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Abstract

The tree‐independence number αtree‐ , first defined and

studied by Dallard, Milanič, and Štorgel, is a variant of

treewidth tailored to solving the maximum independent

set problem. Over a series of papers, Abrishami et al.

developed the so‐called central bag method to study

induced obstructions to bounded treewidth. Among

others, they showed that, in a certain superclass  of

(even hole, diamond, pyramid)‐free graphs, treewidth is

bounded by a function of the clique number. In this

paper, we relax the bounded clique number assumption,

and show that  has bounded αtree‐ . Via existing

results, this yields a polynomial‐time algorithm for the

Maximum Weight Independent Set problem in this

class. Our result also corroborates, for this class of

graphs, a conjecture of Dallard, Milanič, and Štorgel that
in a hereditary graph class, αtree‐ is bounded if and

only if the treewidth is bounded by a function of the

clique number.
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1 | INTRODUCTION

All graphs in this paper are finite and simple. Let G V G E G= ( ( ), ( )) be a graph. An induced
subgraph of G is a subgraph of G obtained by deleting vertices. More explicitly, if ⊆X V G( ), then

G X[ ] denotes the subgraph ofG induced by X , with vertex set X and edge set ∩ ( )E G( )
X

2
. In this

paper, we use induced subgraphs and their vertex sets interchangeably. For a graph H , we say thatG
contains H if H is isomorphic to an induced subgraph ofG, andG is H ‐free if it does not contain H .
If  is a set of graphs, then we say that G is ‐free if G is H ‐free for every ∈H .

A tree decomposition T φ( , ) of G consists of a tree T and a map →φ V T: ( ) 2V G( ) satisfying
the following:

(i) For all ∈v V G( ), there exists ∈t V T( ) such that ∈v φ t( );
(ii) For all ∈v v E G( )1 2 , there exists ∈t V T( ) such that ∈v v φ t, ( )1 2 ;
(iii) For all ∈v V G( ), the subgraph of T induced by ∈ ∈t V T v φ t{ ( )s.t. ( )} is connected.

The width of a tree decomposition T φ( , ) is ∈  φ tmax ( ) − 1t V T( ) . The treewidth ofG, denoted
by Gtw( ), is the minimum width of a tree decomposition of G.

A stable set in a graph G is a set of pairwise nonadjacent vertices of G. The independence
number α G( ) of G is the size of a maximum stable set in G. The independence number of a tree
decomposition T φ( , ) of G is ∈ α G φ tmax ( [ ( )])t V T( ) . The tree independence number of G,
denoted α Gtree‐ ( ), is the minimum independence number of a tree decomposition of G.

The tree independence number was defined and studied by Dallard, Milanič, and Štorgel in
[16], in the context of studying the complexity of the MaximumWeight Independent Set (MWIS)
problem on graph classes whose treewidth is large only due to the presence of a large clique. It is
shown in [16] that if a graph is given together with a tree decomposition with bounded
independence number, then the MWIS problem can be solved in polynomial time. In [17], it is
then shown how to compute such tree decompositions efficiently in graphs of bounded αtree‐ ,
yielding an efficient algorithm for the MWIS problem for graphs of bounded αtree‐ .

In [15], a graph class  is called ω(tw, )‐bounded if there exists a function →f : such
that for every graph ∈G , and for every induced subgraph H of ≤G H f ω H, tw( ) ( ( )) (where
ω G( ) is the size of a largest clique inG). Such a function f is called a ω(tw, )‐bounding function
for the class  . By Ramsey's theorem, graph classes of bounded tree independence number are

ω(tw, )‐bounded. Furthermore, all of the following graph classes have bounded tree independence
number: graph classes of bounded treewidth, intersection graphs of connected subgraphs of
graphs with treewidth at most t , for any fixed positive integer t (these contain, e.g., chordal
graphs and circular arc graphs), and graph classes in which the size of a minimal separator is
bounded. More examples and further discussion of these parameters is given in [14‐16]. The
question remains whether the ω(tw, )‐bounded property has algorithmic implications for the
MWIS problem. This question would be settled if the following conjecture from [16] holds true:

Conjecture 1.1 (Dallard et al. [16]). A class  of graphs is ω(tw, )‐bounded if and only if
it has bounded αtree‐ .

Before we state our main result, we define several types of graphs. A clique in a graph is a
set of pairwise adjacent vertices, and for an integer ≥t K1, t denotes the complete graph on t
vertices. A path is a tree of maximum degree at most 2. A path inG is an induced subgraph ofG
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that is a path. A diamond is the graph obtained by deleting an edge from K4. A hole of a graphG
is an induced cycle of length at least four. By C4 we denote the hole of length four. A wheel
H w( , ) is a hole H and a vertex ∈w V G( ) such that w has at least three neighbors in H . An
even wheel is a wheel H w( , ) such that w has an even number of neighbors in H . A theta is a
graph consisting of two vertices a and b and three distinct paths P P P, ,1 2 3 from a to b such that
any two of them induce a hole (so in particular a and b are nonadjacent, and hence all three
paths are of length at least 2). A pyramid is a graph consisting of a vertex a, a triangle b b b, ,1 2 3

(disjoint from a), and three paths P P P, ,1 2 3 from a to b b b, ,1 2 3, respectively, such that any two of
them induce a hole (so in particular, at least two of the three paths are of length at least 2). A
prism is a graph consisting of two disjoint triangles a a a1 2 3 and b b b1 2 3 and three paths P P P, ,1 2 3,
with Pi from ai to bi, such that any two of them induce a hole. Thetas, pyramids, and prisms are
called three‐path configurations (3PCs).

We introduce the following notation, which we will use throughout the paper:

•  is the class of (C4, diamond, theta, pyramid, prism, even wheel)‐free graphs.
• * is the class of (C4, diamond, theta, prism, even wheel)‐free graphs (and in particular,  ⊆ *).

Our main result is the following.

Theorem 1.2. There exists an integer Γ such that ≤α Gtree‐ ( ) Γ for every graph ∈G .

Theorem 1.2 strengthens the main result of [1], while building on some of the ideas of its proof:

Theorem 1.3 (Abrishami et al. [1]). For each t > 0, there exists an integer ct such that for
every ∈G with ≤ω G t( ) , we have ≤G ctw( ) t .

Since the class of (even hole, diamond, pyramid)‐free graphs is a subclass of  (as even‐hole‐
free graphs are (C4, theta, prism, even wheel)‐free), the above two theorems imply, respectively,
the following two statements about (even hole, diamond, pyramid)‐free graphs.

Theorem 1.4. There exists an integer c such that, for every (even hole, diamond,
pyramid)‐free graph G, we have ≤α G ctree‐ ( ) .

Theorem 1.5 (Abrishami et al. [1]). For each t > 0, there exists an integer ct, such that for
every (even hole, diamond, pyramid, Kt)‐free graph ≤G G c, tw( ) t .

Thus Theorem 1.4 yields a polynomial‐time algorithm for the MWIS problem in this class. It
is in fact known that for a certain superclass of this class, the MWIS problem can be solved in
polynomial time [3], which we discuss further below. But the algorithmic method shown here
is of independent interest, since it might be possible to extend it to (even‐hole, diamond)‐free
graphs (for which we do not yet have a polynomial time algorithm to solve the MWIS problem).

Conjecture 1.6. The class of (even hole, diamond)‐free graph has bounded tree‐α.

