Blockchain Recommender Systems
using Blockchain Data

by

Sean Khatiri

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Applied Science
in
Management Sciences

Waterloo, Ontario, Canada, 2023

(© Sean Khatiri 2023



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11



Abstract

Blockchain systems allow a network of pseudo-anonymous users (identified only by their
public key) to maintain a secure transaction ledger in a decentralized manner. Transactions
are executed and recorded on the ledger by programs called smart contracts. Decentralized
applications (dApps) can be built on top of blockchains, for tasks such as exchanging
cryptocurrencies and other digital assets, without the need for trusted third parties such
as banks. As is the case with traditional Web applications, personalization is key to user
acquisition and retention in decentralized systems. We therefore ask the following question
in this thesis: how can we build effective blockchain recommender systems?

To answer this question, we turn to collaborative filtering, a popular recommendation
approach that captures similarities among users in terms of their transaction histories. For
example, if two users liked movies a, b, ¢, and d, and the first user additionally liked movie
e, then collaborative filtering may suggest movie e to the second user. The main technical
challenge we address is how to map smart contract code to the underlying items or concepts
that may be recommended, e.g., a smart contract that facilitates an in-game purchase using
Bitcoin may map to the “gaming” concept. Using this mapping and real-world data from
the Ethereum network, which is the largest smart-contract-enabled platform, we test two
collaborative filtering systems: a simple and fast Matrix Factorization (MF) algorithm and
a more complex one based on Graph Neural Networks (GNN). Our empirical results show
that GNN outputs more effective recommendations, at the expense of latency. We conclude
with an overview of a blockchain-native implementation of our framework as a decentralized
recommendation service, and we discuss the corresponding practical challenges such as
incentive mechanisms (tokenomics).

111



Acknowledgements

I wish to extend my gratitude to Professor Lukasz Golab, my supervisor, for his un-

wavering support, patient mentorship, and invaluable guidance during the course of my
research endeavors.

My heartfelt appreciation also goes to Professor Morteza Zihayat, Professor Mehdi
Kargar, and Professor Jaroslaw Szlichta for their invaluable guidance and patient counsel
that have profoundly contributed to the advancement of my research.

v



Dedication

This is dedicated to my lovely wife and family, the ones I love.



Table of Contents

Author’s Declaration ii
Abstract iii
Acknowledgements iv
Dedication \Y%
List of Figures viii
List of Tables ix
List of Abbreviations X

1 Introduction 1
1.1 Background . . . . . ... 1
1.2 Our Contributions . . . . . . . . . . ... 7
1.3 Thesis Overview . . . . . . . . . . e 8

2 Preliminaries and Related Work 9
2.1 Blockchains . . . . . . . ...

2.1.1  Fault Tolerance . . . . . . . . . .. . .. ... . 11
2.1.2 Consensus . . . . . . .o 12

vi



2.1.3  Smart Contracts . . . . . . . . .

2.1.4 Blockchain Data . . . . . ... ... ... ... ... ...
2.2 Blockchain Data Analysis . . . . . . . . .. .. ... ... .. ... ...,
2.3 Recommender Systems . . . . . .. ..o
2.3.1 Matrix Factorization . . . . . . ... ... ... ... ... ...
2.3.2 Graph Neural Network . . . . . . . ... ... ... ... ......
2.4 Blockchain Recommender Systems. . . . . . ... ... .. ... .. ...,
Methodology
3.1 Dataset Creation . . . . . . . . . . ..
3.2 Dataset Exploration . . . . . . ... ...
3.3 Recommender Methods . . . . . . . .. .. ..
3.3.1 Contract Embedding . . . . . . ... ... ... L.
3.3.2 Matrix Factorization Recommender Systems . . . . . . . . ... ..
3.3.3 Graph Neural Network Recommender Systems . . . . . ... . ...
Evaluation
4.1 Recommendation Performance . . . . . . .. ... ... ... ... ... .
4.1.1 Evaluation Metrics . . . . . . . . . ... ...
4.1.2 Effectiveness . . . . . . . . ...
4.1.3 Efficiency . . . . .. ...
4.2 Discussion . . . . . . ..

Conclusion and Future Directions

5.1 Summary . . ...

5.2 Future Work . . . . . . . .

5.2.1 Recommendation Performance . . . . . . . . . . ... ... ... ..

5.2.2 Practical Consideration . . . . . . . . . . . ..
References

vii

27
27
29
31
33
34
35

38
38
39
40
43
44

46
46
47
47
48

50



List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24

3.1

3.2

3.3

3.4
3.5

An example of user-contract interactions in decentralized auction and token transfer dApps
Collaborative Filtering (CF), Content-based, and Hybrid recommender systems
An example of Hybrid dApp recommender system in a decentralized lending dApp . . .

Matrix Factorization and Graph Neural Network implementation of pure Collaborative

Filtering and Hybrid recommender systems. . . . . . . . . . . . . . . . . ... ..

A comprehensive illustration of primary components of blockchains. . . . . . . . . . .
An illustration of Proof of Work consensus mechanism . . . . . . . . . . . . . . ..
An illustration of Proof of Stake consensus mechanism . . . . . . . . . . . . . . ..

A comprehensive illustration of a user interacting with a smart contract, detailing the
blockchain data (i.e., the ledger and world state). . . . . . . . . . . .. ... ...

Distribution of user and contract IDs over interactions dataset. . . . . . . . . . . . .

Distribution of the top 50,000 most frequently interacting pairs of contracts. The x-axis
represents each unique pair of contract IDs, and the y-axis represents the number of

unique users who interacted with both contracts within a contract pair ID. . . . . . .

Transaction Processors Pipeline. The output of the pipeline will be utilized by blockchain

recommender systems. . . . . . L L 0 0L L L0 0L e e
Lending and staking contract comments. . . . . . . . . . .. 000000

CFann and Hybridgyy blockchain recommender systems . . . . . . . . . .

viil

2

10
13
14

16

30

31

32
33
37



List of Tables

4.1

4.2

4.3

Effectiveness comparison of recommender systems—POP, CFyr, Hybridyr.cLusTERING s

Hybridyvr.sperT; CFann, Hybridenn.cLustering, and Hybridgnn-sperr—across mul-
tiple rank thresholds (i.e., k = 1,5, 10, 15, 20), with bold numbers highlighting the best-

performing model. . . . . . . .. . L e e e e e 40

Effectiveness of Hybridgnn.spgrr on Ethereum and MovieLens across multiple rank
thresholds (i.e., kK = 1,5,10, 15, 20), with bold numbers highlighting the best-performing
model. . . . L L L e e e e s 42

Latency and Memory usage comparison of recommender systems—CF yir, Hybridyp-cLUsSTERING

Hybridyr.sperr, CFann, Hybridenn.cLustering, and Hybridgnn.sperr- with bold
numbers highlighting the best-performing model. . . . . . . . . . . . . . . . .. .. 43

X



List of Abbreviations

CF Collaborative Filtering 3
CFgnn Collaborative Filtering Graph Neural Network 6

CFumr Collaborative Filtering Matrix Factorization 5
dApps Decentralized Applications 1
GNN Graph Neural Network 5

Hybridgnn-crustering Hybrid Graph Neural Network with clustering method 6
Hybridgnn.serr Hybrid Graph Neural Network with Sentence-BERT method 6
Hybridpmr.crustering Hybrid Matrix Factorization with clustering method 5

Hybridyr.sgerr Hybrid Matrix Factorization with Sentence-BERT method 5
MF Matrix Factorization 5

PoS Proof of Stake 12

PoW Proof of Work 12

SBERT Sentence-BERT 5



Chapter 1

Introduction

1.1 Background

The modern online world, referred to as Web3, is becoming decentralized due to blockchain
platforms. Here, interactions among pseudo-anonymous users (identified only by their
public key) who may not necessarily trust each other are facilitated by consensus algorithms
and recorded in a secure ledger. The ledger is replicated across a distributed network of
validator nodes that earn rewards for maintaining the ledger. The Bitcoin network [56]
was the first popular example, allowing users to trade the Bitcoin cryptocurrency without
the use of a bank or any other trusted third party.

The Bitcoin platform supports transactions that transfer Bitcoins from one user (public
key) to another. A more general blockchain platform then emerged — Ethereum [13] — with
the addition of smart contracts, which are pieces of code that execute arbitrary transaction
logic. Smart contracts enable Decentralized Applications (dApps) to be built on top of
blockchains, for tasks such as exchanging cryptocurrencies or other assets, or decentralized
auctions.

Figure 1.1 shows an example of two dApps: one for cryptocurrency swap and one for
a digital asset auction. To deploy a dApp on a blockchain, the dApp developer writes
smart contracts, shown in the figure as written in the Solidity programming language, to
implement the desired dApp features. For example, the transfer function of the Simple To-
kenSwap contract first checks the sender’s account balance and then subtracts the amount
transferred from the sender’s balance and adds it to the recipient’s balance. End users
can then connect to the dApp front end, and user interactions trigger the corresponding



pragma solidity ~0.8.0;

contract SimpleTokenSwap { 10 Token A

mapping(address => uint256) balances; .
( Swap
< function transfer(address recipient, uint256 amount) { B Tokens -
require(balances [nsg.sender] >= amount, "Insufficient balance"); e «
balances [msg.sender] -= amount;
RS o ey balances [recipient] += amount; 5Token B
dApp }
}

: \ :
: e :
: contract SimpleAuction { :
: struct Item { H
‘.m : uint256 id; :
S A A address seller; B
'n. : uint256 price; B
: Item items; :
Dapp Developer : : End User

function list(uint256 price) returns (uint256) {
Item memory newItem = Item({
id: items.length,
seller: msg.sender, List Asset A

: price: price :
: n; Bu'y o :
: < - List -«
: N items. push (newItem); - -

[ g Auction return newIten. id; fissets

Confirmation

function buy(uint256 itemId) {
require(itenld < items.length, "Item not found");
require(nsg.value >= itens[itenId).price, "Insufficient funds");
’ Dapps Front-ends
Dapps Contracts address seller = itens[itenId].seller;
(seller).transfer(nsg.value) ;

// Remove the item from the listing
items[itemId];

}
~

Figure 1.1: An example of user-contract interactions in decentralized auction and token transfer dApps

smart contracts to execute the transaction logic and record the result on the ledger. In the
figure, we show a user interacting with the Swap dApp to exchange ten token As for five
token Bs (using the transfer function of the Simple TokenSwap contract), and listing and
buying assets on the auction dApp (using the list and buy functions of the Simple Auction
contract). Notably, these transactions are executed and maintained on the blockchain plat-
form, without the need for intermediaries such as banks or lawyers. Instead, each execution
of smart contract requires a transaction fee that the user pays to the validator nodes in
the blockchain network.

A number of further innovations since the introduction of Ethereum have contributed
to the growth of Web3. Oracles, i.e., trusted data sources, were introduced to allow
smart contracts to access external (off-chain) data such as weather forecasts. Oracles
were initially implemented as services provided by centralized entities, but decentralized
oracle protocols such as ChainLink [10] have recently emerged to fetch external data from a
set of nodes participating in the blockchain network itself. Likewise, querying and indexing
blockchain data can now be done in a decentralized manner through the Graph protocol
[78], eliminating the need to trust third parties to provide these services.

We view personalization as the next big milestone in the growth of Web3. As in



Collaborative Filtering Content-based Hybrid

*

OOOO

Hx User and Item Attributes
-+ Recommendation

— User Interaction

N # Userand Item Attributes Recommendation

Recommendation

. Item —  User Interaction
@ tem

user Item
user .

user

Figure 1.2: Collaborative Filtering (CF), Content-based, and Hybrid recommender systems

the current Web2 (with centralized social networks and centralized e-commerce entities),
personalization is critical for user acquisition, satisfaction, and retention. Research has
shown that one of the most effective enablers of personalization is the use of recommender
systems [25]. While there has been extensive research in designing recommender systems for
centralized applications, the area of dApp recommender systems remains under-explored
[1]. This is the gap we intend to fill in this thesis.

We begin with an overview of recommender systems. Usually, users are the entities
that receive recommendations, and items are the entities that are recommended to users.
Recommender systems can be categorized by the data they use to make recommendations:
user interactions with the available items or services, user attributes, or item attributes.
Based on this categorization, there are three approaches, illustrated in Figure 1.2: Col-
laborative Filtering (CF), content-based, and Hybrid [38]. CF methods focus solely on
interactions. For example, if user u; interacted with items a, b, and ¢, and user uy inter-
acted with items a and b, then item ¢ could be recommended to user us. This approach
considers only the similarity in interactions without accounting for user or item attributes.
Conversely, pure content-based methods consider only the similarities among user and item
attributes. For instance, if user u; frequently watches video game streams, gaming items
might be recommended to them based on content similarity. Finally, Hybrid methods take
into account both interactions and the attributes of users and items. For example, suppose
user u, and user us interacted with items a, b, and ¢, and user us interacted with items a
and b. If the profile of item d is similar to the preferences of the user us, then item ¢ could



be recommended due to the similarity in interactions, while item d could be recommended
due to the similarity in attributes.

Translating the recommendation problem to the blockchain context, users are repre-
sented by public keys (i.e., user addresses on the blockchain) and items by smart contracts,
which also have addresses. Each transaction is thus an interaction between a user address
and a contract address, and this pair of addresses (plus the output of the contract) is
recorded on the ledger. As a result, simple CF methods can be used for dApp recom-
mender systems using only the transaction records available on the ledger!. On the other
hand, pure content-based methods may not apply, as the pseudo-anonymous users on the
blockchain are known only by their public keys and lack additional descriptive attributes.
In principle, linking blockchain addresses to Web profiles (i.e., those available on central-
ized applications such as social networks) could create more detailed user profiles; however,
this raises privacy concerns and is not straightforward since some users may not disclose
their addresses on these platforms. Finally, Hybrid approaches can be considered, based on
the similarity of items in terms of their attributes or descriptions. Hybrid approaches may
produce recommendations that would go unnoticed with pure CF methods that only con-
sider interactions. For example, Figure 1.3 illustrates three SimpleLending dApps where
lenders can deposit (using the deposit method) cryptocurrency (i.e., tokens) to earn in-
terest and borrowers can take out loans using those deposited tokens (using the borrow
method). After some time, lenders can withdraw their deposited amount along with the
interest earned (using the withdraw method). Each lending contract specifies the interest
rate and the type of tokens it accepts (i.e., deposit type). Suppose users u; and us interact
with the SimpleLendingA and SimpleLendingB contracts to deposit tokens. When user
uz interacts with SimpleLendingA, a CF recommender method may suggest SimpleLend-
ingB. However, with only user interactions, CF cannot suggest SimpleLendingC. A Hybrid
method can find similarities between SimpleLendingA and SimpleLendingC, such as the
same type of accepted deposits, and thus can recommend SimpleLendingC to user us.

However, the technical challenge is how to identify similar smart contracts. As illus-
trated in Figure 1.1, smart contracts are pieces of code written in a programming language
such as Solidity, which differentiates them from product descriptions or movie genres found
in e-commerce or movie recommender systems. This raises a crucial question for dApp rec-
ommender systems: How can we effectively provide recommendations based on
user interactions with smart contracts?

!Note that when a new user arrives, since there are no previous transactions (i.e., interactions) associ-
ated with them, collaborative filtering methods may not work effectively. This issue is known as the Cold
Start Problem (CSP) in the literature on recommender systems.



contract SimpleLending  {
address owner;
uint256 constant interestRate = x%
string constant depositTokenType = A or

mapping(address => uint256 batances;
mapping (address => uint2s6 borrowedAnounts;

SimpleLendingA '

0, “Please provide funds to lend");

Interest Rate: 5%
e lending poo

Deposit Type: Token

SimpleLendingB 10%

Interest Rate:  10%
Deposit Type: Token

SimpleLendingC

Interest Rate: 4%

e greater than ");
sufficient funds to borrow');

Towithdraw = balances [sg. sender];
ToWithdraw > 0, "No funds to withdraw");

est earned by the lender
rned = (anountToWithdraw » interestRate) / 100;

reset their deposited amount

Deposit Type: Token /7 Transfer the deposited amount and interest to the

tender
(msg. sender) . transfer (amountToWithdraw + interestEarned);

Recommendation @ Item Tokens

—  User Interaction user

Figure 1.3: An example of Hybrid dApp recommender system in a decentralized lending dApp

We propose two methods to identify similar contracts:

1. A clustering method that segments the contracts according to their comments.

2. An embedding method that builds a dense numeric representation (i.e., embedding)
for each contract based on the comments within the smart contract code. Here,
contracts with semantically similar comments have similar embedding vectors (i.e.,
the distance between their embedding vectors is small). We utilize Sentence-BERT
(SBERT [63]) pre-trained model to calculate contract embeddings.

In this thesis, we consider six recommender systems, illustrated in Figure 1.4. We posi-
tion our choices in a two-dimensional space according to data needs (pure CF, HybridcrusterinG,
and Hybridsggrr) and model complexity (simple Matrix Factorization (MF) and Graph
Neural Network (GNN)). We start with a simple and fast MF-based CF as one of the
popular implementations of CF recommender systems [13] (CFyp shown at the bottom
left in Figure 1.4). Transitioning to Hybridyr methods, we add contract cluster IDs and
contract embeddings (i.e., SBERT embeddings) to CFyr method (Hybridyr cLusterinG
and Hybridyr sprrr displayed at the middle and top left in Figure 1.4 respectively). These

(S8



Data

Availability Hybrid . cocrr Hybrid gyy.spert
RN SRR ot SO .
abec :
H User F ItemF
w 1
Hybrid b
: 0 10 :
SBERT
l n
: [ Latent Features :
Hybrid yr.ciustering
abec H
: User F ItemF :
1 1
Hybrid 1o
CLUSTERING 0 10,
: Latent Features
CFmr
: abc User F Item F
Pur [10
Du2k 101 »= .
Puz oo
Interactions Latent Features
Matrix
»
MF GNN Complexity
@ User @ Contract — Interaction B Contract SBERT Embedding M Contract Cluster ID

Figure 1.4: Matrix Factorization and Graph Neural Network implementation of pure Collaborative
Filtering and Hybrid recommender systems.

Hybrid methods account for the similarity between contracts, enabling the dApp recom-
mender systems to expand their recommendation capabilities by considering similarities
within interactions data as well as contract attributes.

Transitioning to neural methods, various architectures can be adopted, such as Neu-
ral Matrix Factorization (Neural MF) [64] and GNNs [91]. Given the bipartite graph
structure of user-contract interactions, GNN architectures are appropriate. This is mainly
because GNNs can capture the complex and nonlinear structure of data, where relation-
ships extend beyond immediate neighbors, and interactions are not limited to being pair-
wise [91] (as is typically considered in Neural MF methods). Figure 1.4 illustrates the
CFann, Hybridgnn.crustering, and Hybridgnn.sperr recommender systems. Similar to
MF methods, we add contract cluster IDs and contract embeddings (i.e., SBERT embed-
dngS) to CFGNN method (HybridGNN—CLUSTERING and HybridGNN—SBERT displayed at the



middle and top right in Figure 1.4 respectively). For example, if user u; interacts with
item a, and user us interacts with items a and b, and considering that user ug interacts
with items b and ¢, GNN methods can enable the higher-order recommendation of item ¢
to user u;. These models achieve this by learning the embeddings of each user and con-
tract to perform recommendations by predicting whether a link should exist between the
user and contract nodes. The pure CFgnn only considers user-contract interactions, while
the Hybridgnn-crustering and Hybridgnn.sgerT also incorporate contract cluster IDs and
SBERT embeddings respectively alongside the interactions data.

1.2 Owur Contributions

Our contributions are summarized below:

e Conceptually, we formulate a dApp recommender system problem that suggests smart
contracts to users. To the best of our knowledge, the only prior attempt to formalize a
dApp recommender system was restricted to digital tokens as items [94]. In contrast,
we propose a general blockchain recommendation framework, treating smart con-
tracts as items to recommend and considering smart contract similarity in addition
to user-item interactions when making recommendations. Designing a recommender
system that can handle any smart contract, beyond digital token transfer, is critically
important because future blockchains are expected to extend beyond cryptocurrency
and digital tokens.

e As a technical contribution, we propose two methods to enhance CF dApp recom-
mender system by incorporating additional contract information: (1) a clustering
approach that groups similar contracts together (2) contract embeddings. Using
these methods, illustrated in Figure 1.4, we integrate MF and GNN recommender
architectures into both CF and Hybrid dApp recommender systems.

e Empirically, we compare the effectiveness and efficiency of Pure CF and Hybrid dApp
recommender systems. To this end, we create a dataset comprising 400,000 real
Ethereum transactions that took place between 2018 and 2023. These transactions
include source and target addresses (i.e., user and smart contract public keys), thus
capturing user-contract interactions. We compare these approaches with a baseline
that recommends popular contracts to all users. Furthermore, to enhance our under-
standing of blockchain recommender systems’ performance, we examine the results
of the Hybridgnn.sgerT approach on both our Ethereum dataset and the MovieLens
dataset [27] in Subsection 4.1.2.



1.3 Thesis Overview

The structure of this thesis is as follows:

In Chapter 2, we discuss the fundamentals of blockchains and smart contracts. Follow-
ing this, we describe CF and Hybrid recommender methods, including Matrix Factorization
and Graph Neural Network methods.

In Chapter 3, we begin by explaining how our transaction dataset is constructed. We
also conduct an exploratory data analysis (EDA). Then, we describe the MF and GNN
dApp recommender systems architectures both for pure CF and Hybrid recommender
methods.

In Chapter 4, we begin with the results of our popular contract recommender system
(POP). This system operates by recommending the same popular contracts to all users.
Subsequently, we discuss the performance of the advanced recommender systems we have
examined.

In Chapter 5, we summarize our findings, outline directions for future work, and con-
sider the practical aspects of a decentralized implementation of dApp recommender sys-
tems.



Chapter 2

Preliminaries and Related Work

In this chapter, we start with an overview of blockchains (Section 2.1). We then proceed to
summarize related work on blockchain data analytics (Section 2.2), recommender systems
(Section 2.3), and blockchain recommender systems (Section 2.4).

2.1 Blockchains

A blockchain system is an example of state machine replication [24], described as follows.
Consider a state machine M represented by the tuple:

M = (Sv SO7Z7A76>

where:

e S denotes a particular status of the system at a specific point in time, representing
the "world state” in a blockchain context. The world state is application-dependent:
e.g., the balance of each account, the current owner of each asset, etc.

e sg is the initial state, known as Genesis Block in blockchain context.
e Y signifies the set of possible transactions that users can perform to modify the state.

e ) : S5 x X — Sis the state transition function. Given a state s and a transaction t,
d(s,t) produces a new state s'.



World State:{
Bob: 80,

|
!
: World State:(
. Bob: 80,
Alice: 120, , Alice: 120,
Carla: 100, | ! Carla: 100,
Dave: 100, 1 Dave: 100,
I ' }
! , Ledger
: Bob transfers 20 tokens to Alice
|

edger{
Bob transfers 20 tokens to Alice

Bob transfers 20 tokens to Alice

....... } }

Alice transfers 10 tokens to Carla

World State:{ World State:(
Bob: 80, Bob: 80,
Alice: 120, Alice: 120,

o Carla: 100, Carla: 100,
Pool of Transactions Consensus Dave. 100 Dve: 100,

} }
Ledger:{ Ledger:{

Bob transfers 20 tokens to Alice Bob transfers 20 tokens to Alice
} }

Blockchain Data

Validators

Figure 2.1: A comprehensive illustration of primary components of blockchains.

The state transition function § takes a state s and a transaction ¢ from X as inputs and
produces a new state s', effectively reflecting how ¢ modifies s. Figure 2.1 demonstrates
the primary components of blockchains. First, users submit their transactions. Validators
then select a batch of transactions (i.e., a block) based on the combined transaction fees
of the block’s transactions. Consequently, users can offer higher fees for their transactions
to be selected by validators sooner. The first transaction (e.g., 'Bob transfers 20 tokens to
Alice’) is selected. Additionally, users can submit a transaction by invoking the sayHello()
method of the HelloWorld contract in blockchains that support smart contracts (such as
Ethereum) as discussed in Section 1.1. In Subsection 2.1.3, we provide further details
on smart contracts. Validators, as a replicated set of state machines, then come to an
agreement (i.e., consensus) on the world state. We first discuss blockchains as replicated
state machines and the need for them to tolerate faults in Subsection 2.1.1. We then
elaborate on consensus algorithms in Subsection 2.1.2. After the transaction 'Bob transfers
20 tokens to Alice’ is processed and agreed upon by validators, they update their world
state and keep a record of the transactions (i.e., ledger). In the initial world state (i.e.,
known as the Genesis block in blockchains), both Bob and Alice have 100 tokens. After
transferring 20 tokens from Bob to Alice, the world state reflects their new balance (i.e.,
Bob:80, Alice:120). The final world state can be derived by sequentially replaying the
transactions recorded in the ledger. However, in practice, this approach is inefficient due

10



to the computation-intensive nature of the task!. Consequently, validators maintain both
the ledger and the world state as distinct data structures. In Subsection 2.1.4, we discuss
the ledger and world state data structure in detail.

2.1.1 Fault Tolerance

In a blockchain, users should be able to interact with each other without requiring mutual
trust or trust in third parties. If only one state machine exists, users would need to
trust it, which contradicts the principle of eliminating the need for trust in intermediaries.
Specifically, considering a state machine can be faulty, such as being unavailable to provide
the world state due to system errors. One intuitive approach is to have a set of replicated
state machines to compare their world states when a conflict arises. Assuming the majority
of nodes are well-behaved, a majority vote can determine the correct world state. For
blockchains to work correctly, there needs to be a certain number of nodes to tolerate
certain faulty nodes such as fail-stop (i.e., unavailability due to system error), malicious
nodes (i.e., nodes capable of providing contradictory world states), and Byzantine faulty
nodes (i.e., nodes capable of lying, refusing to provide the world state, and so on). In
this section, we examine this threshold for blockchains to be fail-stop and Byzantine fault-
tolerant.

In an ideal scenario where all nodes are well-behaved, if all nodes except one become
unavailable due to system errors (i.e., fail-stop), users need to receive the world state from
the last remaining node to ensure at least one correct response [24]. However, considering
malicious nodes that can provide contradictory world states, a majority vote is required
to determine the correct world state. Assume there are f votes from malicious nodes.
Therefore, at least 2f + 1 votes are needed, considering f + 1 votes from well-behaved
nodes. This leads to a requirement of 2f + 1 nodes for the system to be crash fault-
tolerant [70]. For instance, in a network comprising Alice, Bob, and Dave, if Alice becomes
unavailable, users can receive the world state from Bob or Dave, which is sufficient to find at
least one correct world state. However, if Alice provides a false world state, users receiving
the world state from both Alice and Bob will encounter two contradictory world states.
Consequently, a majority vote is necessary. When Dave provides the world state, users can
easily select the correct world state by a 2-to-1 vote, with Alice’s world state being the
incorrect one. In this scenario, a system with three nodes can tolerate one malicious node,
fulfilling the 2f + 1 criterion.

IFor the Ethereum blockchain, as of the date of this thesis, approximately 1 million transactions are
added to the Ethereum ledger daily

11



Conversely, let’s consider f Byzantine faulty nodes capable of providing contradictory
world states, refusing to provide any response, or even returning the correct world state.
In an ideal scenario, users can query f + 1 nodes until they receive at least one correct
response from a well-behaved node. However, the malicious nodes can lie. Now, users have
f lies and just 1 honest response. Therefore, there needs to be a majority voting with 2f 41
votes (f + 1 honest responses and f lies). However, upon a voting request, the malicious
nodes can refuse to provide any responses. Since we needed 2f + 1 votes, there should be
2f 41 well-behaved nodes to finalize the voting. Therefore, with 2f + 1 well-behaved nodes
and f malicious nodes, we need 3 f 41 nodes for the system to be Byzantine Fault Tolerant
(BFT) [106, 21]. Extending the previous example, introduce Carla into the network, creating
a four-node system. Carla is a Byzantine faulty node. Users receive contradictory world
states from Alice and Carla, therefore necessitating majority voting. Users need at least 3
votes (i.e., 1 faulty vote and 2 correct votes) to determine the correct world state. However,
upon actual voting, Carla refuses to provide any responses. Therefore, all 3 well-behaved
nodes (i.e., Alice, Bob, and Dave) can provide their voting. Consequently, this four-node
network meets the requirements for Byzantine fault tolerance, as it would necessitate at
least 3f + 1 = 4 reliable nodes to tolerate f = 1 Byzantine faulty node.

2.1.2 Consensus

Similar to the challenges users face when trying to determine the correct world state,
nodes may need to receive the world state from other nodes (in scenarios such as being
unavailable). Therefore, there needs to be a mechanism for nodes to agree on the world
state and the subsequent steps (i.e., consensus). Essentially, consensus is a mechanism
that determines who has the right to propose a block by utilizing a Proof-of-X strategy
[21]. In Proof-of-Work (PoW) consensus algorithms, this right is determined by solving a
mathematical puzzle; the one who finds the solution sooner can propose the valid block.
This puzzle is hard to solve but easy to verify, allowing others to verify both the proof and
the block. On the other hand, in Proof of Stake (PoS) consensus algorithms, nodes that
have locked a certain amount of tokens (i.e., staking) are selected based on the amount of
their staked tokens, randomness, and so on. Therefore, they propose the block by showing
proof of their stake. These consensus algorithms must inherently offer incentives to nodes
that accurately process new transactions, while concurrently penalizing malicious nodes.
Distinct blockchain architectures have introduced unique solutions to the consensus chal-
lenge; notably, Bitcoin’s architecture introduced the PoW method, followed by Ethereum’s
adoption of the PoS consensus algorithms.

In PoW consensus algorithms, validators validate new blocks by executing a state tran-

12



N : Fork 1
Validator A i Block Header eeeeereess Block Header | ,seseeeee Block Header [ .-++rvvor »  Block Header

H Alice 20 to Bob Bob 10 to Alice |: Alice 5 to Bob Alice 25 to Bob

Validator C

o ) BIO(kSN}
Validator D
H ock Header e Block Header
i| Alice1toBob Bob 10 to Alice
Validator B :

Fork 2

Computation Power . Proof-of-work

Figure 2.2: An illustration of Proof of Work consensus mechanism

sition function on transactions sequentially. Figure 2.2 demonstrates a PoW consensus
framework among three reliable validators (i.e., validators A, C, and D) and one malicious
validator (i.e., validator B)?. A sequencer initially aggregates and orders user transactions
into a block. To process a block (i.e., replaying transactions sequentially within the block),
validators are required to solve a computational puzzle that is difficult to solve but easy
to validate and must provide evidence of their solution (i.e., proof-of-work). The solving
probability depends on their computational power. Additionally, validators ignore blocks
that lack a proof, thereby preventing denial-of-service attacks. Each block’s proof-of-work
depends on its predecessor, preventing easy replication of work by malicious nodes. This
creates a unique block header for each block, forming a sequential chain of blocks. The
block header is derived from the hash (i.e., a deterministic mapping of input) of the previous
block’s proof-of-work and transactions. Considering a transaction where "Alice transfers 20
tokens to Bob’, validators A and B concurrently solve the puzzle, but validator B presents
a malicious transaction (i.e., Alice transfers 1 token to Bob). Upon these two distinct
transactions (i.e., 'Alice transfers 20 token to Bob’ and Alice transfers 1 token to Bob)
divergent blockchains, or forks, emerge. Since honest validators (i.e., A, C; and D) have
greater combined computational power they process more blocks than validator B leading
to a longer chain of blocks. Therefore, nodes may wait for one fork to become longer to
determine the correct world state. However, a set of validators with over 50% computa-
tional power can maintain an incorrect state, a vulnerability known as the 51% attack in
PoW blockchains like Bitcoin.

In PoS consensus algorithms, validators are chosen for transaction processing based on

2For simplification, this illustration assumes each block contains a single transaction, although in prac-
tical applications, the number of transactions per block varies and is typically larger.

13



Block Header

Alice 20 to Bob
Validators

- feeeeecatenananne W
Validator C Block Header
Validator D Bob 10 to Alice
... Transactions } Sequencer |-+ Blocks > validator B v=| «e-- Add > """""""" BIX |
oc| eader

Alice 5 to Bob

i Propose

Validator A Block Header

Alice 25 to Bob
Staked Amount === Attestation === Non-Attestation

Figure 2.3: An illustration of Proof of Stake consensus mechanism

staking. Validators must lock a certain amount of tokens as their stake. The design of PoS,
unlike PoW, does not rely on computational power. Instead, validator selection is based
on randomness and the size of the stake. Figure 2.3 shows a set of honest validators (i.e.,
validators A, C, and D) and one malicious validator (i.e., validator B). Similar to PoW,
a sequencer initially aggregates and orders user transactions into a block. The chosen
validator, or proposer (i.e., validator A), adds a block to the blockchain after executing the
block’s transactions. Subsequently, other validators engage by verifying the proposed block.
They execute the identical state transition function on the same transactions contained
within the block. If their results match the block proposed by the proposer, they attest to
it. Validators C' and D verify the proposed block, whereas validator B does not. A block is
accepted if enough validators attest to it (i.e., accounting for one malicious validator, here
four validators suffice to achieve BFT). The proposer receives rewards based on the number
of attestations received. The system is designed so that if the proposer acts maliciously,
a portion of the proposer’s staked amount is forfeited (i.e., slashed). Moreover, other
validators (i.e., B, C, D) receive incentives or face penalties based on their attestations.

In a blockchain, the record of transactions (i.e., blocks) should be immutable to always
derive the same world state by applying the deterministic state transition function. Oth-
erwise, any malicious party could change the record of transactions for their own profit.
For instance, consider Alice:100 and Bob:100 as the initial state, and Alice alters the
transaction from 'Bob transfers 20 tokens to Alice’ to 'Bob transfers 80 tokens to Alice’.
Therefore, the world state changes from Alice:120 and Bob:80 to Alice:180 and Bob:20.
Blockchains maintain immutability by chaining blocks, making any alteration in a block

14



significantly change the subsequent world state. This is done by summarizing previous
blocks in new block headers, typically using cryptographic hash functions. These functions

produce a fixed-size byte string from input, with any input change leading to a vastly
different hash 3.

2.1.3 Smart Contracts

Smart contracts are pieces of code that execute arbitrary transaction logic. Upon receiving
a transaction, smart contracts determine the new world state by executing their pre-defined
logic with transaction inputs. Therefore, they can be considered as state transition func-
tions. Ethereum introduced smart contracts so that users could design their own state
transition functions to implement their business logic in a decentralized environment. As
a result, it enabled the development of dApps independent of central oversight. In other
words, instead of pre-defined state transition functions by Ethereum, any dApp developer
can program their own business logic as a smart contract with unique inputs and outputs.

To begin with, we provide a brief overview of the interaction of users with smart con-
tracts within the Ethereum blockchain. Users and contracts are each assigned a unique
identifier (i.e., a public key) and an internal state upon creation. The state of a user is
comparatively simpler, primarily comprising their balance of Ether (i.e., native Ethereum
cryptocurrency). Conversely, a contract’s state is defined based on its programmed logic.
The programmed logic primarily consists of a set of methods callable by users. To call a
contract’s method, it is necessary for users to specify the contract address and the method
they wish to interact with (i.e., call) along with the required transaction fee (i.e., the trans-
action processing fee, paid in Ether to validators). Furthermore, users should pass the re-
quired inputs defined in the contract’s method as a transaction payload. Subsequently, the
consensus layer is responsible for the execution of the contract’s method with the passed
inputs to derive the world state. For illustration, consider a more complex transaction in-
volving users Alice and Bob. Bob intends to lend 20 A tokens to Alice. Merely transferring
20 A tokens to Alice does not address the lending challenge, as there is no assurance that
Alice will repay the debt. Consequently, a contract can be established between a lender
and a borrower, whereby the borrower must deposit a specified quantity of B tokens to
borrow 20 A tokens. Additionally, the contract may include conditions such as, if Alice
fails to return the 20 A tokens by a predetermined deadline, the collateral is automatically

3However, as data volume grows, hash functions become inefficient, leading to the use of Merkle trees
[54] for optimized data validation. In Merkle trees, each leaf node is a hash of a data block, and non-leaf
nodes are hashes of their child nodes. The Merkle Root at the tree’s top represents the entire data set,

15



transferred to Bob. This represents a lending application facilitating transactions between
lenders and borrowers without reliance on mutual trust or intermediaries like banks. In
this scenario, the world state encompasses the lending contract state, tracking borrowers
and lenders, collaterals, and loan deadlines, among others. The state transition function
is defined with custom inputs and outputs to process various loan requests.

2.1.4 Blockchain Data

Blockchain data essentially comprises the world state and the transactions recorded in
the ledger. Figure 2.4 illustrates the interaction of user A with the HelloWorld contract
and, upon processing the transaction, how the blockchain data would change. HelloWorld
contract comprises two methods: sayHello() to view the most recent greeting message
and updateGreeting () to modify the greeting message (i.e., contract state). Considering
user A invokes the updateGreeting method by submitting 'Hello World Again!” (i.e., the
new greeting message) along with the necessary transaction fee. Following the transaction
validation by validators, the updateGreeting method is executed.

"transaction™: {
"from": "OxUserAddress",
r "to": "OxContractAddress",
}
“transactionReceipt": {

"logs": "encoded "Hello, World!" string"

Transaction record will be added to the ledger

Previous world state

"user":{
OxUserAddress: "10",
h

"contract"{

'
'

'

: "user":{
'

'

'

'

. "0xContractAddress":{

'

'

'

'

'

'

'

'

0OxUserAddress: "10 - transaction_fee",
h
"contract":{
> "OxContractAddress":{
"bytecode": "60806040523...",
"greeting": "Hello World Again!",
}
}

+ Required Fee

"bytecode": "60806040523...",
"greeting": "Hello, World",

User submits a transaction to call
updateGreeting() method of contract
Helloworld

The world state will be updated by applying the contract, that is, the state
transition function, to the transaction and previous world state

Figure 2.4: A comprehensive illustration of a user interacting with a smart contract, detailing the
blockchain data (i.e., the ledger and world state).

where any data alteration changes the Merkle Root.

16



Subsequent to execution, updates are applied to both the ledger and the world state.
The ledger maintains transaction information, encompassing details such as the user A
public key as 'from’ and the HelloWorld contract public key as ’to’, and the transaction
receipt (i.e., status and log). Regarding the transaction log, if user A executes the sayHello
method, the log will reflect the encoded string of the latest greeting message stored in
the contract state. Additionally, both world states (i.e., user and contract state) will be
updated. User A paid the transaction fee in Ether, hence the user account balance (i.e.,
user state) will be updated. The contract’s state containing the greeting message will be
altered to mirror the most recent greeting message included in the user A’s transaction.
Furthermore, Ethereum does not store the raw contract code (i.e., Solidity programs) in
the contract state. Instead, it utilizes a blockchain virtual machine (i.e., Ethereum Virtual
Machine (EVM)) to derive the bytecode of contracts and store the bytecode.

2.2 Blockchain Data Analysis

Given the vast amount of blockchain data available from various permissionless blockchain
platforms, there has been extensive research in the field of blockchain data analytics. The
authors of [51], proposed a comprehensive taxonomy for these analytics and categorized
them into three categories: 1) Address Identity Inference, 2) Anomaly Detection, and 3)
Price Prediction.

The task of address identity inference in blockchain, referring to the process of determin-
ing the real-world identity or attributes associated with a particular blockchain address,
mainly uses classification techniques. These techniques are split into two types: binary
and multi-class classifications. Binary classification techniques aim at identifying poten-
tially illicit user accounts based on their transaction patterns. Multi-class classification,
on the other hand, categorizes user addresses into a broader taxonomy. The authors of
[92] demonstrated that 42% of Bitcoin addresses belong to exchanges, while 23% are per-
sonal wallets. Features used for this classification include network-related features, such
as centralities, neighbor identities, and motifs [92, 79, 39, (2], as well as transactional
features like volume, smart contracts, and timestamps. Regarding learning algorithms for
address identity inference, various methods have been employed. These methods range
from tree-based algorithms like Random Forest to more advanced GNN-based approaches

[51].

The task of anomaly detection in blockchain refers to the process of identifying and
flagging unusual or suspicious activities, transactions, or behaviors within a blockchain net-
work. Given the anomaly detection task, traditional supervised learning algorithms often

17



fall short due to the class imbalance between legitimate and illicit transactions. This led to
the adoption of rule-based or unsupervised learning methods to identify outlier addresses
[01]. Various algorithms such as k-means clustering and Gaussian Mixture Models (GMM)
have been applied to decompose network features like volume and temporality into factor
matrices for identifying anomalous accounts [51]. Many blockchain analytics studies work
on preventing Sybil attacks (i.e., the malicious act of a single entity creating multiple fake
identities (Sybil nodes) to gain control or manipulate the network’s consensus mechanism)
through address feature prediction or spotting unusual activities using network analytics
approaches.

Price prediction aims to forecast the future values of cryptocurrencies or tokens based on
historical data and relevant features. This task is of paramount importance to investors,
traders, and stakeholders in the blockchain ecosystem, as it assists in making informed
decisions regarding asset management and trading strategies. Price prediction models
typically employ various techniques from machine learning and time series analysis, such
as regression, deep learning, and statistical methods, to capture complex patterns and
trends in cryptocurrency prices.

We have not seen extensive studies on dApp recommender systems through the lens of
blockchain data analytics. