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Abstract 

Carbon capture is a promising way to slow down climate change from anthropogenic 

sources. One of the carbon capture technologies that is being actively researched is adsorption. 

Given the increasing amount of literature that present novel ideas, being able to predict this 

information based on adsorbent textural properties is desirable. In this thesis, machine learning is 

used to construct a model to estimate adsorbent performance.  

Currently, many groups are researching novel adsorbents simultaneously. While beneficial 

for development, the organization of data varies between papers, as preparation and testing 

conditions affect the adsorbent performance. Determining the adsorbent data representative of the 

adsorbent is a difficult challenge, given the presentation and availability are varied. Thus, a section 

of the thesis focuses on determining which parameters are able to represent the adsorbents while 

being commonly reported in the literature. A general review of the textural properties is presented. 

The adsorbent types are also described in the literature review to capture the differences present in 

adsorbents. 

Models trained using five different machine learning methods are examined in detail. The 

models use the adsorbent’s textural properties along with the testing conditions to estimate the 

adsorption capacity for an adsorbent. Additionally, the isotherm parameters are also targeted in 

additional models. Comparisons are performed between the directly predicted capacity and the 

capacity estimated from the modeled isotherm parameters; this is performed over the different 

machine learning methods used. A section of the thesis is dedicated to examining a sample 

adsorbent in more detail based on the ML model. An Aspen Adsorption bed model is used to 

investigate the effects of the differences between the model. The models exhibit limited 

performance in the general setting, despite the good training performance. The performance is 

approximate at a high level, but the requirements to capture the relationship between the adsorbents 

and its performance is not readily available.  
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Chapter 1: Introduction 

In this chapter, a general motivation and background pertaining to climate change is given. 

The objective of the thesis is also described thereafter. 

1.1. Background 

Climate change is increasingly becoming a major forefront of research and development. 

Multiple avenues are necessary to confront the ever-daunting task; research is conducted in areas 

such as producing clean energy, reducing consumption, and lowering waste production. Public 

awareness is gaining more momentum, as an increased demand for electric automobiles and 

renewable energy sources grow. However, this remains but one facet that is needed to mitigate 

climate change. In particular, reducing waste generated is connected to manufacturing and power 

generation sites. Enhanced efficiency towards reducing emissions benefits these companies as the 

government applies more pressure to reduce waste output. 

A key target in this waste output is carbon dioxide. CO2 is generated in a plethora of ways, 

but one that applies to manufacturers is burning fuel for power generation. Burning fuel produces 

flue gas, which contains CO2 and other pollutants. Reducing CO2 can either be done before, during 

or post fuel combustion. For existing sites, retrofitting a post-combustion capture system is the 

only economical option to come to newer standards. 

Carbon dioxide can be captured and either utilized or sequestered; research, development, 

and integration fall under carbon capture, utilization, and sequestration (CCUS). While there are 

many methods of capturing carbon, adsorption is one with potential. The current economics and 

efficiency hamper the installation of adsorption units; the high costs currently outweigh the 

benefits. As more adsorbents approach the development stage, the exact connection between the 

sorbent design and the physical performances remains illusive. 

Modeling with machine learning is capable of learning implicit or unidentifiable 

connections. These capabilities are penetrating many different fields, especially in engineering; in 

particular, ML models’ ability to find these relationships make it fitting to connect the sorbent 

properties to its performance.  
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1.2. Objective 

The objective of this thesis is described briefly in two parts.  

• First, a data set is required to train the potential machine learning models. An existing data 

set that contains the necessary sorbent properties does not exist, requiring a general 

literature review to collect adsorbent information that is available but unorganized.  

• Second, ML models are trained on this adsorption data set. The adsorption capacity, as the 

target variable, can be estimated either directly or by prediction using isotherm parameters. 

Isotherm parameters fitted from experimental data is found from the National Institute of 

Standards and Technology’s (NIST) publicly available data base, which act as training 

data. 

Ultimately, these two objectives are used to create conclusions on the application of machine 

learning technology on adsorption data, as well as the comparison between ML and the general 

isotherm model.  

1.3. Outline 

The thesis is organized in six chapters. 

• Chapter 2: Literature Review 

Literature review is composed of several short sections that briefly describe carbon 

capture, adsorption, and machine learning. 

The first section describes the flue gas represented in the real application. The second 

section after describes carbon capture technologies, including adsorption and absorption. The 

chapter proceeds to a third section describing adsorption cycling. A fourth section is 

dedicated towards describing the different types of adsorbents available. 

The fifth and final section in this chapter goes over the machine learning algorithms at 

a high level.  

• Chapter 3: Data Collection 

Chapter 3 covers the basis of the data collection in this context, including the 

parameters of interest as described by previous work, the different databases used, the lack 

of data consistency among the sorbents. 



 

 

3 

 

• Chapter 4: Aspen Adsorption Model 

This chapter describes the development of a process-level adsorption bed model, 

which represents a real-world cyclical system to be used to evaluate the performance of the 

machine learning models.  

• Chapter 5: Machine Learning Models 

ML models trained on the data from Chapter 3 is developed throughout this Chapter 

5. The chapter covers the first iteration using neural networks, the investigation into 

potential improvements, and additional development of models trained by other ML 

methods. The models are examined using the prior-developed bed model in Chapter 4. 

• Chapter 6: Conclusion & Future Work 

Conclusions on the capabilities of ML with adsorption currently are drawn based on 

the results of Chapter 5. Improvements and future works are discussed, which is of 

importance to further develop a more cohesive landscape for adsorption in the future. 
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Chapter 2: Literature Review 

In this chapter, a review of relevant literature is given to preface the model. Section 2.1 

describes the different flue gases in industry. In section 2.2, adsorption, the CO2 separation 

technique used in this work, is described generally. Section 2.3 details the adsorption process from 

a process level. The adsorbents are also included in the review, in section 2.4. Finally, section 2.5 

briefly covers the machine learning algorithms used for the necessary models. 

2.1. Flue Gas 

The properties of the flue gas are important in determining the design of the system, 

including the separation technology and choice of adsorbent. The differences for each flue gas 

originate from its combustion. The composition, temperature and pressure are dependent on the 

industry, the location of the combustion, the equipment involved and any specialized treatment 

that may be done.  

The Government of Canada gathers data detailing the emissions from different 

manufacturers. The amount of greenhouse gases (GHG) emissions is aggregated and made 

publicly available online. A plot of the total GHG emissions in each industry over time is shown 

below. The tabulated data can be found in Appendix A. 

 

Figure 2.1: GHG Emissions over Time by Economic Sector in Canada [1] 
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The above figure shows that the oil and gas, electricity generation and heavy industry are 

three areas that produce a significant amount of GHG. These areas contribute to GHG from sources 

such as manufacturing, natural gas, power generation, and industrial, among others. Certain flue 

gases also have different compositions due to the combustion conditions. Biogas, biofuel, oxyfuel 

and syngas all contribute but these areas are separately considered compared to more typical 

combustion sources.  

Another consideration for processing carbon is the effects of combustion. Different 

technologies work around the conditions of combustion to capture carbon in different situations. 

These technologies include pre-combustion, oxyfuel and post-combustion. Pre-combustion 

technology captures carbon from the fuel before combustion. A high concentration of oxygen 

contacts the fuel to produce a combination of CO and H2 syngas; alternatively, steam reforming 

can also occur to produce a similar syngas product [2]. Oxidation and steam reformation are used 

together in auto-thermal reforming, which helps balance the opposing exothermic oxidation 

reaction with endothermic steam reformation. After impurities are removed, steam is introduced 

to engage the water gas shift reaction. The reaction produces CO2 and H2 gas by reacting CO and 

H2O, concentrating CO2 to be captured later. The fuel is converted to H2 gas which converts to 

water when combusted. The CO2 and H2 gas must be separated before; this can be done by syngas 

scrubbing with amine-based solvents, or otherwise separated with compression, condensation, or 

flashing. Theoretically, pre-combustion can be cheaper up to 45% of post-combustion and 24% of 

oxyfuel combustion costs [2]. However, active plants usually have existing fuel combustion 

systems which make retrofitting pre-combustion technology expensive. Operation at the 

production level lacks technical knowledge for effective implementation [3]. 

Oxyfuel combustion introduces high concentrations of O2 and recycled flue gas for a higher 

proportion of complete combustion. The products of oxyfuel combustion are primarily CO2 and 

H2O, which is easier to process than more typical combustion products such as CO and SOx. While 

interest is growing in oxyfuel combustion, the largest challenge is supplying a high concentration 

of O2. The separation of O2 from air is expensive for economics and energy efficiency. Research 

is ongoing for O2 separation, which includes developments as oxygen-transporting membranes 

that are difficult to upscale. Moreover, pilot systems are implemented and used to evaluate and 

demonstrate the feasibility; however, the required experience to run the process at an industrial 

level is rare.  
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2.2. Carbon Capture Technologies 

There are a multitude of technology that are emerging and developing to be used for carbon 

capture. While some technologies are commercially available, more research and development are 

needed to increase the capture efficiency and economic viability for many of these technologies. 

Gas purification processes in general can be found as one of five categories; these categories are 

absorption, adsorption, membrane separation, chemical conversion, and condensation [4]. 

Absorption with liquid solvents, separation with membranes, biological conversion with living 

organisms and adsorption with solid sorbents are several techniques developed for CCUS. While 

the focus of this thesis is the adsorption process and solid sorbents, a high-level overview of the 

other technologies is first given for comparison.  

2.2.1. CO2 Capture by Absorption 

Absorption is a common separation technique to separate impurities in gas streams. Aside 

from post-combustion CCUS, other applications include hydrogen sulphide removal in refineries, 

ethylene oxide and acrylonitrile absorption in petrochemicals, and carbon dioxide absorption in 

water in food processing [5]. Absorption remains as one of the most developed carbon capture 

technologies, being implemented in commercial applications. This stems from the relative maturity 

of the technology; an early US patent for carbon dioxide capture using aqueous ammonia was 

initially filed in 1926 [6]. Continuous innovation and development throughout the years has made 

absorption a viable technology to mitigate carbon output.  

Amine solvents are used in many absorption-based carbon capture processes. 

Monoethanolamine (MEA) is one of the most common solvents in absorption capture processes. 

Amine-based solvents are chemical solvents; chemical solvents depend on the reaction chemistry 

of the solvent, which pertains to operational considerations such as absorption capacity, kinetics, 

and presence of side reactions. Alternative to amine-based sorbents are physical sorbents, into 

which carbon dioxide dissolves; methanol is one example of a physical sorbent. The CO2 solubility 

has a trade-off between low energy requirements for solvent regeneration, and greater dependence 

on flue gas temperature and pressure. The choice of solvent depends on numerous factors, such as 

flue gas conditions, utility availability and outlet requirements.  

There are several major advantages of absorption, as evidenced from the real applications. 

The maturity of the process makes it technologically developed enough to be implemented in 
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processes today. For amine solvents, special care must be accounted for the additional corrosion. 

Factors such as higher loading, higher temperatures and the type of solvent all affect the corrosion 

rate in equipment [7]. The regeneration of chemical solvents can be expensive based as well and 

may increase with a higher flow rate for the flue gas or regeneration steam, as well as any low-

pressure regeneration conditions. 

2.2.2. CO2 Capture by Membrane Separation 

Membranes can be used to selectively separate carbon dioxide and other gases from the bulk 

flue gas. While other gases such as nitrogen and hydrogen remain on the flue gas side of the 

membrane, a selective membrane allows carbon dioxide to diffuse to the outlet side. Ideal traits 

for a selective membrane are having high permeability of CO2 while maintaining high selectivity 

of other gases. The diffusion is driven by a pressure gradient; a high pressure on the inlet side and 

a low pressure on the outlet side promotes general gas permeation through the membrane. It is 

important to have specific membrane qualities depending on the flue gas composition. While high 

CO2 permeability is desired, the composition of the flue gas heavily affects the requirements. For 

example, post-combustion membrane separation has higher nitrogen gas concentration, in 

comparison to separation from natural gases, which has a greater amount of methane [3]; 

membranes with high nitrogen gas selectivity may be unsuited for another process if methane 

permeation is an issue.  

Membranes come in various categories depending on the structure of the membrane. As the 

name suggests, polymeric membranes are made from polymers; an example of polymeric 

membrane is polyethylene glycol (PEG) [3]. However, polymeric membranes may encounter CO2 

plasticization at higher pressures. When plasticization occurs, a gas modifies the membrane’s 

physical structure where it is dissolved in the membrane surface, potentially affecting parameters 

important to membrane operation. The rate of plasticization is promoted as higher pressures and 

higher carbon dioxide concentrations. Plasticization has varying effects, both positive and 

negative, on permeability, which depends on opposing factors of diffusivity at higher pressure and 

solubility at the membrane [8].  

