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Abstract

Failure localization involves identifying the suspicious locations of failures by analyzing
the reported alarms recorded in the OTN control plane. To expedite the development
of failure localization algorithms and reduce costs, a simulator is essential to replicate
alarm propagation behaviors across various scenarios. This thesis presents the design and
implementation of a simulator comprising the following components: a rule database, a
topology generator, a failure generator, and an alarm generator.

The topology generator produces network topologies to simulate various network con-
ditions, while the failure generator generates simulated failures. Subsequently, the alarm
generator utilizes the rule database to generate corresponding alarm data. The generated
data structures include failures/alarms, alarm flows, alarm chains, and alarm correlation
trees. Additionally, two post-processing methods are introduced to illustrate the derivation
of new data structures from existing data.

To validate the accuracy of the simulator, five test cases are introduced, featuring
different topology settings, varying numbers of failures, and including a specific scenario
involving noisy alarms.
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Chapter 1

Introduction

As the backbone of modern communication systems, telecommunications networks have
undergone significant evolution in the past decades, driven by the increasing demand to
handle large volumes of data at high speeds. Historically, telecommunications networks
relied primarily on wired technologies, such as copper cables. However, inherent limitations
in bandwidth, transmission distance, and susceptibility to interference make it challenging
for these systems to keep pace with the burgeoning data traffic of contemporary networks.
Fiber optical communication system, on the other hand, offers solutions that facilitate such
expansions through the utilization of optical fiber technology. By transmitting data in the
form of light signals, it delivers unprecedented capacity, speed, and reliability, mitigating
many of the shortcomings of traditional wired networks.

To enable compatibility among components developed by different manufacturers, nu-
merous standards have been developed. Optical Transport Network (OTN) is a industry
standard introduced by ITU-T that provides an efficient way to transport, switch and mul-
tiplex different services onto a single high-capacity optical lightpath [4]. It is also known as
a “digital wrapper” because it encapsulates frames of data from various clients, including
IP, Ethernet, storage, digital video and SONET/SDH, into one container for transport
across optical networks, as illustrated in Figure 1.1. Moreover, by adding forward error
correction (FEC) overhead, OTN supports the detection and correction of errors in the
optical link.

However, with the existence of factors such as equipment malfunction and environmen-
tal threats, even the most robust networks are not immune to occasional faults and/or
interruptions. In the event of such challenges, the ability to localize the source of failures
becomes paramount.
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Figure 1.1: OTN Wrapper [1]

1.1 Motivation

Failure localization is the process of tracing signals within the network to determine or
localize the initial malfunctioning node(s). A failure event can occur unexpectedly at any
board or fiber segment, disrupting the optical signals traversing through it. Subsequently,
the failure may trigger alarms that propagate across multiple boards nearby and/or those
situated in geographically distant areas, depending on network topology and traffic dis-
tribution. However, only alarm events are recorded in the OTN control plane, and those
events encompass not only the root alarms triggered directly by a failure, but also alarms
that have propagated from other alarms.

To ensure the efficient troubleshooting and maintenance of the network, it is essential
to pinpoint the root location of failure by analyzing the alarm records. Given the complex
and dynamic nature of modern networks, having a simulator is essential. A simulator
serves as a virtual environment where different network conditions and failure scenarios
can be replicated in a controlled manner. Furthermore, it not only accurately reproduces
real-world scenarios but also proactively generates potential failure scenarios.

1.2 Thesis Contribution

This thesis introduces an enhanced version of the OTN-based simulator, building upon
the groundwork laid by its original version as discussed in [5]. The refined simulator
incorporates the following advancements and functionalities:
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• The refined simulator introduces dynamic topology functionality, mirroring real-
world scenarios where optical networks evolve over time. Additionally, enhancements
to the failure generator and alarm generator ensure seamless support for dynamic
topology simulations.

• In contrast to the original version, which required manual coding of network topolo-
gies, the refined simulator now integrates a topology generator. This tool automates
the production of diverse topologies and traffic scenarios of varying sizes and states,
enhancing the simulator’s versatility and usability.

• In the original version, the simulator operated at the node level, necessitating separate
code blocks for each node type within the alarm generator. For instance, to locate
the nearest board of type A downstream from location B, the simulator would first
identify the node type containing a type A board, then ascertain the nearest such
node, and finally determine the closest board to location B. In contrast, the refined
simulator operates at the board level, enabling the reuse of the same board-search
functions across all node and board types, thus enhancing modularity within the
simulator.

• Additional functionalities have been incorporated into the alarm generator, compris-
ing the following features:

– In contrast to the original version, which utilized a fixed time step for every
alarm pair, the refined simulator now incorporates a random propagation time
between alarm pairs.

– Each alarm now includes a unique Alarm ID, allowing for the distinction of
alarm events with identical types and locations.

– Noise alarms can now be introduced to the alarm set, facilitating testing of the
failure localization methods’ anti-noise capabilities.

1.3 Thesis Organization

The remainder of this thesis is structured into four chapters, outlined as follows:

Chapter 2 delves into the background information surrounding optical transport net-
works, elucidating their structures and primary components. Additionally, this chapter
offers a comprehensive overview of key definitions, encompassing terms such as topology,
node, board, lightpath, alarm and trail.

3



Chapter 3 delineates the architecture of the simulator, detailing its core components
including the rule database, topology generator, failure generator, and alarm generator.
Furthermore, this chapter introduces two post-processing methods utilized for feature ex-
traction from the generated data.

Chapter 4 outlines four distinct test cases situated in various scenarios, comprising
three for static topology and one for dynamic topology.

Chapter 5 summarizes the thesis and delineates its limitations, offering insights for
prospective directions.
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Chapter 2

Background

2.1 Overview of Optical Transport Network

Optical transmission network combines the benefits of synchronous optical networking and
synchronous digital hierarchy (SONET/SDH) with the bandwidth expandability of dense
wavelength division multiplex (DWDM) technology [6]. SONET/SDH are standardized
network protocols that specify methods for multiplexing digital signals in order to trans-
mit data over optical fiber networks [7]. Moreover, DWDM technology allows OTN to
combine data signals from different sources onto a single pair of optical fiber, maximizing
the utilization of network resources.