ABRISHAMI ET AL. | 3
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1.1 | Further context

First, observe that the class  was already known to be ω(tw, )‐bounded [1], so Theorem 1.2
corroborates Conjecture 1.1 for this class. Although many of the ingredients of our proof are
class‐specific, it is worth investigating whether any of our methods can be used for tackling the
conjecture in general.

The second consideration is an algorithmic one. Even‐hole‐free graphs have been studied
extensively since the 1990s, and yet despite their structural similarity to perfect graphs, the
complexity of some fundamental optimization problems that are solvable in polynomial time for
perfect graphs is not known for even‐hole‐free graphs. Indeed, while we can find maximum
cliques in even‐hole‐free graphs efficiently by a result shown by Farber [18] and later Alekseev [6]
stating that C4‐free graphs have quadratically many maximal cliques, we still do not have efficient
algorithms for the MWIS, minimum vertex coloring, and minimum clique cover problems.

In this direction, a number of subclasses of even‐hole‐free graphs have been studied: for
instance, in [21] it was shown that (even hole, diamond)‐free graphs can be colored in
polynomial time. A sketch of that proof is as follows. First, a decomposition theorem is
obtained for (even hole, diamond)‐free graphs: these graphs are decomposed by star cutsets that
partition into two cliques, and by 2‐joins, into line graphs of a tree plus at most two vertices.
This decomposition theorem is used to show that (even hole, diamond)‐free graphs always have
a vertex that is either simplicial or of degree 2. This then implies that the class is “β‐perfect,”
which in turn yields a polynomial time coloring algorithm which proceeds by coloring greedily
on a particular, easily constructible ordering of the vertices.

Our current paper continues this study by investigating the MWIS problem, in the hope of
extending the methods presented here to (even hole, diamond)‐free graphs (see Conjecture 1.6).
We now survey some subclasses of even‐hole‐free graphs in relation to the MWIS problem.
Recall that even‐hole‐free graphs are (C4, theta, prism, even wheel)‐free.

1.1.1 | A superclass of (even hole, pyramid)‐free graphs

In [3], a superclass of (even hole, pyramid)‐free graphs is studied, namely the class of (C4, theta,
prism, pyramid, turtle)‐free graphs (where a turtle is a graph derived from a wheel that cannot be
present in even‐hole‐free graphs, or in fact, in even‐wheel‐free graphs). This yields, in particular, a
polynomial‐time algorithm for MWIS in our class  . However, their method (which we outline
below) does not generalize beyond the pyramid‐free setting. In contrast, we believe the method we
present in this paper extends to the larger class of (even hole, diamond)‐free graphs.

To understand why the results from [3] do not generalize, we outline their procedure for solving
MWIS here. It is shown in [3] that the class under study has polynomially many minimal
separators, and that the set of all minimal separators can be constructed in polynomial time.

The number of minimal separators of a graph is related to the number of potential maximal
cliques (PMCs) introduced by Bouchitté and Todinca in [8, 9]. For a graph G, denote by n the
number of vertices, m the number of edges, s the number of minimal separators, and p the
number of PMCs inG. In [9], it is proved that p is in ns ns( + + 1)2 , and that given the list of
minimal separators, the PMCs of G can be listed in time n ms( )2 2 . In [22], based on [19], it is
proved that given the list of PMCs, the MWIS problem can be solved in n mp( )5 . So, summing
everything up, the ability to list all minimal separators in polynomial time implies a
polynomial‐time algorithm for the MWIS problem.

4 | ABRISHAMI ET AL.
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On the other hand, if pyramids are allowed in even‐hole‐free graphs, the polynomial
minimal separator property is lost, as witnessed for example by a k‐pyramid (a graph consisting
of a clique B b b= { , …, }k1 , a vertex a and paths P a b= …i i, for i k= 1, …, , such that any 3 of
them induce a pyramid).

1.1.2 | A subclass of (even hole, pyramid)‐free graphs

The class of (even hole, K3)‐free graphs is a proper subclass of (even hole, pyramid)‐free graphs.
In [10] it is shown that (even hole, K3)‐free graphs (and in fact (theta, even wheel, K3)‐free
graphs) have treewidth at most 5. On the other hand, in [24], a certain construction called a
“layered wheel” is given, which shows that (even hole, K4)‐free graphs do not have bounded
treewidth. The construction is full of diamonds, so it was conjectured in [24] and proved in [5]
that (even hole, diamond, K4)‐free graphs have bounded treewidth (in fact, the result from [5]
pertains to more general classes of even‐hole‐free graphs obtained by forbidding any clique and
a certain type of graph which contains diamonds).

The question remains whether the following is true (it can be shown that the outcome holds
when forbidding, in addition, another family of graphs, called “generalized k‐pyramids” [2]).

Conjecture 1.7. The class of (even hole, Kt)‐free graph has logarithmic treewidth.

1.2 | Terminology and notation

If G is a path or a cycle, the length of G is  E G( ) . By Pk we denote the path on k vertices. If
⋯P p p p= − − − k1 2 , then P P p p* = \{ , }k1 denotes the interior of the path P, and p p, k1 are its

ends.
LetG be a graph and let ∈v V G( ). The open neighborhood of v inG, denoted N v( )G , is the set of

vertices of V G( ) adjacent to v. The closed neighborhood of v in G, denoted N v[ ]G , is
the union of v{ } and N v( )G . Let ⊆X V G( ). The open neighborhood of X in G, denoted N X( )G , is
the set of vertices of V G X( ) \ with a neighbor in X . The closed neighborhood of X in G, denoted
N X[ ]G , is the union of X and N X( )G . When the graphG is clear from context, we omit the subscript
G from the open and closed neighborhoods. If ⊆X Y V G, ( ), we say X is anticomplete to Y if there
are no edges with one endpoint in X and one endpoint inY . We say that X has a neighbor inY if X
is not anticomplete to Y . We say that v is anticomplete to X if v{ } is anticomplete to X .

A clique is a set of pairwise adjacent vertices. The clique number ofG, denoted byω G( ), is the size
of a maximum clique inG. The chromatic number ofG, denoted by χ G( ), is the minimum number
of sets of a partition ofV G( ) into stable sets. The clique cover number ofG, denoted by χ G( ), is the
minimum number of sets of a partition of V G( ) into cliques (note that some sources use “clique
cover number” to refer the minimum number of cliques required to cover the edges of G, and use
“node clique cover number” or “clique partition number” for what we call “clique cover number”
here; for the avoidance of doubt, all clique covers in this paper will be vertex clique covers, that is,
partitions of a vertex set into cliques).

Let H v( , ) be a wheel. We call v the center, or hub of the wheel. A sector of H v( , ) is a path
⊆P H of length at least one such that the ends of P are adjacent to v and P* is anticomplete to

v. A sector of H v( , ) is long if it has length greater than one, and short otherwise.

ABRISHAMI ET AL. | 5
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If paths ⋯ ⋯ ⋯P a b P a b P a b= − − , = − − = − −1 1 2 2 3 3 induce a pyramid, then we say
that the vertex a is the apex of this pyramid.

A star cutset of a graphG is a set ⊆C V G( ) such thatG C\ is not connected, and there exists
∈v V G( ) with ∈ ⊆v C N v[ ]. We call v a center of the star cutset C. We say that the star cutset

is full if C N v= [ ]. A clique cutset is a star cutset that is also a clique.

2 | TOOLS

In this section, we describe the tools and preliminary results needed to prove that graphs in 
have bounded tree‐α.