In contrast to polymeric membranes, inorganic membranes separate carbon dioxide based on 

their textural properties. The pore channels can restrict certain gases from permeating through the 

membrane, acting as a molecular sieve for separation [3]. Certain membranes also exhibit high 

selectivity for CO2 depending on its affinity. An example of inorganic membranes is zeolite 
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membrane; zeolites such as zeolite imidazolate frameworks (ZIF) have been involved in the 

development of novel mixed matrix membranes (MMM), where a polymeric membrane and other 

membranes combine to improve overall performance [9]. 

An advantage of membrane is that the process unit is relatively simple, compared to 

absorption or adsorption units. The operation of absorbers and adsorbers require a method of 

regeneration, such as cyclical staging of multiple units. While maintenance is still required for 

membrane units, the same is true for sorbents, or other technologies in general. As well, the process 

time and process flow rate of sorption-based technology compared to permeation in membranes 

should be compared. However, the disadvantages of membranes include the membrane cost being 

notably high and the outlet purity of a single membrane is relatively low; the low purity can be 

partially mitigated with recycle streams. However, both the membrane cost and the presence of a 

recycle stream make it currently economically unviable for larger processes [3]. As more research 

is conducted to reduce the cost and increase the efficiency, the strong advantages of membrane 

units may be more viable and easier to implement. 

2.2.3. CO2 Capture by Biological Conversion 

Interest has gained for biological conversion of carbon dioxide in various research studies. 

One of the potential organisms that can facilitate biological conversion is microalgae. While 

informally, microalgae are generally understood to be all algae that cannot be seen without 

additional equipment, there is no unifying definition to group microalgae [10]. 

The use of microalgal growth is the basis of CO2 removal through conversion. Microalgae 

have different types of growth that use carbon differently. Photoautotrophs use photosynthesis to 

convert CO2 into organic matter. Heterotrophic growth requires organic carbon instead but does 

not require sunlight or other radiant energy for conversion. Mixotrophic uses a staged combination 

of both heterotrophic and autotrophic growth depending on the conditions; autotrophic growth is 

preferred in the presence of organic carbon while autotrophic growth becomes more dominant in 

the absence of organic carbon [3]. Each growth types have different trade benefits and detriments. 

The light requirement of autotrophic growth is an extra factor to operate, control and expense, 

while heterotrophic growth has a lower rate of carbon dioxide conversion.  

Differences arise between more traditional carbon capture technologies and microalgae. 

Post-capture operations in CCUS are an important consideration, which has an impact on the 

design and objectives of the system. For non-biological processes, a common CCUS method is to 
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pressurize the capture CO2 to the liquid phase for better transport. For biological conversion, 

carbon dioxide is instead converted to biomass. This biomass has other uses in nutrition, 

pharmaceuticals, fertilizers, and other products [3]. Another advantage is that microalgae are 

usable for a broad range of carbon dioxide. While higher concentrations affect the biomass growth 

rate, microalgae can be used to capture carbon dioxide directly from air; absorption and adsorption 

can have issues targeting direct air capture applications due to the low concentration and low 

driving force for the processes. However, a major drawback in using microalgae is the operating 

cost is relatively high. This is due to the stricter control for optimal capture rate in biomass systems. 

Control of the temperature, pH, flow rate and other gases is required to prevent loss in efficiency 

or, with poorly optimized systems, cell death.  

2.2.4. CO2 Capture by Adsorption 

Another prospective technology is carbon capture via an adsorption process. Adsorption is a 

phenomenon where particles in a fluid phase adsorb onto a catalyst surface. At the molecular level, 

adsorbate particles react at specific active sites on the catalyst surface. The active site depends on 

the surface of the catalyst; certain active groups may be present to bond with the adsorbate 

molecule. This bonding may either be physical or chemical. The rate of adsorption is dependent 

on the number of active sites available; this, in turn, is related to the surface area accessible to 

adsorbate particles.  

There are different types of adsorptions based on how the sorbate and sorbent interact. 

Chemisorption occurs when the sorbate chemically bonds with the sorbent. A high heat of 

adsorption and high energy requirements for reversing sorption reaction is typical given the strong 

chemical bonds binding the sorbate and sorbent. As well, interactions are more specific. From a 

molecular perspective, a particle can react with the adsorbent if it collides with an active site with 

a particle amount of energy and orientation; these interactions will have greater specificity based 

on the sorbate, as well as create a dependency on the process conditions [11]. In contrast, 

physisorption has no chemical bond between sorbate and sorbent; instead, weaker intermolecular 

forces form the bond. The weaker forces result in contrasting features to chemisorption. A low heat 

of adsorption, lower regeneration requirements, faster kinetics and less selectivity is generally 

expected for physical adsorbents. Both types of adsorbents are used but many physisorption 

features align with the requirements of carbon capture. Low heat of adsorption requires less 

temperature control. Favourable regeneration can be used to easily remove carbon dioxide for 
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storage or utilization and regenerate adsorbents. Fast kinetics indicate less adsorbent and smaller 

units may be possible. All of these factors depend on the adsorbent itself, including its adsorption 

capacity, heat of adsorption and reaction kinetics.  

Adsorption kinetics are modeled in a variety of methods. While specific pore modelling is a 

possibility, adsorption isotherms are more introductory and easily applicable at the industrial level. 

Isotherms relate the equilibrium adsorption capacity and the sorbate concentration; the sorbate 

pressure or concentration are used in isotherms depending on how the isotherm is defined. Some 

isotherms can be formed based on kinetics on a molecular level, which depend on certain 

assumptions. The assumptions affect the accuracy depending on the adsorbent as assumptions. 

Alternatively, empirical isotherms can be fitted based on experimental data. Combining aspects of 

the empirical isotherm with a more theoretical approach may also fit certain adsorbents better. 

A simple theoretical model commonly used in adsorption models is the Langmuir isotherm, 

proposed by the eponymous Irving Langmuir in 1918 [12]. The derivation is commonly described 

as an introduction to adsorption processes. The isotherm assumes that the reaction is proportional 

to the fraction of active sites that are available; the derivation begins as a series of elementary 

reactions. At equilibrium, the forward and reverse reaction rates are equal, which is used to 

determine the fraction of occupied sites. Upon rearranging, the isotherm can be derived with two 

constant parameters, given below: 

Γ𝐿(𝑝) = Γ𝐿∞

𝐾𝐿𝑝

1 + 𝐾𝐿𝑝
 

The maximum adsorption capacity ΓL∞ is the amount of adsorbate that can be maximally 

adsorbed per mass of sorbent. The equilibrium constant KL loosely describes the rate of forward 

and reverse reaction rates. The equation is expressed in terms of sorbate partial pressure p, at the 

catalyst surface. This theoretical example makes several assumptions. First, the molecules interact 

with the catalysts only at the active sites. Second, the active site interacts with one sorbate particle. 

Third, each active site is equally favourable. Fourth, each adsorbed molecule does not affect other 

molecules’ interactions [11]. These assumptions, while they can be applied to many sorbents, are 

not necessarily valid. In particular, neighbouring molecules may interact with each other, 

especially with larger molecules that sterically hinder each other. Similarly, adsorbents do not 

necessarily create a monolayer of adsorbed species. The intermolecular interactions can cause 
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adsorbate to form multiple layers. Nonetheless, the simplicity and general applicability of the 

Langmuir isotherm makes it one of the most common isotherms to use.  

The Freundlich isotherm is based on a combination of empirical and analytical assumptions. 

The derivation of the isotherm notices that the heat of adsorption decreases as more active sites 

are filled. It is assumed that this is decreases logarithmically. Simplifying this assumption 

sufficiently presents the isotherm as follows: 

Γ𝐹(𝑝) = 𝑘𝐹𝑝
1

𝑛𝐹 

Given the empirical nature of this equation, the parameters kF and nF do not explicitly 

represent physical terms. However, an increase in temperature leads to a decrease in kF and an 

increase in nF; this also agrees with a lower adsorption capacity at higher temperatures. 

Both the Langmuir and Freundlich isotherms model certain adsorbents better than the other 

model. Combining the two models creates a hybrid model that combines the theoretical features 

of the Langmuir isotherm with the more empirical fit from Freundlich isotherm. This Langmuir-

Freundlich isotherm is shown below: 

Γ𝐿𝐹(𝑝) = Γ𝐿𝐹∞

(𝐾𝐿𝐹𝑝)𝑛𝐿𝐹

1 + (𝐾𝐿𝐹𝑝)𝑛𝐿𝐹
 

This equation can have improved fitting over both the Langmuir and Freundlich isotherms. 

Graphically, the general curve for Langmuir and Freundlich isotherms cannot change, which does 

not agree with some experimental adsorption processes; combining these features and having an 

extra degree of freedom can increase the fitting. In the below figures, two isotherms from the 

collected data set are depicted that exhibit relatively poor fitting for either the Langmuir or 

Freundlich isotherm. In comparison, the other isotherms, including the Langmuir-Freundlich 

isotherm, exhibits better fitting. Below, two sets of adsorption data are shown; the three adsorption 

isotherms described above are fitted to the datasets.  
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Figure 2.2: Adsorption Isotherm for Zeolite 5A at 323 K [13] 

 

Figure 2.3: Adsorption Isotherm for SNU-50 at 298 K [14] 

In the above Figure 2.2, the Langmuir isotherm has low fitting compared to the Freundlich 

and Langmuir-Freundlich isotherms. The lower R2 value of 0.8474 is reflected in the deviations 

that are exacerbated at the higher pressures; the Langmuir isotherm underestimates the growth of 

the adsorption capacity for zeolite 5A. While the cause of the difference can be the result of many 

different factors, this can be due to the Langmuir isotherm assumptions being invalid. Additional 
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interactions and adsorbate layers can increase the capacity more than predicted. In comparison, the 

adsorption equation for SNU-50 has relatively poor fitting for the Freundlich isotherm, while the 

Langmuir isotherm has better performance. As the Freundlich isotherm is only experimental, the 

cause of the discrepancy may be more difficult to determine. Graphically, the Freundlich isotherm 

underestimates the capacity between 5 and 35 bars, and otherwise overestimates the capacity. The 

Freundlich isotherm fitting for SNU-50 shows the opposite issue as before, where the exponential 

term does not fit to the high growth rate at low pressures and lower growth rate at high pressures. 

Both of the adsorption data, however, have good fitting for the combined Langmuir-Freundlich 

isotherm equation. The combination match both the Langmuir and Freundlich’s relations shown 

by either adsorbent, partially helped by the additional degree of freedom compared to the two-

parameter isotherms. Thus, if the fitting is available, using the Langmuir-Freundlich isotherm can 

be good for fitting different adsorbent behaviour with one equation. Other adsorption isotherms 

also exist with benefits and assumptions, but the focus is directed towards these three isotherms 

mentioned. 

2.3. Adsorption Process 

On the process unit level, adsorption can take place in one of several unit configurations. 

One of the most common is the fixed bed. The bed is filled with adsorbent particles, where the flue 

gas passes through; for carbon capture systems, treated flue gas passes through the bed of 

adsorbents to release low carbon dioxide effluent. The equations governing a fixed bed are well 

known, which is preferred for testing performance. The adsorbents are loaded with sorbate until 

the loading at the end of the bed is close to equilibrium. The sorbent must be regenerated. This is 

done by swing adsorption; these regenerative steps use the effects of pressure and temperature on 

adsorption equilibrium to control CO2 adsorption and desorption. 

Pressure swing adsorption (PSA), as the name suggests, uses pressure to control adsorption 

and desorption. In general, increasing the overall pressure promotes adsorption. Thus, PSA has the 

adsorption step performed at higher pressure and the desorption at lower pressure. A simple four-

stage cycle, known as the Skarstrom cycle, is shown in Table 2.1; the valves indicated in the table 

for each step are opened while the remainder of the valves are closed. The accompanying Figure 

2.4 shows a flow sheet for the table. The Skarstrom cycle is shown as four stages that are staggered 

between the two columns. For Column 1, the first stage in the cycle is the feed stage; feed gas 
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comes into Column 1, has carbon dioxide adsorbed from the gas, and exits lean on CO2. The next 

stage is blowdown, where the gas in column 1 is vented. The carbon dioxide adsorbed in the feed 

and pressurization steps desorbs during this step, due to the decrease in pressure from the venting. 

The third step, purge, further removes the adsorbed carbon dioxide by recycling part of the gas 

from Column 2 into Column 1. The recycle gas, lean on CO2, promotes the desorption reaction 

rate. Once the adsorbent is sufficiently unloaded, Column 1 can begin the pressurization step, 

which begins to fill with flue gas. This is then cycled into the feed step, while Column 2 operates 

similarly to achieve continuous operation.  

 

Figure 2.4: Simple Diagram for Skarstrom Cycle 

Table 2.1: Valve Staging for Skarstrom Cycle 

Column Stage 1 Stage 2 Stage 3 Stage 4 

Column 1 
Feed Blowdown Purge Pressurize 

V1, V7 V3 V5. V3 V1 

Column 2 
Purge Pressurize Feed Blowdown 

V4, V6 V2 V2, V8 V4 
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The Skarstrom cycle given above is possible for a two-bed design. However, improvements 

in efficiency and flow rates can be achieved with additional process design decisions. Increasing 

the number of columns allow more flexibility in staging; other designs for the timing & staging 

and valve locations can affect equipment sizing, maximum flow rate and effluent purity. The design 

balances between the operational goals and the cost of additional design, both economically and 

operationally. This simple cycle also demonstrates the driving forces through PSA. The high 

concentration and pressurization drive the adsorption in Column 1 in stages 1 and 4, while the low 

concentration and pressure drive the opposite reaction. PSA’s desorption pressure can also be 

extended to lower than atmospheric pressure. Vacuum pressure swing adsorption (VPSA) operates 

on the same principles as PSA. Instead, the pressure difference is in comparison with low pressures 

during regeneration, while PSA has high pressures during sorption While there are major 

advantages for regeneration in VPSA, the additional cost of operating a vacuum must be worked 

around. In particular, the cost of vacuum is highly dependent on the volume of flue gas that must 

be adsorbed [3]. 

Temperature swing adsorption (TSA) works similarly but uses a difference in temperature 

to drive the desorption. As adsorption is an exothermic process, the adsorption steps should be kept 

at a lower temperature, typically around 40°C [3]. Desorption is kept at higher temperatures over 

100°C instead. Typically, this is done by using hot purging gas, such as steam. However, the heat 

transfer and desorption rates are long, which requires design considerations when planning the 

staging of TSA systems. An alternative method of heating the adsorbents is with electric swing 

adsorption (ESA). The catalyst has an electric current passed through it, which heats the catalyst 

to the desired temperature by the Joule effect. This bypasses the slow heat transfer between a hot 

purge gas and the adsorbent in typical TSA systems; instead, the temperature increases quickly 

through ESA [15]. In contrast, TSA can heat the purge gas using waste heat from the remainder of 

the system for better system efficiency. The electric power from ESA is not recycled but can still 

be used for processes without the excess heat required for TSA. Another challenge to using ESA 

is the adsorbent choice. Directly heating the adsorbent with electricity requires good conductivity 

to allow heating to the end of the bed. Indirectly heating the adsorbent with an instrument adjacent 

to the catalyst is also possible but introduces extra design and control elements [16].  

These process cycles depend on relatively basic principles to control the equilibrium of the 

adsorption reaction to adsorb and desorb carbon dioxide as required. Combining pressure and 
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temperature effects can further change the equilibrium and increase the equilibrium driving force 

behind the reaction; however, the cost of these systems cannot be ignored, as more complex cycles 

can introduce more obstacles. Obstacles can include separating CO2 from the purge gas in TSA 

cycles, or the increasing cost of inducing a vacuum during VPSA.  

2.4. Adsorbent Types 

As mentioned before, adsorption depends on process parameters such as pressure and 

temperature; however, a large factor is the adsorbent properties and structure. The textural 

properties of the sorbents have major effects and can also affect side-product formation in the 

presence of non-CO2 species in the flue gas. Similar physical and textural properties can be used 

to group similar adsorbents. Adsorbents are grouped into the following groups: carbon-based, 

ceramic, metal oxide, metal organic framework (MOF), porous organic polymer (POP), silica, and 

zeolite. A brief description of the carbon-based, MOFs, POPs and zeolites are given.  

2.4.1. Carbon-Based Adsorbents 

While different carbon-based adsorbents exist, the most popular are activated carbons. 

These sorbents are relatively cheap due to its cheap production process. Activated carbons can 

exist as coke by-products, as well as produced from easily accessible materials such as bamboo 

and other organic matter. Activated carbons are physical adsorbents with relatively low adsorption 

capacities compared to specially designed adsorbents. However, the combination of easy 

production and regeneration make it a potential adsorbent. Aside from activated carbon, other 

carbon-based adsorbents such as nanocarbons and graphite can act as physisorbents for carbon 

capture. Development in nanocarbon and carbon-based adsorbents for carbon capture usage is 

relatively limited compared to more popular adsorbents such as metal organic frameworks or 

zeolites. 

2.4.2. Metal Organic Frameworks 

Metal organic frameworks (MOFs) are crystalline materials that are formed from both 

metallic and organic compounds, as the name suggests; metal clusters are held together with 

organic linkages. Metal nodes linked by organic linkages create a secondary building unit, which 

can be used as a building unit for larger crystal structures. MOFs can be specially modified to 

achieve certain features and enhance desired interactions; modifications can change the pore 
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structure & active sites and allow MOFs to be used for a variety of functions, such as gas storage, 

separation and chemical catalysis [17]. Alternatively, modifications to enhance CO2 interactions 

with the sorbent is desired for MOFs and can be achieved by design. Specific design for CO2 

adsorption can increase the capacity and overall performance beyond other types of adsorbents. 

The synthesis of MOFs is particular in order to achieve certain properties. Factors such as 

temperature and solvent can affect the MOF’s topology; in particular, controlling the synthesis 

reaction temperature controls the degree of the reaction as well as any potential side-reactions. 

This can change the dimensionality and density of the framework.  

2.4.3. Porous Organic Polymers 

Porous organic polymers (POPs) are frameworks of organic compounds. POPs can be either 

crystalline or amorphous. Crystalline POPs are organized similar to MOFs; while MOFs are metal 

compounds bonded by organic linkages, POPs consist of monomers bonded via a polymerization 

reaction [18]. Monomers greatly affect the resultant POP based on the polymer’s functional groups 

and spatial orientation when bonding. This results in different bonding or restricting interactions 

with certain reactants. Properties such as pore sizes can change based on the size and functional 

groups of the monomer and resulting building unit. Given the complex interactions that occur 

when synthesizing POPs, an initial foray into polymer design is difficult; knowledge based on 

existing topologies and their interactions can help predict the resultant POP structure. Typically, 

two-dimensional POPs are more common whereas three-dimensional POPs require rarer three-

dimensional monomers. 

2.4.4. Zeolites 

Zeolites are porous crystalline aluminosilicates, constructed from a crystal lattice of SiO4 

and AlO4 molecules. The tetrahedron molecules are connected by shared oxygen atoms to form the 

lattice. The crystal lattice creates pores of distinct and uniform dimensions, in contrast to other 

porous media with varying pore distributions. Each zeolite is comprised of units of SiO4 and AlO4; 

while the Si/Al ratio is never less than one, the presence of aluminium introduces negative charges 

into the framework, which are balanced by cations in the pore space. The number of cations affect 

the carbon dioxide adsorption of zeolites; other factors affecting adsorption are the pore structure, 

and its subsequent effect on the electric field characteristics in the zeolite. 
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One of the major factors affecting the viability of zeolite is the presence of water. Water 

preferentially bonds to zeolite adsorption sites compared to carbon dioxide. Some zeolites, such 

as NaX zeolite, have increased adsorption capacities with the presence of water; however, the 

enhancement of the adsorption was only present for a select concentration range for carbon 

dioxide. At concentrations above 1,000 ppm CO2, the loading begins to be lower than the dry NaX 

loading [19]. Moreover, the level of water concentration would also affect the adsorption 

enhancement. Excess amount of water can bind preferentially to the adsorption sites over CO2, 

lowering the adsorption capacity. Controlling the water and carbon dioxide tightly to benefit from 

this enhancement can be difficult in larger scale facilities; as well, not all zeolites can benefit from 

the presence of water. Thus, the choice of zeolites should be considered more carefully if the 

presence of water is expected.  

2.4.5. Other Adsorbents 

Other adsorbent types are available outside of the four types covered in the above sections. 

Metal oxides are formed between a metal element and oxygen and contain sites that interact and 

bind with CO2. Alkali earth and alkaline metal oxides are common metal oxides that adsorb carbon 

dioxide, but more exotic oxides are also capable. These adsorbents are chemisorbents and 

chemically bond with carbon dioxide; as mentioned above, this results in certain properties such 

as having a relatively highly exothermic heat of adsorption and higher regeneration requirements 

for desorption. For alkaline earth metals, the general reaction occurs as follows: 

𝑀𝑂𝑠 + 𝐶𝑂2 (𝑔) ↔ 𝑀𝐶𝑂3 (𝑠) 

Certain materials also possess mesoporous structures, when the pore sizes are between 2 nm 

and 50 nm [20]; in comparison, zeolites are considered to be microporous with less than 2 nm 

while sorbents with greater pore sizes can be considered as microporous. Many sorbents have pore 

sizes within the mesoporous range; prospective materials include ceramics and silica-based 

sorbents. Ceramics encompass a wide variety of materials; while the definition may not be 

universally defined, one definition used is a non-metallic inorganic solid. Silicates and other 

silicon-based materials are a critical section of ceramics. Silicates are abundant and naturally 

occurring, which can be useful in large-scale implementations. However, benefits from specially 

designed sorbents as POPs or MOFs will enable better performance.  
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2.5. Machine Learning Models 

Machine learning as a concept has become incredibly popular within the recent decade, 

having breached both the mainstream and niche spaces. While general machine learning is a recent 

concept under development in the public space, machine learning has continuously been developed 

for a long time, with popular cultural implementations such as the chess computer Deep Blue 

developing in the 1980s. Machine learning predates such cultural breaches by several decades, 

with publications such as On Game-Learning Machines by Paul I. Richards in 1952.  

As the name suggests, machine learning programs are programmed to learn from training 

examples to complete a function. Traditional programming requires more explicit algorithms that 

are consciously implemented; however, if a pattern is unknown or obtuse, machine learning can 

identify and approximate the function. In this thesis, the connection between the adsorbent 

properties and the adsorption capacity is difficult in both not explicitly known and difficult to 

implement. As adsorption is a surface phenomenon, modelling at the molecular level is required 

but requires higher levels of precision that may not work for every adsorbent. Given this, machine 

learning remains as a potentially viable method to connect the adsorbent to its capacity.  

2.5.1. Neural Network 

An introduction of machine learning models will certainly include neural networks. A neural 

network is a collection of nodes or neurons that are connected to apply many successive 

transformations. Each node applies a weight and bias to transform the input into an output. The 

nodes can be arranged in a series of layers; each layer is connected in sequence so that the 

intermediate outputs from the previous layer’s nodes are used as inputs. A visual diagram of a 

neural network is shown below. The figure represents a neural network that attempts to predict the 

desired objective on the left. An input of various known conditions including temperature, 

pressure, surface area and pore volume are input into the model. Each of the nodes in the first 

hidden layer gather the inputs, which are subsequently transformed and fed into the third layer. 

The second hidden layer transforms these intermediate values and outputs another intermediate 

value. The sum of these intermediate values is used as the model’s output. The weights and biases 

in the hidden layer are adjusted based on the training data set. 
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Figure 2.5: Visualization of a Neural Network 

Optimizing the neural network can involve changing the structure of the network. These 

hyper parameters can change the performance of the model. The depth of the network describes 

the number of neurons in each layer, while the width of the network defines how many neurons 

are in a layer. In theory, a model with one sufficiently wide layer can estimate almost any function; 

the Universal Approximation Theorem indicates that shallow neural networks would be enough to 

estimate the adsorption performance. In practice however, deeper neural networks can have 

superior performance, within reasonable depth. Thus, changing both of these hyper parameters is 

necessary to create more representative neural networks. 

In MATLAB, shallow neural networks can be created using the train function. The train 

function accepts inputs of a structured network object, the training inputs, the target values, input 

& layer delay conditions, and error weights. For a shallow neural network, the delay conditions 

are not used as there is only one hidden layer. Optionally, the network can be set up using the nftool 

function, where a user can set up the model using a wizard. This leads the user through choosing 

the training inputs and outputs, sorting the data into training, validation and testing sets, the number 

of neurons in the one hidden layer, and the training algorithm. After training the setting up and 

training the model, the user can choose to generate the equivalent code and save the results. 
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Different algorithms can be used to train the network. MATLAB has different choices, which 

can be changed depending on the dataset and the relationship. The algorithm used for this work is 

the Levenberg-Marquardt (LM) algorithm. Also known as damped least squares, the LM algorithm 

acts similarly to the Newton’s method, with an additional term 𝜆 to compensate for the slow 

convergence when the extrema are far. When the model is closer an extreme point, 𝜆 is small and 

the algorithm is approximate to Newton’s method. A large value of 𝜆 converts the equation to the 

equation for gradient descent. This enables the algorithm to quickly direct towards the extreme 

value using gradient descent, and then have more precise changes using the Newton’s method. 

This algorithm is only valid for minimizing sum of squares because of the Jacobian term. 

MATLAB uses the mean square error as an indicator for network performance.  

2.5.2. Regression Ensemble 

Apart from neural networks, MATLAB contains other machine learning methods. While 

users can implement ML scripts similar to other programming languages, MATLAB also has built-

in functions for certain algorithms. An example is the fitrensemble function, which use ensemble 

learning to train a regression model to target training output values. Ensemble models aim to 

develop weak learners, and then use the weak learners to estimate the target. The type of ensemble 

learning used in the function is automatically set to “LSBoost” or least-squares boost. For 

regression models, “Bag” or bootstrap aggregation is the alternative type of ensemble.  

Boosting aims to uses the responses of weak learners to estimate the target response; for 

regression, the target is a target variable, but boosting can also be used for classification problems. 

The learners individually do not necessarily have good prediction performance, but the 

combination of learners contribute to the estimate [21]. For LSBoost, the learners are fitted to 

minimize the mean-squared error. Thus, each subsequent learner works towards the least-squared 

error of the combination of learners.  

Bootstrap aggregation or bagging averages several bootstrap samples that are fitted to the 

model. Thus, the individual variance of the samples is reduced compared to the aggregate variance. 

Bootstraps draw samples from data sets to approximate the population. Samples are drawn and 

returned to the original data set, which allows samples to be chosen multiple times. MATLAB 

selects the algorithm choice of either LSBoost or Bag and assesses both when determining the best 

model.  
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2.5.3. Generalized Additive Model 

Generalized additive models (GAMs) can also be generated from MATLAB’s built-in 

functions. GAMs are models composed of a sum of univariate functions of the predictors. Thus, 

GAMs are represented by the equation below: 

𝑌 = 𝛼 + ∑ 𝑓𝑗(𝑋𝑗) 

𝑝

𝑗=1

+ 𝜀 

 Where 𝑌 is the response estimate, 𝛼 is a constant, 𝑓𝑗(𝑋𝑗) are the univariate function of the 

predictors 𝑋𝑗, and 𝜀 is the error term. Different algorithms exist to estimate the functions of the 

GAMs, which have the appropriate weaknesses. For example, the backfitting algorithm uses cubic 

splines to fit to the target function. The process can be repeated until the new estimates satisfy a 

given threshold [21].  

 MATLAB’s built-in function fitrgam uses LSBoost algorithm to fit a GAM. The function 

creates predictor trees for each predictor. Interactions between predictors are also represented by 

trees; bivariate functions can also be implemented in GAMs. The LSBoost algorithm, described 

above, is used and the response-aggregate predictor residual is minimized. When adding additional 

univariate trees does not improve the function, interaction terms are trained; when the function is 

not improved with additional interaction trees, fitrgam stops.  

2.5.4. Gaussian Process 

Gaussian process (GP) is a process that selects a sample from a population of models. One 

way to describe GPs is to consider a population of models separate from the data. While infinite 

number of these models exist, only a selection of these models may correspond to a given data set; 

Bayes’ theorem can be used to limits the populations to a subset of models that better represent the 

data. These functions are multivariate functions that aim to target specific data. To select the best 

function, a kernel function is considered; at a high level, the kernel function measures the similarity 

of the inputs, as controlled by its definition and corresponding hyperparameters. GP then considers 

the targets of the model and selects functions that based on the combination of kernel and outputs; 

this selects a model from the population of models given a select sample of inputs.  

GPs can then be represented by a model with uncertainty represented by a collection of 

acceptable functions. The variance is dependent on the hyperparameters chosen which can control 

the overall model.  
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2.5.5. Support Vector Machines 

Support vector machines (SVMs) are more typically used for classification problems. When 

the dataset can be partitioned into two distinct sections, then a boundary can be established between 

the partitions. The boundary aims to have the largest margin between the two sections, measured 

from both sides. However, there may be data points between the partitions that make a clean 

partition not realistic. By strictly adhering to the boundary, a model may either not exist or be 

overly complex. Instead, slack variables can be introduced, where datasets can enter a marginal 

space while still being satisfactory for each partition [21]. This would be a typical implementation 

of SVMs for classifying data.  

The principle of SVMs can be used to create a regression model. While SVM classifiers 

work around marginal points using slack variables, the analogous SVM regression model provides 

slack to points with a small residual; that is, if the residual is absolutely less than a given marginal 

value, then the loss function for that data point is zero. The slack value can yield models that 

estimate the overall trend better compared to a model with zero slack that overfits to the training 

data. However, if the slack value is too large, the model does not perform any meaningful 

modelling and instead causes the model to be too lenient for errors.  



 

 

24 

 

Chapter 3: Data Collection  

To accomplish the data collection of adsorption data, the performance and relevant 

parameters of adsorbents was determined. Adsorbent performance can be characterized in different 

methods. A review by Patel, Byun and Yavuz addresses six checkpoints that effective adsorbents 

would aim to fulfill for cost-effective deployment [22]. The six checkpoints are as follows: have 

CO2 adsorption capacity greater than two mmol per g of sorbent; be usable for over one thousand 

cycles; have a selectivity of 100 CO2/other gases; be stable in various conditions such as 

temperatures of over 150°C, and in presence of H2O, SOx. and NOx; have a sorbent cost of less 

than 10 USD/kg; and have a reaction rate of over one mmol/g/min. Each of the six checkpoints 

addresses one of the design obstacles encountered. Based on these checkpoints, data is 

appropriately taken from various sources in literature.  

One of the prerequisites of making any model is to have a representative data set; this is 

especially important for machine learning models, where the data set needs to be both large and 

representative. Currently, literature contains summary and review papers that highlights adsorbents 

and innovations relating to the adsorption process. As the focus of these review papers are on the 

trends at the time of publishing, the collected data for adsorbents are relatively simple and usually 

only detail the adsorption capacity of the adsorbents. For example, in a review paper by Choi et 

al., they describe the different types of adsorbents and some of recent adsorbents’ results [19]. The 

summary tables in the table include the temperature, pressure, testing method and adsorption 

capacity. Similarly, a review paper by Pardakhti et al. have varying amounts of data in their tables 

[23]. Some tables report physical properties such as the surface area and pore volume along with 

the adsorption capacity, as seen in their table describing ordered mesoporous carbons and carbon-

based materials. Other tables provide only the temperature and pressure conditions with the 

adsorption, which is not suitable for additional data gathering.  

It is common for the summary papers to detail the temperature, pressure and select adsorbent 

properties; these properties include the adsorption capacity and the selectivity of CO2 or CH4 

against N2. Thus, to get more detailed information, each reference is checked for additional 

information. The original papers can provide more detailed information on the surface area, pore 

volume, pore and micropore diameter, heat of adsorption, adsorption capacity and selectivity. 

However, most references are not uniform in their description. Instead, a mixed collection of data 
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is available in each reference. For adsorbent properties, the surface area and the adsorption capacity 

are the most common reported variables. The remainder of the variables often are not reported in 

a similar consistency. This is highlighted in the below table showing the initial raw data set 

gathered from the sources. 

Table 3.1: Number of Raw Data Points Gathered from Literature Sources 

Variable 
Adsorption 

Capacity 

BET 

Surface 

Area 

Pore 

Volume 

Micropore 

Volume 

Pore 

Diameter 

Heat of 

Adsorption 

Number of 

Data Points 
561 522 369 188 252 185 

The table above shows the other parameters are not reported in a comparable frequency to 

the adsorption capacity. When considering the data points including the pore volume, the 

remainder of the data points do not necessarily correspond; in the subset of the 369 data points 

including the pore volume, the corresponding micropore volume or pore diameter data may not be 

available. Thus, the availability of data points is a problem.  

Another obstacle is to ensure the data are comparable to each other. The surface area can be 

measured and described as either the Langmuir or the BET surface area. Papers frequently report 

the BET surface area over the Langmuir surface area, which makes it used for the data set 

assembled. The adsorption capacity can also be described in mmol/g or in other units, which may 

require the molar mass of adsorbent.  

The importance of features in the adsorption process has been previously examined in a 

previous paper by Zhu et al [24]. In the paper, they describe the critical factors in determining the 

adsorption capacity for porous carbons. The factors are examined in a correlation matrix and with 

graphs showing the relative contribution for each feature at different temperature and pressures. In 

the correlation matrix, the adsorption capacity was most heavily affected by the temperature and 

pressure. The other properties examined include textural properties, including the BET surface 

area, pore volume and mesopore volume, and the chemical composition.  

Despite the direction the correlation matrix emphasizes, the issues of data collection are due 

to the uniformity of the data presented in each paper. Each paper presents the adsorption capacity 

data; this is given as the papers are collected from a summary paper that lists them. However, the 

other adsorbent properties are not shared between the properties. While the micropore and ultra-

micropore volumes are among the critical factors affecting the adsorption capacity, often only the 
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mesopore volume is presented. This creates an issue where, in the dataset, there are data points 

that have all of the data required, and some data points with none of the requisite data. The easiest 

solution is to only incorporate the data shared among all of the data points but that creates a data 

set that cannot represent the adsorbent properly; the remaining parameters at this point are the 

adsorption capacity, temperature and pressure which is not sufficient in estimating adsorbent 

characteristics.  

Two additional data sources are also available that may potentially improve the data set. One 

of these sources of data is the Computational Simulations of MOFs for Gas Separations 

(COSMOS), a database of MOFs that have been refined to materials that can adsorb CO2, N2, and 

CH4. This refinement is performed by calculating adsorbent properties, including the pore-limiting 

diameter and accessible surface area, among other factors using Zeo++. A filter is placed such that 

the before-mentioned adsorbates are able to enter the pores and access surface areas in the 

remaining adsorbents. This is combined with the Cambridge Structural Database, which provides 

details at the unit cell level, including cell angles and cell density. Unfortunately, the surface area 

as described by the COSMOS paper is not available. For future work, allowing this simulation 

data can greatly supplement the data, especially for the numerous MOF data that is available. 

The second data set that is available is the NIST’s adsorption data resource. This is a 

combination of search engine of curated adsorption data. This provides a valuable resource to find 

adsorbents that adsorb CO2; the original paper can be later checked to see if sorbent information 

is available. However, another capability of the data base is the presence of isotherm data. The 

isotherm data provides a wide variety of temperatures and pressures obtained from the papers; 

NIST has a built-in fitting function for the three Langmuir, Freundlich and Langmuir-Freundlich 

isotherms described in section 2.2.4. By recording the isotherm parameters, additional variables 

are available for later use.  

Combining these resources and performing the necessary filtering to restrict the influence of 

outlier points, a smaller data set is generated. This data set contains 2,125 data points of adsorbents 

at different process conditions. Given the limitations of the data set, the surface area and the pore 

volume are taken as the structural properties. Additionally, all three isotherm parameters are 

included and available. Further adding variables to this set results in massively restricting the size 

of the set. Data imputation on the pore diameter is performed with extremely poor results; the lack 

of complete data makes simulating the data within the system not feasible.  
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Chapter 4: Aspen Adsorption Model 

To supplement the machine learning model, an adsorption unit is developed and modeled; 

the additional model aims to cover and evaluate the results of the machine learning models. The 

machine learning models aim to model behaviour at a small-scale, where adsorbent’s structure has 

a direct impact; in comparison, a model for the adsorption unit would model at the process level. 

While the objective of the model is to represent an adsorption process unit, any potential future 

work will be done in Aspen HYSYS, in collaboration with NRCAN. 

To model an adsorption unit, different software are evaluated to determine their abilities. 

Several software come from the Aspen software suite; this allows the use of pre-built packages 

and models to be used. As communicating with Aspen HYSYS is preferable, Python is initially 

considered but not ultimately used. While Python allows a greater degree of control, programming 

this to an equivalent level of detail as the equivalent model in the Aspen framework would be more 

difficult, especially as future projects may require additions that Aspen is more capable to handle. 

This is more notable when working with different property packages and components, which are 

more naturally implemented in Aspen software but must be manually implemented in more self-

contained programming. Thus, the adsorption unit was not modeled in Python. 

Within the Aspen suite, there are several applications that can be used to represent an 

adsorption unit. The two software are Aspen Custom Modeler (ACM) and Aspen Adsorption. 

While AspenPlus has the capability to represent an adsorber as a component separator, the level of 

detail is not sufficient. As this model is used in conjunction with the result of the machine learning 

models, the model should be able to change based on the adsorbent used; this primarily 

incorporates the isotherm characteristics of the adsorbent.  

In ACM, users initialize a worksheet similar to AspenPlus, where the components and 

methods are chosen. The software also provides a variety of familiar equipment for users to 

implement in their process, such as pumps, compressors, and piping. The largest difference is the 

ability of users to create custom models from Aspen’s framework. Custom models are able to 

receive material and energy streams, perform calculations based on a user’s code and then output 

corresponding streams that can be user by other equipment. 

Aspen Adsorption has a similar interface as ACM. The initialization of the components and 

methods are chosen identically; in addition, more common equipment are included and functional. 
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However, instead of custom models, Aspen Adsorption has more detailed adsorption equipment. 

Users can choose beds, void tanks, and valves specifically for the appropriate gas or liquid fluid. 

The bed model, in particular, has advanced settings specific for adsorption processes; Appendix E 

includes screenshots of the settings used, which include options for momentum and energy 

balances, kinetic models and adsorption isotherm. 

 In consideration of both software, ACM’s flexibility is shown in one of the publicly 

available programs. The Carbon Capture Simulation for Industry Impact (CCSI2) is a collaboration 

project that develops CCS models. CCSI2 has participation from academic and national labs and 

industry partners; among their project, the organization has developed a Process Models Bundle 

that is available on their GitHub that uses ACM. The Process Models Bundle includes a Bubbling 

Fluidized Bed reactor, which is developed based on an amine-impregnated sorbent NETL32D [25]. 

While the model works well in the pre-determined scope of the CCSI2 project, generalizing the 

models illustrates the difficulties in using ACM. Adjusting the models includes adding more gas 

components, implementing more generalized adsorption kinetics, and have better integration with 

the remaining components. However, ACM is sensitive to degrees of freedom; additional 

components added require additional equations that are not necessarily incorporated to the degrees 

of freedom calculation satisfactorily. In addition, CCSI2 has component-specific equations such as 

the component diffusivity. While determining and adding equations is easy, the software, or user, 

can have difficulty in tracking the degrees of freedom, which results in a model that cannot be run 

and is difficult to debug. For the adsorption kinetics, the original model uses the rate laws for 

NETL32D. Having a generalized rate law would not be possible or accurate for most adsorbents. 

In other general models, the rate of adsorption is driven by a linear driving force; the rate of 

adsorption is then proportional to the difference between the current adsorbed amount and the 

equilibrium amount. Implementing this separate rate of adsorption changes how the adsorption is 

calculated, whose implementation is not straightforward. Finally, the integration with the 

remaining components is not possible for the given level. For a fluidized bed, there is a constant 

stream of sorbents that are passed through the reactor. The regeneration of the sorbents is not 

possible without implementing a separate custom model; the sorbents are user-defined and cannot 

be used with any other built-in units. 

Aspen Adsorption has much better integration with the adsorption process, as the software 

is built specifically to simulate adsorption. However, the weakness of Aspen Adsorption is how it 
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is typically run in transient state. This is more accurate as the process runs from a new state to a 

cyclical steady state, but the software comes with a long runtime. Running one cycle of a process 

can exceed 5 minutes; this is especially difficult during program development, where the initial 

transient phase runs well but a user is more interested at another point in the process. As the runtime 

of the program continues, the program runs more slowly; this is further exacerbated for adsorbents 

with lower rates of adsorption. However, the model can still be run well and, given how the 

software is designed specifically for adsorption simulation, Aspen Adsorption was used to simulate 

the adsorption process unit.  

The following figure below shows the Aspen Adsorption bed model. The adsorption bed 

parameters are adapted from Ntiamoah et al.’s work [26]. In the paper, the model uses a more 

specific dual-site Langmuir model for the sorbent NaUSY. In addition, the paper identifies several 

cycles that can occur.  

 

Figure 4.1: Diagram of Aspen Adsorption Bed Model 

The model is a single-bed packed adsorption bed. The model considers four gaseous species: 

CO2, N2, H2O, and O2. In literature, adsorbents designed for carbon capture typically have 

isotherms available for CO2 and N2. The other two species are treated as inert; however, it is noted 
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that certain adsorbents such as zeolites have considerable interaction with water. This requires 

specific treatment for a particular interaction. 

One of the advantages of Aspen Adsorption is the ability to implement a cycle, which is more 

typical of an adsorption unit. The cycle is adapted from the three-step Cycle 3 from Ntiamoah et 

al.’s paper. The steps of the cycle are feed (I), hot gas purge (III), and cooling (IV); the indirect 

heating (II) step is removed to improve the stability of the model. The cycle parameters are shown 

in the table below.  

Table 4.1: Cycle Settings for Aspen Adsorption Model 

Step Feed (I) Hot Gas Purge (III) Cooling (IV) 

Purpose 
Adsorb CO2 from 

feed gas 

Regenerate 

adsorbents and 

recover CO2 

Remove CO2 from 

bed and return 

temperature close to 

ambient 

Conditional Trigger YW1, CO2 > 0.05 
Same time length as 

Feed (I) 
YW1, CO2 < 0.02 

Valve VF1 Open Closed Open 

Valve VW1 Open Closed Open 

Valve VF2 Closed Open Closed 

Valve VP1 Closed Open Closed 

Other F1 set as feed gas  F1 set as pure N2 gas 

 

In the feed step, the feed gas from F1 enters the bed from the bottom. The temperature and 

pressure are ambient, while the flow rate, controlled by a feed valve VF1, is manually controlled 

to . The flue gas passes through the column and, the CO2 and N2 is adsorbed onto the unsaturated 

adsorbent. When the effluent product W1 has a CO2 mole fraction of 0.05, the step is terminated. 

This indicates that the breakthrough for carbon dioxide has occurred, and the adsorbent is saturated 

with carbon dioxide. In the original paper, the mole fraction before termination is set to 0.03. A 

slightly higher mole fraction is chosen to increase the slack for the last step in the cycle.  

The hot gas purge (III) step initially starts the regeneration process. The valves VF1 and VF2 

are closed, while the hot gas purge valve VF2 and product valve VP1 are opened. The bed is fed 

hot gas counter-currently from . The hot gas composition is equivalent to the gas condition at the 

end of feed gas (I); this represents the configuration where the stream W1 is heated to 150°C and 

becomes the purge gas, which can be seen in multiple bed configurations. Instead of a conditional 
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trigger, the timing of the step is equal to the length of step 1. Previously, the trigger is based on the 

temperature at the bottom of the bed; when the temperature of the bottom of the column increases 

to the hot gas purge’s temperature, then the step would terminate. This would simulate as a 

temperature breakthrough, equivalent to the first step’s concentration breakthrough. In 

simulations, the heat of desorption and heat conduction in the fluid causes the temperature to 

behave differently than the equivalent concentration breakthrough; the temperature reaches the 

breakthrough temperature in a much shorter amount of time, which results in insufficient 

regeneration.  

The last step is the cooling step (IV), which aims to bring the bed into a state where 

adsorption can begin again. This is done by purging the bed with N2 gas at ambient temperature. 

The pure nitrogen gas purges the remaining CO2 from the bed, while the elevated column 

temperature is lowered by the lower purge gas’ temperature. The step and the cycle stop when the 

outlet CO2 mole fraction of W1 decreases to 0.02. When this occurs, the bed is mostly unloaded 

of CO2, and the temperature is equal to the ambient temperature as well. The adsorption bed is 

then ready for a new cycle to start capturing carbon. 

To check the differences between the model in literature and the created model, a comparison 

between the breakthrough curves can be done. As not all parameters are presented in the paper, 

differences in certain assumptions change the breakthrough curve. Several parameters that are not 

explicitly stated are the feed valve flow rate setting, the jacketed heat exchanger settings such as 

the heat duty, cooling water flow rate or heat exchanger configuration, and the surrounding 

environment temperature. The temperature profile is affected by the heat exchanger settings, but 

the breakthrough may be affected by the flow rate and other factors. 
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Figure 4.2: Breakthrough Curve for Simulated Aspen Adsorption Model using Approximated 

NaUSY Sorbent Parameters 

Figure 4.2 shows the model can exhibit a typical breakthrough curve. The curve plots the 

outlet mole fraction of CO2 in a time plot. When the model is initially running for approximately 

100 seconds, the exit concentration does not change. The inlet concentration of CO2 is adsorbed 

along the bed and does not penetrate the bed, until breakthrough where the concentration increases 

at the exit. The breakthrough point differs from the paper, which has a breakthrough point of 

approximately 250 seconds. This is controlled by the gas flow rate and velocity, as well as the inlet 

pressure from TD1. While the gas velocity is stated to be 0.42 m/s in their work, the inlet pressure 

is not stated, whereas the gas flow rate is estimated based on the gas flow rate. The valve control 

is measured in molar flow rate; equating the molar flow rate to the gas velocity makes assumptions 

that can change the column response. The original dual-site Langmuir isotherm is also changed to 

a single-site Langmuir isotherm, which changes the kinetics and transient gas distribution in the 

column. In addition, the reference model has an inert layer and an active layer. The inert layer adds 

an additional 0.2 m at the beginning of the unit. This creates an additional small delay, as the gas 

is slowed by the non-adsorbing material. However, the inert nature and short length relative to the 

velocity indicates that the contribution to this discrepancy may be limited. Overall, the Aspen 

Adsorption model yields comparable results to the model in the paper; the differences are attributed 

to the inlet conditions of the flue gas which is not explicitly stated in the reference paper. 
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Chapter 5: Machine Learning Models 

The objective of the model is to predict the adsorption capacity, given the initial inputs 

described above. This differs from the more standard isotherm by allowing the capacity to be 

predicted from the adsorbent properties. Physical experiments to measure the adsorption capacity 

is an additional barrier to against quick research and development of new materials. Adsorbents 

that are prepared differently may exhibit different properties with different capacities; instead of 

multiple capacity measurements, the adsorption can be predicted. This allows researchers to 

determine which material and preparation are hopeful, which can streamline and focus the 

direction towards investigating the materials. A simpler machine learning model is initially 

implemented to investigate the performance.  

Predicting the adsorption capacity using models can be done both directly and indirectly. A 

direct prediction indicates that the models output the adsorption capacity itself. Indirectly 

predicting the adsorption capacity requires target parameters used to predict capacity. Given that 

the collected data includes the experimentally fitted isotherm parameters from the NIST adsorption 

database, ML models can be trained to target the isotherm parameters and used to predict the 

capacity given certain pressure and temperature conditions. Thus, additional models are prepared 

to target the parameters for the Langmuir, Freundlich and combined Langmuir-Freundlich 

isotherms. The outputs of the models are unscaled based on the original data range, and then used 

as a parameter for the isotherm equation, along with the reported pressure. 

 A shallow neural network is created with the objective of outputting the target adsorption 

capacity, given the input data of BET surface area, pore volume, temperature and CO2 pressure. 

The network is done using the trainlm function. Thus, four models are prepared for the adsorption 

capacity, and the three above-mentioned isotherms. Each parameter in the isotherms is 

independently trained in a neural network. Regression plots are prepared and shown below. The 

data points compare the experimentally determined adsorption capacity, with the predicted 

adsorption capacity; the data points are scaled based on the original adsorption capacity. Simple 

statistic diagnostics are also presented here. 
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Figure 5.1: Regression Plots for Adsorption Capacity Models using Shallow Neural Networks 

The neural network for the direct prediction is represented in the magenta plot at the upper 

left regression plot. This shallow neural network consists of 20 neurons. The neural network shows 

a large amount of correlation in the regression plots, with a calculated correlation coefficient of 

0.9901. Graphically, the majority of points fall upon the desired line. However, there is a line of 

points in the plot that underestimate the capacity. Given that these points span along the capacities 

from 0.1 to 0.6 at the x-axis, it is an adsorbent that does not match with the remaining points. The 

other plots in Figure 5.1 also exhibit similar behavior. These outliers may be due to a sorbent that 

share similar characteristics with each other in terms of properties; however, the adsorption 

function may be different, which is not reflected in the inputs. There is not graphically discernable 

pattern, indicating that additional parameters are not necessary. An error histogram, shown below, 

does not show a regular pattern. The error histogram has twenty bins and aggregates errors outside 

of 1 mmol/g. 
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Figure 5.2: Error Histogram for Direct Adsorption Capacity Prediction with Shallow Neural 

Network 

The error histogram shows a normal histogram curve, with the errors centered at the zero 

error. The aggregate bins at the curve extremities are small suggesting there are few extreme 

outliers. The bin containing errors between +0.1 to +0.2 mmol/g has a higher frequency then its 

corresponding negative bin, due to the line of outliers seen in the regression plot. A table is 

presented below with the R-values for the model; the overall R-value, as well as the R-values for 

the training, validation and testing datasets are shown. All of the R-values are greater than 0.98, 

showing that the model is a good fit for the dataset.  

Table 5.1: R-Value and MSE for Shallow Neural Network Models 

Model 
Training 

R-Value 

Validation 

R-Value 

Testing 

R-Value 

Overall 

R-Value 
Overall MSR 

Direct 

Prediction 
0.9901 0.9923 0.9802 0.9901 0.0768 
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 The model represented in the upper right plot in Figure 5.1 represents the model for the 

Langmuir isotherm. The isotherm consists of two isotherm parameters, each modeled by a shallow 

neural network. Both networks have fourteen neurons. Regression plots for the individual 

parameters are shown below.  

 

Figure 5.3: Regression Plots for Predicted Langmuir Parameters using Shallow Neural Network 

The above figure shows that both neural networks are a good fit for the Langmuir parameters, 

as a majority of the data fits along the expected fit. However, there are four points, where the model 

predicts to be 0.8 of the scaled capacity. The corresponding experimental values range between 

0.5 and 1.0. This can indicate that the data points have similar inputs that cause the model to 

estimate 0.8, whereas there are other factors that cause the parameter to change more than 

expected. A potential method to solve this is to add additional interactions to account for this 

change. These interactions can either be within the model by increasing the hyperparameters, or 

by increasing the number of variables in the data set. However, increasing the number of neurons 

in the shallow layer do not significantly affect the R-value or the pattern observed in these outliers. 

A similar group of outliers also exist in the second Langmuir parameter 𝐾𝐿 at an estimated 

parameter between 0.4 and 0.5. However, this collection of points varies more compared to the 
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more consistent group in the first Langmuir parameter. As there is no correlation between the two 

parameters, these data points are not necessarily the same adsorbent.  

 

Figure 5.4: Error Histogram for Langmuir Isotherm Shallow Neural Network Model 

The above figure shows the adsorption capacity error histogram for the Langmuir isotherm. 

The red-coloured histogram represents the NN model’s output. The unfilled histogram represents 

the error when using the experimentally fitted Langmuir isotherm parameters, as the experimental 

parameters also do not represent every data point perfectly. Given that the neural networks are 

estimating these parameters, additional error is introduced in each model, which is further 

compounded as each isotherm have multiple parameters. This is seen in the larger variance and 

less accuracy in the machine learning models compared to the fitted models; the bins closest to the 

zero error is higher for the fitted parameters, while the bins further away are lower. Using the fitted 

as a baseline, the machine learning models performance is not poor. The closest bins have a 

difference of approximately five percentage points for each, which are distributed mostly within a 

±0.3 mmol/g error range, with additional outliers outside the range. The machine learning models 

share a normal distribution pattern with the fitted variables. A table sharing the statistic diagnostics 
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is shown below. The R-values for the overall dataset and randomly separated data exceed 0.98 for 

each neural network in the model. The high correlation for all of the models shows similar fitness 

to the direct prediction.  

Table 5.2: R-Values and MSR for Shallow Neural Networks for Langmuir Parameter Prediction 

Model 
Training 

R-Value 

Validation 

R-Value 

Testing 

R-Value 

Overall 

R-Value 
Overall MSR 

Langmuir 

Parameter Γ𝐿∞ 
0.9808 0.9932 0.9907 0.9832 0.3605 

Langmuir 

Parameter 𝐾𝐿 
0.9921 0.9915 0.9929 0.9920 0.0390 

 

The next model, represented by the bottom left plot in Figure 5.1, estimates the Freundlich 

isotherm, analogously to Langmuir model. The Freundlich isotherm model has two parameters 𝑘𝐹 

and 𝑛𝐹. The models that estimate 𝑘𝐹 and 𝑛𝐹 have 12 and 16 neurons in the shallow neural network. 

The error introduced propagates more due to the reciprocal exponential term 𝑛𝐹. In comparison, 

the Langmuir parameter 𝐾𝐿 propagates error in the denominator which includes a constant unity 

term. Graphically, the regression points show a greater deviation for a range of points between 0.6 

and 0.8 of the scaled experimental capacity. The outlier at approximately 0.9 of the experimental 

capacity is also further compared to the direct and Langmuir models’ regression plots. There is an 

improvement in accuracy for the group of outlier points above the expected line. While the two 

other models previously discussed have a constant distance above the line, the outlier shows an 

improvement in the bulk in the middle of the testing range. There is a loss of accuracy at the more 

extreme ends. In addition, the model begins to underestimate the bulk of the points over 0.5 scaled 

capacity. The graphically observed lower accuracy is reflected in a lower overall R-value of 

0.9830; while this still indicates that the model fits the data well, there is a noticeable difference 

between the models.  



 

 

39 

 

 

Figure 5.5: Regression Plots for Predicted Freundlich Parameters using Shallow Neural Network 

Figure 5.5 above shows the regression plots for the independent Freundlich parameters for 

each neural network. The majority of the predicted parameters match the experimental parameters. 

There are a series of that both models predict to be similar. For the parameter 𝑘𝐹 there are several 

conditions that the model estimate to be between 0.65 and 0.70, despite the experimental values 

ranging the entire part. Similarly, the model for 𝑛𝐹 estimates several points between 0.65 and 0.75, 

which is inaccurate. The inverse exponential 𝑛𝐹 affects the regression plot as an overestimation at 

0.4 scaled capacity results in the estimate being underestimated. This corresponds to the middle of 

the regression plot which overall underestimates the points. As the experimental capacity 

increases, the model tends to overestimate the capacity due to the constant parameter estimate 

causing an underestimation in the inverse exponent. This error may be due to the model being 

unable to represent the changing isotherm parameters with the given input; the points do not 

significantly respond to a change in the process conditions, which can imply an external factor is 

not represented. If sorbents have similar surface area and pore volumes, then the changing process 

conditions is not sufficient to estimate the capacity accurately, especially when the model must 

also represent the other sorbent data points. The error histogram for the adsorption capacity is 

shown below. 
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Figure 5.6: Error Histogram for Freundlich Isotherm Shallow Neural Network Model 

In Figure 5.6, the error of the overall neural network matches the fitted Freundlich isotherm 

histogram well for the majority of the points. However, there is a significant deviation for the bin 

encompassing the 0.0 to 0.1 mmol/g error in the comparison. There is approximately five 

percentage point difference between the experimentally fitted isotherm and the model. Instead, 

these errors are distributed in different bins for residuals over ±0.1 mmol/g. Part of the error is 

previously discussed in the cluster of points visible in the individual parameter regression plots. 

This corresponds to the positive error residuals bins’ increases; this is supported by the increase 

only significantly occurring in three discontinuous bins. From Figure 5.5, the cluster of points are 

cleanly divided into groups of points aligned with the experimental values; this is an artifact of the 

data collection, where the points provided of this sorbent are reported at similar conditions for 

similar capacities. As such, the groups of errors are then appropriately reflected in the error 

histogram. Outside of these clusters, the bins at ±0.1 to ±0.2 mmol/g are also greater due to the 

error propagated in the models; this is similar to the error seen in the Langmuir model. The R-

values for the different parameters for each group is presented below. Despite the outliers, the R-
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values show a good fitness for the model. This is due to the number of outliers being low compared 

to the majority of the data. The R-value thus indicates the model works whereas the deviations that 

occur are significant.  

Table 5.3: R-Values and MSR for Shallow Neural Networks for Freundlich Parameter Prediction 

Model 
Training 

R-Value 

Validation 

R-Value 

Testing 

R-Value 

Overall 

R-Value 
Overall MSR 

Freundlich 

Parameter 𝑘𝐹 
0.9885 0.9902 0.9873 0.9887 0.0414 

Freundlich 

Parameter 𝑛𝐹 
0.9846 0.9754 0.9903 0.9838 0.0194 

The third model represented in the lower right corner in Figure 5.1 is the combined 

Langmuir-Freundlich model. By encompassing both the exponential and divisor terms in the 

parameters, the performance for the ideal Langmuir-Freundlich model can represent adsorbents 

that work for either individual Langmuir or Freundlich isotherm. However, the error propagation 

becomes more severe with the addition of a third parameter term; this corresponds to a third 

machine learning model and its corresponding error. From the regression plot, this is apparent with 

the distinct isotherms that are not accurately represented at the lower capacities; these linear points 

that appear are obvious indications that the model is not accurate in the lower range. Additionally, 

the outlier isotherm described in the direct and Langmuir isotherm models is again visually 

apparent; this indicates that the strength of the combined isotherm does not appear in this model 

whereas the weakness with the error is exacerbated. The overall R-value for this isotherm is 

0.9701. While this still describes a good fit, this is lower than the three previous models.  
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Figure 5.7: Regression Plots for Predicted Langmuir-Freundlich Parameters using Shallow 

Neural Network 

From the above figure, all three neural network models show inaccuracies, explaining the 

lower overall R-value. For the Γ𝐿𝐹 model, the majority of the points are located on the regression 

line from 0.0 to 0.1 capacity. This indicates that the parameters are not evenly spread throughout 

the range, which is not ideal for modelling. However, there are distinct outliers where the model 

grossly overestimates the Γ𝐿𝐹 parameters. Experimentally, the parameter is found to be 0.1 whereas 

the ML model estimates the parameter to be approximately 0.51 or 0.73. The Γ𝐿𝐹 parameter acts 

as a factor for the remainder of the isotherm which causes the adsorption capacity to be 

overestimated. This corresponds to the outliers forming a linear pattern above the regression line 

in Figure 5.1; these adsorption capacities are multiplied by a higher factor which is revealed by 

the steeper slope in the regression plot. These outliers remain in spite of increasing the neuron 

count or when the input dataset is randomly re-partitioned between training, validation, and testing 

groups. Additionally, there are a series of points estimated at 0.2 capacity whereas the experimental 

values vary between 0.1 to 0.35. These points are similar to the previously seen pattern in the 

Langmuir and Freundlich isotherm models. The pattern of horizontally aligned points appears in 

the regression plots for the two other isotherm parameters. Aside from these outliers, the remainder 

of the points for Γ𝐿𝐹 match the experimentally fitted values. These outliers have large enough errors 
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to largely reduce the overall R-value to 0.9014, which is significantly lower than the previous 

isotherm parameters’ correlation. For the parameter 𝐾𝐿𝐹, there are outliers that occur throughout 

the capacity range. The horizontal aligned outliers are present, but the remainder of the outliers do 

not share a pattern. The R-value for this neural network is 0.9681 which is also lower than the 

parameters in the previous models. The third parameter 𝑛𝐿𝐹 shares the horizontal pattern but also 

has distinctive vertical patterns as well. While this pattern is less significant for other parameters, 

the height of the vertical pattern is more severe.  

 

Figure 5.8: Error Histogram for Langmuir-Freundlich Isotherm Shallow Neural Network Model 

The error histogram for the Langmuir-Freundlich models shows the greater error introduced 

through the additional parameters and lower model accuracy. The two bins closest to the zero-error 

total approximately 71.4% of the residuals. In comparison, the equivalent bins for the direct, 

Langmuir and Freundlich ML models total 56.7%, 65.9% and 74.3% respectively. The Langmuir-

Freundlich model does well for these closest bins. However, the four most extreme bins for either 

side are large, indicating there are slightly more data points that have greater error; this difference 

does not exceed one percentage point and are not statistically significant. However, given the lower 
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R-value, the model represents the bulk of the data points accurately but has larger errors for outliers 

in comparison to the other models. The model also pales in performance to experimentally fitted 

parameters. The residual distribution for the fitted distribution is less wide; the seven most-extreme 

bins on one end total less than one percent total.  

Table 5.4: R-Values and MSR for Neural Networks for Langmuir-Freundlich Parameter 

Prediction 

Model 
Training 

R-Value 

Validation 

R-Value 

Testing 

R-Value 

Overall 

R-Value 
Overall MSR 

Langmuir-

Freundlich 

Parameter Γ𝐿𝐹∞ 

0.8969 0.9143 0.9815 0.9014 32.7956 

Langmuir-

Freundlich 

Parameter 𝐾𝐿𝐹 

0.9700 0.9612 0.9573 0.9681 0.0077 

Langmuir-

Freundlich 

Parameter 𝑛𝐿𝐹 

0.9771 0.9776 0.9840 0.9775 0.0020 

The above table exhibits the lower R-values calculated from the three neural networks 

relative to the previously prepared networks. As previously mentioned, the model for Γ𝐿𝐹 shows a 

notable decrease to 0.9014 whereas the two other models’ R-values still remains above 0.95. The 

MSR for this parameter is also notably higher due to the large residual in the outliers; while the 

MSR is not scaled, the equivalent coefficients determined in the Langmuir and Freundlich models 

have a much lower MSR in magnitude. All of these indicate that the Langmuir-Freundlich does 

not have higher correlation than the other direct and isotherm adsorption capacity models. The 

Langmuir-Freundlich isotherm show better performance for adsorbents in general when fitted 

experimentally; however, the total of three models and the distribution of the parameters makes it 

more inaccurate overall for machine learning. The greater performance in experimental fitting is 

not sufficient compared to the inaccuracies gained with the additional model. 

A summary of the initial iteration of the shallow neural networks is shown below. Combined 

with the regression plots, the direct prediction and the Langmuir models have the highest R-values 

with 0.9901 and 0.9906, respectively. The Freundlich model has a lower R-value at 0.9830, while 

the combined isotherm has the lowest R-value of 0.9701. The number of neurons is chosen after 

several runs, after which increasing does not affect the accuracy of the model.  
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Table 5.5: Summary of Individual & Combined Shallow Neural Networks Models 

Model 
Number of 

Hidden Layers 

Number of 

Neurons 

Overall R-

Value 
Overall MSR 

Direct Prediction 

Model 
1 20 0.9901 0.0768 

Langmuir Isotherm 

Model 
- - 0.9906 0.0725 

Langmuir Parameter Γ𝐿∞ 1 14 0.9832 0.3605 

Langmuir Parameter 𝐾𝐿 1 14 0.9920 0.0390 

Freundlich Isotherm 

Model 
- - 0.9830 0.1311 

Freundlich Parameter 𝑘𝐹 1 12 0.9887 0.0414 

Freundlich Parameter 𝑛𝐹 1 16 0.9838 0.0194 

Langmuir-Freundlich 

Isotherm Model 
- - 0.9701 0.2293 

Langmuir-Freundlich 

Parameter Γ𝐿𝐹∞ 
1 18 0.9014 32.7956 

Langmuir-Freundlich 

Parameter 𝐾𝐿𝐹 
1 12 0.9681 0.0077 

Langmuir-Freundlich 

Parameter 𝑛𝐿𝐹 
1 12 0.9775 0.0020 

From these initial results, the direct prediction and the Langmuir isotherm perform well. 

However, the two other models show more notable patterns in the regression plot, indicating that 

there can be improvements made to this. Thus, the next iteration changes the hyperparameters and 

introduces new variables to better capture the interactions. First, the number of layers is increased 

to two, to increase the interactions between neurons; the number of neurons in each layer is 

lowered to avoid overfitting, despite the risk being low due to the relatively large number of data 

points. As well, the category of adsorbent and the two Langmuir parameter estimates are used as 

variables for the new networks. The dataset categorizes the adsorbents into four main categories: 

carbon-based, MOF, POP, and zeolites. As per the previous section, additional categories exist for 

the adsorbents but are not represented in the filtered data set. To account for the categorical nature, 

the input is fed as an array of four elements; each element corresponds to a category. If the category 

matches the adsorbent, one is entered in the array and zero otherwise. The breakdown of the 

number of adsorbents in the filtered data set is presented in the table below. The appearance of one 

zeolite significantly affects the model when predicting for zeolite compounds. As well, the 

considerable number of data points stem from a limited number of sorbents.  
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Table 5.6: Adsorbents Separated by Category 

 
Entire Data 

Set 

Category 1 

Carbon-

Based 

Category 4 

MOF 

Category 5 

POP 

Category 7 

Zeolite 

Number of Unique 

Adsorbents 
25 8 10 6 1 

Number of Data 

Points 
2125 1130 636 313 46 

As described in the Literature Review, the Langmuir parameter Γ𝐿 and 𝐾𝐿 represent the 

maximum adsorption capacity and the adsorption equilibrium constant, respectively. These 

parameters can be used as inputs for the model; this is also useful given the high accuracy in the 

Langmuir isotherm neural networks and the prevalence of the Langmuir isotherm. Including the 

Langmuir parameters as variables are only viable for the Freundlich and combined Langmuir-

Freundlich models. The Freundlich and Langmuir-Freundlich parameters do not have obvious 

relationships to the Langmuir parameters; more accurately, the parameters depend on the 

maximum capacity and the equilibrium constant for the adsorption process, but the exact 

relationship is not known. In contrast, the relationship between the capacity and the Langmuir 

parameters as variables is known from the isotherm equation; machine learning can identify the 

isotherm implicitly which is not conducive to the objective of the model. More directly, a model 

that predicts the Langmuir parameters cannot have inputs that are identical to the outputs. This 

indicates that the Langmuir parameters should function as inputs only for the Freundlich and 

Langmuir-Freundlich models. The Langmuir parameters inputs are based on the parameters 

estimated from the Langmuir parameter model. In practical usage, the Langmuir isotherm may not 

be known, so using the model to further estimate it may be required. It is also noted that, for an 

adequately sized perfect neural network, the relationship in the Langmuir model would be 

implicitly included in the other models. 

When implementing these changes, the R-value is used as a preliminary indicator for the 

correlation to the target. The data set are randomly selected and distributed between the training, 

validation, and testing datasets, as previously done. Applying this random selection results in 

equivalent R-values between the two-values. To investigate the effect of these new parameters, the 

previous training, validation, and testing data distribution is reused for the models with the 

additional parameters. The regression plots for the new models are shown here.  
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Figure 5.9: Regression Plots for Adsorption Capacity Models with Additional Inputs & 2 Hidden 

Layers using Neural Networks 

The above Figure 5.9 exhibits identical patterns to the previously described Figure 5.1. The 

collection of outlier points above the four models, the visually subjective curve in the Freundlich 

model and the two collections of outlier isotherms in the combined Langmuir-Freundlich model 

remain in the new figure. However, the R-values for all of the models, except the Langmuir model, 

is slightly greater; the R-value difference, however, may be small enough to be non-significant 

when comparing the models. This is also supported by the similar R-values when training the 

model on randomly distributed data sets. Below is a collection of error histograms for the 

completed model. The histograms describe a similar trend to the original neural networks, with the 

majority of the points gathered around the zero error and the machine learning programs having 

less accuracy for the fitted parameters.  
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Figure 5.10: Error Histograms for Adjusted Neural Network Models 

Comparing the original and adjusted neural networks, the new adjustments do not 

significantly impact the model response. The trends described in the original model are still 

apparent in the adjusted model. As well, there are the R-value do not significantly change between 

the adjusted models. The higher R-values for the direct and Langmuir model are not significantly 

higher; instead, the improvement cannot be separated from the variance from the randomized 

partitioning for training and testing data. The error histograms for the adjusted model similarly do 

not have explicit trends but are lower than the fitted parameters, as expected. 

More complex machine learning programs can provide different models that may have 

different strengths. MATLAB provides several built-in ML functions. In addition, the theoretical 

improvements in adjusting the models do not realize any improvements in the response. The 

models are trained with the original data set, where the adsorbent category and the additional 

Langmuir parameter is not trained; as the additional adjustments do not change the response 

significantly, the model is kept simpler. 
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The machine learning models trained are an ensemble model, a GAM model, a GPR model 

and an SVM model. The regression plots are shown below, and the error histograms are shown in 

the appendix.  

 

Figure 5.11: Regression Plots for Regression Ensemble ML Models 
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Figure 5.12: Regression Plots for GAM Models 

 

Figure 5.13: Regression Plots for GPR Models 
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For the three types of ML models ensemble, GAM and GPR, estimating the adsorption 

capacity directly and through the targeted isotherm parameters show a high amount of fitting. The 

direct capacity and the Langmuir isotherm both show a high degree of correlation within the data 

set with R-values above 0.96 regardless of the ML algorithm. The ensemble model exhibits a lower 

amount of correlation relative to the other models, which is graphically observed in the greater 

dispersion of points under the target line. The GPR model shows a slightly higher R-value for the 

estimates from the Langmuir isotherm, which is not typical for the other models; however, the 

difference is negligible for not significant with both the direct and Langmuir-estimated models 

achieving above or equal to 0.98 for the R-value. The Freundlich isotherm model shows slightly 

worse performance, consistently for the three models. All three Freundlich models do not perform 

as well at the higher adsorption capacities, where the model tends to increase greater than the 

experimental value. This can be seen in the Freundlich isotherm itself, where the exponential term 

can exacerbate errors outside of the given range. The Langmuir-Freundlich isotherm has the lowest 

correlation, with immediately visual artefacts visible in the above figures. The ensemble and GPR 

model show a good correlation above 0.95. The overall collection of data fit the experimental data 

well, while most of the outliers remain above the fitted line. This may indicate the model is 

overestimating the points; most notably, there are lines of points that increase at a greater linear 

rate above the normal line. This can be attributed to a higher multiplier to the isotherm, as estimated 

by the individual model estimating the first Langmuir-Freundlich parameter. However, the same 

trend is not described by the model trained using GAM. The Langmuir-Freundlich model 

generated by GAM shows significant issues in performance, with a low R-value of 0.8095. The 

model shows difficulty in estimating the different adsorbents’ performances, as seen in the different 

linear collection of points both above and below the normal line. While this indicates a potential 

issue with the parameter Γ𝐿𝐹∞, a smaller density of points is concentrated close to the regression 

line. Instead, they are distributed above the regression, resulting in greater residuals and a lower 

overall correlation in the GAM model.  
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Figure 5.14: Regression Plots for SVM Models

 

Figure 5.15: Error Histogram for SVM models 
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The SVM model has the poorest performance, which is immediately visible in the figure 

above. The direct adsorption capacity, which performs the best among the other machine learning 

programs, shows poor performance. The error histogram for the direct prediction also does not 

exhibit the expected normal distribution of the residuals. Instead, the frequency in each bin is 

approximately equivalent to each other. This is an indication the model does not estimate the target 

response well; instead, this error histogram indicates that the model is almost random, which is not 

expected. The other models do not perform as well as the others, indicating that using SVM for 

regression in this context is not valid. The margin may be too lenient which is not sufficient in any 

reasonable estimation from the model.  

An adsorbent separate from the training data is chosen to independently examine the model’s 

responses. The adsorbent in question is MOF-14 or [Cu3(BTB)2(H2O)3]·(DMF)9(H2O)2. 

Originally described by Chen et al. [27], the adsorption data is gathered from Karra et al.’s work, 

as gathered in NIST’s adsorption database [28]. In addition, Karra et al. also provides the relevant 

adsorbent parameters; the BET surface area and pore volume are reported as 1398 m2/g and 0.57 

cm3/g. The figures below show the regression plot on top of the adsorption curve, for the various 

models. A table is also presented showing the R-values for each model.  

 

Figure 5.16: Neural Network Model Response to Validation Data 
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Figure 5.17: Regression Ensemble Model Response to Validation Data 

 

Figure 5.18: GAM Model Response to Validation Data 
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Figure 5.19: GPR Model Response to Validation Data 

 

Figure 5.20: SVM Model Response to Validation Data 
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Table 5.7: R-Value for Estimated Response for MOF-14 Sorbent 

 Direct Prediction Langmuir Freundlich 
Langmuir-

Freundlich 

Neural Network 0.7795 - 0.9305 - 

Regression 

Ensemble 
0.8589 - 0.8954 - 

GAM 0.9028 - 0.9139 - 

GPR 0.6868 0.4804 0.8911 - 

SVM - 0.1482 0.8882 - 

 

From the above figures and tables, the models have significant difficulties in estimating the 

adsorption capacity outside of the training data. The blank spots in Table 5.7 indicate that the 

calculation for R-value returns an imaginary number, and the error in the model cannot be 

reasonably explained by any error from regression. This is reflected in the model response, which 

are significantly different from the normal line. The Langmuir-Freundlich models increase faster 

than the experimental findings and do not appear in the figures. Likewise, the Langmuir model 

also exhibits this behaviour for the neural network model, unexpectedly. Furthermore, the 

Freundlich isotherm shows the greatest performance; the two performance is superior to the direct 

prediction capacity, which is comprised of only one separate model.  

The Aspen Adsorption model previously prepared can also be used to examine the model 

responses. Running the model under the same conditions with different isotherm parameters allow 

quantitative performance comparisons between the models. The breakthrough curves are shown 

below. In addition, the amount of product produced and the combined cycle time for two cycles is 

accounted for. A table below is presented to show the Freundlich parameters used. 
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Table 5.8: Estimated Freundlich Parameters for MOF-14 at Ambient Conditions 

 
Experimentally 

Fitted 

Neural 

Network 

Regression 

Ensemble 
GAM GPR SVM 

Freundlich 

Parameter 1 
2.539 6.036 1.536 1.909 2.469 -708.383 

Freundlich 

Parameter 2 
2.016 4.932 1.990 1.768 2.740 -119.174 

The table immediately illustrates the difficulty in using the SVM model. The negative 

Freundlich parameter 1 acts as a negative coefficient, which renders the capacity as negative. 

Unfortunately, the SVM model cannot be used in the Aspen Adsorption as a result; given the poor 

performance even within the trained data, the SVM model should not be used in this context. While 

the optimization is set in MATLAB, it is evident that SVMs do not predict the target response with 

the given data set. The other models respond relatively well with the given data set; as such, it is 

concluded that SVMs do not suit this particular data set. The optimization of the margin 

hyperparameter may be too lenient, allowing a large margin to fit the data; the trends discussed 

from the figures of neural networks may perform poorly with the margin approach that regression 

SVMs use.  

 

Figure 5.21: Breakthrough Curve for Aspen Adsorption Simulation using Fitted Parameters 
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Figure 5.22: Breakthrough Curve for Aspen Adsorption Simulation using Neural Network 

Estimated Parameters 

 

Figure 5.23: Breakthrough Curve for Aspen Adsorption Simulation using Regression Ensemble 

Estimated Parameters 
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Figure 5.24: Breakthrough Curve for Aspen Adsorption Simulation using GAM Estimated 

Parameters 

 

Figure 5.25: Breakthrough Curve for GPR Models 
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Table 5.9: Aspen Adsorption Response to ML Models’ Output 

Model 
Breakthrough Time 

[min] 
CO2 Recovered [mol] 

Two Cycle Time 

[min] 

Fitted Parameter 928.33 13.97 5410 

Neural Network 4008.33 62.41 25376.67 

Regression Ensemble 585 8.63 3456.67 

GAM 710 7.48 3456.67 

GPR 1023.33 24.63 9526.67 

From the table above, the fitted parameter from the NIST adsorption database shows that the 

breakthrough time is expected to be 928.33 min. The GPR model is the closest at 1023.33 min, 

which results in a 10.6% difference. The 100-minute difference is relatively large to the fitted 

breakthrough time; however, the other models show much larger difference. The regression 

ensemble and GAM models have a much lower breakthrough time at 585 min and 710 min, 

respectively. This is reflected in the smaller amount of CO2 recovered in two cycles and the shorter 

cycle times. This is reflected in the lower isotherm coefficient, where the ensemble model and 

GAM model have parameters of 1.54 and 1.91, respectively. The fitted model has a parameter of 

2.539; GPR has a close approximation of 2.469, within 3% of the fitted value. The neural network 

also exhibits a great overestimation in both the carbon dioxide recovered and the cycle and 

breakthrough times. The Freundlich parameters are both overestimated by over 100%. The overall 

response for MOF-14 is not as extreme, as observed from Figure 5.16; regardless, the combined 

neural networks perform considerably poorer than the other models.  

Finally, the cycle times and carbon dioxide recovery amount can be used to estimate the 

average CO2 recovery flow rate. Given that the first cycle starts from an initial state, the cyclical 

steady state values for the average flow rate is not recorded; as more cycles are run, the flow rate 

should equilibrate at a certain amount. The flow rates between the models are relatively close, 

despite the differences in times and molar amounts. The neural network, ensemble and GPR are 

all within 5% of the 2.58 kmol/min product recovery. From a preliminary design perspective, the 

models can estimate steady state flow with a reasonable amount of accuracy. However, the error 

shown previously makes it impossible to assume this is true for other adsorbents. While the 

machine learning models are unable to connect the capacity and the adsorbent, the work shows the 

capabilities of the models. Despite the different array of models used for training, most of the 
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models show good performance; generalizing the model has difficulties, which may be associated 

with the more specific parameters of the sorbents that are unavailable. Characterizing the adsorbent 

with a larger, more robust data set is necessary to fulfill the original model objective. 

Table 5.10: Averaged CO2 Recovery Rate for Each Model 

Model 
Averaged CO2 Recovery Flow Rate 

[kmol/min] 

Fitted Parameters 2.58 

Neural Network 2.46 

Regression Ensemble 2.50 

GAM 2.16 

GPR 2.59 
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Chapter 6: Conclusion & Future Work 

The models show the possibility of machine learning in the scope of carbon capture with 

adsorption. As the collection of adsorbents grows larger with each novel development, so does the 

need to collect the details of the adsorbents. This is attempted in Chapter 2, where summary papers 

are used to identify adsorbents for carbon capture. While gathering this information, it is apparent 

that the information is not consistently available. However, textural properties such as surface area 

and pore volume, combined with NIST’s adsorption database providing process conditions, 

sorbent capacities and fitted isotherm parameters, can create a set of 2,125 data points, spanning 

twenty-five adsorbents.  

The process of creating an adsorption bed model is also examined; while there are difficulties 

in preparing a suitable model, a model is created in Aspen Adsorption. The use of ML methods is 

examined in Chapter 4. A preliminary model is created with neural networks which shows a high 

level of correlation, with R-values above 0.95 for the four models created. A potential improvement 

is proposed to increase the number of adsorbent variables, where the result does not show a marked 

improvement. As such, the improvement is not implemented for the additional regression 

ensemble, GAM, GPR and SVM models. These models show a mixed assortment of correlation. 

Regression ensemble, GAM and GPR show a good result within the training set, whereas the SVM 

model has significant issues at this stage. However, when introducing a non-training sorbent MOF-

14, most of the models show significant error; the errors for the models are large enough to not 

provide a reasonable R-value. Some direct prediction and Freundlich isotherm models exhibit a 

fair correlation, but the R-values are less than an ideal 0.95. However, the Freundlich parameter 

predicted are used in an Aspen Adsorption bed model to examine the model response. The 

breakthrough times and recovery amounts vary among the different algorithms, with GPR and 

GAM showing the closest results. However, a comparison between the results of the parameters 

and the Aspen Adsorption model both indicate that the models have limited accuracy.  

For future work, papers describing new adsorbents would ideally have additional 

information to remedy the small number of variables available. Theoretically, data imputation 

would be ideal to supplement and make more variables available; in practice, data imputation on 

the pore diameter has severe, significant issues in the resulting model. The data imputation 

performed was relatively simple regression ensemble using the other adsorbent properties to 
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predict the pore diameter, but the imputed variable actively hurts the capacity models. Including 

more robust variables can definitely improve both performance and generalization, as seen in the 

difficulties in helping with MOF-14. An idea of gathering more relevant information is to use 

commercially available adsorbents; these adsorbents usually come with data sheets that include 

physical and chemical information that can be used, such as chemical composition, density, and 

cell unit lengths & angles. ML methods are ideal in examining the underlying relationships 

between these and the adsorption process. Characterizing the performance of the adsorbents by 

other parameters such as cyclability will also be ideal in the future, but the lack of data makes this 

an effort far in the future. 

Improving the performance of the Langmuir model is particularly important due to its 

prevalence in adsorption models. The Freundlich model, which is the best-performing model for 

MOF-14, is a much more difficult model to use. Within Aspen Adsorption, using the Freundlich 

isotherm results in significant stability issues; these issues are less present when the Langmuir 

isotherm is selected. It is also noted that the isotherm selection can have a large impact on the 

accuracy of the simulation. While Langmuir isotherm is simple and common, the gas components 

will interact with each other and the active sites, which is not in the model’s assumptions. Instead, 

using models with more interaction factors can have greater accuracy; this must be carefully 

balanced with the increased number of parameters and thus the increased error introduced by each 

additional model. Moreover, generalizing these parameters will create a complex model that will 

need a large amount of new data to train any ML models. Another factor is to introduce other 

components for a more realistic simulation. In particular, post-combustion often have SOx and NOx 

which has operational problems that must be addressed.  

The improvement of these models can have a significant impact as more interest begins to 

move towards the development phase. Determining the adsorbent performance from its textural 

properties can act as a strong guide towards the development of superior sorbents; additionally, 

with additional aide towards designing and researching, the model can provide more focus can be 

brought into the development stage. 
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Appendix A: GHG Emissions by Economic Sector in 

Canada 

The data is publicly available from the Government of Canada. 

Table A.1: GHG Emissions by Economic Sector in Canada 

Year Oil and gas Transport Buildings Electricity 
Heavy 

industry 
Agriculture 

Waste and 

others 

1990 102.6 120.5 71.2 94.7 97.2 51.7 56.7 

1991 102.2 114.3 70.6 96.1 97.1 52.3 55.3 

1992 110.8 115.2 72.4 102.5 94.6 54.7 54.9 

1993 117.5 116.7 76 93.1 94.1 56.5 53.7 

1994 121.5 121.3 76.3 95.1 99.7 59.1 55.1 

1995 127.6 122.1 77 98.2 100.4 62.2 57.9 

1996 135.4 125.7 83.3 98.2 103.2 63.4 57.5 

1997 136.5 131.5 80.8 109.4 102.6 64 57.5 

1998 140.9 137.3 72.4 122.1 97.6 63.8 54.5 

1999 149.9 143 76.3 119.1 94.7 63.5 55.2 

2000 155.1 144.9 82.8 129 94.1 64.1 56.9 

2001 156.6 146.6 79.5 129.2 88.3 62.9 55.2 

2002 161.5 147.7 83.8 123.6 89 62.9 55.7 

2003 165.9 151.7 89 127.3 88.3 65.1 55.9 

2004 168.2 156.1 87.6 119 92.2 65.9 56.2 

2005 171.3 160.1 83.7 117.5 87.2 66.4 55 

2006 178 161 78.5 111.6 87 65 53.5 

2007 183 164.4 84.3 119.6 86 65 54.5 

2008 179.9 164.5 84.2 108.8 84.5 64.2 52.9 

2009 176.9 161.5 82.6 93.7 71.5 61.9 49.5 

2010 181.4 167.2 79.4 94.6 74.6 61.9 50.5 

2011 187.2 168.3 84.7 86.6 80.4 62.4 51.3 

2012 194.2 170.5 83.2 83.3 80.2 63.7 50.5 

2013 198.9 174 84.3 79.7 78.6 65.4 51.3 

2014 204.5 171.5 84.9 76.3 79.4 63.8 49.3 

2015 204.8 172.1 83.8 79.7 77.8 64.6 49.8 

2016 194.4 173.5 82.2 74.3 76.3 64.9 49.5 

2017 196.5 178.9 86.6 72.6 75.5 64.3 50.5 

2018 205 184.1 92.9 62.8 77.5 66.3 51.5 

2019 203.5 185.5 92 61.8 77.4 66.7 51.5 

2020 178.8 159.2 87.8 56.2 71.8 68.7 50 
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Appendix B: Aspen Adsorption Model Diagram 

The following figures show the process diagram as well as the settings used. 

 

Figure B.1: Diagram of Aspen Adsorption Bed Model 

 

Figure B.2: Gas Valve Unit Configuration 

Figure B.2 shows the configuration for the four gas_valve units VF1, VW1, VF2, VP1. The 

active specification of the valves is dependent on the cycle and shown in Table 2.1: Valve Staging 
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for Skarstrom Cycle. When VF1 is open, the flow rate is set to 0.0880624 mol/min. When VF2 is 

open, the flow rate is set to 0.0572407 mol/min. The two other valves VW1 and VP1 are on-off 

valves; the flow rate is controlled by the valves upstream and adsorption bed. 

 

Figure B.3: Gas Tank Void Unit Configuration & Specification 

The gas_tank_void units TD1 and TD2 are empty space to better facilitate the valves 

opening and closing. The compression term is removed for the blocks, as the compression of the 

gases causes instabilities in the temperature. As well, the tank volume has been changed to one 

cubic meter. 
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Figure B.4: PDE Handling Configuration 

 

Figure B.5: Material/Momentum Balance Configuration 
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Figure B.6: Kinetic Model Configuration 

 

Figure B.7: Isotherm Configuration 
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Figure B.8: Energy Balance Configuration 

There are no reactions or user-defined procedures in the adsorption bed; no figures are 

created for this. 
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