2.1.1 Hierarchical Structure of OTN Layers

G.709 defines a number of layers in the OTN hierarchy, which are shown in Figure 2.1.
These layers include OPUk, ODUk, and OTUk layers, residing within the electrical/digital
domain, whereas OCh, OMS, and OTS layers are in the optical/analog domain. To trans-
port a client signal, the OTN encapsulates it through the following procedures [4]:

1. The OPUk encapsulates the client signal and adds overhead needed to perform rate
adaptations.

2. The ODUk adds overhead to conduct tandem connection monitoring (TCM) and
end-to-end section supervision.

5



Figure 2.1: OTN Hierarchy [2]

3. The OTUk adds overhead to supervise and condition the signal for transport between
3R (Re-amplification, Re-shaping, and Re-timing) regeneration points. Additionally,
a forward error correction (FEC) code is added to monitor error control and a frame
alignment signal (FAS) is added to support frame synchronization.

4. Now the frame is fully formatted and can be transmitted over a wavelength, which
constitutes OCh. The OTN frame structure is given in Figure 2.2.

5. The OMS aggregates group of optical channels onto a single wavelength-division mul-
tiplexing channel. It manages fiber links between optical multiplexer and switches.

6. The OTS represents the physical layer of the optical network, which manages fiber
links between optical components such as optical amplifiers.

To reduce complexity and provide a deeper exploration, the simulator is designed to
focus on the optical layer only.
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Figure 2.2: OTN Frame Structure [3]

2.1.2 Key Equipment in OTN

Various types of OTN equipment are deployed according to the standards. Below are the
most prevalent types and their main functionalities:

• Optical Transponder: converts the digital signals into optical signals for transmission.

• Optical Add/Drop Multiplexer (OADM): selectively drops/inserts optical signals
from/into the fiber.

• Optical Amplifiers: boosts optical signals to extend transmission distances.

• Optical Regenerators: reconditions the received degraded optical signal.

2.2 Key Concepts and Definitions

This section provides a comprehensive overview of the main components and concepts
defined in the simulator.

2.2.1 Topology

Topology is the physical arrangement of nodes and connections in the network. In the
context of alarm propagation, if alarm A triggers alarm B, then their locations must be
connected in the topology, either directly or through a path.
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A topology can be static or dynamic. A static topology assumes that the network
components (nodes and connections) remain unchanged over time. On the contrary, a
dynamic topology assumes that the nodes and connections can be added or removed
to form different network states. In the simulator, a network state is represented by a
sub-topology of the entire network. To be more specific, the nodes and connections in a
network state constitute a subset of those present in the entire network. Figure 2.3 is an
example of dynamic topology. Figure 2.3a is the entire network, and Figures 2.3b, 2.3c
and 2.3d are three different network states. A static topology has only one network state.

(a) (b) (c) (d)

Figure 2.3: Example of Dynamic Topology

2.2.2 Board

A board serves as the smallest unit in the topology. There are five types of boards in
the simulator: FIU, OA, OM, OD and OTU. Fiber interface unit (FIU) serves as an
intermediary between fiber and another node. A connection exists between two nodes
when their FIUs are linked by two fibers in opposite directions. Optical multiplexer (OM)
and optical demultiplexer (OD) boards facilitate the addition/dropping of optical signals,
while the optical amplifier (OA) boosts signal strength. Lastly, the optical transponder
unit (OTU) serves as the endpoint of a lightpath, where each OTU corresponds to at most
one lightpath.

Similarly, a fiber connects two boards together. It is essential to recognize that fibers
possess directionality. For example, an OA FIU fiber denotes a fiber from an OA board
to a FIU board. There are eight types of fiber: FIU FIU, OA FIU, FIU OA, OA OD,
OD OM, OM OA, OD OTU and OTU OM.
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2.2.3 Node

A node, comprising boards and fibers, represents an equipment in the network. There are
two types of nodes involve in the simulator: reconfigurable optical add-drop multiplexer
(ROADM) and optical line amplifier (OLA).

Figure 2.4: ROADM Structure

Their structures are shown in Figures 2.4 and 2.5. In the case of OLA, all boards and
fibers have a fixed count and layout. However, the number of OTUs in a ROADM depends
on the quantity of lightpaths originating from and terminating at it.

Figure 2.5: OLA Structure
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2.2.4 Lightpath

A lightpath is a directional path between two OTUs in the topology. Below are the
three scenarios in which a node can possess a lightpath, along with their corresponding
board-level paths:

• The lightpath originates from a node:

– ROADM: OTU → OM → OA → FIU → . . .

– OLA: there will be no lightpath originating from it.

• The lightpath terminates at a node:

– ROADM: . . .→ FIU → OA → OD → OTU

– OLA: there will be no lightpath terminating at it.

• The lightpath traverses through a node:

– ROADM: . . .→ FIU → OA → OD → OM → OA → FIU → . . .

– OLA: . . .→ FIU → OA → FIU → . . .

We can observe that the board-level path has a fixed pattern. Therefore, given the
initiating and ending OTUs, the board-level lightpath can be derived from the node-level
lightpath. In the simulator, a lightpath is represented by a list of boards. However, to
enhance clarity and simplicity, this thesis will depict lightpaths at the node level in the
figures.

A traffic comprises a list of lightpaths, and a network state encompasses only one
traffic, including all the active lightpaths transporting signals in the network state. Figure
2.6 is an example of traffic in a network state. There are three lightpaths in the traffic: C
→ B → F, C → E → D, C → D.

Figure 2.6: Example of Traffic
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2.2.5 Alarm

Failure is an exceptional event that can trigger alarms in the OTN. It can occur on any
board or fiber in the topology. Alarm is an event triggered by an alarm/failure, which can
only be located on a board. When an alarm directly results from a failure, it is considered
the root alarm of that failure. It is worth noting that a single failure can generate multiple
root alarms.

