
Laconic Evaluation of Branching
Programs from the Diffie-Hellman

Assumption

by

Alice Murphy

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Alice Murphy 2024

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

This thesis is based on the paper “Laconic Evaluation of Branching Programs from the
Diffie-Hellman Assumption” co-authored by Sanjam Garg, Mohammad Hajiabadi, Peihan
Miao, and Alice Murphy [GHMM24a]. The aforementioned paper appeared at the Inter-
national Association for Cryptologic Research (IACR) Public Key Cryptography (PKC)
conference in April 2024 [GHMM24b]. The copyright for [GHMM24b] is held by the IACR.
©IACR 2024, https://doi.org/10.1007/978-3-031-57725-3_11.

Murphy is the sole author of all differences between this work and [GHMM24a]. Au-
thorship is as follows.

• Murphy authored the abstract.

• Hajiabadi, Miao, and Murphy were the primary authors of Chapter 1: Introduction
and Chapter 2: Technical Overview.

• Chapter 3: Preliminaries consists of standard definitions. Adaptations and elabora-
tions of the definitions were authored by Murphy.

• Chapter 4: Semi-Honest Laconic 2PC with Branching Programs contains Construc-
tion 1 for BP-2PC and its security proof, which are built off of Construction 1 for
ℓPSI and its associated security proof from [ABD+21]. All differences were authored
by Murphy with guidance from Hajiabadi. The correctness proof for Construction 1
was authored by Murphy.

• Chapter 5: Applications was authored by Murphy.

iii

https://doi.org/10.1007/978-3-031-57725-3_11

Abstract

Secure two-party computation (2PC) enables two parties to compute a function f on
their joint inputs while keeping their inputs private. Laconic cryptography is a special
type of 2PC in which this is done with asymptotically optimal communication in only two
rounds of communication. The party who sends the first message is called the receiver and
the party who replies with the second message is called the sender. Laconic cryptography
considers the case of asymmetric input sizes, where the receiver’s input is much larger than
the sender’s input or vice versa. As such, the size of the messages sent cannot depend on
the size of the larger input. For example, if xR is the receiver’s input, xS is the sender’s
input, and |xR| ≫ |xS|, then the protocol’s communication cost cannot depend on |xR|,
but it may depend on |xS|.

Previous works have shown protocols can be built for laconic oblivious transfer (OT)
[Cho et al. CRYPTO 2017] and laconic private set intersection (PSI) [Alamati et al. TCC
2021] from the Diffie-Hellman assumption. Quach, Wee, and Wichs [FOCS 2018] give a
construction for laconic 2PC for general functionalities based on the Learning with Errors
(LWE) assumption. In this work, we bridge the gap by giving a laconic protocol for
the evaluation of branching programs (BPs) from the Diffie-Hellman assumption. In this
setting, the receiver holds a large branching program BP and the sender holds a short
input x. Our protocol allows the receiver to learn x if and only if BP(x) = 1, and nothing
more. The communication cost only grows with the size of x and the depth of BP, and
does not further depend on the size of BP. Our construction can be used to realize PSI
and private set union (PSU) functionalities and can handle unbalanced BPs and BPs with
wildcards.

iv

Acknowledgements

I would like to thank everyone who made this thesis possible, especially my parents.

v

Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgements v

List of Figures viii

List of Tables x

List of Abbreviations xi

1 Introduction 1

1.1 Our Results . 6

2 Technical Overview 8

3 Preliminaries 14

3.1 Hash Encryption + Garbled Circuits . 16

vi

4 Semi-Honest Laconic 2PC with Branching Programs 20

4.1 The BP-2PC Construction . 21

4.2 Proof of Lemma 3: correctness of BP-2PC 25

4.3 Proof of Theorem 1: security of BP-2PC 30

4.3.1 Proof of Lemma 4 . 33

4.3.2 Proof of Lemma 5 . 38

5 Applications 41

5.1 Private Set Intersection (PSI) . 42

5.2 Private Set Union (PSU) . 44

5.3 Wildcards . 45

6 Conclusion 47

References 49

APPENDICES 54

A Supplementary Figures 55

vii

List of Figures

1.1 Bit-checking branching program describing a set. 4

2.1 Circuits F and V for examples. 10

2.2 Depth 2 BP example. 11

3.1 Interior node evaluation function Evalint and BP evaluation function
BP. 16

4.1 Circuits F and V for construction 1. Circuits based on those in
Table 1 of [ABD+21]. 23

4.2 Procedure DecPath for construction 1. See Fig. A.3 for an illustra-
tion of DecPath. Based on those in Table 1 of [ABD+21]. 24

4.3 Hyb0 and Hyb1 for the proof of Theorem 1. 33

4.4 Method of generating circuits in Hyb1.p depending on the value of p−1

relative to the value of ℓ. Use of h
(w+1)
1 in HEnc on the LHS is from the

assumption that pth has the leftmost leaf as an endpoint. ′′ is the ditto

symbol. 34

4.5 Hyb1.p for 0 ≤ p ≤ dm. The last p+1 circuits in Hyb1.p are generated
honestly and the remainder are simulated. See Lemma 4. 35

5.1 Procedure for constructing a BP from a set of m λ-bit strings. See
Construction 2. Based on a description in [CGH+21]. 43

5.2 Procedure for constructing a branching program from a singleton
set containing a λ-bit string with wildcards. See Construction 2
and Section 5.3. 46

viii

6.1 Three branching programs with the same functionality. 48

A.1 Example of the node labelling conventions used throughout the
paper. 55

A.2 The hashing procedure notation demonstrated on the Figure A.1
BP. 56

A.3 Illustration of the progression of DecPath given in Figure 4.2, as-
suming the input path has endpoint the leftmost leaf and has value
1λ. 57

ix

List of Tables

1.1 Summary of 2PC constructions for different functionalities and relative input
sizes. 2

x

List of Abbreviations

2PC two-party computation. 1, 3

BP branching program. 3–5, 15

CDH computational Diffie-Hellman. 3, 4, 6, 9, 12, 14

CDS conditional disclosure of secrets. 12

DCR decisional composite residuosity. 3

DDH decisional Diffie-Hellman. 3

FHE fully homomorphic encryption. 3

HE hash encryption. 8

LWE learning with errors. 3, 4, 6, 9, 12

MPC multi-party computation. 1

OT oblivious transfer. 2, 3, 5

PPT probabilistic polynomial time. 14

PSI private set intersection. 1, 4, 5, 44

PSU private set union. 7, 44

QR quadratic residuosity. 3

xi

Chapter 1

Introduction

Secure two-party computation (2PC) allows two parties, each holding a private input, to
jointly compute the output of a function while hiding all other information about their
inputs. This is a special case of secure multi-party computation (MPC) [Yao86, GMW87].

A famous example of 2PC is Yao’s Millionaires’ Problem [Yao82] in which millionaires
Alice and Bob wish to learn who has more money, but neither wishes to divulge how much
money they have. In this case, the function f they wish to jointly compute is the truth
value of xa > xb, where xa is Alice’s wealth and xb is Bob’s wealth. The output of f(xa, xb)
is a single bit: 1 if Alice is richer; 0 otherwise. The computation of this bit must not
reveal any additional information about xb to Alice, nor any additional information about
xa to Bob. One type of 2PC we consider is private set intersection (PSI). In this setting,
Alice and Bob each hold a set of elements and wish to securely, and efficiently, learn the
intersection of their sets. Then, f(A,B) = A∩B, where A and B are Alice and Bob’s sets
of elements, respectively.

At a minimum, such a protocol requires two rounds of communication. Alice sends a
message to Bob and Bob sends a message in reply. This information should allow Alice to
learn the output of f(A,B). For correctness, Alice’s message must depend on A and Bob’s
message must depend on B. Security requires that these messages hide their dependent
value. Minimizing the number of rounds to two is advantageous because it reduces the time
parties must spend online waiting for their ‘turns’. Of course, generally, for efficiency, we
also want to minimize the message sizes and the computational costs. However, depending
on the setting, a protocol might minimize the communication and computation for one
party, while letting the other bear the brunt of the costs. Consider the following PSI
example.

1

[ABD+21] coined the term “self-detecting encryption” for a scheme that can determine
if the encryption payload is in an “illegal” set, while maintaining security if the plaintext is
legal. In this setup, a third party will make publicly available the (possibly large) database
of hashes of the illegal messages. Applications for this detection system include firewalls to
block access to certain websites and cloud storage systems to detect if known illegal content
(e.g. abuse material) has been uploaded. In this setup, the firewall or cloud storage system
plays the role of Alice with a large input and the user trying to access a website or upload
content to the cloud plays the role of Bob with a much smaller input.

Setup Variants. There are variations of the problem setup described above which can
have a significant impact on how the problem is solved. Table 1.1, which is described below,
summarizes some of these differences. In the two-round setting, the party who sends the
first message learns the output of the joint computation. This is often called the receiver
party, and the other is called the sender.

Table 1.1: Summary of 2PC constructions for different functionalities and relative input
sizes.

Inputs Functionality Assumptions
Total communi-

cation cost
Works

A,B General f
Garbled circuits

+ OT
At least |A|+ |B|

|A| ≪ |B| General f LWE O(|f(A,B)|+ |A|) [GSW13]

The BP B
DCR, DDH,
QR, or LWE

O(BP depth) [IP07]

|A| ≫ |B|

General f LWE O(|f(A,B)|+ |B|) [QWW18]
Laconic OT DDH, CDH, or QR O(|OT output|) [CDG+17]

Laconic PSI
CDH or LWE O(|B| log |A|) [ABD+21]

Pairings O(|B|) [ALOS22]
Bit-checking BP A CDH or LWE O(|B|,BP depth) This work

As shown in the first row of Table 1.1, garbled circuits [Yao86] together with oblivious
transfer (OT) [Rab05, Rab81] enables 2PC for general functionalities f with two rounds of
communication—one message from the receiver to the sender and another message from
the sender back to the receiver. This approach achieves the optimal round complexity;
nevertheless, it requires the communication complexity to grow with the size of f . In
particular, if we represent f as a Boolean circuit, then the communication grows with the
number of gates in the circuit, which grows at least with the size of the inputs A and B.

2

For unbalanced input lengths (i.e., |A| ≫ |B| or |A| ≪ |B|), is it possible to make the
communication only grow with the shorter input and independent of the longer input?

Long Sender Input. When the sender has a long input, i.e. |A| ≪ |B|, we can use fully
homomorphic encryption (FHE) [Gen09] to achieve communication that only grows with
the receiver’s input length |A| plus the function output length. This technique works for any
function but can only be based on variants of the learning with errors (LWE) assumption
[GSW13]. For simpler functions that can be represented by a branching program (BP), in
particular, if the sender holds a private large branching program BP and the receiver holds
a private short input A, the work of Ishai and Paskin [IP07] illustrates how to construct 2PC
forBP (A) where the communication only grows with |A| and the depth ofBP , and does not
further depend on the size of BP . Their construction is generic from a primitive called rate-
1 OT, which can be built based on a variety of assumptions such as decisional composite
residuosity (DCR), decisional Diffie-Hellman (DDH), quadratic residuosity (QR), and LWE
with varying efficiency parameters [IP07, DGI+19, GHO20, CGH+21]. In this setting,
there are works in secure branching program and decision tree evaluation for applications
in machine learning and medicine [BPSW07, BFK+09, KNL+19, CDPP22]. However, our
results concern the dual setting (described below), in which the receiver has the longer
input and learns the output in only two rounds of communication.

Long Receiver Input. When the receiver has a long input, i.e. |A| ≫ |B|, a recent
line of work on laconic cryptography [CDG+17, QWW18, DGGM19, ABD+21, ALOS22]
focuses on realizing secure 2PC with asymptotically-optimal communication in two rounds.
In particular, the receiver has a large input and the size of her outgoing message only
depends on the security parameter and not her input size. The second message (sent by
the sender) as well as the sender’s computation may grow with the size of the sender’s
input, but should be independent of the receiver’s input size.

In this dual setting, the work of Quach, Wee, and Wichs [QWW18] shows how to realize
laconic 2PC for general functionalities using LWE. Regarding laconic 2PC for simpler
functions from assumptions other than LWE, much less is known compared to the setting
of long sender inputs.

Cho et al. [CDG+17] introduced the notion of laconic oblivious transfer (laconic OT),
where the receiver holds a large input D ∈ {0, 1}n, the sender holds an input (L ∈
[n],m0,m1), and a two-round protocol allows the receiver to learn (L,mD[L]) and noth-
ing more. The communication complexity as well as the sender’s computation only grow
with the security parameter and is independent of the size of D. Besides LWE [QWW18],
laconic OT can be built from DDH, computational Diffie-Hellman (CDH), or QR assump-

3

tions [CDG+17, DG17].1 Recent work [ABD+21, ALOS22] extends the functionality to
laconic private set intersection (laconic PSI), where the sender and receiver each hold a
private set of elements B and A respectively (|A| ≫ |B|), and the two-round protocol al-
lows the receiver to learn the set intersection A∩B and nothing more. The communication
complexity and the sender’s computational complexity are both independent of the larger
set |A|. Laconic PSI can be built from CDH, LWE [ABD+21], or pairings [ALOS22].

BPs. In this work, we consider laconic 2PC for functionalities represented by branching
programs. Consider 2PC where the receiver’s input is a branching program and the sender
holds a set as input. The receiver’s branching program is a directed binary tree with
each internal node encoding a bit index and each leaf encoding either 1 for “accept” or 0
for “reject”. Edges from a parent node to a left (respectively right) child are labelled 0
(resp. 1). The BP can be evaluated on bit string inputs starting at the root. The value of
an input string at the index encoded in the root determines whether the evaluation path
proceeds to the left (bit value 0) or right (bit value 1). At the next node, the same bit-
checking evaluation is done with respect to the encoded index. In this way, the input string
induces a root-to-leaf path down the tree. If the terminal leaf encodes 1, the input string
is in the receiver’s set; otherwise, it is not in the receiver’s set. The branching program
may be unbalanced, with root-to-leaf paths of varying lengths.

Figure 1.1: Bit-checking branching program describing a set.

For an example, consider the unbalanced BP in Figure 1.1. This BP can be evaluated on
inputs in {0, 1}4. To illustrate the evaluation, suppose we compute BP (x) with x′ = 0010.
The root node encodes index 1. Since x′[1] = 0, we travel to the left child, which encodes
index 2. Since x′[2] = 0, we travel again to the left child, which encodes index 3. Since
x′[3] = 1, we travel to the right child, which is a leaf node encoding 1. The evaluation then
outputs 1, which indicates “accept”.

1Importantly, in laconic OT, the receiver’s second-phase computation time should have at most a
polylog dependence on |D|. This can be achieved in the laconic OT setting because the index i is known
to the receiver. In the other settings, such as laconic PSI, this cannot be realized (without pre-processing)
because not probing a particular database entry leaks information about the sender’s input.

4

PSI with a BP. Suppose the receiver holds a branching program, BP , with a polynomial
number of root-to-leaf paths that represents a potentially large set of elements, A. An
element x is in A if BP (x) = 1 and not in A if BP (x) = 0. The BP is evaluated on input
x by following the path induced by x in the BP to a leaf node, then outputting the bit
encoded in the leaf. The receiver wants to send a succinct message to an untrusted sender
party so that the sender can reply with another succinct message that allows the receiver
to learn A ∩ B, where B is a small set held by the sender. For security, the receiver must
not be able to learn anything about B beyond the intersection and the sender must not be
able to learn anything about A.