2.1 | χ ‐boundedness of the complements and the tree‐clique cover
number

Many of the results from [1] that we use provide bounds on the size of certain sets in terms of ω,
but in actuality the proofs work by exhibiting clique covers of those sets. Correspondingly, our
arguments revolve around clique covers rather than stable sets. As such, it is natural to define
the tree‐clique cover number χ Gtree‐ ( ) of a graph G analogously to αtree‐ . More explicitly, we
define the clique cover number of a tree decomposition T φ( , ) as the maximum value of
χ G φ t( [ ( )]) over nodes ∈t V T( ), and we let χ Gtree‐ ( ) be the minimum value of the clique
cover number over all tree decompositions of G.

We note that, for C4‐free graphs, statements about χtree‐ have αtree‐ analogs, and vice‐
versa. Indeed, in one direction, ≤α G χ G( ) ( ) for any graph G. In the other direction, by a
result of Wagon [26], the class of K2 2‐free graphs is χ ‐bounded, meaning that there exists a
nondecreasing function →f : + + such that, for any K2 2‐free graph ≤G χ G f ω G, ( ) ( ( )). In

fact, from [26], one may take f ω G( ( )) to be ( )ω G( ) + 1

2
. We record this in a lemma, noting that

the complement of a C4‐free graph G is K2 2‐free:

Lemma 2.1 (Wagon [26]). Let G be a C4‐free graph. Then ≤ ( )χ G( )
α G( ) + 1

2
.

The above discussion immediately yields the following:

Lemma 2.2. Let G be a C4‐free graph. Then ≤ ≤ ( )α G χ Gtree‐ ( ) tree‐ ( )
α Gtree‐ ( ) + 1

2
.

We remark that C4‐freeness (or at least, χ ‐boundedness in the complement) is necessary to
obtain a relationship between χtree‐ and αtree‐ :

Remark 2.3. For any C > 0, there exists a graph with ≤αtree‐ 2 and ≥χ Ctree‐ .

Proof. It is pointed out in [16] that, in any tree decomposition T φ( , ) of a graphG, there
exists a vertex ∈v G and a node ∈t T with ⊆N v φ t[ ] ( ); in particular, if we start with a
graph G and construct G+ from two copies of G by adding all possible edges between
them, for any tree decomposition of G+, some bag will contain a copy of G. We can use
this to construct an example as claimed. Start with any triangle‐free graph G with

6 | ABRISHAMI ET AL.
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chromatic number greater than C (such graphs are well‐known to exist); take its
complement G , and construct the graph G+ as above. The resulting graph will have

≤α G( ) 2+ (since its complement is still triangle‐free), but by the above discussion, some
bag in any tree decomposition of G+ will have clique cover number more than C. □

Finally, we also have the following simple observation relating χtree‐ to treewidth:

Remark 2.4. For every graph ≤G χ G G, tree‐ ( ) tw( ) + 1.

Throughout the paper, we will work with χtree‐ rather than αtree‐ , with the understanding
that our results can be stated in terms of αtree‐ via Lemma 2.2.

2.2 | Treewidth, χtree‐ , clique cutsets and (3PC, wheel)‐free graphs

We next state the observations that clique cutsets do not affect treewidth, and χtree‐ . We note
that [16] includes an analogous result for αtree‐ . In view of the treewidth and αtree‐ results,
the proof of the χtree‐ result is routine and left to the reader.

Lemma 2.5 (Bodlaender and Koster [7]). Let G be a graph. Then Gtw( ) is equal to the
maximum treewidth over all induced subgraphs of G with no clique cutset.

Lemma 2.6. Let G be a graph. Then χ Gtree‐ ( ) is equal to the maximum χtree‐ over all
induced subgraphs of G with no clique cutset.

In view of this, given a class , we will writenc for the class of graphs in with no clique
cutset.

We continue with a few observations about (3PC, wheel)‐free graphs.

Lemma 2.7 (Conforti et al. [12]). IfG is (3PC, wheel)‐free, then eitherG has a clique cutset
or G is a complete graph or a hole.

Lemma 2.8. If G is (3PC, wheel)‐free, then ≤G ω Gtw( ) max{ ( ) − 1, 2} and
≤χ Gtree‐ ( ) 2. In particular, if G is (theta, wheel, K3)‐free, then ≤tw G( ) 2.

Proof. The first statement follows from Lemma 2.5, Lemma 2.6, and Lemma 2.7, and
the second from the fact that (theta, wheel, K3)‐free graphs are a subclass of (3PC, wheel)‐
free graphs. A different proof of the second statement is given in [1]. □

2.3 | Balanced separators

Let G be a graph. A weight function on G is a function →w V G: ( ) . For ⊆X V G( ), we let

∈w X w x( ) = ( )x X . Let G be a graph, let →w V G: ( ) [0, 1] be a weight function on G with

w G( ) = 1, and let ∈


 )c , 1
1

2
. A set ⊆X V G( ) is a w c( , )‐balanced separator if ≤w D c( ) for

ABRISHAMI ET AL. | 7
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every component D ofG X\ . The next few lemmas state how w c( , )‐balanced separators relate to
χtree‐ . They are modeled on analogous results concerning treewidth, which we also include.

Lemma 2.9 (Abrishami et al. [4] and Harvey and Wood [20], see also Reed [23]). Let G

be a graph, let ∈


 )c , 1
1

2
, and let k be a positive integer. If, for every weight function

→w V G: ( ) [0, 1] with w G( ) = 1, the graph G has a w c( , )‐balanced separator of size at

most k, then ≤G ktw( )
c

1

1−
.

Lemma 2.10. Let G be a C4‐free graph, let ∈


 )c , 1
1

2
, and let k be a positive integer.

Suppose that for every weight function →w V G: ( ) [0, 1] with w G G( ) = 1, has a
w c( , )‐balanced separator with clique cover number at most k. Then there exists a number
g k c( , ) such that ≤χ G g k ctree‐ ( ) ( , ).

Proof. We adapt the proof from [23]. Put ≔ ∕ h k c k c( , ) 2 (1 − ) , and

≔ ( )g k c k( , ) +
h k c( , ) + 1

2
. We claim that g k c( , ) satisfies the statement of the lemma.

In fact, we will recursively show the following slightly stronger statement:

(*) Let G W( , ) be a pair where G is as in the lemma, and ⊆W V G( ) has

≤ ( )χ W( )
h k c( , ) + 1

2
. Then there exists a tree decomposition T φ( , ) of G of clique

cover number at most g k c( , ), and such that ⊆W φ t( ) for some ∈t V T( ). In
particular, ≤χ G g k ctree‐ ( ) ( , ).

The statement (*) is clear if ≤α G h k c( ) ( , ). Indeed, in that case, Lemma 2.1 yields
that a tree decomposition consisting of a single bag does the job.

If α G h k c( ) > ( , ), we may assume without loss of generality that ≥α W h k c( ) ( , )

(otherwise, we simply add vertices to it arbitrarily until α W h k c( ) = ( , ), and by

Lemma 2.1, we do not lose the property that ≤ ( )χ W( )
h k c( , ) + 1

2
in doing so). We then

select a stable subset W′ of W with  W h k c′ = ( , ), and define a weight function
→w V G: ( ) [0, 1] by putting ≔w x( )

h k c

1

( , )
for each ∈x W′, and ≔w x( ) 0 for all other

x . By assumption, G has a w c( , )‐balanced separator X with ≤χ X k( ) .
Now for any component D of G X\ , we have ≤w D c( ) , and so there are at least

≥c h k c k(1 − ) ( , ) 2 vertices of W′ outside of D. In particular, since ≤ ≤α X χ X k( ) ( ) ,
there are k vertices ofW′, say x x, …, k1 , which do not belong to ∪D X .