An alarm/failure possesses the following properties in the simulator:

• Alarm type refers to the specific category of the alarm/failure. The simulator defines
a total of 25 alarm types, and 2 failure types.

• Location denotes the board/fiber where the alarm/failure occurs.

• Time denotes the moment when the alarm/failure happens, measured in seconds.

• An unique ID is assigned to every alarm and failure.

• Failure ID is the ID of the failure which leads to the alarm.

• Is root indicates whether the alarm/failure is a root alarm.

• To test the anti-noise capability of the failure localization method, random noisy
alarms can be added to the alarm set. Is noisy indicates whether the alarm is a
noisy alarm.

Below is an example of a failure and its corresponding alarms:

Alarm type Location Time ID Failure ID Is root Is noisy

board faulty ROADM5-OD1 06:00:00 40 40 false false

OCh LOS P ROADM5-OTU1 06:00:10 264 40 true false

OCh LOS P ROADM7-OTU93 06:00:04 265 40 true false

OMS A P ROADM5-OD1 06:00:07 266 40 true false

OCh A P ROADM5-OTU1 06:00:14 267 40 false false

OCh A P ROADM7-OTU93 06:00:15 268 40 false false

Table 2.1: Example of Failure and Corresponding Alarms

To demonstrate the causal relationship within the failure and alarm set, the concept of
alarm flow is introduced. An alarm flow consist of either a failure and an alarm or two
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alarms, where A → B indicates that failure/alarm A triggers alarm B. The aggregation of
all alarms and alarm flows of one failure forms an alarm correlation tree, as given in
the Figure 2.7, using the same failure example in Table 2.1.

Figure 2.7: Example of Alarm Correlation Tree

Each leaf alarm in the alarm correlation tree is associated with an alarm chain, which
is a path from failure to respective leaf alarm. In Figure 2.7, there are four alarm chains:
40 → 264, 40 → 265, 40 → 266 → 267 and 40 → 266 → 268.

2.2.6 Trail

There are three trails defined in the simulator: OTS, OMS, and OCh trails, corresponding
to the three layers of the OTN. The OTS trail is located between any two connected
boards in the topology, meaning each fiber is an OTS trail. The OMS trail is located
between the OM and OD of two nodes, where a directional path exists between them and
no other OM or OD is located in this path. The OCh trail is a span on a single lightpath,
located between two OTUs.

12



Chapter 3

Simulator Architecture

Figure 3.1: Simulator Architecture

A simplified architecture of the simulator is depicted in Figure 3.1, where static topology
is employed. In the case of dynamic topology, multiple sets of data including Network State,
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Board/Fiber Lists, and Traffic will be generated. For each set, the simulator will apply the
failure generator and alarm generator. Below are the steps the simulator will execute:

1. Firstly, the topology generator will create a topology according to the specified re-
quirements. Then for each network state, a traffic will be generated based on the
required number of lightpaths. Board/fiber list is the list of all boards and fibers in
each network state.

2. Given all boards and fibers, the failure generator will randomly choose failure loca-
tions.

3. Finally, the alarm generator can generate alarm data for each failure based on the
rules provided by rule database.

3.1 Rule Database

The rule database is stored in MySQL and accessed by the simulator through the PyMySQL
library. It provides information about the propagation behavior of each alarm type and
failure type. To make a query, the simulator needs to input “Board” and “Receive Detect
Event”, after which MySQL will output the values of “Output Board”, “Output Type”,
and “Output”. Here is an explanation of each attribute:

• Board is the location type of the input failure/alarm. It is required because the oc-
currence of an alarm type on different location types may result in different outcomes.
For example, if an OMS LOS A alarm is detected by an OD, it will propagate an
OCh LOS P alarm to the OTU. However, if the same alarm type is detected by an
OM, it will trigger an OMS SSF E alarm on the OD.

• Receive Detect Event refers to the type of the input failure/alarm.

• Output Board is the location type of the alarm that will be triggered.

• Output Type specifies the direction of propagation, including transmit downstream,
transmit upstream and locally report. If the output type is transmit downstream,
the alarm propagates along the direction of fibers. Conversely, if the output type is
transmit upstream, the alarm propagates in the opposite direction of fibers. Locally
report means that the alarm/failure triggers another alarm at the same location.
Visualization of each output type is provided in Figure 3.2, where an vertex represents
a board.

14



• Output is the type of the alarm that will be triggered.

Figure 3.2: Different Output Type Behaviour on Board Level

Table 3.1 are two sample rules in the rule database. The first rule is a failure → alarm
rule. If OA OD detects a fiber cut failure, it will transmit an OMS LOS A alarm along
the direction of fibers to the next OD. The second rule is a alarm → alarm rule. After an
OTS LOS B is reported on FIU, it will trigger two alarms: an OTS LOS A on FIU and
an ONS SSF B on OD.

Board Receive Detect Event Output Board Output Type Output

OA OD fiber cut OD transmit downstream OMS LOS A

FIU OTS LOS B
FIU transmit downstream OTS LOS A
OD transmit downstream OMS SSF B

Table 3.1: Example of Rules

There are a total of 2 failure types and 25 alarm types: fiber cut, board faulty,
OTS LOS A, OTS LOS B, OTS LOS C, OTS LOS P, OTS LOS O, OMS LOS A,
OCh LOS P, OTS A P, OMS A P, OCh A P, OTS BDI A, OTS BDI, OMS BDI,
OMS SSF, OMS SSF B, OMS SSF P, OTS PMI, OMS BDI O, OMS SSF O, OMS SSF J,
OMS SSF A, OMS SSF C, OMS SSF E, OMS SSF F, OTS LOS O, which can be classi-
fied into four categories: failure, OTS, OMS and OCh.
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Figure 3.3: A Subgraph of Rule Database

Figure 3.3 is a subgraph of rule database, where a rule is represented by Board -Receive

Detect Event
Output Type−−−−−−−→ Output Board -Output. Let a (location type, failure/alarm type)

pair be a rule event in the rule database. It is noticeable that a rule event can trigger
multiple other rule events, and conversely, multiple rule events can trigger the same rule
event.

Figure 3.4: Hierarchy of Rule Events
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Furthermore, there is a hierarchy in the rule events, as shown in Figure 3.4. At the
highest level, failures have the ability to trigger all other alarm types. OTS alarms and
OMS alarms can trigger all alarm types on the same or lower level than themselves. OCh
alarms are unable to trigger any alarms, including those at the same level.

3.2 Topology Generator

3.2.1 Static Topology Generator

Figure 3.5: Flowchart of Static Topology Generator

To generate a static topology, two parameters are required: Number of Nodes, which
determines the size of the topology, and Number of lightpaths, representing the traffic
volume. The flowchart of the static topology generator is shown in Figure 3.5, and the
step-by-step procedures are outlined below:

1. A random node-level directed graph is generated with the help of NetworkX pack-
age. The ratio of ROADMs is randomly selected between 0.85 and 0.95. Node A is
connected to node B (A → B) if FIU2 of node A and FIU1 of node B are linked by
two opposing fibers.

2. Since static topology has only one network state, there is no necessity to select a
subset of nodes and connections from the entire network. Therefore, the network
state is regarded as identical to the entire network.
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3. Next, a number of lightpaths will be generated based on the network state, where
the pseudo-code is provided in Algorithm 1. The number of available OTUs should
be significantly larger than the number of required lightpaths.

Algorithm 1 Generate Lightpaths

Input: network state NS, number of lightpath NL

Output: NL unique lightpaths
O = all OTUs in NS
L = ∅
for k = 1 to NL do

bs = randomly select an OTU from O
n = node location of bs
ln = node-level lightpath with start node n
while ∃ a neighbour r of n do

add r to ln
n = r

end while
be = randomly select an OTU from N
lb = board-level lightpath given ln, bs, be
add lb to L
remove bs, be from O

end for
return L

3.2.2 Dynamic Topology Generator

The process of generating a dynamic topology is similar to that of a static topology:

1. A random node-level directed graph is generated to form the entire network.

2. To mimic the real-life scenario where lightpaths are added and removed over time,
we first establish the list of traffics, and then construct the network state based on
each traffic. The pseudo-code is provided in Algorithm 2 and the flowchart is given
in Figure 3.6.
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Algorithm 2 Generate Traffics

Input: entire network EN , number of traffic NT , number of lightpaths for each traffic
N1, N2, · · ·NNT

Output: NT unique traffics T1, T2, · · · , TNT
and NT network states NS1, NS2, · · · , NSNT

T1 = Generate Lightpaths(EN , N1)
NS1 = all nodes and connections used in T1

for k = 2 to NT do
Tk = randomly remove some lightpaths from Tk−1

NSk = all nodes and connections used in Tk

NSk = randomly add some nodes and connections from EN −NSk

Tk = Tk+ Generate Lightpaths(NSk, Nk − |Tk|)
end for

Figure 3.6: Flowchart of Dynamic Topology Generator

19



3.3 Failure Generator

The simulator can generate failures based on either a list of location types or a list of
locations:

Figure 3.7: Flowchart of Failure Generator

1. To produce a list of failures, the simulator will first generate a list of time instances,
indicating when each failure occurs. By default, we assume that each failure occurs
at the beginning of each minute. Moreover, the number of failures per minute should
be specified with the default set to 1.

2. Then, the simulator will select a list of locations if not provided. With a location
type, the generator will first determine the eligible node type. For example, if the
location type is OM, then only ROADMs are valid. Subsequently, a random node
with the required node type(s) is selected from the network state, and a random
location with the required location type is chosen from the node.

3. After determining the location, the failure type can be derived. Currently, there are
only two failure types: fiber cut and board faulty, which occur on fiber and board
correspondingly.

4. Since each location can fail only once, the ID of the failure is set to the ID of the
location.

5. Now that all the attributes are prepared, the list of failures can be constructed.
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3.4 Alarm Generator

The architecture of the alarm generator comprises two buffers, one event processor and two
containers. Buffer A stores all the failure events that haven’t been processed, while buffer
B stores all the events resulting from a single failure event. The event processor takes an
event as input and outputs all the alarms triggered by the event. The two containers store
all the alarms and alarm flows generated. The steps to generate alarms given a list of
failures are outlined below:

Initially, buffer A contains all the failures, while buffer B is empty.

Figure 3.8: Alarm Generator (Status 1)

Then, the first failure F1 in buffer A is moved to buffer B for processing.

Figure 3.9: Alarm Generator (Status 2)

F1 is input to the event processor, which then returns a list of alarms A1, A2, which
are directly triggered by F1.
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Figure 3.10: Alarm Generator (Status 3)

The alarms A1 and A2, along with their corresponding alarm flows F1 → A1 and
F1 → A2, are added to the containers. Additionally, a copy of each alarm is appended to
buffer B, as they may trigger further alarms.

Figure 3.11: Alarm Generator (Status 4)

Then, the next event in buffer B is passed to the event processor.

Figure 3.12: Alarm Generator (Status 5)

And the new outputs are added to both the containers and buffer B.
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Figure 3.13: Alarm Generator (Status 6)

If no alarms are returned by the event processor, nothing will be added to the containers
and buffer B.

Figure 3.14: Alarm Generator (Status 7)

Keep processing the events until buffer B is empty. Now we have all the alarms and
alarm flows that result from F1.

Figure 3.15: Alarm Generator (Status 8)

Then the next failure in buffer A is moved to buffer B, and the aforementioned steps
are reiterated.
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Figure 3.16: Alarm Generator (Status 9)

The alarm generation process terminates until buffer A and B are both empty. At this
point, the containers hold all alarms and alarm flows generated from the list of failures.