Laconic OT with a BP. Suppose the receiver holds a potentially large database, D ∈
{0, 1}n and the sender has input (L,m0,m1), where L ∈ [n] represents an index of D.
The goal of the two-message protocol is for the receiver to learn (L,mD[L]), and nothing
else. We will achieve this using laconic PSI (which can be achieved using laconic BPs).
Suppose the receiver builds the set A = {iDi0, iDi1 | i ∈ [n]}, where Di is the i-th element
of D, and the sender builds the set B = {L0m0, L1m1}. As a first attempt, they run the
laconic PSI protocol using BPs as described above. The intersection of these sets will be
A ∩B = {LDL0, LDL1} ∩ {L0m0, L1m1}, which in turn will be

A ∩B =

{L00, L01} ∩ {L0m0, L1m1} if DL = 0. =

{
L00 if m0 = 0

L01 if m0 = 1

{L10, L11} ∩ {L0m0, L1m1} if DL = 1. =

{
L10 if m1 = 0

L11 if m1 = 1

.

From this, the receiver can take the third bit of the intersection output to be mD[L],
achieving the desired output of laconic OT. But this does not directly translate to our
BP protocol because the sender’s set B has two elements. Our protocol needs to be run
once per element of |B|, so running the protocol twice for |B| = 2 would no longer satisfy
the requirements for laconic communication. Since we only need to do one additional
intersection computation, this can be accommodated by allowing the sender’s response
message to be twice as large. One part of the message contains the information to find
the intersection with L0m0 and the other part of the message contains the information to
find the intersection with L1m1. As a result, the receiver’s computational costs in the next
step are doubled. Although inefficient, this does show that laconic OT can be realised with
laconic BPs.

Two-party computation for BPs can be used to realize 2PC for PSI. Both laconic OT
and laconic PSI can be viewed as special cases of a branching program. Recall that in the

5

setting of long sender input, where a sender has a large branching program, we have generic
constructions from rate-1 OT which can be built from various assumptions. However, in
the dual setting of long receiver input, we no longer have such a generic construction.
Laconic OT seems to be a counterpart building block in the dual setting, but it does not
give us laconic branching programs. Given the gap between the two settings, we ask the
following question:

Can we achieve laconic branching programs from assumptions other than LWE?

This diversifies the set of assumptions from which laconic MPC can be realized. It also in-
creases our understanding of how far each assumption allows us to expand the functionality,
which helps in gaining insights into the theoretical limits of the assumptions themselves.

1.1 Our Results

In this work, we answer the above question in the affirmative. In the setting where the
receiver holds a private large branching program, BP, and the sender holds a private short
input x, we construct a two-round 2PC protocol allowing the receiver to learn x if and
only if BP(x) = 1, and nothing more. The communication only grows with |x| and the
depth of BP, and does not further depend on the size of BP. Furthermore, the sender’s
computation also only grows with |x| and the depth of BP. Our construction is based on
anonymous hash encryption schemes [BLSV18], which can in turn be based on CDH or
LWE [DG17, BLSV18].

Sender Security. We achieve what we call weak sender security which says if BP(x) = 0,
then no information about x is leaked; else, there are no privacy guarantees for x. A
stronger security requirement would be that in the latter case, the receiver should learn
only BP(x), and no other information about x. Unfortunately, realizing strong sender
security is too difficult in light of known barriers, because it generically implies a notion
called private laconic OT [CDG+17, DGI+19]. Private laconic OT is laconic OT in which
the index i chosen by the sender is also kept hidden from the receiver. The only existing
construction of private laconic OT with polylogarithmic communication uses techniques
from laconic secure function evaluation and is based on LWE [QWW18]. In particular, it
is not known if private laconic OT can be realized using Diffie-Hellman assumptions.

Strong sender security allows one to achieve laconic PSI cardinality, a generalization
of laconic PSI. In the PSI cardinality problem, the receiver learns only the size of the

6

set intersection and nothing about the intersection set itself. Strong sender security for a
receiver with a large set S and a sender with a single element x would allow the receiver to
learn whether or not x ∈ S, without learning anything extra about x. This immediately
implies laconic PSI cardinality by having the sender send a second-round protocol message
for each element in its set. We can get laconic PSI as an application of our results (and the
other applications discussed below), but our results do not allow us to realize laconic PSI
cardinality. Laconic PSI cardinality generically implies private laconic OT, establishing a
barrier. The same barriers prevented [DKL+23] from building laconic PSI cardinality.

Applications. Our laconic branching program construction directly implies laconic OT
and laconic PSI, as their functionalities can be represented as branching programs. More-
over, we can capture other functionalities not considered by previous work, such as private
set union (PSU). A branching program for PSU can be obtained by making local changes
to a branching program for PSI. (See Section 5.) This demonstrates the versatility of
our approach, giving a unifying construction for all these functionalities. In contrast, the
accumulator-based PSI constructions in [ABD+21, ALOS22, DKL+23] are crucially tied to
the PSI setting, and do not seem to extend to the PSU setting. This is because the sender’s
message to the receiver only provides enough information to indicate which element (if any)
in the receiver’s set is also held by the sender. The receiver can not reconstruct the inter-
section element using the sender’s message. On the other hand in the PSU setting, this is
exactly what the receiver needs to do. If the sender’s element is not in the receiver’s set,
the receiver needs to be able to recover the sender’s element from the message.

Our techniques can be used in unbalanced PSI where the receiver holds a large set that
can be represented as a branching program. For instance, a recent work by Garimella et
al. [GRS22] introduced the notion of structure-aware PSI where one party’s (potentially
large) set Y is publicly known to have a certain structure. As long as the publicly known
structure can be represented as a branching program, our techniques can be used to achieve
a two-round PSI protocol where the communication only grows with the size of the smaller
set |X| and the depth of the branching program, and does not further depend on |Y |.

7

Chapter 2

Technical Overview

Our construction makes crucial use of the combination of garbled circuits [Yao86] with
hash encryption (HE) [DG17, BLSV18]. Here, we provide a high-level overview of these
tools. Following that, illustrations of our protocol demonstrate how they are used together.

In a garbled circuit scheme, the garbling of a circuit C produces the garbling C̃ and a
set of input wire label pairs {lbi,b}i∈[n],b∈{0,1}, where n is the number of input wires for C.

These outputs allow the computation of Eval(C̃, {lbi,b}i∈[n],x[i]), which produces the output
y = C(x). Let us consider what this means. Suppose, for example, the circuit C took
inputs of length 4 bits. The set of garbled labels {lbi,b}i∈[4],b∈{0,1} can then be written as:

{lbi,b}i∈[4],b∈{0,1} :=

{
lb1,0 lb2,0 lb3,0 lb4,0

lb1,1 lb2,1 lb3,1 lb4,1

}
.

Each column of this label matrix represents an input wire, the pink row represents labels
for a wire value of 0, and the green row represents labels for a wire value of 1. Consider
the following evaluations of C̃:

Eval
(
C̃,

{
lb1,0 lb2,0 lb3,0 lb4,0

})
= C(0000)

Eval
(
C̃,

{
lb1,0 lb2,1 lb3,0 lb4,1

})
= C(0101) .

In the first example, evaluation on four 0 labels results in the value C(0000). One can obtain
the value C(x) by evaluating C̃ with the garbled labels associated with the bit values of x.

When used in context, a party will, of course, not be able to evaluate C̃ so freely. Any

8

party wishing to evaluate C̃ must, crucially, only have access to one label per wire. In
other words, for all wires i ∈ [n], no party can hold both lbi,0 and lbi,1. Security states that
the garbled circuit together with the labels associated with some input x provides no more
information than a copy of the circuit C and the output y = C(x). Note that security is
destroyed if any party other than the garbler holds both lbi,0 and lbi,1 for any wire i ∈ [n].

Hash encryption (HE), called batch encryption in [BLSV18], is a relaxation of Chameleon
Encryption from [DG17]. The main difference between hash and chameleon encryption is
that an HE scheme does not have a trapdoor algorithm for finding hash collisions. An HE
scheme, parameterized by n = n(λ), where λ is the security parameter, consists of a hash
function Hash(·) : {0, 1}n → {0, 1}λ and associated HEnc and HDec functions.1 One can
encrypt n pairs of plaintexts m := {mi,b} (for i ∈ [n] and b ∈ {0, 1}) with respect to a hash
image h := Hash(z) to get cth $←HEnc(h,m). The ciphertext cth is such that given the
hash pre-image z, one may recover half of the encrypted messages, in particular, the half
associated with the bits of z: {m1,z1 , . . . ,mn,zn}. Moreover, semantic security is maintained
(even in the presence of z) for the other half of the encrypted plaintexts: {mi,1−zi}i∈[n]. In
other words, 2n messages are encrypted within cth, and z can only decrypt n plaintexts,
leaving the remaining securely encrypted. Hash encryption can be constructed from the
CDH or LWE assumptions [DG17, BLSV18].

[BLSV18] introduces anonymous2 variants of these tools. In an anonymous garbled cir-
cuit scheme, the simulation algorithm has an additional property. If y = C(x) is uniformly
random, then the output of Sim(C,C(x)) is also uniformly random. In an anonymous hash
encryption scheme, the ciphertext encrypting a uniformly random message is itself uni-
formly random. Anonymous garbled circuits and anonymous hash encryption can be used
together to produce a chain of random circuit outputs.

Next, we provide two examples to illustrate our protocol for 2PC in which the receiver
holds a BP and the sender holds a single element.

Depth 1 example. Consider a simple example where the receiver R has a depth-one
BP on bits (see Def. 3 for branching programs) where the root node encodes index i∗ ∈ [n]
(for n ∈ N) and its left child encodes accept (b0 := accept) and its right child encodes
reject (b1 := reject). This BP evaluates an input x by checking the bit value at index i∗.
If x[i∗] = 0, then the value of the left child is output: b0 = accept. If x[i∗] = 1, then the
value of the right child is output: b1 = reject. To start, suppose R only wants to learn if

1Hash and HEnc also take as input public parameters pp, which are omitted from this high-level dis-
cussion.

2called blind in [BLSV18].

9

BP(x) = 1, where x is the sender’s input. The receiver hashes h := Hash(pp, (i∗, b0, b1)),
padding the input if necessary, and sends h to the sender, S. S has a circuit F[x], with
their input x hardwired, such that on input (j, q0, q1), F[x] outputs qx[j]. See Fig. 2.1

for circuit F. S garbles F[x] to get a garbled circuit F̃ and corresponding labels {lbi,b}.
S uses the hash value, h, from R to compute cth $←HEnc(pp, h, {lbi,b}). Finally, S sends

(F̃, cth) to R. The receiver uses her hash pre-image value, z := (i∗, accept, reject), to
recover {lbi,z[i]}: {lbi,z[i]} ← HDec(z, cth). This allows her to learn F[x](i∗, accept, reject)

from the garbled circuit by computing Eval(F̃, {lbi,z[i]}). This value is output, indicating
either accept (BP(x) = 1) or reject (BP(x) = 0).

Circuit F[x](j, q0, q1):

Hardwired: Sender input x.

Operation:

If x[j] = 0 then return q0

If x[j] = 1 then return q1

Circuit V[x, {lbi,b}](h′0, h′1, u):
Hardwired: Sender input x and set of label pairs {lbi,b}.
Operation:

If x[u] = 0 then return cth $←HEnc(pp, h′0, {lbi,b})
If x[u] = 1 then return cth $←HEnc(pp, h′1, {lbi,b})

Figure 2.1: Circuits F and V for examples.

Beyond depth 1. Next, consider the BP of depth 2 in Fig. 2.2 held by the receiver,
R. Each internal node encodes an index: root, left, right ∈ [n]. The four leaves have
values with variables (b00, b01, b10, b11). For i, j ∈ {0, 1}, bij ∈ {accept, reject}. Suppose
x[root] = 0, where x is the sender’s input, so the root-leaf path induced by BP(x) first
goes left. If the sender, S, somehow knows the hash value h0 := Hash(pp, (left, b00, b01)),
he can, as above, send a garbled circuit for F[x] and an HE ciphertext with respect to
h0 of the underlying labels, allowing R to evaluate F[x](left, b00, b01). But S does not
know the value of h0 nor whether the first step in the path is left or right (because the
BP is hidden from S). Moreover, R cannot send both h0 := Hash(pp, (left, b00, b01)) and
h1 := Hash(pp, (right, b10, b11)). The first reason is that there would be a size blow-up since
the communication cost would grow with the size, and not the depth, of the BP. Secondly,
R would learn more information than necessary. Since S does not know a priori whether
the induced path travels left or right on the BP, he has to encrypt the labels under both
h0 and h1. But encrypting the labels {lbi,b} under both h0 and h1 allows the receiver to
recover two labels for an index on which (left, b00, b01) and (right, b10, b11) differ, destroying
garbled-circuit security.

Fixing size blow-up via deferred encryption. We fix the above issue via deferred
encryption techniques [DG17, BLSV18, GHMR18, ABD+21], allowing the sender to defer

10

root

left

b00 b01

right

b10 b11

0

0 1

1

0 1

Figure 2.2: Depth 2 BP example.

the HE encryptions of {lbi,b} labels to the receiver herself at decryption time! To enable this
technique, the receiver further hashes (h0, h1) such that during decryption, the receiver,
through the evaluation of a garbled circuit, will obtain an HE encryption of {lbi,b} with
respect to hx[root], where {lbi,b} and (h0, h1) are as above. In other words, the receiver
obtains HEnc(pp, hx[root], {lbi,b}). To do this, we have to explain how the receiver further
hashes h0 and h1, and how she can later perform deferred encryption. First, the receiver
R computes the hash value hr := Hash(pp, (h0, h1, root)), and sends hr to S. Next the

sender S, with input x, garbles F[x] (as in Fig. 2.1) to get (F̃, {lbi,b}) as above. Then,
he forms a circuit V[x, {lbi,b}] with x and {lbi,b} hardwired, which on input (h′0, h

′
1, u)

outputs HEnc(h′x[u], {lbi,b}). See Fig. 2.1 for circuit V. The sender garbles V[x, {lbi,b}] to
get (Ṽ, {lb′i,b}). If R is given Ṽ and the labels {lb′i,z′[i]}, where z′ := (h0, h1, root), she can

evaluate Ṽ on these labels, which will in turn release an HE encryption of labels {lbi,b}
under hx[root], as desired. To ensure R only gets the {lb′i,z′[i]} labels, S encrypts the {lb′i,b}
labels under hr, and sends the resulting HE ciphertext cth′, as well as F̃ and Ṽ to R. From
cth′ and z′ := (h0, h1, root), R can only recover the labels {lb′i,z′[i]}, as desired.

Receiver decryption. The receiver will evaluate Ṽ on the decrypted {lb′i,z′[i]} labels,
releasing cth: an HE encryption under hx[root] of the label pairs {lbi,b}. The receiver does
not know whether cth is encrypted under h0 or h1 (since she does not know the value
x[root]), so she tries to decrypt with respect to the pre-images of both hash values and
checks which one (if any) is valid. However, this results in the following security issue: an
HE scheme is not guaranteed to hide the underlying hash value with respect to which an
HE ciphertext was made. For example, consider a semantically secure HE scheme where
HEnc(pp, h, {mi,b}) appends h to the ciphertext. Employing such an HE scheme in the
above construction signals to the receiver if cth′ was encrypted under h0 or h1, which
reveals the bit value of x[root]. This breaks sender security when BP(x) = 0. Moreover,

11

even if the HE encryption scheme is anonymous in the sense of hiding h, decrypting an
hb -formed HE ciphertext under the pre-image of h1−b may result in ⊥, or in junk labels
that do not work on F̃, which again causes the breaking of sender security. To resolve this
issue, we use the same technique as in [ABD+21] of using anonymous hash encryption with
anonymous garbled circuits.

Signalling the correct output of F. In the above examples, F[x] outputs either
accept or reject, indicating if BP(x) equals 1 or 0, respectively. But in the desired func-
tionality, F[x] outputs x if BP(x) = 1. We cannot simply modify F[x] to output x if

qx[j] = accept since in that case if the receiver evaluates F̃ on junk labels she will not be
able to tell the difference between the junk output and x. Similar to [ABD+21], we address
this problem by having S include a signal value in their message to R and hardcoded in the
circuits. Then we can modify F[x] to output x and the signal value. The receiver compares
this output signal value to the true value contained in the sender’s message. If they are
equal, R knows that the output x is equal to the sender’s input x.

Handling unbalanced branching programs. The above depth two discussion can
be naturally extended to the balanced BP setting, wherein we have a full binary tree of
depth d. When the BP is unbalanced, like our BPs for PSI and PSU, the above approach
fails because the sender does not know a priori which branches terminate early. We solve
this issue via the following technique. In the above examples, the receiver’s evaluation
of a path terminates once the maximum depth of the BP is reached. Internal nodes are
evaluated using the V circuit and leaf nodes are evaluated using the F circuit. We modify
V to detect from its inputs if the current path has ended before the maximum depth is
reached, and if so, it halts and outputs the appropriate values. In halting mode, the circuit
V will release its hardwired input x, assuming the halt is an accept. Executing the above
blueprint requires striking a delicate balance to have both correctness and security.

Comparison with [DGGM19]. The work of Döttling, Garg, Goyal, and Malavolta
[DGGM19] builds laconic conditional disclosure of secrets (CDS) in which a sender S(x,m)
holding an NP instance x and a messagem, and a receiver holding x and a potential witness
w for x. If R(x,w) = 1, where R is the corresponding relation R, the receiver learns m;
otherwise, the receiver learns no information about m. They show how to build two-round
laconic CDS protocols with polylogarithmic communication and polylogarithmic sender’s
computation from CDH or LWE.

Note that the CDS setting is incomparable to ours. The closest resemblance is to think
of the BP input x as the NP instance, and of the BP as the NP witness w—but then under

12

CDS the input x is not kept hidden from the receiver. In particular, it is not even clear
whether laconic CDS implies laconic PSI.

Comparison with [ABD+21]. At a high level, the garbled circuit-based laconic PSI
construction of [ABD+21] is an ad hoc and specific instantiation of our general method-
ology. In particular, for a receiver with m = 2k elements (for k := polylog(λ)), the con-
struction of [ABD+21] builds a full binary tree of depth k, with the m elements stored in
the leaves, Merkle hashed up the tree in a specific way. Namely, the pre-image of each
node’s hash value is comprised of its two children’s hashes as well as some additional en-
coded information about its sub-tree, enabling an evaluator, with an input x, to make
a deterministic left-or-right downward choice at each intermediate node. This is a very
specific BP instantiation of PSI, where the intermediate BP nodes, instead of running in-
dex predicates (e.g., travelling left or right if the i-th bit is 0 or 1), they run full-input
predicates Φ : x 7→ {0, 1}, where Φ is defined based on the left sub-tree of the node. Our
approach, on the other hand, handles branching programs for index predicates, and we
subsume the results of [ABD+21] as a special case. In particular, we show how to design
simple index-predicate BPs for PSI, PSU, and wildcard matching, the latter two problems
are not achieved by [ABD+21].

In summary, our construction generalizes and simplifies the approach of [ABD+21], get-
ting much more mileage out of the garbled-circuit based approach. For example, [ABD+21]
builds a secure protocol for a specific PSI-based BP which is in fact a decision tree: namely,
the in-degree of all internal nodes is one. On the other hand, we generalize this concept
to handle all decision trees and even the broader class of branching programs, in which
the in-degree of intermediate nodes can be greater than one. Moreover, we introduce some
new techniques (e.g., for handling unbalanced BPs) that may be of independent interest.

13

Chapter 3

Preliminaries

The acronym PPT denotes “probabilistic polynomial time”. Throughout this work, λ
denotes the security parameter. negl(λ) denotes a negligible function in λ, that is, a
function that vanishes faster than any inverse polynomial in λ.

For n ∈ N, [n] denotes the set {1, . . . , n}. For a bit string x, x̄ denotes the complement
string, namely the string x with all bit values flipped. If x ∈ {0, 1}n then the bits of x
can be indexed as x[i] := xi for i ∈ [n], where x = x1 . . . xn (note that indexing begins at
1, not 0). x := y is used to denote the assignment of variable x to the value y. If A is a
deterministic algorithm, y ← A(x) denotes the assignment of the output ofA(x) to variable
y. If A is randomized, y $←A(x) is used. If S is a (finite) set, x $←S denotes the experiment
of sampling uniformly at random an element x from S. If D is a distribution over S,
x $←D denotes the element x sampled from S according to D. If D0, D1 are distributions,
we say that D0 is statistically (resp. computationally) indistinguishable from D1, denoted

by D0 ≈s D1 (resp. D0
c≡ D1), if no unbounded (resp. PPT) adversary can distinguish

between the distributions except with probability at most negl(λ).

If Π is a two-round two-party protocol, then (m1,m2)← trΠ(x0, x1, λ) denotes the pro-
tocol transcript, where xi is party Pi’s input for i ∈ {0, 1}. For i ∈ {0, 1}, (xi, ri,m1,m2)←
viewΠ

i (x0, x1, λ) denotes Pi’s “view” of the execution of Π, consisting of their input, random
coins, and the protocol transcript.

Definition 1 (Computational Diffie-Hellman (CDH)). Let G(1λ) be an algorithm that
outputs (G, p, g) where G is a group of prime order p and g is a generator of the group.

14

The CDH assumption holds for generator G if for all PPT adversaries A

Pr

[
ga1a2 ← A(G, p, g, ga1 , ga2) :

(G, p, g)← G(λ)
a1, a2 ←$ Zp

]
≤ negl(λ).

Definition 2 (Learning with Errors). Let q, k ∈ N where k ∈ poly(λ), A ∈ Zk×n
q and

β ∈ R. For any n = poly(k log q), the LWE assumption holds if for every PPT algorithm
A we have

|Pr [1← A(A, sA+ e)]− Pr [1← A(A,y)]| ≤ negl(λ) ,

for s $← {0, 1}k, e $←DZn,β and y $← {0, 1}n, where DZn,β is some error distribution.

The following definitions related to branching programs are modified from [IP07].

Definition 3 (Branching Program (BP)). A (deterministic) branching program over the
input domain {0, 1}λ and output domain {0, 1} is defined by a tuple (V,E, T,Val) where:

• G := (V,E) is a rooted, directed, acyclic graph of depth d.

• Two types of nodes partition V :

– Interior nodes: Have outdegree 2.1 The root node, denoted v
(0)
1 , has indegree 0.

– Terminal/leaf nodes: Have outdegree 0. T denotes the set of terminal nodes.
Leaf nodes are labeled as T = {u1, . . . , u|T |}. Each ui ∈ T encodes a value in
{0, 1}.

• Each node in V encodes a value in [λ]. These values are stored in the array Val such
that for all v ∈ V \ T , Val[v] = i for some i ∈ [λ] and for all u ∈ T , Val[u] ∈ {0, 1}.

• The elements of the edge set E are formatted as an ordered tuple (v, v′, b) indicating
a directed edge from v ∈ V to v′ ∈ V with label b ∈ {0, 1}. For every interior node v
with left child v′0 and right child v′1, the edges (v, v′0, 0) and (v, v′1, 1) are in E.

BP Evaluation. The output of a branching program is defined by the function BP :
{0, 1}λ → {0, 1}, which on input x ∈ {0, 1}λ outputs a bit. Evaluation of BP (see Fig. 3.1,
right, and relevant function definitions below) follows the unique path in G induced by x

from the root v
(0)
1 to a leaf node u ∈ T . The output of BP is the value encoded in u, Val[u].

1We assume no nodes have outdegree 1 since such nodes can be removed from the BP w.l.o.g.

15

Evalint(v, x):

i← Val[v]

If x[i] = 0 then return Γ(v, 0)

Else return Γ(v, 1)

BP(x):

v ← v
(0)
1

While v /∈ T do

v ← Evalint(v, x)

y ← Evalleaf(v)

Return y

Figure 3.1: Interior node evaluation function Evalint and BP evaluation function
BP.

• Γ : V \ T ×{0, 1} → V takes as input an internal node v and a bit b and outputs v’s
left child if b = 0 and v’s right child if b = 1.

• Evalint : V \ T × {0, 1}λ → V takes as input an interior node v and a string of length
λ and outputs either v’s left or right child (Γ(v, 0) or Γ(v, 1), respectively). See
Figure 3.1, left.

• Evalleaf : T → {0, 1} takes as input a terminal node u ∈ T and outputs the value
Val[u].

Definition 4 (Layered BP). A BP of depth d is layered if the node set V can be partitioned

into d + 1 disjoint levels V =
⋃d

i=0 V
(i), such that V (0) = {v(0)1 }, V (d) ⊆ T , and for every

edge e = (u, v, b) (where b is the edge label) we have u ∈ V (i), v ∈ V (i+1) for some level
i ∈ {0, . . . , d − 1}. We refer to V (i) as the i-th level of the BP, or the level at depth i.

Nodes on level i are labelled V (i) = {v(i)1 , . . . , v
(i)

|V (i)|}.

We require that all branching programs in this work are layered.

3.1 Hash Encryption + Garbled Circuits

Our construction uses hash encryption schemes with garbled circuits. The following defi-
nitions are taken directly from [ABD+21].

Definition 5 (Hash Encryption [DG17, BLSV18]2). A hash encryption scheme HE =
(HGen,Hash,HEnc,HDec) is defined as follows.

2Hash encryption is called batch encryption in [BLSV18].

16

• HGen(1λ, n): Takes as input a security parameter 1λ and an input size n, and outputs
a hash key pp.

• Hash(pp, z): Takes as input a hash key pp and z ∈ {0, 1}n, and deterministically
outputs h ∈ {0, 1}λ.

• HEnc(pp, h, {mi,b}i∈[n],b∈{0,1}; {ri,b}): Takes as input a hash key pp, a hash output h,
messages {mi,b} and randomness {ri,b}, and outputs {cthi,b}i∈[n],b∈{0,1}. We write it
concisely as {cthi,b}. Each ciphertext cthi,b is computed as cthi,b = HEnc(pp, h,mi,b,
(i, b); ri,b), where we have overloaded the HEnc notation.

• HDec(z, {cthi,b}): Takes as input a hash input z and {cthi,b} and deterministically
outputs n messages (m1, . . . ,mn). Correctness requires that (m1, . . . ,mn) = (m1,z[1],
. . . ,mn,z[n]), where z was the hash pre-image used to encrypt {cthi,b}.

A hash encryption scheme must satisfy the following semantic security property. Anony-
mous semantic security is additionally required for anonymous HE schemes.

• Semantic Security: Given z ∈ {0, 1}n, no adversary can distinguish between
encryptions of messages made to indices (i, z̄i). For any PPT A, sampling pp $←

HGen(1λ, n), if (z, {mi,b}, {m′i,b})
$←A(pp) and if mi,z[i] = m′i,z[i] for all i ∈ [n],

then A cannot distinguish between HEnc(pp, h, {mi,b}) and HEnc(pp, h, {m′i,b}), where
h← Hash(pp, z).

• Anonymous Semantic Security: For a random {mi,b} with equal rows (i.e.,
∀i ∈ [n], mi,0 = mi,1), the output of HEnc(pp, h, {mi,b}) is pseudorandom even
in the presence of the hash pre-image. Formally, for any z ∈ {0, 1}n, sampling
pp $←HGen(1λ, n), h ← Hash(pp, z), and sampling {mi,b} uniformly at random with
the same rows, then v := (pp, z,HEnc(pp, h, {mi,b})) is indistinguishable from an-
other tuple in which we replace the hash-encryption component of v with a random
string.

The following results are from [BLSV18, GGH19].

Lemma 1. Assuming CDH or LWE, there exist anonymous hash encryption schemes,
where n = 3λ (i.e., Hash(pp, ·) : {0, 1}3λ 7→ {0, 1}λ).3 Moreover, the hash function Hash

3The CDH construction of [BLSV18] satisfies a weaker notion of anonymity, in which only some part
of the ciphertext is pseudorandom. This weaker notion of anonymity is sufficient for our construction, but
requires cumbersome notational tweaks. So for ease of presentation, we keep the notion as is.

17

satisfies robustness in the following sense: for any input distribution on z which samples at
least 2λ bits of z uniformly at random, (pp,Hash(pp, z)) and (pp, u) are statistically close,
where pp $←HGen(1λ, 3λ) and u $← {0, 1}λ.

We also review garbled circuits and the anonymous property, as defined in [BLSV18].

Definition 6 (Garbled Circuits). A garbling scheme for a class of circuits C := {C : {0, 1}n
7→ {0, 1}m} consists of (Garb,Eval, Sim) satisfying the following.

• Correctness: For all C ∈ C and x ∈ {0, 1}n, Pr[Eval(C̃, {lbi,x[i]}) = C(x)] = 1,

where (C̃, {lbi,b}) $←Garb(1λ,C).

• Simulation Security: For any C ∈ C and x ∈ {0, 1}n: (C̃, {lbi,x[i]})
c≡ Sim(1λ,

C, y), where (C̃, {lbi,b}) $←Garb(1λ,C) and y ← C(x).

• Anonymous Security 4 [BLSV18]: For any C ∈ C and random y $← {0, 1}m, the
output of Sim(1λ,C, y) is pseudorandom.

Lemma 2 ([BLSV18]). Anonymous garbled circuits can be built from one-way functions.

Notation for Hash Encryption. We assume Hash(pp, ·) : {0, 1}n → {0, 1}λ, where
n = 3λ. For i ∈ [n] and b ∈ {0, 1}, {lbi,b} denotes a sequence of n label pairs. For all i ∈ [n],
all b ∈ {0, 1}, and r := {ri,b}, HEnc(pp, h, {lbi,b}; r) denotes a set of ciphertexts {cthi,b},
where the (i, b)-th ciphertext is defined as cthi,b ← HEnc(pp, h, lbi,b, (i, b); ri,b). We overload
notation as follows. For all i ∈ [n], {lbi} denotes a sequence of 3λ labels. For all i ∈ [n] and
r := {ri,b}, HEnc(pp, h, {lbi}; r) denotes a hash encryption where both plaintext rows are
{lbi}; namely, ciphertexts {cthi,b}, where for all i ∈ [n], cthi,b ← HEnc(pp, h,mi,b, (i, b); ri,b)
and mi,0 = mi,1 = lbi, for all i.

Previously, we informally discussed the power couple made by garbling and hash en-
cryption, now with the definitions of these tools in hand we revisit the discussion more
formally. Consider the following example to illustrate how garbled circuits will be used
with hash encryption. Let (Garb,Eval, Sim) be a garbling scheme for the class of circuits
C := {C : {0, 1}n 7→ {0, 1}m}. Let Alice generate pp $←HGen(1λ, n) and z ∈ {0, 1}n. Let
Bob hold the circuit C ∈ C and get pp from Alice. The two parties can then engage in the
following:

4called blind garbled circuits in [BLSV18].

18

At the end of this interaction, Alice’s evaluation of the garbled circuit allows her to
learn y = C(z). Her message to Bob commits her to only learning this one output of C.
Security of the HE scheme ensures the labels encrypted in cth not corresponding to the
bits of z remain secure. Without these labels, Alice cannot evaluate C̃ on any other input,
which means garbled circuit security is maintained. Unlike standard chosen plaintext
attack (CPA)-secure PKC schemes, hash encryption only allows Alice to decrypt half of
the encrypted plaintexts. Indeed, if Alice could decrypt the entirety of cth above, she would
obtain garbled labels {lbi,b} for all i ∈ [n], b ∈ {0, 1}. This would allow her to learn C(x)
for all x ∈ {0, 1}n, completely obliterating Bob’s garbled circuit security! Hash encryption
allows Alice to keep z, her desired input to C, hidden from Bob while committing to only
learning C(z) from the garbled information she obtains from Bob.

19

Chapter 4

Semi-Honest Laconic 2PC with
Branching Programs

Definition 7 (BP-2PC Functionality). We define the evaluation of a branching program
in the two-party communication setting (BP-2PC) to be a two-round protocol between a
receiver, R, and a sender, S, such that:

• R holds a branching program BP with evaluation function BP : {0, 1}λ → {0, 1} and
S holds a string id ∈ {0, 1}λ. In the first round of the protocol, R sends the message
m1 to S. In the second round S sends m2 to R.

• Correctness: If BP(id) = 1, then R outputs id. Otherwise, R outputs ⊥.

• Computational (resp., statistical) receiver security: BP-2PC achieves re-
ceiver security if for all id ∈ {0, 1}λ, and all pairs of branching programs BP0,BP1

we have that viewBP-2PC
S (BP0, id, λ) ≈ viewBP-2PC

S (BP1, id, λ) . If the distributions are
computationally (resp., statistically) indistinguishable then we have computational
(resp., statistical) security.

• Computational (resp., statistical) sender security: BP-2PC achieves sender
security if for all branching programs BP, and all pairs id0, id1 ∈ {0, 1}λ with BP(id0) =
0 = BP(id1), we have that viewBP-2PC

R (BP, id0, λ) ≈ viewBP-2PC
R (BP, id1, λ) . If the dis-

tributions are computationally (resp., statistically) indistinguishable then we have
computational (resp., statistical) security.

20

• Security against outsiders: BP-2PC is secure against outsiders if for all outside
parties P /∈ {S,R} and all pairs of sender/receiver inputs (BP0, id0) and (BP1, id1),
we have that trBP-2PC(λ,BP0, id0) ≈ trBP-2PC(λ,BP1, id1) .

4.1 The BP-2PC Construction

In this section, we give a construction for a BP-2PC protocol, inspired by laconic OT tech-
niques [CDG+17, ABD+21]. Construction 1 uses hash encryption and garbling schemes.
A high-level overview follows.

1. The receiver party R hashes their branching program in a specific way from the
leaf level up to the root. R then sends the message m1 = hroot to the sender, where hroot is
the hash value of the root node of the hashed BP.

2. The sender party S gets the message m1 = hroot and garbles one circuit for each level
of a hash tree with λ+ 1 levels, λ+ 1 being the number of levels required for every bit of
the sender’s length λ input to be checked. dm := λ denotes this maximum depth. S starts
with the leaf level and garbles circuit F (Fig. 4.1). F takes as input a leaf node value and
two random strings. If the leaf node value is 1, F outputs the hardcoded sender element
id and a random, fixed, signal string r. Otherwise, F outputs two random strings (id′, r′).
Then for every level from the leaf parents to the root, S garbles the circuit V (also in
Fig. 4.1). Each V garbled by the sender has the labels of the previously generated garbled
circuit hardcoded. After garbling, S computes a hash encryption of the root-level garbled
circuit labels using the hash image hroot. Finally, S sends m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r)
to R, where C̃w is the garbled circuit associated with level w, {cth(0)i,b } is the encryption of

the labels for C̃0, and r is the signal value.

3. For all root-to-leaf paths through the BP, R runs DecPath (Fig. 4.2) on m2 searching
for the path that will decrypt to a signal value equal to r from m2. On input a path pth
and m2, DecPath outputs a pair (idpth, rpth) to R. If rpth = r, then R takes idpth to be S’s
element.

Construction 1 (BP-2PC). We require the following ingredients for the two-round, two-
party communication BP construction.

1. An anonymous and robust hash encryption scheme HE = (HGen,Hash,HEnc,HDec),
where Hash(pp, ·) : {0, 1}3λ 7→ {0, 1}λ.

2. An anonymous garbling scheme GS = (Garb,Eval, Sim).

21

3. Circuits F and V defined in Figure 4.1. Procedure DecPath, defined in Figure 4.2.

We assume the receiver holds a—potentially unbalanced—branching program BP of depth
d ≤ λ + 1 as defined in Def. 3. The sender has a single element id ∈ {0, 1}λ. BP-2PC :=
(GenCRS,R1, S,R2) is a triple of algorithms built as follows.

GenCRS(1λ): Return crs $←HGen(1λ, 3λ).

R1(crs,BP): Recall from Def. 3 that BP has terminal node set T = {u1, . . . , u|T |}, nodes
in level 0 ≤ w ≤ d are labelled from leftmost to rightmost: V (w) = {v(w)

1 , . . . , v
(w)

|V (w)|}.

• Parse crs := pp. The receiver creates a hashed version of BP, beginning at the leaf
level: For j ∈ [|T |], sample xj, x

′
j

$← {0, 1}λ and compute h
(d)
j ← Hash(pp, (Val[uj]

×λ,

xj, x
′
j)). Val[uj]

×λ indicates that Val[uj] is copied λ times to obtain either the all zeros
or all ones string of length λ.

The remaining levels are hashed from level d− 1 up to 0 (the root): (An example is
given in Appendix A, figures A.1 and A.2.)

– For w from d − 1 to 0, |V (w)| nodes are added to level w. The hash value of
each node is the hash of the concatenation of its left child, right child, and the
index encoded in the current node. Formally: For j ∈ [|V (w)|], set h

(w)
j ←

Hash(pp, (h
(w+1)
2j−1 , h

(w+1)
2j ,Val[v

(w)
j])), where Val[v

(w)
j] is the index encoded in the

j-th node of level w. If needed, padding is added so that |Val[v(w)
j]| = λ.

– Let m1 := hroot, where hroot := h
(0)
1 is the root hash value. For all i ∈ [|T |],

w ∈ {0, . . . , d}, and j ∈ [|V (w)|], set st := ({xi}, {x′i}, {v
(w)
j }). Send m1 to S.

S(crs, id,m1):

• Parse m1 := hroot and crs := pp. Sample r, id′(dm), r′(dm) $← {0, 1}λ. Let Cdm :=

F[id, id′(dm), r, r′(dm)] (Fig. 4.1). Garble (C̃dm , {lb
(dm)
i,b })

$←Garb(Cdm). For w from dm− 1
to 0 do:

1. Sample randomness r(w), strings id′(w), r′(w) $← {0, 1}λ, and padding pad(w) $← {0,
1}2(n−1). Let Cw := V[pp, id, {lb(w+1)

i,b }, r(w), r, id′(w), r′(w), pad(w)].

2. Garble (C̃w, {lb(w)
i,b })

$←Garb(Cw).

22

Circuit F[id, id′, r, r′](v, x, x′):

Hardwired: Target identity id, signal

value r, and random strings id′, r′.

Operation:

1. Sample pad, pad′ $← {0, 1}2(n−1)

2. Return{id, r, pad} if v = 1λ

{id′, r′, pad′} otherwise
.

Circuit V[pp, id, {lbi,b}, r, r, id′, r′, pad](α, β, γ):

Hardwired: Hash public parameter pp, target iden-

tity id, labels {lbi,b}, HEnc randomness r, signal value

r, random strings id′, r′, and padding pad.

Operation:

1. If α = 1λ then return {id, r, pad}.
2. If α = 0λ then return {id′, r′, pad}.
3. Else set h1 ← α, h2 ← β, i← γ and return

{cthi,b} ←

HEnc(pp, h1, {lbi,b}; r) if id[i] = 0

HEnc(pp, h2, {lbi,b}; r) otherwise
.

Figure 4.1: Circuits F and V for construction 1. Circuits based on those in Table
1 of [ABD+21].

• Let {cth(0)i,b }
$←HEnc(pp, hroot, {lb(0)i,b }).

• Send m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r) to R.

R2(crs, st,m2):

• Parse st := ({xi}, {x′i}, {v
(w)
j }) and m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r). For all leaves

u ∈ T , let pthu := ((Val[u]×λ, x, x′), . . . , hroot) be the root to leaf u path in the BP. Let
ℓ be the length of pthu and let

(idu, ru)← DecPath(pthu, C̃dm , . . . , C̃0, {cth(0)i,b }) .

If ru = r, then output idu and halt. If for all u ∈ T , ru ̸= r, then output ⊥.

R2 must run DecPath on every root-to-leaf path. R2 is written above as if there is a unique
path from the root to each leaf. But since we allow nodes to have in-degree greater than
one, it is possible for a leaf to be reachable from more than one path. In such a case, the
path iteration in R2 should be modified so that all paths are explored.

Communication costs. The first message, m1, is output by R1 and sent to S. m1 contains
the hash digest hroot, which is λ bits. So the receiver’s communication cost is λ. Next, m2

is output by S and sent to R2. m2 consists of the following:

23

Procedure DecPath(pth,m2):

Input: A leaf-root path pth of length ℓ ≤ d and tuple m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r).

Operation: 1. Parse

pth := ((Val[v(ℓ)]×λ, x, x′︸ ︷︷ ︸
zℓ

), (h(ℓ), h′(ℓ),Val[v(ℓ−1)]︸ ︷︷ ︸
zℓ−1

), . . . , (h(1), h′(1),Val[v(0)]︸ ︷︷ ︸
z0

), hroot) .

2. For w from 0 to ℓ− 1 do:

(a) Let {lb(w)
i } ← HDec(zw, {cth(w)

i,b }). (b) Set {cth
(w+1)
i,b } ← Eval(C̃w, {lb(w)

i }).

3. Let {lb(ℓ)i } ← HDec(zℓ, {cth
(ℓ)
i,b }).

4. Let {idpth, rpth, pad} ← Eval(C̃ℓ, {lb
(ℓ)
i }) and return (idpth, rpth).

Figure 4.2: Procedure DecPath for construction 1. See Fig. A.3 for an illustration
of DecPath. Based on those in Table 1 of [ABD+21].

• C̃0 : the garbling of circuit F. F has 4λ bits hardcoded (including id).

• C̃i for i ∈ [dm] : each C̃i is a garbling of circuit V. Hardcoded in each V is the
public parameter, 2n = 6λ garbled circuit labels, hash encryption randomness, and
an additional poly(λ) bits (including id).

• {cth(0)i,b }i∈[n],b∈{0,1} : 6λ hash encryption ciphertexts. Each cth is the hash encryption
of one garbled circuit label.

• r : the λ-bit signal string.

So the sender’s communication cost grows with poly(λ, dm, |id|), which is poly(λ).

Computation costs.

R1: performs |V | Hash evaluations and samples 2|T | random strings of length λ.

S: samples poly(λ, dm) random bits, garbles an F circuit, garbles dm V circuits, and
performs a hash encryption of 6λ garbled labels. The sender’s computation cost does
not depend on the total size of the BP, just dm.

24

R2: runs DecPath for every root-leaf path. Each iteration of DecPath requires at most
dm + 1 HDec and garbled circuit Eval evaluations (all, but possibly one, Eval will be
of a V circuit).

In total, the receiver’s computation cost is O(λ, dm, |V |, |PTH|), where |PTH| is the total
number of root-to-leaf paths in the BP. So we require |V | and |PTH| to be poly(λ) and
dm = λ+ 1. The sender’s computation cost is poly(λ, dm).

Lemma 3. Construction 1 is correct in the sense that (1) if BP(id) = 1, then with over-
whelming probability R2 outputs id and (2) if BP(id) = 0, then with overwhelming probability
R2 outputs ⊥.

Theorem 1. If HE is an anonymous and robust hash encryption (defined in Lemma 1),
and GS is an anonymous garbling scheme, then the BP-2PC protocol of Construction 1
provides statistical security for the receiver and semi-honest security for the sender.

The proofs of Lemma 3 and Theorem 1 are in Sections 4.2 and 4.3, respectively.

4.2 Proof of Lemma 3: correctness of BP-2PC

Proof. (Proof of Condition (1): BP(id) = 1⇒ R2 outputs id with overwhelming probabil-
ity.)
Claim 1: When DecPath is evaluated on the correct path, it will output (id, r).
Proof of claim 1: Consider the root-to-leaf path of length ℓ induced by the evaluation of
BP(id). By hypothesis BP(id) = 1, so the path leaf node encodes the value 1. For con-
creteness, suppose the induced path has the leftmost leaf of the BP, u1 ∈ T , as the leaf
endpoint. With this in mind, denote the path as,

pth[u1] := ((1λ, x1, x
′
1︸ ︷︷ ︸

zℓ

), (h
(ℓ)
1 , h

(ℓ)
2 ,Val[v

(ℓ−1)
1]︸ ︷︷ ︸

zℓ−1

), . . . , (h
(1)
1 , h

(1)
2 ,Val[v

(0)
1]︸ ︷︷ ︸

z0

), hroot) . (4.1)

For the remainder of the proof, node labels v will be identified with their encoded val-
ues Val[v] to save space. Let (idu1 , ru1) ← DecPath(pth[u1], C̃dm , . . . , C̃0, {cth(0)i,b }), where
C̃dm , . . . , C̃0, {cth(0)i,b } are defined as in the construction. Then it suffices to show that ru1 = r.
Consider an arbitrary iteration w ∈ {0, . . . , ℓ− 2} of the loop in step 2 of DecPath:

2. (a) {lb(w)
i } ← HDec(zw, {cth(w)

i,b })

← HDec((h
(w+1)
1 , h

(w+1)
2 , v

(w)
1),HEnc(pp, h

(w)
1 , {lb(w)

i,b }; rw))

25

← HDec((h
(w+1)
1 , h

(w+1)
2 , v

(w)
1)︸ ︷︷ ︸,HEnc(pp,Hash(pp, (h(w+1)

1 , h
(w+1)
2 , v

(w)
1)︸ ︷︷ ︸), {lb(w)

i,b }; rw))

Since the two terms indicated above are equal, the labels {lb(w)
i } output by HDec are the

subset of the encrypted labels {lb(w)
i,b } corresponding to the bits of zw := (h

(w+1)
1 , h

(w+1)
2 ,

v
(w)
1). More precisely, lb

(w)
i,0 := lb

(w)
i,zw[i] and lb

(w)
i,1 := lb

(w)
i,zw[i] for all i ∈ [n].

2. (b) {cth(w+1)
i,b } ← Eval(C̃w, {lb(w)

i }).

{cth(w+1)
i,b } ← V[pp, id, {lb(w+1)

i,b }, rw, r, id
′, r′, pad](h

(w+1)
1 , h

(w+1)
2 , v

(w)
1)

{cth(w+1)
i,b } ← HEnc(pp, h

(w+1)
1︸ ︷︷ ︸

=Hash(pp,(h
(w+2)
1 ,h

(w+2)
2 ,v

(w+1)
1))

, {lb(w+1)
i,b }; rw) (4.2)

The first input h
(w+1)
1 is used in the input to HEnc because pth[u1] was defined to have

the leftmost leaf as an endpoint. In other words, travelling from the root, pth[u1] always
progresses to the left child.

In the final iteration of the loop, when w = ℓ− 1, the steps expanded above remain the
same except for Equation 4.2. When w = ℓ− 1, Eq. 4.2 is instead

{cth(ℓ)i,b} ← HEnc(pp, h
(ℓ)
1︸︷︷︸

=Hash(pp,(1λ,x1,x′
1))

, {lb(ℓ)i,b}; rℓ−1) .

With this in mind, the final two steps of DecPath are as follows.

3. {lb(ℓ)i } ← HDec(zℓ, {cth(ℓ)i,b})

{lb(ℓ)i } ← HDec((1λ, x1, x
′
1)︸ ︷︷ ︸,HEnc(pp,Hash(pp, (1λ, x1, x

′
1)︸ ︷︷ ︸), {lb(ℓ)i,b})) .

Since the two terms indicated above are equal, the labels {lb(ℓ)i } output by HDec are the

subset of labels {lb(ℓ)i,b} used in the input to HEnc, where the subset corresponds to the bits

of zℓ = (1λ, x1, x
′
1).

4. {idu1 , ru1 , pad} ← Eval
(
C̃ℓ, {lb(ℓ)i }

)
{idu1 , ru1 , pad} ← V[pp, id, {lb(ℓ+1)

i,b }, rℓ, r, id
′, r′, pad]

(
1λ, x1, x

′
1

)
{idu1 , ru1 , pad} ← {idu1 ← id, ru1 ← r, and pad $← {0, 1}2(n−1)} .

26

Then (idu1 , ru1) is returned to the receiver. The first input to V is 1λ, so the tuple (idu1 , ru1)
is equal to (id, r).

The receiver compares ru1 from DecPath with r from the message m2 from the sender.
Since these strings are equal, the receiver takes idu1 output from DecPath as the sender’s
element. Hence, the receiver learns id when BP(id) = 1, completing the proof of claim 1. ⋄

In the above, we used the correctness properties of garbled circuit evaluation and
HE decryption. These guarantees give us that Pr[idu1 = id ∧ ru1 = r | (idu1 , ru1) ←
DecPath(pth[u1],m2)] = 1 when pth[u1] is the correct path through the BP. In order for
the correctness condition (1) to be met, it must also be true that there does not exist any
other path pth[u′] ̸= pth[u1] such that ru′ = r where (idu′ , ru′) ← DecPath(pth[u′],m2). In
other words, there must not exist an incorrect path that decrypts the correct signal value
r.

Claim 2: With at most negligible probability, there exists an incorrect path that when
input to DecPath, decrypts to the correct signal value r.
Proof of claim 2: To show that occurs with negligible probability, consider running DecPath
on an incorrect path pth[u′] ̸= pth[u1]. Let pth[u1] and pth[u′] have lengths ℓ and ℓ′,
respectively where 1 ≤ ℓ, ℓ′ ≤ d. Suppose these paths are equal at level α − 1 and differ
at level α, for some α ∈ {0, . . . ,min{ℓ, ℓ′}}. Suppose u1 ∈ T is the leftmost leaf, as above,
and u′ ∈ T \ {u1} is the leaf endpoint of pth[u′]. Let these paths be given by the following.

pth[u1] := ((u
(ℓ)×λ
1 , x1, x

′
1︸ ︷︷ ︸

zℓ

), (h
(ℓ)
1 , h

(ℓ)
2 , v

(ℓ−1)
1︸ ︷︷ ︸

zℓ−1

), . . . , (h
(α+1)
1 , h

(α+1)
2 , v

(α)
1︸ ︷︷ ︸

zα

), (4.3)

(h
(α)
1 , h

(α)
2 , v

(α−1)
1︸ ︷︷ ︸

zα−1

), . . . , (h
(1)
1 , h

(1)
2 , v

(0)
1︸ ︷︷ ︸

z0

), hroot)

pth[u′] := ((u′(ℓ
′)×λ, x, x′︸ ︷︷ ︸

z′
ℓ′

), (h(ℓ
′), h′(ℓ

′), v(ℓ
′−1)︸ ︷︷ ︸

z′
ℓ′−1

), . . . , (h
(α+1)
3 , h

(α+1)
4 , v

(α)
2︸ ︷︷ ︸

z′α

), (4.4)

(h
(α)
1 , h

(α)
2 , v

(α−1)
1︸ ︷︷ ︸

z′α−1

), . . . , (h
(1)
1 , h

(1)
2 , v

(0)
1︸ ︷︷ ︸

z′0

), hroot) .

Since pth[u′] differs from the correct path at level α, the steps of DecPath(pth[u′],m2)
and DecPath(pth[u1],m2) will be identical until loop iteration w = α. Consider iteration
w = α− 1 of DecPath(pth[u′],m2):

27

2. (a) {lb(α−1)i } ← HDec(z′α−1, {cth
(α−1)
i,b })

← HDec((h
(α)
1 , h

(α)
2 , v

(α−1)
1),HEnc(pp, h

(α−1)
1 , {lb(α−1)i,b }))

← HDec((h
(α)
1 , h

(α)
2 , v

(α−1)
1︸ ︷︷ ︸),HEnc(pp,Hash(pp, (h(α)

1 , h
(α)
2 , v

(α−1)
1︸ ︷︷ ︸)), {lb(α−1)i,b })) .

Since the indicated terms are equal, the {lb(α−1)i } labels output are the labels of circuit

C̃α−1 corresponding to the bits of z′α−1.

2. (b) {cth(α)i,b } ← Eval(C̃α−1, {lb(α−1)i })

← V[pp, id, {lb(α)i,b }, rα−1, r, id
′, r′, pad](h

(α)
1 , h

(α)
2 , v

(α−1)
1)

← HEnc(pp, h
(α)
1 , {lb(α)i,b }; rα−1) .

In the last line, h
(α)
1 is used in the hash encryption due to the assumption that the correct

path has the leftmost leaf as an endpoint, meaning id[v
(α+1)
1] = 0.1 Next, the w = α

iteration of the loop proceeds as follows.

2. (a) {lb′(α)i } ← HDec(z′α, {cth
(α)
i,b })

← HDec((h
(α+1)
3 , h

(α+1)
4 , v

(α)
2),HEnc(pp, h

(α)
1 , {lb(α)i,b }; rα−1))

← HDec((h
(α+1)
3 , h

(α+1)
4 , v

(α)
2︸ ︷︷ ︸),HEnc(pp, (h(α+1)

1 , h
(α+1)
2 , v

(α)
1︸ ︷︷ ︸), {lb(α)i,b }; rα−1)) .

The two terms indicated are not equal. Decrypting an HE ciphertext with an incorrect
hash pre-image produces an output containing no PPT-accessible information about the
encrypted plaintext. For this reason, a prime was added above to the LHS labels to differ-
entiate them from the labels encrypted on the RHS. Thus {lb′(α)i } provides no information

about {lb(α)i,b }.

2. (b) {cth(α+1)
i,b } ← Eval(C̃α, {lb′(α)i }).

Note that the labels {lb′(α)i } are not labels of C̃α, and certainly not a subset of those labels

corresponding to a meaningful input. So the output {cth(α+1)
i,b } is not a ciphertext, but a

meaningless set of strings.

1Changing the proof to apply to settings with a different correct path is straightforward.

28

For w from α to ℓ′, every HDec operation will output {lb′(w)
i } which are not circuit labels

for C̃w and every evaluation Eval(C̃w, {lb′(w)
i }) will output strings with no relation to C̃w.

In step 4, {idu′ , ru′ , pad} ← Eval(C̃ℓ′ , {lb′(ℓ
′)

i }) is computed. Since {lb′(ℓ
′)

i } are not labels, the
evaluation output is meaningless. In particular, the tuple (idu′ , ru′) output to R2 contains
no PPT-accessible information about (id, r). Hence Pr[ru′ = r] ≤ 2−λ + negl(λ). By as-
sumption on the size of BP, there are a polynomial number of root-to-leaf paths, thus by
the union bound the probability that any incorrect root-to-path causes DecPath to output
r is

Pr[∃ u ∈ T \ {u1} s.t. ru = r | (idu, ru)← DecPath(pth[u],m2)] ≤
poly(λ)

2λ
+ negl(λ) .

The probability that R2 outputs id when BP(id) = 1 is the probability that none of the
incorrect paths output a signal value equal to r:

Pr[R2 outputs id | BP(id) = 1] ≥ 1− poly(λ)

2λ
− negl(λ) .

Thus proving Claim 2. ⋄

Taken with the proof of Claim 1, this completes the proof of correctness condition (1).

Proof. (Proof of Condition (2): BP(id) = 0⇒ R2 outputs ⊥ with overwhelming probabil-
ity.)
In the proof of Theorem 1 we will show that when BP(id) = 0,

(C̃dm , . . . , C̃0, {cth(0)i,b }, r)
c≡ (C̃′dm , . . . , C̃

′
0, {cth

′(0)
i,b }, r

′) , (4.5)

where all primed values are sampled uniformly random. On the LHS, the circuits C̃dm , . . . , C̃0

all have the signal value r hardcoded, while the RHS is independent of r. So, for all fixed
u ∈ T ,

Pr
[
ru = r | (idu, ru)← DecPath(pth[u], (C̃′dm , . . . , C̃

′
0, {cth

′(0)
i,b }, r

′))
]
≤ 1

2λ
, (4.6)

where pth[u] denotes the path from the root to leaf u2. By assumption, the BP has a
polynomial number of root-to-leaf paths, thus by the union bound the probability that any

2There could exist a poly(λ) number of root-to-leaf u paths. In such a case, the RHS of Eq. 4.6 would
be poly(λ)/2λ and Eq. 4.7 would remain unchanged.

29

root-to-leaf paths decrypt to output r is,

Pr
[
∃u ∈ T s.t. ru = r | (idu, ru)← DecPath(pth[u], (C̃′dm , . . . , C̃

′
0, {cth

′(0)
i,b }, r

′))
]

≤ poly(λ)

2λ
. (4.7)

By Equation 4.5, we must also have that the analogous probability for inputs (C̃dm , . . . , C̃0,

{cth(0)i,b }, r) is computationally indistinguishable. Thus,

Pr
[
∃u ∈ T s.t. ru = r | (idu, ru)← DecPath(pth[u], (C̃dm , . . . , C̃0, {cth(0)i,b }, r))

]
≤ poly(λ)

2λ
+ negl(λ) .

If R2 receives an ru from DecPath such that ru = r, then R2 outputs idu, not ⊥. It directly
follows that,

Pr[R2 does not output ⊥ | BP(id) = 0] ≤ poly(λ)

2λ
+ negl(λ)

Pr[R2 outputs ⊥ | BP(id) = 0] ≥ 1− poly(λ)

2λ
− negl(λ) ,

which completes the proof of Condition (2), and thus concludes the proof of Lemma 3.

4.3 Proof of Theorem 1: security of BP-2PC

Theorem 1 statistical receiver security proof. Node labels are identified with their
encoded values to save space. Following Definition 7, for any pair (BP0,BP1) consider the
distribution below for i ∈ {0, 1}.

viewBP-2PC
S (BPi, id, λ) = (id, rS,m1,m2)

= (id, rS, (dm, hrooti), (C̃dm , . . . , C̃0,HEnc(pp, hrooti, {lb
(0)
i,b }), r)) ,

where rS are the sender’s random coins, hrooti is the root hash, and dm is the maximum
depth of branching program BPi. Since both BPs have security parameter λ, both will
have dm = λ+ 1. Let di be the depth of BPi.

Robustness of HE implies that for all pp $←HGen(1λ, 3λ) and u ∈ T , the distribu-

30

tion (pp,Hash(pp, (uλ, x, x′))), where x, x′ $← {0, 1}λ, is statistically close to (pp, h$) where
h$

$← {0, 1}λ. Hence Hash(pp, (uλ, x, x′)) statistically hides u. At level di, BPi will have at
least two leaf nodes with the same parent. Let u1, u2 be two such leaves and let v(di−1) be
the parent. Node v(di−1) will then have hash value,

h(di−1) ← Hash(pp, (h
(di)
1 , h

(di)
2 , v(di−1)))

← Hash(pp, (Hash(pp, (uλ
1 , x1, x

′
1)),Hash(pp, (u

λ
2 , x2, x

′
2)), v

(di−1))) .

Since h
(di)
1 and h

(di)
2 are both statistically close to uniform, we have that h(di−1) is also

statistically close to uniform. Continuing up the tree in this way, we see that the root
hash hrooti is also indistinguishable from random and thus statistically hides BP. Thus
hroot0 ≈s hroot1, which gives us viewBP-2PC

S (BP0, id, λ) ≈s view
BP-2PC
S (BP1, id, λ).

Theorem 1 semi-honest sender security proof. Sender security will be proved through
a sequence of indistinguishable hybrids in two main steps. First, all garbled circuits in the
sender’s message m2 are replaced one at a time with simulated circuits. Then m2 is switched
to random.

Sender security only applies when BP(id) = 0, so this will be assumed for the proof.
For concreteness, suppose the path induced on the BP by evaluating id has the leftmost
leaf as an endpoint. In particular, let

pth := ((Val[v
(ℓ)
1]×λ, x1, x

′
1︸ ︷︷ ︸

zℓ

), (h
(ℓ)
1 , h

(ℓ)
2 ,Val[v

(ℓ−1)
1]︸ ︷︷ ︸

zℓ−1

), . . . , (h
(1)
1 , h

(1)
2 ,Val[v

(0)
1]︸ ︷︷ ︸

z0

), hroot) (4.8)

be the leaf-root path induced on the hashed BP by evaluation of id, where ℓ is the path
length and d is the BP depth.3 Since BP(id) = 0, the terminal node encodes value 0, i.e,

Val[v
(ℓ)
1] = 0. We let hroot ← Hash(pp, z0) and h

(i)
1 ← Hash(pp, zi) for all 1 ≤ i ≤ ℓ, where

the zi values are defined as in Eq. 4.8. To save space, often node labels v will be identified
with their encoded index values Val[v] and the padding superscript will be omitted from
leaf node values.

Hyb0: [Fig. 4.3 left] The sender’s message m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r) is formed as
described in the construction.

Hyb1: [Fig. 4.3 right] All circuits are simulated. The circuits are simulated so that if R
runs DecPath on pth with the simulated circuits, then every step occurs, from the view

3We assume ℓ ≥ 1. If the receiver’s BP has depth 0, then two dummy leaves can be introduced as root
children.

31

of R, as it would in Hyb0. This requires knowledge of pth and in particular, the correct

sequence of hash pre-images zℓ, . . . , z0, where zℓ = (0λ, x1, x
′
1) and zj = (h

(j+1)
1 , h

(j+1)
2 , v

(j)
1)

for j ∈ {0, . . . , ℓ − 1}. By assumption of pth, every evaluation Eval(C̃j, {lb(j)i }), where
{lb(j)i } ← HDec(zj, {cth(j)i,b }), done in DecPath for j ∈ {0, . . . , ℓ− 1} will output ciphertexts
HEnc(pp, h

(j+1)
1 , {lb(j+1)

i,b }; rj)
4. Moreover, evaluation of Eval(C̃ℓ, {lb(ℓ)i }) outputs {id

′, r′, pad}
for random id′, r′ $← {0, 1}λ and pad $← {0, 1}2(n−1). Simulating circuits C̃ℓ, . . . , C̃0 is straight-
forward.

To simulate circuits C̃dm , . . . , C̃ℓ+1 we note that none of these circuits can be used by
R in DecPath to obtain a meaningful output. Only this behaviour needs to be mimicked.
To this end, we define “ghost” values zdm , . . . , zℓ+1 with their associated hash values. The
deepest is defined to be uniformly random: zdm

$← {0, 1}3λ. Then for j ∈ {dm− 1, . . . , ℓ+1}
we define,

h′(j) := Hash(pp, (

zj︷ ︸︸ ︷
h′(j+1)︸ ︷︷ ︸

Hash(pp,zj+1)

, h′(j+1), v′(j)))

where v′j
$← {0, 1}λ. In this way, two-thirds of the zj pre-image is uniformly random which

allows us to invoke the robustness property of HE. Moreover, the zj values create a chain
of pre-images similar to the zj values for 0 ≤ j ≤ ℓ− 1.

Lemma 4. Hybrids Hyb0 and Hyb1 are computationally indistinguishable.

Hyb2: Sample m2 at random.

Lemma 5. Hybrids Hyb1 and Hyb2 are computationally indistinguishable.

If m2 is pseudorandom to the receiver, then m2 created with some id0 is compu-
tationally indistinguishable from m2 created with some other id1. Therefore we have

viewBP-2PC
R (BP, id0, λ)

c≡ viewBP-2PC
R (BP, id1, λ), hence the above two lemmas establish com-

putational sender security.

4The use of h
(j+1)
1 in HEnc is from the assumption that pth has the leftmost leaf as an endpoint and

hence the first hash input is always used in the V encryption. In the general case, this hash value would
be changed accordingly.

32

Hyb0 :

r, r′, id′ $← {0, 1}λ ; pad $← {0, 1}2(n−1)

Cdm := F[id, id′, r, r′]

(C̃dm , {lb
(dm)
i,b })

$←Garb(Cdm)

For w from dm − 1 to 0 do

Sample random rw

Cw := V[pp, id, {lb(w+1)
i,b }, rw, r, id′, r′, pad]

(C̃w, {lb(w)
i,b })

$←Garb(Cw)

{cth(0)i,b }
$←HEnc(pp, hroot, {lb(0)i,b })

m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r)
Return m2

Hyb1:

r, r′, id′ $← {0, 1}λ ; pad $← {0, 1}2(n−1)

zdm
$← {0, 1}3λ ; (C̃dm , {lb

(dm)
i }) $← Sim(F, {id′, r′})

For 0 ≤ w ≤ dm − 1 sample random rw

For i from dm − 1 down to ℓ+ 1 do

v′(i) $← {0, 1}λ ;h′(i+1) ← Hash(pp, zi+1)

zi := (h′(i+1), h′(i+1), v′(i))

For w from dm − 1 down to ℓ+ 1 do

{cth(w+1)
i,b } ← HEnc(pp, h′(w+1), {lb(w+1)

i,b }; rw)
(C̃w, {lb(w)

i })
$←Sim(V, {cth(w+1)

i,b })
(C̃ℓ, {lb

(ℓ)
i })

$← Sim(V, {id′, r′, pad})
For w from ℓ− 1 down to 0 do

{cth(w+1)
i,b } ← HEnc(pp, h

(w+1)
1 , {lb(w+1)

i }; rw)
(C̃w, {lb(w)

i })
$←Sim(V, {cth(w+1)

i,b })
{cth(0)i,b }

$←HEnc(pp, hroot, {lb(0)i })
Return m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r)

Figure 4.3: Hyb0 and Hyb1 for the proof of Theorem 1.

4.3.1 Proof of Lemma 4

To prove that Hyb0

c≡ Hyb1, we define a chain of dm + 1 hybrids between Hyb0 and
Hyb1. Then we prove each game hop is indistinguishable.

Hyb1.p for 0 ≤ p ≤ dm (Fig. 4.5): Let pth be as in Equation 4.8 and recall we assume

that Val[v
(ℓ)
1] = 0. In Hyb1.p circuits C̃0, . . . , C̃p−1 are simulated and circuits C̃p, . . . , C̃dm

are honestly generated (as in Hyb0). In Hyb1.0, all circuits are generated honestly5 and

in Hyb1.dm all circuits are simulated except for C̃dm .

The way a particular circuit C̃i for i ≤ p − 1 is simulated depends on if i < ℓ, i = ℓ,
or i > ℓ, where ℓ is the length of path induced by id. These differences are shown in
Fig. 4.4. As in Hyb1, simulating circuits C̃ℓ+1, . . . , C̃dm−1 is done using ciphertexts created
with “ghost” z values.

5When p = 0, Hyb1.p is defined so that circuits C̃0, . . . , C̃−1 are simulated, which we define to mean
that no circuits are simulated.

33

For p− 1 < ℓ :

C̃dm︸︷︷︸
Garb(F)

, C̃dm−1, . , C̃ℓ+1, C̃ℓ, C̃ℓ−1, . . . , C̃p︸ ︷︷ ︸
Garb(V[pp,id,{lb(w+1)

i,b },rw,r,id′,r′,pad])

, C̃p−1, . . . , C̃0︸ ︷︷ ︸
Sim(V,HEnc(h

(w+1)
1 ,{lb(w+1)

i };rw))

For p− 1 = ℓ :

C̃dm︸︷︷︸
Garb(F)

, C̃dm−1, . , C̃p=ℓ+1︸ ︷︷ ︸
Garb(V[′′])

, C̃p−1=ℓ︸ ︷︷ ︸
Sim(V,{id′,r′,pad})

, C̃ℓ−1, , C̃0︸ ︷︷ ︸
Sim(V,HEnc(′′))

For p− 1 > ℓ :

C̃dm︸︷︷︸
Garb(F)

, C̃dm−1, . . . , C̃p︸ ︷︷ ︸
Garb(V[′′])

, C̃p−1, , C̃ℓ+1︸ ︷︷ ︸
Sim(V,HEnc(h′(w+1),{lb(w+1)

i }))

, C̃ℓ︸︷︷︸
Sim(V,{′′})

, C̃ℓ−1, , C̃0︸ ︷︷ ︸
Sim(V,HEnc(′′))

Figure 4.4: Method of generating circuits in Hyb1.p depending on the value of p − 1

relative to the value of ℓ. Use of h
(w+1)
1 in HEnc on the LHS is from the assumption

that pth has the leftmost leaf as an endpoint. ′′ is the ditto symbol.

Lemma 6. Hyb0

c≡ Hyb1.0 and Hyb1

c≡ Hyb1.dm.

Proof. First we will prove Hyb0

c≡ Hyb1.0 (Fig. 4.3 and Fig. 4.5). In both hybrids all
circuits are honestly generated, but they differ in two ways. The first is in how the labels
{lb(dm)} are formed. Both hybrids generate the tuple (C̃dm , {lb

(dm)
i,b })

$←Garb(F[id, id′, r, r′])

but Hyb1.0 additionally does {lb(dm)i } := {lb(dm)i,zdm [i]}. If ℓ < dm, then zdm is random. In that

case, Eval(C̃dm , {lb
(dm)
i,zdm [i]}) will return {id

′, r′} with overwhelming probability. If ℓ = dm then

zdm := (0λ, x1, x
′
1) and so Eval(C̃dm , {lb

(dm)
i,zdm [i]}) will return {id

′, r′} with probability 1. Hence

the difference between the sets of labels is indistinguishable by the BP(id) = 0 assumption.

The second difference between Hyb0 and Hyb1.0 is in how {cth(0)i,b } is formed. In Hyb0

we define {cth(0)i,b }
$←HEnc(pp, hroot, {lb(0)i,b }). While Hyb1.0 does {cth(0)i,b }

$←HEnc(pp, hroot,

{lb(0)i }), where {lb
(0)
i } := {lb

(0)
i,z0[i]
}. Since hroot ← Hash(pp, z0), by semantic security of hash

encryption we have that HEnc(pp, hroot, {lb(0)i })
c≡ HEnc(pp, hroot, {lb(0)i,b }), completing the

proof of Hyb0

c≡ Hyb1.0.

Next we will prove Hyb1

c≡ Hyb1.dm . In Hyb1 (Fig. 4.3), all circuits are simulated.

In Hyb1.dm (Fig. 4.5), all circuits are simulated except for C̃dm . The two hybrids are the

34

Hyb1.p :

r, id′, r′ $← {0, 1}λ ; pad $← {0, 1}2(n−1) ; zdm
$← {0, 1}3λ

For 0 ≤ w ≤ dm sample random rw

For i from dm − 1 to ℓ+ 1 do ▷ Generate “ghost” hash inputs for levels below pth

v′(i) $← {0, 1}λ ; zi := (h′(i+1), h′(i+1), v′(i))

(C̃dm , {lb
(dm)
i,b })←

$ Garb(F[id, id′, r, r′]) ; {lb(dm)i } := {lb(dm)i,zdm [i]}

For w from dm − 1 to p do (C̃w, {lb(w)
i,b })

$←Garb(V[pp, id, {lb(w+1)
i,b }, rw, r, id′, r′, pad])

{lb(p)i } := {lb
(p)
i,zp[i]
} ▷ Final set of honest labels

If p− 1 ≥ ℓ then ▷ If circuits at, or below, pth leaf level are simulated

If p− 1 > ℓ then for p− 1 to ℓ+ 1 do ▷ Below pth leaf level

{cth(w+1)
i,b } ← HEnc(pp, h′(w+1), {lb(w+1)

i,b }; rw) ; (C̃w, {lb(w)
i })

$←Sim(V, {cth(w+1)
i,b })

(C̃ℓ, {lb
(ℓ)
i })

$←Sim(V, {id′, r′, pad}) ▷ At pth leaf level

For w from ℓ− 1 to 0 do ▷ From interior pth nodes to root

{cth(w+1)
i,b } ← HEnc(pp, h

(w+1)
1 , {lb(w+1)

i }; rw) ; (C̃w, {lb(w)
i })

$←Sim(V, {cth(w+1)
i,b })

Else ▷ If all circuits at, and below, pth leaf level are honest

For w from p− 1 to 0 do

{cth(w+1)
i,b } ← HEnc(pp, h

(w+1)
1 , {lb(w+1)

i }; rw) ; (C̃w, {lb(w)
i })

$←Sim(V, {cth(w+1)
i,b })

{cth(0)i,b }
$←HEnc(pp, hroot, {lb(0)i })

Return m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r)

Figure 4.5: Hyb1.p for 0 ≤ p ≤ dm. The last p + 1 circuits in Hyb1.p are generated
honestly and the remainder are simulated. See Lemma 4.

same after constructing circuit C̃dm and its labels. So, either hybrid can be simulated by

knowing r, the induced path pth, and the pair (C̃dm , {lb
(dm)
i }). For ease of notation let

(C̃, {lbi}) and (C̃′, {lb′i}) denote the distribution of the tuple (C̃dm , {lb
(dm)
i }) in Hyb1 and

Hyb1.0, respectively. We have (C̃, {lbi}) $← Sim(F, {id′, r′}) for random id′, r′ $← {0, 1}λ. In
Hyb1.0, letting Cdm := F[id, id′, r, r′] for random r, we have

(C̃′, {lbi,b}) $←Garb(Cdm)

{lb′i} := {lbi,zdm [i]},

where zdm
$← {0, 1}3λ if ℓ < dm and zdm := (Val[v

(dm)
1]×λ, x1, x

′
1) otherwise, where Val[v

(dm)
1]×λ =

35

0λ. By simulation security of garbled circuits

(C̃′, {lb′i})
c≡ Sim(F,Cdm(zdm))

c≡ Sim(F, {id′, r′}).

If ℓ < dm and zdm is random, then Cdm(zdm) = {id, r} with probability only 2−λ. If ℓ = dm
and zdm := (0λ, x1, x

′
1) then Cdm(zdm) = {id′, r′} with probability 1. Thus, (r, pth, C̃, {lbi})

c≡
(r, pth, C̃′, {lb′i}), proving Hyb1

c≡ Hyb1.0, and completing the proof of Lemma 6.

Lemma 7. For all p ∈ {0, . . . , dm− 1}, hybrids Hyb1.p and Hyb1.p+1 are computationally
indistinguishable.

Proof. First, consider the circuits created in either hybrid:

Hyb1.p :

Garb︷ ︸︸ ︷
C̃dm , . . . , C̃p+1, C̃p,

Sim︷ ︸︸ ︷
C̃p−1, . . . , C̃0

Hyb1.p+1 : C̃dm , . . . , C̃p+1︸ ︷︷ ︸
Garb

, C̃p, C̃p−1, . . . , C̃0︸ ︷︷ ︸
Sim

It is clear that (C̃dm , {lb
(dm)
i,b }, . . . , C̃p+1, {lb(p+1)

i,b }) are formed the same way in both hybrids.

The two hybrids differ only in the distribution of (C̃p, {lb(p)i }); it is generated honestly in
Hyb1.p and simulated in Hyb1.p+1.

There are three possible ways (C̃p, {lb(p)i }) can be simulated in Hyb1.p+1 depending on
the value of p relative to ℓ (see Fig. 4.4, but note that the figure illustrates Hyb1.p, not

Hyb1.p+1). First, if p < ℓ holds, then (C̃p, {lb(p)i }) is simulated using a hash encryption

of {lb(p+1)
i } with zp+1. If p = ℓ, then (C̃p, {lb(p)i }) is simulated using random output since

BP(id) = 0. Finally, if p > ℓ holds, then (C̃p, {lb(p)i }) is simulated using a hash encryption

of {lb(p+1)
i } using “ghost” value zp+1. We will prove that in each of these three possible

combinations it holds that (C̃p, {lb(p)i })Hyb1.p

c≡ (C̃p, {lb(p)i })Hyb1.p+1
.

1. If p < ℓ:

Hyb1.p :

{
(C̃p, {lb(p)i,b })

$←Garb(V[pp, id, {lb(p+1)
i,b }, rp, r, id

′, r′, pad])

{lb(p)i } := {lb
(p)
i,zp[i]
} where zp = (h

(p+1)
1 , h

(p+1)
2 , v

(p)
1)

Hyb1.p+1 :

{
{cth(p+1)

i,b } ← HEnc(pp, h
(p+1)
1 , {lb(p+1)

i }; rp)

(C̃p, {lb(p)i })
$← Sim(V, {cth(p+1)

i,b })
(4.9)

36

By simulation security of garbled circuits,

(C̃p, {lb(p)i })Hyb1.p

c≡ Sim(V,Cp(zp))
c≡ Sim(V,HEnc(pp, h

(p+1)
1 , {lb(p+1)

i,b }; rp)). (4.10)

The use of h
(p+1)
1 in Eq. 4.10 is due to the assumption that the path induced by id has the

leftmost node as its terminal node. So by definition of Cp, its hardwired labels {lb(p+1)
i,b }

will be encrypted under h
(p+1)
1 . Eq. 4.10 is identical to the RHS of Eq. 4.9, and thus when

p > ℓ we have (C̃p, {lb(p)i })Hyb1.p

c≡ (C̃p, {lb(p)i })Hyb1.p+1
.

2. If p = ℓ:

Hyb1.p :

{
(C̃p, {lb(p)i,b })

$←Garb(V[pp, id, {lb(p+1)
i,b }, rp, r, id

′, r′, pad])

{lb(p)i } := {lb
(p)
i,zp[i]
} where zp = (0λ, x1, x

′
1)

Hyb1.p+1 :

{
(C̃p, {lb(p)i })

$← Sim(V, {id′, r′, pad})
where id′, r′ $← {0, 1}λ ; pad $← {0, 1}2(n−1)

(4.11)

By simulation security of garbled circuits,

(C̃p, {lb(p)i })Hyb1.p

c≡ Sim(V,Cp(zp))
c≡ Sim(V, {id′, r′, pad}) . (4.12)

When p = ℓ, zp = (0λ, x1, x
′
1) which causes Cp(zp) to output a random ID and signal

string. So, Equation 4.12 is identical to the first line of Eq. 4.11. Thus if p = ℓ, we have

(C̃p, {lb(p)i })Hyb1.p

c≡ (C̃p, {lb(p)i })Hyb1.p+1
.

3. If p > ℓ:

Hyb1.p :

{
(C̃p, {lb(p)i,b })

$←Garb(V[pp, id, {lb(p+1)
i,b }, rp, r, id

′, r′, pad])

{lb(p)i } := {lb
(p)
i,zp[i]
} where zp = (h′(p+1), h′(p+1), v′(p))

Hyb1.p+1 :

{cth(p+1)

i,b } ← HEnc(pp, h′(p+1), {lb(p+1)
i }; rp)

(C̃p, {lb(p)i })
$← Sim(V, {cth(p+1)

i,b })
where h′(p+1) ← Hash(pp, zp+1) is pseudorandom

(4.13)

37

Consider evaluating C̃p on labels {lb(p)i,zp[i]
} as in Hyb1.p:

Eval(C̃p, {lb(p)i,zp[i]
}) = V[pp, id, {lb(p+1)

i,b }, rp, r, id
′, r′, pad](h′(p+1), h′(p+1), v′(p))

=

{
HEnc(pp, h′(p+1), {lb(p+1)

i,b }; rp) if id[v′p] = 0

HEnc(pp, h′(p+1), {lb(p+1)
i,b }; rp) otherwise

= HEnc(pp, h′(p+1), {lb(p+1)
i,b }; rp) . (4.14)

Equation 4.14 is identical to the RHS of Eq. 4.13 (first), up to the labels {lb(p+1)
i } in

Eq. 4.13 vs. {lb(p+1)
i,b } in Eq. 4.14. By simulation security, the labels {lb(p+1)

i } in Eq. 4.13

are computationally indistinguishable from labels {lb(p+1)
i,zp+1[i]

}. Thus {lb(p+1)
i,zp+1[i]

}Hyb1.p

c≡
{lb(p+1)

i }Hyb1.p+1
. By HE semantic security, HEnc(pp, h′(p+1), {lb(p+1)

i,b }; rp)
c≡ HEnc(pp, h′(p+1),

{lb(p+1)
i }; rp), and hence (C̃p, {lb(p)i })Hyb1.p

c≡ (C̃p, {lb(p)i })Hyb1.p+1
when p > ℓ, which com-

pletes the proof of Lemma 7.

4.3.2 Proof of Lemma 5

Lemma 5 states thatHyb1

c≡ Hyb2. So, we must show thatm2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r),
as sampled in Hyb1, is computationally indistinguishable from random. Recall that in
Hyb1, all circuits are simulated. We will argue that each element of m2 is pseudorandom,
then that the joint distribution is pseudorandom.

First consider the circuit C̃dm . It is formed as (C̃dm , {lb
(dm)
i }) $← Sim(F, {id′, r′}) where

id′, r′ $← {0, 1}λ. Since the inputs id′, r′ are random, by anonymous security of garbled

circuits the distribution (C̃dm , {lb
(dm)
i }) is pseudorandom.

For w from dm − 1 to ℓ+ 1 the circuits are formed as (C̃w, {lb(w)
i })

$← Sim(V, {cth(w+1)
i,b })

where {cth(w+1)
i,b } $←HEnc(pp, h′(w+1), {lb(w+1)

i }). {cth(w+1)
i,b } is pseudorandom by anonymous

semantic security of HE, and so by anonymous security of GS, (C̃w, {lb(w)
i }) is also pseudo-

random.

For w = ℓ we have (C̃ℓ, {lb(ℓ)i })
$← Sim(V, {id′, r′, pad}) where id′, r′ $← {0, 1}λ, pad $←

{0, 1}2(n−1), so again by anonymous security of garbled circuits, the distribution (C̃ℓ, {lb(ℓ)i })
is pseudorandom.

38

For w from ℓ− 1 to 0 we have {cth(w+1)
i,b } $←HEnc(pp, h

(w+1)
1 , {lb(w+1)

i }) and (C̃w, {lb(w)
i })

$← Sim(V, {cth(w+1)
i,b }). Where, again, the use of h

(w+1)
1 in HEnc is from the assumption on

pth. For all w from ℓ−1 to 0, {cth(w+1)
i,b } is pseudorandom by anonymous semantic security

of HE, and thus by anonymous security of GS, (C̃w, {lb(w)
i }) is also pseudorandom.

Next inm2 is the ciphertext, which inHyb1 is formed as {cth(0)i,b }
$←HEnc(pp, hroot, {lb(0)i }).

{cth(0)i,b } is pseudorandom by anonymous semantic security of HE. The final element of m2

is the signal string r, which is sampled uniformly at random.

Now that we have shown each element of m2 with simulated circuits is pseudorandom,
it remains to show that the joint distribution is also pseudorandom. We will do so by
showing each of the following hybrid hops are computationally indistinguishable.

Hyb1 : m2 = (

Sim︷ ︸︸ ︷
C̃dm , . . . , C̃0 ,

HEnc(pp,hroot,{lb(0)i })︷ ︸︸ ︷
{cth(0)i,b } ,

$︷︸︸︷
r) (4.15)

m2 = (

Sim︷ ︸︸ ︷
C̃dm , . . . , C̃0 ,

HEnc(pp,hroot,{lb(0)i })︷ ︸︸ ︷
{cth(0)i,b } ,

$′︷︸︸︷
r) (4.16)

m2 = (

Sim︷ ︸︸ ︷
C̃dm , . . . , C̃0 ,

$︷ ︸︸ ︷
{cth(0)i,b },

$′︷︸︸︷
r) (4.17)

m2 = (

Sim︷ ︸︸ ︷
C̃dm , . . . , C̃1,

$︷︸︸︷
C̃0 ,

$︷ ︸︸ ︷
{cth(0)i,b },

$′︷︸︸︷
r) (4.18)

m2 = (

Sim︷ ︸︸ ︷
C̃dm , . . . , C̃i+1,

$︷ ︸︸ ︷
C̃i, . . . , C̃0,

$︷ ︸︸ ︷
{cth(0)i,b },

$′︷︸︸︷
r) (4.19)

...

Hyb2 : m2 = (

$︷ ︸︸ ︷
C̃dm , . . . , C̃0 ,

$︷ ︸︸ ︷
{cth(0)i,b } ,

$′︷︸︸︷
r) (4.20)

Eq. 4.15 to Eq. 4.16: In Eq. 4.15, C̃dm , . . . , C̃0 are simulations of circuits with r hardcoded,
while in Eq. 4.16, r is randomly sampled independently. Note that because of the as-
sumption BP(id) = 0, no evaluation of the circuits using {cth(0)i,b } and DecPath will result
in the output of the signal string r. So, the simulated circuits do not actually have r
hardcoded. Hence, the signal string r in Hyb1 will be independent of the other elements

of m2 (the simulated circuits and the ciphertext {cth(0)i,b }). So the change in Eq. 4.16 to an
independently random string is computationally undetectable.

39

Eq. 4.16 to Eq. 4.17: Here, the ciphertext changes from an encryption of the simulated
labels for C̃1 to independently random. As mentioned above, by the assumption BP(id) = 0,
the evaluation of DecPath will only ever output (id′, r′) ̸= (id, r). So changing the ciphertext
to random does not affect the evaluation of the circuits. On the other hand, the simulated
circuits contain no information about {cth(0)i,b } that could help in distinguishing between
Eq. 4.16 and Eq. 4.17.

Eq. 4.17 to Eq. 4.18: Before switching to random, C̃0 depends on the hash encryption of
labels of C̃1. But since the labels to evaluate C̃0 were lost in Eq. 4.17 when the ciphertext
was switched to random, C̃0 can no longer be evaluated. Hence C̃0’s dependence on C̃1 is
hidden by semantic security of hash encryption.

Eq. 4.18 to Eq. 4.19 for i = 1 and Eq. 4.19 for i increasing to dm: Each of these
hops is indistinguishable due to a similar argument as the previous hop. The difference
is that instead of the ciphertext being switched to random, the circuit which outputs the
ciphertext is now switched to random. The result is the same as the previous hop and the
change is indistinguishable.

Hence m2 is pseudorandom in the view of R, proving Hyb1

c≡ Hyb2 and completing
the proof.

Remark 1. In the proofs above, we assumed that the path induced by evaluating BP(id)

always travelled to the left child. In the general case, the path in Eq. 4.8 ending in v
(ℓ)
1 just

needs to be changed to the path induced by BP(id) ending in the appropriate leaf u ∈ T .
The proofs should then be updated accordingly.

40

Chapter 5

Applications

Construction 1 for BP-2PC can be used to realize multiple functionalities by reducing
the desired functionality to an instance of BP-2PC. One step of the reductions involves
constructing a branching program based on a set of bit strings.

At a high level, SetBP (Fig. 5.1) creates a branching program for a set of elements (each
of length λ) S := {x1, . . . , xm} in three main steps. For concreteness, suppose the goal is
to use this BP for a private set intersection.

First, for every prefix a ∈ {ϵ} ∪ {0, 1} ∪ {0, 1}2 ∪ · · · ∪ {0, 1}λ of the elements in S, a
node, va, is added to the set of nodes V . If a ∈ S, then the value encoded in va is set to
1. This is an ‘accept’ leaf node. If |a| < λ, then the value encoded in va is set to |a| + 1.
When the BP is being evaluated on some input, this will indicate the bit following prefix
a. Next, edges are created between levels of the BP. For |a| < λ, if for b ∈ {0, 1}, node va∥b
exists in V , then an edge labeled with bit b is created from va to va∥b. For b ∈ {0, 1}, if
va∥b /∈ V , then node va∥b is added to V with an encoded bit 0. This is a ‘reject’ leaf. Then
a b-labelled edge is added from va to va∥b. Lastly, the BP is pruned. If two sibling leaves
are both encoded with the same value, they are deleted and their parent becomes a leaf
encoding that same value.

The definition below generalizes this concept by allowing us to capture both PSI and
PSU via an indicator bit bpth. In the description above, bpth is set to 1 for the PSI setting.
For PSU we set bpth = 0.

Construction 2 (Set to branching program). Figure 5.1 defines a procedure to create
a branching program from an input set S. SetBP(S, bpth) takes as input a set S :=
{x1, . . . , xm} of m strings, all of length λ and a bit bpth and outputs a tuple (V,E, T,Val)

41

defining a branching program. The output BP is such that if x ∈ S, then BP(x) = bpth,
and if x /∈ S, then BP(x) = 1− bpth.

Procedure SetBP runs in time O(λ|S|). In particular, when |S| = poly(λ), SetBP
generates the BP in time O(poly(λ)). The output BP has depth d ≤ λ+ 1 and the number
of nodes is 2d + 1 ≤ |V | ≤ 2d+1 − 1. Evaluation of BP(x) for arbitrary x ∈ {0, 1}λ takes
time O(λ).

BP evaluation runtime: Recall the BP evaluation algorithm in Fig. 3.1. Each loop
iteration of the evaluation makes progress by moving down the tree one level. The number
of iterations is at most the tree depth, which is at most λ+1 for the BP created in Fig. 5.1.
Each iteration takes constant time, so evaluation of BP(x) for arbitrary x ∈ {0, 1}λ takes
time O(λ).

5.1 Private Set Intersection (PSI)

Assume a sender party has a singleton set SS = {id} where id ∈ {0, 1}λ and a receiver has
a set SR ⊂ {0, 1}λ such that |SR| is poly(λ). In this setting, we can define PSI as follows.

Definition 8 (Private set union (PSI) functionality with |SS| = 1). Let Π be a two-party
communication protocol. Let R be the receiver holding set SR ⊂ {0, 1}λ and let S be the
sender holding singleton set SS = {id}, with id ∈ {0, 1}λ. Π is a PSI protocol if the following
hold after execution of the protocol.

• Correctness: R learns SR ∩ {id} if and only if id ∈ SR.

• Receiver security: Π achieves receiver security if for all id ∈ {0, 1}λ, and all
pairs SR0, SR1 ⊂ {0, 1}λ we have that viewΠ

S (SR0, id, λ) ≈ viewΠ
S (SR1, id, λ) . If the

distributions are computationally (resp., statistically) indistinguishable then we have
computational (resp., statistical) security.

• Sender security: Π achieves security for the sender if for all λ ∈ N, SR ⊂ {0, 1}λ,
and all pairs id0, id1 ∈ {0, 1}λ \ SR we have that viewΠ

R(SR, id0, λ) ≈ viewΠ
R(SR, id1, λ) .

If the distributions are computationally (resp., statistically) indistinguishable then we
have computational (resp., statistical) security.

• Security against outsiders: Π is secure against outsiders if for all outside parties
P /∈ {S,R} and all pairs of sender/receiver inputs (SR0, id0) and (SR1, id1), we have
that trΠ(λ, SR0, id0) ≈ trΠ(λ, SR1, id1) .

42

Procedure SetBP(S, bpth):

{x1, . . . , xm} ← S ; λ← |x1| ; V,E, T ← ∅
V ← V ∪ {vϵ} ; Val[vϵ]← 1 ▷ set root node

For 1 ≤ i ≤ λ do ▷ add a node for every prefix of length i in S

For 1 ≤ j ≤ m do

a← xj [1..i] ; V ← V ∪ {va}
If |a| = λ then Val[va]← bpth ; T ← T ∪ {va} ▷ accept leaves

Else Val[va]← |a|+ 1

For all va ∈ V s.t. |va| < λ do ▷ adding edges from va to children

For b ∈ {0, 1} do
If ∃ va∥b ∈ V then E ← E ∪ {(va, va∥b, b)}
Else

V ← V ∪ {va∥b} ; Val[va∥b]← 1− bpth ▷ reject leaves

E ← E ∪ {(va, va∥b, b)} ; T ← T ∪ {va∥b}
▷ Pruning: if a node has 2 leaf children with value bpth, delete

the children and change parent value to bpth.

While ∃ va ∈ V s.t. va∥b ∈ T ∧ Val[va∥b] = bpth for b ∈ {0, 1} do
Val[va]← bpth ; T ← T ∪ {va} ; T ← T \ {va∥0, va∥1}
V ← V \ {va∥0, va∥1} ; E ← E \ {(va, va∥b, b) | b ∈ {0, 1}}

Return (V,E, T,Val)

Figure 5.1: Procedure for constructing a BP from a set of m λ-bit strings. See
Construction 2. Based on a description in [CGH+21].

The PSI functionality can be achieved by casting it as an instance of BP-2PC:

1. R runs SetBP(SR, 1) (Fig. 5.1) to generate a branching program BPpsi such that
BPpsi(x) = 1 if x ∈ SR and BPpsi(x) = 0 otherwise.

2. R and S run BP-2PC with inputs BPpsi and id, respectively. By construction of
BP-2PC: {

R learns id if BPpsi(id) = 1 =⇒ id ∈ SR

R does not learn id if BPpsi(id) = 0 =⇒ id /∈ SR

,

43

which satisfies the PSI correctness condition and security follows from the security
of Construction 1 for BP-2PC.

Note that the computation and communication costs of the receiver and sender do not
depend on |SR|. Suppose the receiver holds a BP with a polynomial number of root-to-
leaf paths that describes a set SR of exponential size. Then, this PSI protocol can run in
polynomial time.1

5.2 Private Set Union (PSU)

As before, assume the sender has a singleton set SS = {id} where id ∈ {0, 1}λ and the
receiver has a set SR. In this setting, we define PSU as follows.

Definition 9 (PSU functionality with |SS| = 1). Let Π be a two-party communication
protocol. Let R be the receiver holding set SR ⊂ {0, 1}λ and let S be the sender holding
singleton set SS = {id}, with id ∈ {0, 1}λ. Π is a PSU protocol if the following hold after
execution of the protocol.

• Correctness: R learns SR ∪ {id}.

• Receiver security: Π achieves receiver security if for all id ∈ {0, 1}λ, and all
pairs SR0, SR1 ⊂ {0, 1}λ we have that viewΠ

S (SR0, id, λ) ≈ viewΠ
S (SR1, id, λ) . If the

distributions are computationally (resp., statistically) indistinguishable then we have
computational (resp., statistical) security.

• Sender security: Π achieves security for the sender if for all SR ⊂ {0, 1}λ, and
all pairs id0, id1 ∈ SR we have that viewΠ

R(SR, id0, λ) ≈ viewΠ
R(SR, id1, λ) . If the dis-

tributions are computationally (resp., statistically) indistinguishable then we have
computational (resp., statistical) security.

• Security against outsiders: Π is secure against outsiders if for all outside parties
P /∈ {S,R} and all pairs of sender/receiver inputs (SR0, id0) and (SR1, id1), we have
that trΠ(λ, SR0, id0) ≈ trΠ(λ, SR1, id1) .

The PSU functionality can be achieved by casting it as an instance of BP-2PC:

1This assumes R already holds the BP and does not have to build it from their exponential-sized set
SR.

44

1. R runs SetBP(SR, 0) (Fig. 5.1) to generate a branching program BPpsu such that
BPpsu(x) = 1 if x /∈ SR and BPpsu(x) = 0 otherwise.

2. R and S run BP-2PC with inputs BPpsu and id, respectively. By construction of
BP-2PC: {

R learns id if BPpsu(id) = 1 =⇒ id /∈ SR

R does not learn id if BPpsu(id) = 0 =⇒ id ∈ SR

,

which satisfies the PSU correctness condition and security follows from the security
of Construction 1 for BP-2PC.

Note that the computation and communication costs of the receiver and sender do not
depend on |SR|. Suppose the receiver holds a BP with a polynomial number of root-to-leaf
paths that describes a set SR of exponential size. Then, this PSU protocol can run in
polynomial time.2

5.3 Wildcards

Definition 10 (Wildcard). In a bit string a wildcard, denoted by an asterisk ∗, is used
in place of a bit to indicate that its position may hold either bit value. In particular, the
wildcard character replaces only a single bit, not a string.

For example, 00∗ = {000, 001} and ∗ ∗ 0 = {000, 010, 100, 110}.
SetBP in Fig. 5.1 assumes receiver’s set SR does not contain strings with wildcards.

Fig. 5.2 presents a modified version called SetBP∗ which creates a branching program
based on a singleton set SR containing a string with wildcard elements. Using SetBP∗

instead of SetBP in the constructions for PSI and PSU above allows the receiver’s set to
contain wildcards.

SetBP∗ runs in O(λ) time. The resulting BP will contain 2k + 1 nodes, where k ≤ λ is
the number of non-wildcard indices. The BP has depth k, or λ− k, where k is the number
of wildcard indices. Since the depth leaks the number of wildcards in x, the receiver’s
message m1 to the sender in Construction 1 contains the maximum depth dm, instead of
the true depth.

2This assumes R already holds the BP and does not have to build it from their exponential-sized set
SR.

45

Procedure SetBP∗(S, bpth):

x← S ; λ← |x| ; V,E, T ← ∅
WC← {i | x[i] ̸= ∗} ; k ← |WC| ▷ ascending ordered set of all non-wildcard indices

If x[1] ̸= ∗ then V ← V ∪ {vϵ} ; Val[vϵ]← 1 ▷ root node if x doesn’t start with *

If x[1] = ∗ then V ← V ∪ {vϵ} ; Val[vϵ]← WC[1] ▷ root node if x starts with *

For 1 ≤ i ≤ k do ▷ for every non-wildcard index of x

j ← WC[i] ; a← x[1..j] ; V ← V ∪ {va}
If i = k then Val[va]← bpth ; T ← T ∪ {va} ▷ accept leaf

Else Val[va]← WC[i+ 1]

aprev ← x[1..WC[i− 1]] ▷ previous interior node (If i = 1 then aprev ← ϵ)

E ← E ∪ {(vaprev , va, x[j])} ▷ edge labelled with value of current non-* bit

a′ ← x[1..(j − 1)] ∥ (1− x[j]) ▷ a′ is equal to a with the last bit flipped

V ← V ∪ {va′} ; T ← T ∪ {va′} ; Val[va′]← 1− bpth ▷ reject leaf

E ← E ∪ {(vaprev , va′ , 1− x[j])} ▷ edge with flipped value of current non-* bit

Return (V,E, T,Val)

Figure 5.2: Procedure for constructing a branching program from a singleton set
containing a λ-bit string with wildcards. See Construction 2 and Section 5.3.

Overview of SetBP∗. SetBP∗ (Fig. 5.2) starts by forming an ordered ascending list of all
indices of x without wildcards. Then we loop over each of these indices. A node is added
to the BP for every prefix of x ending with an explicit (as opposed to *) bit value. Each
node value is set to the index of the next non-wildcard bit in x. The node representing
the final non-wildcard index is given value bpth. For example, if x = 0 ∗ 1 ∗ 0, then we
add prefix nodes vϵ, v0, v0∗1, v0∗1∗0, (where vϵ is the root), and set their values to 1, 3, 5, bpth,
respectively.

Each iteration adds an edge from the previous prefix node to the one just created. This
edge is labelled with the bit value at the current non-wildcard index. Continuing with the
example, in the iteration node v0∗1 is created, an edge from v0 to v0∗1 is added with label
1. Since SR only contains one element, we also create a reject leaf representing the prefix
of the current interior node with the final bit flipped. An edge labelled with this flipped
bit is also added from the previous node. In the example, v0∗0 is created with value 1− bpth
and edge (v0∗, v0∗0, 0) is added. Once all non-wildcard indices of x have been considered,
the BP is returned.

46

Chapter 6

Conclusion

In this thesis, we further the study of laconic cryptography with a laconic two-party proto-
col for the secure computation of a possibly unbalanced branching program. Our two-party
protocol uses an anonymous garbled circuit scheme with an anonymous hash encryption
scheme. Using these tools together allows for the evaluation of the branching program
while hiding the intermediate results of the computation.

The protocol construction can be based on either the computational Diffie-Hellman or
Learning with Errors assumption. Prior to this work, laconic branching programs could
only be realised from the LWE assumption (due to the construction for general function-
alities of [QWW18]). Due to the versatility of branching programs, our protocol can be
used for laconic PSI and PSU.

Future work. The receiver party’s computational cost depends on the number of root-
to-leaf paths in the BP. As a result, we are limited to BPs with a polynomial number of
such paths. So a direction for future study is to describe which BPs of polynomial size also
have a polynomial number of root-to-leaf paths. Within this task is the need to determine
if a BP, BP , is minimal. Meaning, does there exist BP ′ with the same functionality as
BP while having fewer nodes or paths than BP? For example, all three BPs in Figure 6.1
have different sizes but the same functionality. In this case, BP c) is minimal, but in more
complicated BPs, it is not always so clear. These topics were beyond the scope of this
thesis but could allow our protocol to have applications in fuzzy matching.

47

Figure 6.1: Three branching programs with the same functionality.

48

References

[ABD+21] Navid Alamati, Pedro Branco, Nico Döttling, Sanjam Garg, Mohammad Ha-
jiabadi, and Sihang Pu. Laconic private set intersection and applications. In
Kobbi Nissim and Brent Waters, editors, TCC 2021: 19th Theory of Cryp-
tography Conference, Part III, volume 13044 of Lecture Notes in Computer
Science, pages 94–125, Raleigh, NC, USA, November 8–11, 2021. Springer,
Heidelberg, Germany. iii, viii, 2, 3, 4, 7, 10, 12, 13, 16, 21, 23, 24

[ALOS22] Diego F. Aranha, Chuanwei Lin, Claudio Orlandi, and Mark Simkin. La-
conic private set-intersection from pairings. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, ACM CCS 2022: 29th Conference on
Computer and Communications Security, pages 111–124, Los Angeles, CA,
USA, November 7–11, 2022. ACM Press. 2, 3, 4, 7

[BFK+09] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti,
Ahmad-Reza Sadeghi, and Thomas Schneider. Secure evaluation of private
linear branching programs with medical applications. In Michael Backes and
Peng Ning, editors, Computer Security – ESORICS 2009, pages 424–439,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. 3

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan.
Anonymous IBE, leakage resilience and circular security from new assump-
tions. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2018, Part I, volume 10820 of Lecture Notes in
Computer Science, pages 535–564, Tel Aviv, Israel, April 29 – May 3, 2018.
Springer, Heidelberg, Germany. 6, 8, 9, 10, 16, 17, 18

[BPSW07] Justin Brickell, Donald E. Porter, Vitaly Shmatikov, and Emmett Witchel.
Privacy-preserving remote diagnostics. In Peng Ning, Sabrina De Capitani

49

di Vimercati, and Paul F. Syverson, editors, ACM CCS 2007: 14th Confer-
ence on Computer and Communications Security, pages 498–507, Alexandria,
Virginia, USA, October 28–31, 2007. ACM Press. 3

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao,
and Antigoni Polychroniadou. Laconic oblivious transfer and its applica-
tions. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
– CRYPTO 2017, Part II, volume 10402 of Lecture Notes in Computer Sci-
ence, pages 33–65, Santa Barbara, CA, USA, August 20–24, 2017. Springer,
Heidelberg, Germany. 2, 3, 4, 6, 21

[CDPP22] Kelong Cong, Debajyoti Das, Jeongeun Park, and Hilder V. L. Pereira. Sort-
ingHat: Efficient private decision tree evaluation via homomorphic encryp-
tion and transciphering. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, ACM CCS 2022: 29th Conference on Computer and
Communications Security, pages 563–577, Los Angeles, CA, USA, Novem-
ber 7–11, 2022. ACM Press. 3

[CGH+21] Melissa Chase, Sanjam Garg, Mohammad Hajiabadi, Jialin Li, and Peihan
Miao. Amortizing rate-1 OT and applications to PIR and PSI. In Kobbi
Nissim and Brent Waters, editors, TCC 2021: 19th Theory of Cryptography
Conference, Part III, volume 13044 of Lecture Notes in Computer Science,
pages 126–156, Raleigh, NC, USA, November 8–11, 2021. Springer, Heidel-
berg, Germany. viii, 3, 43

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-
Hellman assumption. In Jonathan Katz and Hovav Shacham, editors, Ad-
vances in Cryptology – CRYPTO 2017, Part I, volume 10401 of Lecture Notes
in Computer Science, pages 537–569, Santa Barbara, CA, USA, August 20–
24, 2017. Springer, Heidelberg, Germany. 4, 6, 8, 9, 10, 16

[DGGM19] Nico Döttling, Sanjam Garg, Vipul Goyal, and Giulio Malavolta. Laconic
conditional disclosure of secrets and applications. In David Zuckerman, ed-
itor, 60th Annual Symposium on Foundations of Computer Science, pages
661–685, Baltimore, MD, USA, November 9–12, 2019. IEEE Computer So-
ciety Press. 3, 12

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour,
and Rafail Ostrovsky. Trapdoor hash functions and their applications. In

50

Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptol-
ogy – CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer
Science, pages 3–32, Santa Barbara, CA, USA, August 18–22, 2019. Springer,
Heidelberg, Germany. 3, 6

[DKL+23] Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio
Malavolta, and Ahmadreza Rahimi. Efficient laconic cryptography from
learning with errors. In Carmit Hazay and Martijn Stam, editors, Advances in
Cryptology – EUROCRYPT 2023, Part III, volume 14006 of Lecture Notes in
Computer Science, pages 417–446, Lyon, France, April 23–27, 2023. Springer,
Heidelberg, Germany. 7

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of Comput-
ing, pages 169–178, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press.
3

[GGH19] Sanjam Garg, Romain Gay, and Mohammad Hajiabadi. New techniques
for efficient trapdoor functions and applications. In Yuval Ishai and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part III, vol-
ume 11478 of Lecture Notes in Computer Science, pages 33–63, Darmstadt,
Germany, May 19–23, 2019. Springer, Heidelberg, Germany. 17

[GHMM24a] Sanjam Garg, Mohammad Hajiabadi, Peihan Miao, and Alice Murphy. La-
conic branching programs from the diffie-hellman assumption. Cryptology
ePrint Archive, Paper 2024/102, 2024. https://eprint.iacr.org/2024/

102. iii

[GHMM24b] Sanjam Garg, Mohammad Hajiabadi, Peihan Miao, and Alice Murphy. La-
conic branching programs from the diffie-hellman assumption. In Qiang Tang
and Vanessa Teague, editors, Public-Key Cryptography – PKC 2024, pages
323–355, Cham, 2024. Springer Nature Switzerland. iii

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ah-
madreza Rahimi. Registration-based encryption: Removing private-key
generator from IBE. In Amos Beimel and Stefan Dziembowski, editors,
TCC 2018: 16th Theory of Cryptography Conference, Part I, volume 11239
of Lecture Notes in Computer Science, pages 689–718, Panaji, India, Novem-
ber 11–14, 2018. Springer, Heidelberg, Germany. 10

51

https://eprint.iacr.org/2024/102
https://eprint.iacr.org/2024/102

[GHO20] Sanjam Garg, Mohammad Hajiabadi, and Rafail Ostrovsky. Efficient range-
trapdoor functions and applications: Rate-1 OT and more. In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020: 18th Theory of Cryptography
Conference, Part I, volume 12550 of Lecture Notes in Computer Science,
pages 88–116, Durham, NC, USA, November 16–19, 2020. Springer, Heidel-
berg, Germany. 3

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th Annual ACM Symposium on Theory of Computing,
pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM Press. 1

[GRS22] Gayathri Garimella, Mike Rosulek, and Jaspal Singh. Structure-aware private
set intersection, with applications to fuzzy matching. In Yevgeniy Dodis
and Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO 2022,
Part I, volume 13507 of Lecture Notes in Computer Science, pages 323–
352, Santa Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg,
Germany. 7

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology
– CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Sci-
ence, pages 75–92, Santa Barbara, CA, USA, August 18–22, 2013. Springer,
Heidelberg, Germany. 2, 3

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted
data. In Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryptography Con-
ference, volume 4392 of Lecture Notes in Computer Science, pages 575–594,
Amsterdam, The Netherlands, February 21–24, 2007. Springer, Heidelberg,
Germany. 2, 3, 15

[KNL+19] Ágnes Kiss, Masoud Naderpour, Jian Liu, N. Asokan, and Thomas Schneider.
SoK: Modular and efficient private decision tree evaluation. Proceedings on
Privacy Enhancing Technologies, 2019(2):187–208, April 2019. 3

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation
and applications. In Mikkel Thorup, editor, 59th Annual Symposium on
Foundations of Computer Science, pages 859–870, Paris, France, October 7–
9, 2018. IEEE Computer Society Press. 2, 3, 6, 47

52

[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical
report, TR-81, Aiken Computation Lab, Harvard University, 1981. 2

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryp-
tology ePrint Archive, Report 2005/187, 2005. https://eprint.iacr.org/
2005/187. 2

[Yao82] Andrew C. Yao. Protocols for secure computations. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science, pages 160–164,
Los Alamitos, CA, USA, nov 1982. IEEE Computer Society. 1

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended ab-
stract). In 27th Annual Symposium on Foundations of Computer Science,
pages 162–167, Toronto, Ontario, Canada, October 27–29, 1986. IEEE Com-
puter Society Press. 1, 2, 8

53

https://eprint.iacr.org/2005/187
https://eprint.iacr.org/2005/187

APPENDICES

54

Appendix A

Supplementary Figures

Figure A.1: Example of the node labelling conventions used throughout the
paper.

55

Figure A.2: The hashing procedure notation demonstrated on the Figure A.1
BP.

56

Figure A.3: Illustration of the progression of DecPath given in Figure 4.2, assum-
ing the input path has endpoint the leftmost leaf and has value 1λ.

57

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Our Results

	Technical Overview
	Preliminaries
	Hash Encryption + Garbled Circuits

	Semi-Honest Laconic 2PC with Branching Programs
	The BP-2PC Construction
	Proof of Lemma 3: correctness of BP-2PC
	Proof of Theorem 1: security of BP-2PC
	Proof of Lemma 4
	Proof of Lemma 5

	Applications
	Private Set Intersection (PSI)
	Private Set Union (PSU)
	Wildcards

	Conclusion
	References
	APPENDICES
	Supplementary Figures

