n. Similar to b1, the right inequality in the statement is true if we choose
b2 ∼ b such that

1

log b2
=

1

log b
− logb logb n

log n
+

C ′ − 3

2 log n
.

Finally, we assume q < C′′

logn
. Note that G(n, p, q) can be embedded as a subgraph of

H ∼ G

(
n, p(1− q +

C ′′

log n
),

C ′′

log n

)
,

where G(n, p, q) has the same positive subgraph, but (possibly) fewer negative edges. Since
χ(G(n, p, q)) ≤ χ(H), we can use the same b2 obtained from applying the previous case to
H.

Note that this result is weaker than its unsigned counterpart Corollary 4.1.3. This is
because there is a mismatch between the log base of the best known lower bound, 1

1−p(1−q)

used by χ(G+), and the log base used by the a.a.s. largest special independent pairs in
G(n, p, q), 1

1−p
. Nonetheless, we still have that for all ϵ > 0, a.a.s.

n(1− ϵ)

logb n
< χ(G(n, p, q)) <

n(1 + ϵ)

logb n
,

or, a.a.s.

χ(G(n, p, q)) ∼ n

logb n
∼ χ(G(n, p)) ∼ χ(G(n, p(1− q))

for any p asymptotically bounded away from 0, 1, b = 1
1−p

, and q = o(1). In other words,

adding few negative edges or labelling few edges negative in a G(n, p) graph a.a.s. changes
its chromatic number by less than any constant factor.

It is worth noting that when q < 1
4p logb n

, by applying Proposition 3.2.1, we fall into the

χ(G(n, p, q)) = χ(G+) case, so we get back the stronger result from Corollary 4.1.3.
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Chapter 5

Conclusion

Let us first give a summary of the results. We showed that a.a.s. the signed chromatic
number of random signed graphs is asymptotically the same as its trivial lower bound,
namely the chromatic number of its positive subgraph, when there are few negative edges.

To prove this, we first defined a G(n, p, q) model of random signed graphs based on the
G(n, p) model of random graphs, and slightly modified from [17]. Knowing from [6] that

χ(G(n, p)) ∼ n

2 logb n
,

where p is constant and b = 1
1−p

, we showed that

χ(G(n, p, q)) ∼ n

2 logb n
,

where p is constant (actually, it suffices to be asymptotically bounded away from 0, 1),
b = 1

1−p
and q = o(1).

To prove our result, we defined a signed analogue to independent sets, termed special
independent pairs. We showed that we expect many such pairs of size asymptotically 2 logb n
on each half of the pair. Before proceeding further, we also proved that for q small enough
(less than 1

4p logb n
)), a.a.s. any optimal unsigned colouring of the positive subgraph also

works for the signed graph, by matching the colour classes in a perfect matching, where
the matched colour classes have no negative edges between them, and by relabelling the
matched colours into opposites.

At this point, we adapt the proof used by Bollobás [6] on G(n, p) to G(n, p, q). It would
suffice to prove that the probability that G(n, p, q) contains one such pair is so large, that

64



by union bound, a.a.s. any “large” (sub-1 power of n sized) subgraph of G(n, p, q) contains
such a special independent pair. Indeed, if that were true, then we can keep picking out
special independent pairs and colouring their halves in opposite colours, until there are nα

vertices left to be coloured individually, where 0 < α < 1.

To prove that that probability is indeed large, we use Azuma’s inequality [4] [14], which
would apply as long as we can phrase the number of such special independent pairs as the
value of some martingale with bounded increments. Simply looking at the edge-exposure
martingale for the number of pairs is not enough, since changing one edge can change
the expected number by a lot. Thus we look at the number of “almost” disjoint special
independent pairs (of the right size), whose conditional expected number indeed changes
by at most 1 when one edge is added or removed. We prove that this substitution works,
i.e. the number of such “almost” disjoint special independent sets is asymptotically the
same as without the “almost” disjoint condition, when q is not too small.

Finally, we apply the inequality and check that everything indeed works out. Compared
to the unsigned case, particular care was necessary in dealing with different ranges of q.

5.1 Future Work

There are a couple of avenues to improve our result. First, our starting point was the belief
that, for small q, since the expected number of large special independent pairs behaves the
same as that of independent sets, so should the signed chromatic number be similar to the
chromatic number. This would no longer be true for q away from 0. In that case, including
the case where q = 1

2
(the uniformly random signed graph), the signed chromatic number

of G(n, p, q) remains unexplored.

Second, we have proven Proposition 3.2.1 that for small enough q (q < 1
4p logb n

), the

signed chromatic number is unchanged before and after adding negative edges. However, it
is unknown whether this is still true for q ≫ 1

logn
. If the chromatic number is unchanged,

then there must exist some unsigned colouring such that the auxiliary graph admits a
perfect matching. However, recall that by 4.2.1, for slightly larger q (q > C

logn
for some

C constant), the special independent pairs are mostly disjoint, which means there should
be few options to match up independent sets. In addition, the probability that a specific
unsigned colouring admits a perfect matching in the auxiliary graph diminishes rapidly
without much increase in q. Therefore, we conjecture that 1

logn
is actually the threshold for

the chromatic number being unchanged after adding negative edges.
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Finally, there is a gap between the a.a.s. lower and upper bounds of χ(G(n, p, q)) when
Proposition 3.2.1 does not apply. The lower bound uses the log base 1

1−p(1−q)
while the

upper bound uses at least 1
1−p

. We believe the upper bound to be closer to the truth, since
1

1−p
is the base used by the size of the maximal special independent pairs, but there is

nothing that dictates that the signed colour classes must look like special independent pairs.
Currently, it is not known whether χ(G(n, p, q)) > χ(G(n, p(1− q))) for any range of q. If
the lower bound can be improved for larger q, then this will also be progress towards the
previous avenue of research.

5.1.1 Generalization to Voltage Graphs

Our result also has a natural avenue for generalization. Voltage graphs, first defined by
Gross in 1974 [12], generalize signed graphs so that edge labels are now oriented group
elements from an arbitrary group.

Definition 5.1.1. A voltage graph (also gain graph) G is a digraph (V,E) equipped with a
voltage

α : E → X,

where X is a group.

The only meaning of the edge orientations is to make the group labels directional.
Suppose (u, v) is labelled g. Then (v, u), despite not being an arc, is understood to be
labelled g−1. Signed graphs can be seen as voltage graphs where X = Z2, in which case all
elements are self-inverse so edge orientations are unnecessary. When the voltage X is a
finite group, we can readily extend signed colouring to voltage graphs.

Definition 5.1.2. LetG be a voltage graph whose voltage has order n. A (proper n-multiple)
voltage (vertex) colouring of G in nk colours is a map

c : V (G) → {(g, i) : g ∈ X, i ∈ {1, . . . , k}},

where g = g(v) is the colour voltage and i = i(v) is the colour value at v, such that for all
(u, v) ∈ E(G), if i(u) = i(v), then

g(u) ̸= α(u, v)g(v).

The voltage chromatic number of G is the minimal nk for which such a c exists.
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One can verify that this definition is consistent even when considering α(v, u):

g(u) ̸= α(u, v)g(v) ⇐⇒ α(v, u)g(u) = (α(u, v))−1g(u) ̸= g(v).

We can also extend vertex switching.

Definition 5.1.3. Let G be a voltage graph with finite voltage, v ∈ V (G) and x ∈ X. An
x-vertex switch at v is a voltage graph with the same vertex and arc sets as G, but the
label of all arcs incident to v are left-multiplied by x.

One can verify that given a voltage colouring of G, by left-multiplying the colour voltage
of v by x, we get a voltage colouring of the x-switched graph:

g(u) ̸= α(u, v)g(v) ⇐⇒ xg(u) ̸= xα(u, v)g(v).

Finally, in order to extend the Erdős-Rényi model to voltage graphs, it would be natural
to require that, for every g ∈ X, the subgraph consisting of arcs labelled g to be an Erdős-
Rényi random graph when viewed as an undirected graph. However, there are different
ways to actually orient the labels. For signed graphs, where orientations do not matter,
G(n, p, q) was the only sensible model, and we found out that a.a.s. the signed chromatic
number is asymptotically the same before and after adding negative edges. We conjecture
that the same is true for voltage graphs no matter the orientation. In other words, we
conjecture that, as long as the undirected graph consisting of g-labelled arcs follows G(n, pg)
for pg = o(1) if g ̸= 1 (1 being the identity) and p1 is asymptotically bounded away from
0, 1, the voltage chromatic number is a.a.s. asymptotically equal to χ(G(n, p1)).
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