3.4.1 Event Processor

This section illustrates how the event processor produces alarms by utilizing the rule
database. Upon receiving an event ei as input, the event processor will first extract the
board type from its location. Subsequently, it will input this information, along with ei’s
alarm type, into the rule database. Then the rule database will return a list of tuple
(Output Board, Output Type, Output), as elaborated in Section 3.1.

For each tuple retrieved, the event processor will generate a list of alarm events, as
depicted in Figure 3.17. The number of alarm events produced corresponds to the number
of locations that meet the specified criteria. For example, if the retrieved tuple is (Trans-
mit downstream, OTU, OCh LOS P), and there are two OTUs located downstream of ei
then two alarm events will be created, each corresponding to one of these locations. The
subsequent content in this section expounds on the procedure for generating each attribute
in the alarm event.
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Figure 3.17: Event Processor Architecture

Alarm type

The Alarm type will match the value of the Output specified in the tuple.

Location

The location is determined by all the values within the tuple, alongside the board-level
network state. There are three cases:

• Case 1: Output Type is “to board”.
A single alarm event will be generated, and its location will be identical to that of ei.
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• Case 2: Output Type is “transmit downstream/upstream”, and Output is an OTS or
OMS alarm.
The processor will search for all boards in the network state that fulfill the following
criteria:

– The board possesses a board type matching Output Board.

– There exists a path between ei and the board in the direction indicated by the
Output Type.

– No other boards with the Output Board type are located along the path.

To optimize runtime, the processor will not manually search through all boards in
the network state. Instead, it will conduct a breadth-first search starting from the
location of ei.

A queue is utilized, where boards are dequeued sequentially at each step, and their
neighbors are inspected to determine whether they should be enqueued or discarded,
according to Algorithm 3. It is worth noting that this algorithm only addresses the
scenario where the Output Type is “transmit downstream.” In the event of “transmit
upstream,” the predecessors of each board will be explored instead.
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Algorithm 3 Search Boards

Input: network state NS, ei’s location bi
Output: boardlist
Q = Queue(bi)
boardlist = ∅
while Q is not empty do

newQ = Queue()
while Q is not empty do

b = Q.dequeue()
for n in b.successors do

if n.type == Output Board then
boardlist.add(n)

else
newQ.enqueue(n)

end if
end for

end while
Q = newQ

end while

Figure 3.18 offers a graphical illustration example to elucidate this process, while
the network state is depicted in Figures 3.19 and 3.20. In the figures, “R” denotes
“ROADM” and “O” denotes “OLA”. Certain boards in the board-level figure have
been omitted. In this example, we assume the rule database outputs (OM, transmit
downstream, OMS LOS A), and ei is on ROADM1-FIU1.

Figure 3.18: Example of Event Processor
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Figure 3.19: Board-level Network State of Event Processor Example

Figure 3.20: Node-level Network State of Event Processor Example

• Case 3: Output Type is “transmit downstream”, and Output is an OCh alarm.
The processor will iterate through all lightpaths, specifically identifying those that
traverse the faulty board and subsequently pass through the location of ei. It will
then return the endpoints (OTUs) corresponding to these identified lightpaths. In
the context of OCh alarm, there is no scenario where the Output Type is “transmit
upstream”.
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Time

To simulate the real-life scenario, a random integer will be selected to represent the time
required for an event to trigger another. To be more specific, for any event eo triggered by
ei, its occurrence time will be the time of ei plus a randomly generated duration ranging
from 1 to 10 seconds.

ID

The alarm container will keep track of the number of alarms it receives and increment the
ID by 1 each time a new alarm is inputted.

Failure ID

The alarm event will inherit the failure ID from the event that triggers it.

Is root

This attribute will be set to true if the alarm type of the parent event ei indicates a failure;
otherwise, it will be set to false.

Is noisy

By default, this attribute is set to false unless explicitly modified.

3.5 Post-processing for Feature Extraction

In order to apply various failure localization methods, additional data processing may be
required to derive valuable information from the topology and/or alarm data. This section
delves into two post-processing procedures to extract new features from the data.
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3.5.1 Alarm Chain

The alarm chain, as introduced in Section 2.2.5, is a sequence of events denoted as f1 →
e2 → · · · → ek, where each pair of consecutive events constitutes an alarm flow. Here, f1
represents the initial failure event, while ek denotes the leaf alarm event. To construct the
alarm chains for a specific failure, all the leaf alarms from the alarm set will be selected,
and the chain should be developed in reverse order, tracing back from the leaf alarms to
the originating failure event in the alarm correlation tree.

Given an alarm and an alarm flow set, the first step is to eliminate all noisy alarms from
the alarm set, utilizing the Is noisy field in each alarm object. Subsequently, the alarms
and alarm flows are grouped based on their Failure ID, and for each group, the following
steps will be executed:

1. Input alarms and alarm flows into ArangoDB, a graph database system, to construct
an alarm correlation tree, where each vertex represents an alarm/failure and each
edge represents an alarm flow.

2. Locate all the leaf alarms in the tree by isolating all the vertices that have no outgoing
edges.

3. For each leaf alarm ek, trace back along its inward edge to identify the preceding
event ek−1 such that ek−1 → ek. This edge is distinct because each alarm is uniquely
triggered by an event.

4. Repeat step 3 for alarms ek−1, ek−2, · · · until reaching the failure f1.

5. Then f1 → e2 → · · · → ek forms the alarm chain for leaf alarm ek. The number of
alarm chains for a failure equals the number of leaf alarms in its alarm correlation
tree.

3.5.2 Distance

To localize the failure given a list of alarms recorded in the OTN control plane, one approach
is to identify the dependency between each pair of collected alarms, thus enabling inference
of the failure event with reduced complexity [8].

To determine whether there is an alarm flow between a pair of alarms, the correlation
between them should be evaluated, with distance being an important factor. The distance
can be classified into three categories, each measuring different aspects.
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Suppose two alarms a1, a2 and their corresponding locations l1, l2 are given. The physi-
cal distance is the length of the shortest path between l1 and l2 in the network state, while
the OMS distance is the number of OMS trails in this shortest path. Additionally, there
is the OCh distance, which is a binary value that indicates whether there is a lightpath
traversing both l1 and l2.

To evaluate the distance, ArangoDB is employed once again to manage the network
state at the board level. A vertex is generated for each board, while an edge is established
for every fiber. Furthermore, an edge is formed for each OMS trail within the graph. A
visual representation of an 8-node network state is provided in Figure 3.21 for reference.

Figure 3.21: Example of a Network State in ArangoDB
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To determine the physical and OMS distance, ArangoDB’s built-in graph traversal
query is applied to compute the shortest directional path between any two locations. Then,
the length of this shortest path is calculated, representing the physical distance between
the locations. If such path does not exist, then the physical distance is assigned a value of
-1. Additionally, given the shortest directional path, the number of OMS trails traversed
is counted, representing the OMS distance.

The calculation of the OCh distance does not utilize ArangoDB. Instead, for each pair
of locations, every lightpath will be inspected to determine if both locations are traversed
by a common lightpath.
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Chapter 4

Case Studies

In this chapter, one static topology and one dynamic topology will be generated to evaluate
the performance of the topology generator. Furthermore, to validate the functionality of the
failure generator and alarm generator, three test cases will be introduced for static topol-
ogy, encompassing single-failure, double-failure and noisy alarm events. Double-failure
is the event when two failures happen at the same time, resulting in their alarms being
intertwined in the timeline. Since the primary distinction between static topology and
dynamic topology lies in the number of network states present, dynamic topology can be
conceptualized as a composite of multiple static topologies. Hence, it suffices to illustrate
the single-failure case for the dynamic topology.

4.1 Static Topology Scenario

The topology and traffic generated are displayed in Figure 4.1 and Table 4.2, with corre-
sponding input parameters outlined in Table 4.1. Each lightpath in the figure is labeled
with numbers indicating the nodes it traverses. For example, lightpath2−1−0 indicates a
lightpath starting from an OTU in ROADM2, passing through ROADM1, and terminating
at an OTU in ROADM0.

It is important to note that a connection between ROADM0 and ROADM1 (R0 → R1)
implies the existence of two fibers: ROADM0-FIU2 → ROADM1-FIU1 and ROADM1-
FIU1 → ROADM0-FIU2. Therefore, if a lightpath traverses from ROADM1-FIU1 to
ROADM0-FIU2, it visually appears to be in the opposite direction of the node connection
depicted in the figure.
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Figure 4.1: Network State in Static Topology Scenario

Number of Nodes Number of Lightpaths

Network State 1 8 5

Table 4.1: Parameters Input to Static Topology Generator

(OTU68)→ROADM4→ROADM3→ROADM2→ROADM1→ROADM0→(OTU95)

(OTU4)→ROADM6→OLA7→ROADM5→(OTU75)

(OTU28)→ROADM2→ROADM1→ROADM0→(OTU79)

(OTU26)→ROADM3→ROADM4→(OTU37)

(OTU16)→ROADM6→OLA7→ROADM5→ROADM3→ROADM2→(OTU35)

Table 4.2: Traffic in Static Topology Scenario

4.1.1 Single-failure Case

When a location type of “OA” is provided, the failure generator produces a failure as
shown in Table 4.3, and the alarm generator generates a corresponding list of alarms, as
displayed in Table 4.4, based on this failure. Furthermore, the alarm correlation tree can
be constructed, as depicted in Figure 4.2.

Alarm type Location Time ID Failure ID Is root Is noisy

board faulty ROADM0-OA1 06:00:00 0 0 false false

Table 4.3: Failure for Single Failure Case in Static Topology Scenario
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Alarm type Location Time ID Failure ID Is root Is noisy

board faulty ROADM0-OA1 06:00:00 0 0 false false

OTS LOS C ROADM0-FIU2 06:00:10 182 0 true false

OTS A P ROADM0-OA1 06:00:07 183 0 true false

OTS BDI A ROADM0-FIU1 06:00:13 184 0 false false

OMS LOS A ROADM1-OM1 06:00:15 185 0 false false

OMS SSF P ROADM1-OD1 06:00:15 186 0 false false

OTS PMI ROADM1-FIU1 06:00:16 187 0 false false

OMS A P ROADM0-OD1 06:00:16 188 0 false false

OMS SSF ROADM0-OD1 06:00:15 189 0 false false

OMS SSF E ROADM2-OD1 06:00:24 190 0 false false

Table 4.4: Alarms for Single Failure Case in Static Topology Scenario

Figure 4.2: Alarm Correlation Tree for Single Failure Case in Static Topology Scenario
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Figure 4.3: Rule Events for OA Board Faulty

Given the subset of the rule database indicating a failure at OA, we can validate the
accuracy of the alarm generator. A faulty board located on ROADM0-OA1 will initiate a
root alarm, OTS LOS C, which will propagate downstream to ROADM0-FIU2. Further-
more, another root alarm OTS A P is locally reported on ROADM0-OA1. Subsequently,
OTS A P triggers OMS A P. Since there is no lightpath traversing both ROADM0-OA1
and ROADM0-OD1, the alarm OCh A P will not be triggered.

Similarly, OTS LOS C initiates a series of alarms including OTS BDI A, OMS LOS A,
OMS SSF P and OTS PMI, where OTS BDI A and OMS LOS A further trigger OMS SSF
and OMS SSF E respectively. Notably, apart from OCh LOS P, neither OMS BDI nor
OTS BDI alarms are activated. This is due to the absence of OM and FIU boards upstream
of ROADM0-FIU1.
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4.1.2 Double-failure Case

Given two location types “OTU” and “FIU FIU”, along with the double-failure time for-
mat, the failure generator generates two failures as depicted in Table 4.5, where both
failures occur at the same time.

Alarm type Location Time ID Failure ID Is root Is noisy

board faulty ROADM6-OTU16 06:00:00 79 79 false false

fiber cut
ROADM1-FIU1

06:00:00 102 102 false false
ROADM0-FIU2

Table 4.5: Failure for Double Failure Case in Static Topology Scenario

Alarm type Location Time ID Failure ID Is root Is noisy

board faulty ROADM6-OTU16 06:00:00 79 79 false false

fiber cut
ROADM1-FIU1

06:00:00 102 102 false false
ROADM0-FIU2

OCh LOS P ROADM2-OTU35 06:00:05 182 79 true false

OCh A P ROADM6-OTU16 06:00:07 183 79 true false

OTS LOS O ROADM0-FIU2 06:00:07 184 102 true false

OTS BDI A ROADM1-FIU1 06:00:09 185 102 false false

OMS BDI O ROADM1-OM2 06:00:08 186 102 false false

OMS SSF O ROADM0-OD2 06:00:11 187 102 false false

OTS BDI ROADM1-FIU2 06:00:16 188 102 false false

OMS BDI ROADM1-OM2 06:00:17 189 102 false false

OMS SSF ROADM0-OD2 06:00:16 190 102 false false

OCh LOS P ROADM0-OTU95 06:00:14 191 102 false false

OCh LOS P ROADM0-OTU79 06:00:16 192 102 false false

OCh LOS P ROADM0-OTU95 06:00:22 193 102 false false

OCh LOS P ROADM0-OTU79 06:00:19 194 102 false false

Table 4.6: Alarms for Double Failure Case in Static Topology Scenario
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Figure 4.4: Alarm Correlation Tree for Double Failure Case in Static Topology Scenario

Figure 4.5: Rule Events for OTU Board Faulty and FIU FIU Fiber Cut

The alarms and the alarm correlation trees resulting from the failures are presented
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in Table 4.6 and Figure 4.4. In the case of an OTU board faulty, two OCh alarms are
generated: one is locally reported, and the other is transmitted downstream. For the
FIU FIU fiber cut, eleven alarms are generated, encompassing all possible rule events that
could be triggered.

Additionally, it can be observed that the alarms generated by these two failures overlap
both in timeline and alarm type, thereby increasing the complexity of failure localization.

4.1.3 Noisy Alarm Case

To assess the resilience of failure localization methods, noisy alarms are introduced to
the alarm sets. In addition to the essential parameters for failure generation, the alarm
generator requires a “noisy ratio” to determine the number of noisy alarms to add. This
ratio denotes the proportion of noisy alarms to real alarms and typically ranges between
0.1 and 1.

To produce the noisy alarms, the initial step involves counting the number of real alarms
to determine the quantity of noisy alarms. Subsequently, failures are generated based on
a randomly selected list of locations within the network state, followed by the generation
of alarms stemming from these failures. Finally, noisy alarms are chosen from this alarm
set, with the desired count, where the Is Noisy field is designated as 1.

Alarm type Location Time ID Failure ID Is root Is noisy

board faulty ROADM0-OA1 06:00:00 0 0 false false

OTS LOS C ROADM0-FIU2 06:00:02 182 0 true false

OTS A P ROADM0-OA1 06:00:09 183 0 true false

OTS BDI A ROADM0-FIU1 06:00:05 184 0 false false

OMS LOS A ROADM1-OM1 06:00:05 185 0 false false

OMS SSF P ROADM1-OD1 06:00:07 186 0 false false

OTS PMI ROADM1-FIU1 06:00:08 187 0 false false

OMS A P ROADM0-OD1 06:00:11 188 0 false false

OMS SSF ROADM0-OD1 06:00:06 189 0 false false

OMS SSF E ROADM2-OD1 06:00:06 190 0 false false

OMS SSF ROADM4-OD1 06:00:08 191 0 false true

OMS LOS A ROADM5-OM1 06:00:08 192 0 false true

OMS BDI ROADM3-OM1 06:00:06 193 0 false true

OTS LOS C ROADM5-FIU1 06:00:03 194 0 false true

Table 4.7: Alarms for Noisy Alarm Case in Static Topology Scenario
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Figure 4.6: Alarm Correlation Tree for Noisy Alarm Case in Static Topology Scenario

Utilizing the failure from Table 4.3 and a noisy ratio of 0.5, the alarm generator produces
a list of alarms detailed in Table 4.7, accompanied by the correlation tree depicted in
Figure 4.6. Notably, compared to Table 4.4, the alarm set now includes four additional
noisy alarms. Additionally, the alarm correlation tree exhibits the addition of four dangling
vertices.
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4.2 Dynamic Topology Scenario

(a) Network State 1 (b) Network State 2

(c) Network State 3

Figure 4.7: Network States in Dynamic Topology Scenario
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Number of Nodes Number of Lightpaths

Network State 1
10

4
Network State 2 5
Network State 3 6

Table 4.8: Parameters Input to Dynamic Topology Generator

Given the inputs outlined in Table 4.8, the topology generator returns a topology with three
network states, depicted in Figure 4.7, alongside the corresponding traffics delineated in
Tables 4.9, 4.10, and 4.11. It is noticeable that each network state utilizes a subset of nodes
and connections within the entire network. Furthermore, the traffics exhibit duplicate
lightpaths, simulating scenarios where lightpaths are added and removed over time.

(OTU44)→ROADM1→ROADM0→(OTU87)

(OTU72)→ROADM8→ROADM7→ROADM5→(OTU3)

(OTU2)→ROADM1→ROADM3→(OTU17)

(OTU104)→ROADM8→ROADM6→ROADM4→(OTU83)

Table 4.9: Traffic in Network State 1

(OTU44)→ROADM1→ROADM0→(OTU87)
(OTU8)→ROADM8→ROADM6→ROADM4→OLA9→ROADM3→ROADM1→ROADM0→(OTU3)

(OTU18)→ROADM2→ROADM4→ROADM6→ROADM8→(OTU5)
(OTU106)→ROADM7→ROADM8→(OTU41)
(OTU2)→ROADM1→ROADM3→(OTU17)

Table 4.10: Traffic in Network State 2

(OTU106)→ROADM7→ROADM8→(OTU41)

(OTU16)→ROADM6→ROADM5→ROADM3→ROADM1→ROADM0→(OTU43)

(OTU90)→ROADM2→ROADM3→(OTU77)

(OTU44)→ROADM1→ROADM0→(OTU87)

(OTU110)→ROADM4→ROADM5→(OTU45)

(OTU2)→ROADM3→ROADM5→ROADM6→(OTU1)

Table 4.11: Traffic in Network State 3
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4.2.1 Single-failure Case

Alarm type Location Time ID Failure ID Is root Is noisy

board faulty ROADM3-FIU2 06:00:00 61 61 false false

Table 4.12: Failure for Single Failure Case in Network State 1

Alarm type Location Time ID Failure ID Is root Is noisy

board faulty ROADM3-FIU2 06:00:00 29 29 false false

Table 4.13: Failure for Single Failure Case in Network State 2

Alarm type Location Time ID Failure ID Is root Is noisy

board faulty ROADM3-FIU2 06:00:00 50 50 false false

Table 4.14: Failure for Single Failure Case in Network State 3

To investigate the influence of network state and traffic on alarm propagation, the failure
event with the same location is applied to all three network states. The outcomes are
presented in Tables 4.15, 4.16, 4.17 and Figures 4.8, 4.9, 4.10.

Alarm type Location Time ID Failure ID Is root Is noisy

board faulty ROADM3-FIU2 06:00:00 61 61 false false

OTS A P ROADM3-FIU2 06:00:07 188 61 true false

Table 4.15: Alarms for Single Failure Case in Network State 1

Figure 4.8: Alarm Correlation Tree for Single Failure Case in Network State 1
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Alarm type Location Time ID Failure ID Is root Is noisy

board faulty ROADM3-FIU2 06:00:00 29 29 false false

OTS LOS C OLA9-FIU1 06:00:02 204 29 true false

OTS A P ROADM3-FIU2 06:00:10 205 29 true false

OTS BDI A ROADM3-FIU2 06:00:10 206 29 false false

OMS LOS A ROADM4-OM1 06:00:08 207 29 false false

OMS SSF P ROADM4-OD1 06:00:08 208 29 false false

OTS PMI OLA9-FIU2 06:00:06 209 29 false false

OTS BDI ROADM3-FIU1 06:00:13 210 29 false false

OMS BDI ROADM3-OM1 06:00:13 211 29 false false

OMS SSF ROADM4-OD1 06:00:19 212 29 false false

OMS SSF E ROADM6-OD1 06:00:14 213 29 false false

Table 4.16: Alarms for Single Failure Case in Network State 2

Figure 4.9: Alarm Correlation Tree for Single Failure Case in Network State 2

44



Alarm type Location Time ID Failure ID Is root Is noisy

board faulty ROADM3-FIU2 06:00:00 50 50 false false

OTS LOS C ROADM5-FIU1 06:00:06 218 50 true false

OTS A P ROADM3-FIU2 06:00:03 219 50 true false

OTS BDI A ROADM3-FIU2 06:00:13 220 50 false false

OTS BDI A ROADM4-FIU2 06:00:15 221 50 false false

OMS LOS A ROADM5-OM1 06:00:09 222 50 false false

OMS SSF P ROADM5-OD1 06:00:10 223 50 false false

OTS PMI ROADM5-FIU2 06:00:13 224 50 false false

OTS BDI ROADM3-FIU1 06:00:22 225 50 false false

OMS BDI ROADM3-OM1 06:00:20 226 50 false false

OMS SSF ROADM5-OD1 06:00:21 227 50 false false

OTS BDI ROADM4-FIU1 06:00:17 228 50 false false

OMS BDI ROADM4-OM1 06:00:20 229 50 false false

OMS SSF ROADM5-OD1 06:00:24 230 50 false false

OMS SSF E ROADM6-OD1 06:00:11 231 50 false false

OCh LOS P ROADM6-OTU1 06:00:20 232 50 false false

OCh LOS P ROADM6-OTU1 06:00:23 233 50 false false

OCh LOS P ROADM6-OTU1 06:00:30 234 50 false false

OCh LOS P ROADM6-OTU1 06:00:21 235 50 false false

Table 4.17: Alarms for Single Failure Case in Network State 3
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Figure 4.10: Alarm Correlation Tree for Single Failure Case in Network State 3

Figure 4.11: Rule Events for FIU Board Faulty
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Chapter 5

Conclusion

This thesis presents the design and implementation of a simulator aimed at replicating
alarm propagation behavior across diverse network topologies. Building upon the frame-
work outlined in the previous iteration referenced in [5], the updated version introduces
a topology generator capable of accommodating both static and dynamic network config-
urations. Additionally, enhancements encompass the integration of board-level network
states, random propagation time, alarm ID, and the introduction of noisy alarms. The
simulator is structured around the following key components:

• A rule database storing propagation rules for each alarm/failure type.

• A topology generator capable of producing static or dynamic topologies with various
settings.

• A failure generator that generates failures based on a list of locations or location
types.

• An alarm generator responsible for generating alarms from failures.

After outlining the design and functionalities of the simulator, it is imperative to address
its limitations:

• While the simulator effectively propagates alarms across OTS, OMS, and OCh layers,
it currently overlooks the digital layers. Future enhancements should encompass the
digital layers within the simulator to provide a more comprehensive representation
of OTN.
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• Manual editing of the rule database is currently required, which is time-consuming
and prone to errors. Additionally, the rule database lacks consideration for the
many-to-one case, where a rule event may be triggered by multiple rule events si-
multaneously. To address these shortcomings, future updates of the simulator could
incorporate a rule generator capable of efficiently generating more complex rules.

• The current simulation framework lacks support for a sufficient range of node types
and board types, limiting its ability to accurately simulate the complexities inherent
in OTN. Expansion of the simulator to include a broader node and board types would
enable more realistic modeling of OTN environments.

Furthermore, there is potential for further improvement by extending the simulator’s
support beyond OTN to encompass general fiber optical communication systems.
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