Let us now pick a clique cover ofW with at most ( )h k c( , ) + 1

2
cliques, and consider the

set ≔ ∩Y W D. By the above, the (distinct) cliques containing x x, …, k1 do not intersect Y ,

so ≤ ( )χ Y k( ) −
h k c( , ) + 1

2
. This shows ∪ ≤ ≤ ( )χ Y X χ Y χ X( ) ( ) + ( )

h k c( , ) + 1

2
, and we

may recursively find a tree decomposition of ∪D X by applying (*) to the pair
∪ ∪D X Y X( , ) (noting that ∪D X is a smaller graph).
We do the above for each component Di of G X\ , defining Yi analogously to Y ; we

obtain, for each i, a tree decomposition T φ( , )i i of ∪D Xi with a node ∈t Ti i such that
∪ ⊆Y X φ t( )i i i . We then assemble those tree decompositions into a decomposition T φ( , )

of G with the desired property by starting with the union of the Ti 's and adding single
vertex t adjacent to all ti's, and with ∪φ t W X( ) = (and with φ restricting to each φi on
the corresponding Ti). Note that ∪ ≤ ≤χ G φ t χ W X χ W χ X g k c( [ ( )]) = ( ) ( ) + ( ) ( , ).

8 | ABRISHAMI ET AL.
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Inductively, this is also true of every other bag. This yields a tree decomposition ofG (see
Fact 2.8 from page 111 of [23]). □

In the converse direction, we have the following:

Lemma 2.11 (Cygan et al. [13]). Let G be a graph and let k be a positive integer. If
≤G ktw( ) , then for every weight function →w V G: ( ) [0, 1] with w G( ) = 1 and every

∈


 )c G, 1 ,
1

2
has a w c( , )‐balanced separator of size at most k + 1.

This can be generalized at no extra cost to obtain αtree‐ and χtree‐ versions of the lemma (since
the separator in the proof from [13] is contained in a single bag of the given tree decomposition).

Lemma 2.12 (see Cygan et al. [13]). Let G be a graph and let k be a positive integer. If
≤α G ktree‐ ( ) , then for every weight function →w V G: ( ) [0, 1] with w G( ) = 1 and every

∈


 )c G, 1 ,
1

2
has a w c( , )‐balanced separator of independence number at most k. The

analogous statement for χtree‐ holds as well.

2.4 | Separations

A separation of a graph G is a triple A C B( , , ), where ⊆ ∪ ∪A B C V G A C B V G A B, , ( ), = ( ), , ,
and C are pairwise disjoint, and A is anticomplete to B. If S A C B= ( , , ) is a separation, we let
A S A B S B( ) = , ( ) = , andC S C( ) = . Two separations A C B( , , )1 1 1 and A C B( , , )2 2 2 are nearly non‐
crossing if every component of ∪A A1 2 is a component of A1 or a component of A2. A separation
A C B( , , ) is a star separation if there exists ∈v C such that ⊆C N v[ ]. Let S A C B= ( , , )1 1 1 1 and
S A C B= ( , , )2 2 2 2 be separations of G. We say S1 is a shield for S2 if ∪ ⊆ ∪B C B C1 1 2 2.

We note the following result from [1]:

Lemma 2.13 (Abrishami et al. [1]). Let G be a (C4, diamond)‐free graph with no clique
cutset, let ∈v v V G, ( )1 2 , and let S A C B= ( , , )1 1 1 1 and S A C B= ( , , )2 2 2 2 be star separations
of G such that ∈ ⊆v C N v B[ ],i i i i is connected, and N B C v( ) = \{ }i i i for i = 1, 2. Suppose
that ∈v A2 1 and ∩ ∪ ≠ ∅B B C v( ( \ { }))2 1 1 1 . Then, S1 is a shield for S2.

Let G be a graph and let →w V G: ( ) [0, 1] be a weight function on G with w G( ) = 1. A
vertex ∈v V G( ) is called balanced if ≤w D( )

1

2
for every component D of G N v\ [ ], and

unbalanced otherwise. Let U denote the set of unbalanced vertices of G. Let ∈v U . The
canonical star separation for v, denoted S A C B= ( , , )v v v v , is defined as follows: Bv is the
connected component of G N v\ [ ] with largest weight, ∪ ∩C v N v N B= { } ( ( ) ( ))v v , and

∪A V G B C= ( )\( )v v v . Note that Bv is well‐defined since ∈v U .
Let ≤A be the relation on U where for ∈ ≤x y U x y, , A if and only if x y= or ∈y Ax. We

also need:

Lemma 2.14 (Abrishami et al. [1]). LetG be a (C4, diamond)‐free graph with no clique cutset,
let →w V G: ( ) [0, 1] be a weight function onG with w G( ) = 1, letU be the set of unbalanced
vertices of G, and let ≤A be the relation onU defined above. Then, ≤A is a partial order.

ABRISHAMI ET AL. | 9
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2.5 | Central bags

LetG be a graph and let →w V G: ( ) [0, 1] be a weight function onG with w G( ) = 1. We call a
collection  of separations of G smooth if the following hold:

(i) S1 and S2 are nearly non‐crossing for all distinct ∈S S,1 2 ;
(ii) There is a set of unbalanced vertices  ⊆v V G( ) ( ) such that there is a bijection f from

v ( ) to  with ∈ ⊆v C f v N v( ( )) [ ] and ⊆A f v A( ( )) v for each ∈v v ( );
(iii)  ∩ ∅v A S( ) ( ) = for all ∈S .

Let  be a smooth collection of separations of G. Then, the central bag for  , denoted β , is
defined as follows:

  ∪∈β B S C S= ( ( ) ( )).S

By property (iii) of smooth collections of separations, it holds that  ⊆v β( ) . Also note that

 ∈G β A S\ = ( )S . Moreover, by property (i), every component D of G β\ is contained in A f v( ( ))i
for some i (to see this, we consider a maximal subset of D belonging to a single A f v( ( ))i , and use (i)
to extend the subset if it does not equal the whole of D, contradicting maximality).

We next define an inherited weight function w on β by recording the weight of each
component of G β\ into a unique vertex ∈v βi . To this end, we start by fixing an ordering
v v{ , …, }k1 of v ( ). For every ∈f v( )i , let A f v*( ( ))i be the union of all connected components
D of ≤ ≤ A f v( ( ))j k j1 such that ⊆D A f v( ( ))i , and ⊈D A f v( ( ))j for every j i< . In particular,
A f v A f v( *( ( )), …, *( ( )))k1 is a partition of ∈ A S( )S . For a component D of ∈ A S( )S ,
we call the unique vi with ⊆D A f v*( ( ))i the anchor of D. In other words, the anchor
of D is the first vi in our ordering with ⊆D A f v( ( ))i . We define   →w V β: ( ) [0, 1] by

w v w v w A f v( ) = ( ) + ( *( ( )))i i i for all ∈v v ( )i , and w v w v( ) = ( ) for all ∉v v ( ).

2.6 | Wheels

We will need the following result from [1].

Lemma 2.15 (Abrishami et al. [1]). Let G be a (theta, even wheel)‐free graph, let H be a
hole of G, and let ∈v v V G V H, ( ) \ ( )1 2 be adjacent vertices each with at least two
nonadjacent neighbors in H . Then, v1 and v2 have a common neighbor in H .

Recall that a wheel H w( , ) is a hole H and a vertex ∈w V G( ) such that w has at least three
neighbors in H . A wheel H w( , ) is a twin wheel if ∩N w H( ) is a path of length two. A wheel
H w( , ) is a bug if ∩ N w H( ) = 3 and w has exactly two adjacent neighbors in H . Bugs are also
known as short pyramids. A wheel H w( , ) is a universal wheel if w is complete to H . We will also
use the following result about wheels and star cutsets.

Lemma 2.16 (Abrishami et al. [1]). Let G be a (C4, even wheel, theta, prism)‐free graph
and let H v( , ) be a wheel of G that is not a bug, a twin wheel nor a universal wheel. Let
A C B( , , ) be a separation ofG such that ∈ ⊆v C N v B[ ], is connected, and N B C v( ) = \{ }.
Then, ⊈ ∪H B C.

10 | ABRISHAMI ET AL.
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2.7 | Trisimplicial elimination orderings

A vertex v of a graph G is called simplicial if its neighborhood is a clique, bisimplicial if there
exist cliques K K,1 2 of G such that ∪N v K K( ) = 1 2, and trisimplicial if there exist cliques
K K K, ,1 2 3 of G such that ∪ ∪N v K K K( ) = 1 2 3.

A central ingredient in our argument is the fact that the graphs we consider admit elimination
orderings  v v, …, V G1 ( ) of their vertex sets such that for each ∩  i N v v v v, ( ) { , , …, }i i i V G+1 ( ) is the
union of a bounded number of cliques (in particular, bisimplicial or trisimplicial elimination
orderings qualify).

It is worth pointing out that every even‐hole‐free graph has a bisimplicial vertex [11], and as
such admits a bisimplicial elimination ordering. This gives us hope that it might be possible to
generalize the results of this paper to obtain a polynomial algorithm for MWIS in the whole class of
even‐hole‐free graphs. However, for the purposes of this paper, we would like to derive and use an
analogous result for the class  . It is not clear how to adapt the proof from [11] to this setting;
nonetheless, there is another result from [21] that one may use as a basis for what we need here:

Theorem 2.17 (Kloks et al. [21]). Every (even hole, diamond)‐free graph has a vertex
which is either simplicial or of degree 2.

We note that this result is in a sense orthogonal to the one from [11]: it requires the
additional condition of diamond‐freeness, and yields a stronger outcome than just a
bisimplicial vertex. While the proof of this result does generalize to the class  (and in fact
to the even more general class of (C4, diamond, theta, prism, even wheel)‐free graphs) in a
relatively straightforward way, it is a bit long. Instead, we include here a shorter proof of a
weaker result which is still strong enough for our purposes.

Lemma 2.18. Every graph in  has a trisimplicial vertex.

Proof. We first prove that graphs in  with no wheel satisfy a stronger statement:

(1) If a graph ∈G contains no wheel, then it has a bisimplicial vertex.

Note that G is (3PC, wheel)‐free, so by Lemma 2.7, it either has a clique cutset, or is a
complete graph or a hole. In the latter two cases, G satisfies the statement, so assume G
has a clique cutset. In that case, it is well‐known (see e.g. Lemma 3.3 of [25]) that G has
an extreme clique cutset C, that is, a clique cutset C such that, for some component D of

∪G C D C\ , has no clique cutset. As above, ∪D C is a complete graph or a hole; in
particular, any vertex in D is bisimplicial in G, proving (1).

We are ready to show that general graphs in  have trisimplicial vertices. We do so
using an approach conceptually similar to the proof of (1), by finding an “extreme” star
cutset in G.

IfG is wheel‐free, then we are done by (1), so assumeG contains a wheel H w( , ). Since
G is pyramid‐free, H w( , ) is not a bug, and since it is diamond‐free, it is not a twin or
universal wheel, and hence Lemma 2.16 implies thatG has a star cutset. Let us pick a star
cutset C with center v such that some component D of G C\ is minimal, in the sense that
it does not properly contain a component of G C\ ′ for any other choice of star cutset C′.

ABRISHAMI ET AL. | 11
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Case 1: v is complete to D. In this case, D is a singleton (since otherwise we may add all
but one vertex of D to the cutset, and removing the new cutset leaves a singleton
component properly contained in D, contradicting the minimality of D). But in this case,
the unique vertex in D is simplicial in G by diamond‐freeness, since its neighborhood is
contained in N v[ ], and we are done.

Case 2: v is not complete to D. In this case, once more by the minimality of D v,

must be anticomplete to D (since otherwise we may add all neighbors of v in D to the
cutset and obtain once more a smaller component). We now claim:

(2) G D[ ] is wheel‐free.

Indeed, suppose not, and let H u( , ) be a wheel in G D[ ]. Put ≔C N u′ [ ],
and note that, by Lemma 2.16, C′ is a star cutset in G with center u,
and ⊈ ∪H Q C′ for any component Q of G C\ ′ (in actuality, the statement of the
lemma yields ⊈ ∪ ∪H Q N Q u( ) { }, but by diamond‐freeness, we cannot have

∪ ∪ ⊆H Q N Q u C N Q\( ( ) { }) ′\ ( ), since if that were the case, any vertex in
∪ ∪H Q N Q u\( ( ) { }) would be the center of a P3 in ∩H N u( )). Let B′ be the

component ofG C\ ′ containing v. By the above, there exists ∈ ∪x D B C\( ′ ′). Let D′ be the
component of G C\ ′ containing x . Since every path from x to G D\ intersects C, and since
⊆ ∪C B C′ ′, it follows that ⊆D D′ , and this containment is proper (as ∈u D D\ ′),

contradicting the choice of C and D.
Now by (1), G D[ ] has a bisimplicial vertex x . But x has at most one neighbor in G D\ ,

since ⊆N x N v( ) ( )G D\ , and x and v are nonadjacent (and so by (C4, diamond)‐freeness,
they have at most one common neighbor). Thus x is trisimplicial in G, completing the
proof. □

3 | BALANCED SEPARATORS AND CENTRAL BAGS

In this section, we construct a useful central bag for graphs in  and prove that the central bag
has a balanced separator of bounded χ . We note that, because of Lemma 2.6, we often assume
that the graphs we work with do not have clique cutsets. We also have the following simple
characterization of the neighborhood of vertices in diamond‐free graphs.

Lemma 3.1 (Abrishami et al. [1]). LetG be diamond‐free and let ∈v V G( ). Then, N v( ) is
the union of disjoint and pairwise anticomplete cliques.

For ⊆X V G( ), let XHub( ) denote the set of all vertices ∈x X for which there exists a wheel
H x( , ) which is not a bug and with ⊆H X . We will need several results from [1] that we will
now describe, introducing the relevant notation and terminology as necessary. Note that we
will not explicitly use Lemmas 3.2 and 3.4 in this paper, but for completeness (and to give
the reader some intuition of how the results that we do use explicitly were obtained),
we include their statements. We start with a result showing that, under suitable conditions, the
components of a central bag by a star cutset attach to the cutset in a controlled way:

12 | ABRISHAMI ET AL.
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Lemma 3.2 (Abrishami et al. [1]). Let G be a (C4, theta, prism, even wheel, diamond)‐free
graph with no clique cutset and let →w V G: ( ) [0, 1] be a weight function on G with
w G( ) = 1. Let  be a smooth collection of separations of G, let β be the central bag for  ,
and let w be the inherited weight function on β . Let ∈v β and (by Lemma 3.1) let


∪ ⋯∪N v β K K( ) \Hub( ) =β t1 , where K K, …, t1 are disjoint, pairwise anticomplete cliques.

Assume that v is not a pyramid apex in β . Let D be a component of β N v\ [ ]. Then, at most
two of K K, …, t1 have a neighbor in D.

We next have a result about balanced separators in central bags with balanced vertices. This
result follows directly from the proof of Lemma 20 of [1]. The statement of that lemma gives a
separator of size ω β k6 ( ) +s , under the stronger assumption that ∩ N v β k( ) Hub( ) < , but its
proof works by actually providing a clique cover of N v β( ) \Hub( ) by 6 cliques, which is strong
enough to derive the following:

Lemma 3.3 (Abrishami et al. [1]). Let G be a (C4, theta, pyramid, prism, diamond, even
wheel)‐free graph with no clique cutset, let →w V G: ( ) [0, 1] be a weight function on G

with w G( ) = 1, let ∈


 )c , 1
1

2
, and let k be a positive integer. Let  be a smooth collection of

separations of G, let β be the central bag for  , and let w be the inherited weight function
on β . Suppose that there exists ∈v β such that v is balanced in G, and assume that

∩ ≤χ N v β k( ( ) Hub( )) . Then β has a w c( , )‐balanced separator of clique cover number
at most k6 + .

Recall that *nc denotes the class of (C4, diamond, theta, prism, even wheel)‐free graphs with no
clique cutset. Let ∈G *nc , let →w V G: ( ) [0, 1] be a weight function onG with w G( ) = 1, and let
U be the set of unbalanced vertices of G. Let ⊆X U . The X ‐revised collection of separations,
denoted ̃X , is defined as follows. Let ∈u X , and let S A C B˜ = ( ˜ , ˜ , ˜ )u u u u be such that B̃u is the
largest‐weight connected component of ∪ ∩∈ ∩G N u C C N u N v\ [ ], ˜ = ( ( ) ( ))u u v X C u( \ { })u

, and
∪A V G C B˜ = ( )\( ˜ ˜ )u u u . Then,  ∈S u X˜ = { ˜ : }X u . Note that the separations in ̃X are closely

related to canonical star separations. Specifically, for all ∈u X , the following hold:

(i) B B˜ =u u,
(ii) ⊆ ⊆C C N u˜ [ ]u u ,
(iii) ⊆A A˜

u u,
(iv) ⊆A N u A\ ( ) ˜

u u.

One way of thinking about the revised separations is that we begin with the canonical separation,
and extend Cu by extending every edge ux with ∈ ∩x C Xu to a maximal clique (each such clique
has size at least 2, so it can be extended to a maximal clique in a unique way, by diamond‐freeness).

The following lemma shows that separations from a revised collection are nearly non‐
crossing. It follows directly from Lemma 21 of [1], which additionally assumes Kt‐freeness in
the statement, but never uses that assumption in the proof.

Lemma 3.4 (Abrishami et al. [1]). Let ∈G *nc , let →w V G: ( ) [0, 1] be a weight
function onG with w G( ) = 1, letU be the set of unbalanced vertices ofG, and let ⊆X U be
such that every vertex of X is minimal under the relation ≤A. Let  ˜ = ˜

X be the X ‐revised
collection of separations. Then, S̃u and S̃v are nearly non‐crossing for all ∈S S˜ , ˜ ˜

u v .

ABRISHAMI ET AL. | 13

 10970118, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23104 by U

niversity O
f W

aterloo D
ana Po, W

iley O
nline L

ibrary on [01/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



We now show how to construct a useful collection of separations of G. By Theorem 2.18,
any graph in  admits a trisimplicial elimination ordering. Let ∈G , and let v v, …,1 ℓ be a
trisimplicial elimination ordering of GHub( ). LetU be the set of unbalanced vertices ofG. Letm
be defined as follows. If ⊆G UHub( ) , thenm = ℓ + 1. Otherwise, letm be minimum such that
vm is an element of G UHub( )\ . Now, ⊆v v U{ , …, }m1 −1 . Let M be the set of minimal vertices of
v v{ , …, }m1 −1 under the relation ≤A, and let S̃M be the M‐revised collection of separations. We
call v v m M S({ , …, }, , , ˜ )M1 ℓ the hub division ofG. The next two lemmas describe properties of the
hub division. Once more, their statements in [1] assume Kt‐freeness, but their proofs do not.
Moreover, the hub division was defined in [1] with respect to a different ordering of the
vertices, but the proofs of these two lemmas apply to any ordering (and in particular, to our
trisimplicial elimination ordering).

Lemma 3.5 (Abrishami et al. [1]). Let ∈G , let →w V G: ( ) [0, 1] be a weight function
on G with w G( ) = 1, and let v v m M S({ , …, }, , , ˜ )M1 ℓ be the hub division of G. Then, S̃M is a
smooth collection of separations of G.

By Lemma 3.5, there is a central bag βM for S̃M and an inherited weight function wM on βM .

Lemma 3.6 (Abrishami et al. [1]). Let ∈G , let →w V G: ( ) [0, 1] be a weight function
on G with w G( ) = 1, and let v v m M S({ , …, }, , , ˜ )M1 ℓ be the hub division of G. Let βM be the
central bag for S̃M and let wM be the inherited weight function on βM . Then, for all
≤ ≤ ∉i m v β1 − 1, Hub( )i M .

We continue with a short result compiling two earlier ones.

Lemma 3.7. Let G be a (3PC, wheel)‐free graph and let →w V G: ( ) [0, 1] be a weight

function on G. Then G has a ( )w,
1

2
‐balanced separator of clique cover number at most 2.

Proof. By Lemma 2.8, ≤χ Gtree‐ ( ) 2. By Lemma 2.12, G has a ( )w,
1

2
‐balanced

separator of clique cover number at most 2. □

Finally, we prove the main result of this section: that if G is pyramid‐free, then βM has a
balanced separator of small clique cover number.

Theorem 3.8. Let ∈G nc , let →w V G: ( ) [0, 1] be a weight function on G, and let
v v m M S({ , …, }, , , ˜ )M1 ℓ be the hub division of G. Let βM be the central bag for S̃M and let wM

be the inherited weight function on βM . Then, βM has a ( )w ,M
1

2
‐balanced separator of

clique cover number at most 9.

Proof. First, suppose that m = ℓ + 1. Then, by Lemma 3.6, for every
∈ ∉v G v βHub( ), Hub( )M . Since ⊆β GHub( ) Hub( )M , and since G is pyramid‐ (and

therefore bug‐)free, it follows that βM is wheel‐free. By Lemma 3.7, βM has a ( )w ,M
1

2
‐

balanced separator of clique cover number at most 2.
Now, assume m < ℓ + 1. We claim that ∈v βm M . Suppose that ∈v Am vi for some
∈v Mi . Then, ⊆ ∪N v A C[ ]m v vi i

, so Bvi is contained in a connected component D of

14 | ABRISHAMI ET AL.
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G N v\ [ ]m . Since ∈v Mi , it follows that vi is unbalanced, so w B( ) >v
1

2i
. But now w D( ) >

1

2
,

so vm is unbalanced, a contradiction. Therefore, ∉v Am vi for all ∈v Mi . Since for all
∈v Mi it holds that ⊆A A˜

v vi i
, it follows that ∈ ∪v B C˜ ˜

m v vi i
, and so ∈v βm M .

Next, consider ∩N v β( ) Hub( )m M . By Lemma 3.6, ⊆β v v vHub( ) { , , …, }M m m+1 ℓ .
Therefore, ∩ ≤χ N v β( ( ) Hub( )) 3m M . Finally, by Lemma 3.5, S̃M is a smooth

collection of separations of G. Now, by Lemma 3.3, βM has a ( )w ,M
1

2
‐balanced

separator of clique cover number at most 6 + 3 = 9. □

4 | EXTENDING BALANCED SEPARATORS

In this section, we prove that we can construct a balanced separator ofG of bounded χ given a
balanced separator of βM of bounded χ . This is where our proof differs significantly from [1].
Together with the main result of the previous section, this is sufficient to prove Theorem 1.2.
First, we need the following lemma, which is once more an adaptation of a corresponding
result from [1], and is directly implied by the proof from there.

Lemma 4.1 (Abrishami et al. [1]). Let ∈G nc , let →w V G: ( ) [0, 1] be a weight
function onG with w G( ) = 1, and let v v m M S({ , …, }, , , ˜ )M1 ℓ be the hub division ofG. Let βM
be the central bag for S̃M . Let ∈v M be such that v is not a pyramid apex in βM . Then

≤χ N v β( ( ) \Hub( ))) 2β MM
.

We also need the next lemma, which examines how three vertices can have neighbors in a
connected subgraph.

Lemma 4.2 (Abrishami et al. [4]). Let x x x, ,1 2 3 be three distinct vertices of a graph G.
Assume that H is a connected induced subgraph of G x x x\ { , , }1 2 3 such that H contains at
least one neighbor of each of x x x, ,1 2 3, and that subject to these conditionsV H( ) is minimal
subject to inclusion. Then one of the following holds:

(i) For distinct ∈i j k, , {1, 2, 3}, there exists P that is either a path from xi to xj or a hole
containing the edge x xi j such that
– H P x x= \{ , }i j , and
– either xk has at least two nonadjacent neighbors in H or xk has exactly two

neighbors in H and its neighbors in H are adjacent.
(ii) There exists a vertex ∈a H and three paths P P P, ,1 2 3, where Pi is from a to xi, such that

– ∪ ∪H P P P x x x= ( )\{ , , }1 2 3 1 2 3 , and
– the sets P a P a\ { }, \ { }1 2 and P a\ { }3 are pairwise disjoint, and
– for distinct ∈i j, {1, 2, 3}, there are no edges between P a\ { }i and P a\ { }j , except

possibly x xi j.
(iii) There exists a triangle a a a1 2 3 in H and three paths P P P, ,1 2 3, where Pi is from ai to xi,

such that
– ∪ ∪H P P P x x x= ( )\{ , , }1 2 3 1 2 3 , and
– the sets P P,1 2, and P3 are pairwise disjoint, and
– for distinct ∈i j, {1, 2, 3}, there are no edges between Pi and Pj, except a ai j and

possibly x xi j.

ABRISHAMI ET AL. | 15
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Now we prove the main result of this section.

Theorem 4.3. For any ∈t +, there exists tΓ′( ) with the following property. Let ∈G nc ,
let →w V G: ( ) [0, 1] be a weight function on G with w G( ) = 1, and let
v v m M S({ , …, }, , , ˜ )M1 ℓ be the hub division of G. Let βM be the central bag for S̃M and let

wM be the inherited weight function on βM . Assume that βM has a ( )w ,M
1

2
‐balanced

separator of clique cover number at most t . Then G has a ( )w,
1

2
‐balanced separator whose

clique cover number is at most tΓ′( ).

Proof. Let X be a ( )w ,M
1

2
‐balanced separator of βM with ≤χ X t( ) . Let K K, …, t1 be

cliques covering X . Now for each i with ≤ ≤i t1 , let K̃i equal Ki if  K = 1i , and let K̃i be a
maximal clique inG containing Ki otherwise. We note that, sinceG is diamond‐free, K̃i is
unique. Put ≔ X K˜ ˜

i
t

i=1 , and note that ∩X β˜
M is also a ( )w ,M

1

2
‐balanced separator of

βM , with ∩ ≤χ X β t( ˜ )M . We claim that we have:

(1) For each ∈ ≤x v v χ N x{ , …, }, ( ( )) 5m β1 −1 M
.

We first show that this is true if ∈x M . Indeed, by Lemma 3.6,
⊆β v v vHub( ) { , , …, }M m m+1 ℓ . In particular, for each ∈ ∩x M N x β, ( ) Hub( )β MM

is the
union of three cliques. Moreover, by Lemma 4.1, ≤χ N x β( ( ) \Hub( )) 2β MM

, and
consequently N x( )βM can be covered by 5 cliques as claimed. Now assume that
∈x v v M{ , …, } \m1 −1 . In this case, we may find ∈y M with y x<A . But then ∈x Ay, and

⊆ ∩ ⊆ ∪N x β C y N y( ) { } ( )β M y βM M
, which can be covered by 5 cliques by the previous

argument. This yields (1).
Consider now the bipartite graph H A B= ( , ) where A a a B b b= { , …, }, = { , …, }r s1 1 ,

each ai corresponds to a component Di of ∪G β X\( ˜ )M , and each bi corresponds to a
componentQi of β X\ ˜M , with an edge between ai and bj if there is an edge between Di and
Qj. Recall that each Di belongs to A f v*( ( )) for a unique ∈v v v{ , …, }m1 −1 , namely its
anchor. Write v i( ) to denote the anchor of Di. Let HCore be the subgraph of H induced by
∪ ∈ ∈ ∩B a A v i X β{ : ( ) ˜ }i M . Define ≔γ t8 + 3. We claim that:

(2) HCore contains no hole of length at least γ .

Suppose for a contradiction that HCore contains such a hole L. Without loss of generality,
the vertices of L are ⋯a b a b a b a− − − − − − −γ γ1 1 2 2 ′ ′ 1 for some ≥ ∕ γ γ t′ 2 > 4 . Let
f f f, , …, γ1 2 2 ′ be the edges of L, directed along the hole, with f a b= ( , )1 1 1 .

We may find a hole W x y P x y R x y P x y= − − − − − − − − − −1 1 1 2 2 1 3 3 2 4 4

⋯R P x y R x− − − − − − −γ γ γ γ2 ′ 2 ′ 2 ′ ′ 1 in G X\ ˜ with the following properties:

• For each i with ≤ ≤i γ x1 2 ′, i, respectively yi, belongs to the component corresponding
to the tail, respectively head of fi.

• For each i with ≤ ≤i γ P1 ′, i is a (possibly one‐vertex) path in Qi between y i2 −1 and x i2 .
• For each i with ≤ ≤i γ R1 ′, i is a (possibly one‐vertex) path in Di between y i2 and x i2 +1

(indices modulo γ2 ′).

16 | ABRISHAMI ET AL.

 10970118, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23104 by U

niversity O
f W

aterloo D
ana Po, W

iley O
nline L

ibrary on [01/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Since γ t′ > 4 , the pigeonhole principle yields five distinct indices i i, …,1 5 such that the
anchors v i v i( ), …, ( )1 5 belong to the same clique, say K̃1. It might be that some of those
anchors coincide; however, we claim that at least two of them are distinct. Indeed,
note that, by (1), a fixed ∈ ∩v X M˜ can have neighbors in at most five of the Qi, since

≤χ N v( ( )) 5βM . If all five anchors coincide, then we consider N a a({ , …, })L i i1 5
(recall that

L is the hole in HCore that we started with). Since L has size more than 10, this
neighborhood consists of at least 6 nodes corresponding to components of β X\ ˜M . But
then ⋯v i v i v i( )(= ( ) = = ( ))1 2 5 has neighbors in all 6 of those components, which is not
possible. Thus we may assume that two of the anchors, say v i( )1 and v i( )2 are distinct.

We note that each of v i( )1 and v i( )2 has two nonadjacent neighbors onW . Indeed, this
is the case by construction, since Di1 and Di2 each have edges to a pair of distinctQjs, and

⊆N D N v i( ) [ ( )]β i βM M
. But v i( )1 and v i( )2 are adjacent (since they are distinct vertices of

K̃1), and they have no common neighbors inW (since all common neighbors of the two
vertices belong to X̃ ). This is a contradiction to Lemma 2.15, which proves (2).

We next claim that:

(3) We have ≤adeg ( ) 5H iCore
for every ∈ ∩a A Hi Core.

and

(4) We have ≤adeg ( ) 1H i for each ∈a A H\i Core.

Indeed (3) follows directly from (1), since we have ⊆N D N v i( ) [ ( )]β i βM M
. To see (4), note

that, by the definition of HCore, any vertex ∈a A H\i Core has its anchor v i( ) contained in
some component Q of β X\ ˜M . In particular, the anchor (and thus the component Di of

∪G β X\( ˜ )M corresponding to ai) cannot have neighbors in any other component of
β X\ ˜M , meaning ≤adeg ( ) 1H i in this case, as claimed.

In [27], it is shown that the treewidth of graphs without a complete bipartite subgraph
and without a large induced hole is bounded (where the bound only depends on the sizes
of the forbidden bipartite subgraph, and of the largest induced hole). Hence (2) and (3)
imply that ≔k Htw( )Core is bounded above by some constant depending only on t . By (4),

H ktw( ) = (assuming without loss of generality that it is at least 1). Let w′H be the weight
function defined on H by letting w a′ ( )H i , respectively w b′ ( )H j , be the w‐weight of Di,
respectively Qj. Let wH be the normalization of w′H , so that w H( ) = 1H . Explicitly,

≔ ∕w x w x w H( ) ′ ( ) ′ ( )H H H for each ∈x H (and we note that we may assume ≠w H′ ( ) 0H ,

since otherwise w X( ˜ ) = 1, and X̃ is a ( )w,
1

2
‐balanced separator whose clique cover

number is bounded by t). From Lemma 2.11, it follows H has a ( )w ,H
1

2
‐balanced

separator of size at most k + 1, which we call Z . Put ≔ ∩ ∪ ∩Z Z B N Z A′ ( ) ( )H , and
note that (3) and (4) immediately imply:

(5) ≤ Z k′ 5( + 1).

We now claim the following:

(6) For every fixed ∈j s[ ], we have ∈ ∈ ∩ i m v X β N v{ [ − 1] : ˜ and ( )i M i

∩ ≠ ∅ ≤Q t} 2 + 1j .

ABRISHAMI ET AL. | 17
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To see this, assume for a contradiction that this is not the case. Then we may find
distinct i i i, ,1 2 3 such that v v,i i1 2

and vi3 all belong to the same clique in the clique partition
of X̃ and, say, ∩ ≠ ∅N v Q( )i 1α

for each ∈α [3]. We now apply Lemma 4.2 to those three
vertices and a minimal induced subgraph ofQ1 containing neighbors of all three. We note
that Q1 contains no common neighbors of any two of the three vertices (since any such
common neighbors belong to X̃ , by diamond‐freeness). In view of this, the second and
third outcomes of the lemma imply that βM contains a pyramid, respectively a prism,
which is impossible. In the first outcome, one of v v v, ,i i i1 2 3

is the center of a wheel in βM
which is not a bug—once more impossible, by Lemma 3.6. This yields our desired
contradiction and proves (6).

We are now ready to construct our ( )w,
1

2
‐balanced separator for G. To do so, we let

≔ ∈ ∈J j s b Z{ [ ] : ′},j

and

∪≔ ∈ ∈ ∩ ∩ ≠ ∅
∈

I i r v X β N v Q{ [ ] : ˜ and ( ) }.
j J

i M i j

We then put

≔ ∪
∈

Y X N v˜ ( ).
i I

β iM

By (1), (5), and (6), we know that Y can be covered by at most
⋅ ⋅t t k+ 5 (2 + 1) 5( + 1) cliques (t cliques for X̃ , and 5 cliques for each of the

neighborhoods, of which there are at most ≤   I t Z(2 + 1) ′ ). This yields our desired
upper bound on χ Y( ) which depends only on t . It remains to check that Y is, indeed,

a ( )w,
1

2
‐balanced separator of G.

To do so, we first note that every component of H Z\ ′ is either contained
inside a component of H Z\ , or consists of a single vertex in ∩Z A. In particular, we
have:

(7) For every component F of H Z\ ′, if FG is the union of all Di and Qj corresponding to

vertices of F , then ≤w F( )G
1

2
.

Indeed, this is true if F consists of a single vertex in ∩Z A, since then FG belongs to
A f v( ( )) for some unbalanced v, and so

≤ ≤w F w A f v( ) ( ( ( ))
1

2
.G

It is also true if F belongs to some component of ⧹H Z , since then ≤w F( )H
1

2
, and

we have

18 | ABRISHAMI ET AL.
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≤ ≤w F w F w F( ) = ′ ( ) ( )
1

2
.G

H H

Now let S be a component of ⧹G Y . In particular, ⊆ ∪ ⋯∪ ∪ ∪ ⋯∪S D D Q Qr s1 1 .
Let ≔ ∩ ≠ ∅ ∪ ∩ ≠ ∅S H a S D b S Q[{ : } { : }]H i i j j , and note that SH is a connected
induced subgraph of H . Finally, we look at two cases:

• ∩ ∅S Z′ =H . In this case, SH is contained in a connected component of ⧹H Z′, and
⊆S S( )H

G (where as above, S( )H
G is the union of the connected components

corresponding to vertices of SH), so ≤w S( )
1

2
by (7).

• ∩ ≠ ∅S Z′H . In this case, we first note that ∩ S Z′ = 1H . Indeed, let ∈ ∩b S Z′j H , and
note that, by construction of Y , the only Di with a neighbor in ⧹Q Yj are Di with

∈v i Q( ) j. These Di have no neighbors in any other Qj (since ⊆N D N v i( ) [ ( )]i ). In
particular, SH is a star centered at bj, and ∈v i Q( ) j for all ∈a Si H . Now

≤ ≤ ≤w S w S w Q( ) (( ) ) ( )
1

2
,H

G
M j

as required.

This finishes the proof. □

Finally, we restate and prove Theorem 1.2.

Theorem 4.4. There exists an integer Γ such that ≤α Gtree‐ ( ) Γ for every graph ∈G .

Proof. By Lemma 2.6, we may assume that G has no clique cutset, so ∈G nc . Let
→w V G: ( ) [0, 1] be a weight function on G with w G( ) = 1, and let

v v m M S({ , …, }, , , ˜ )M1 ℓ be the hub division of G. Let βM be the central bag for S̃M and

let wM be the inherited weight function on βM . By Theorem 3.8, βM has a ( )w ,M
1

2
‐

balanced separator of clique cover number at most 9. Now, by Theorem 4.3, G has a

( )w,
1

2
‐balanced separator of clique cover number at most Γ′(9). Finally, by Lemma 2.10,

≤ ≔ ( )χ G gtree‐ ( ) Γ Γ′(9),
1

2
, where g is as defined in the lemma, and by Lemma 2.2,

≤α G χ Gtree‐ ( ) tree‐ ( ). □
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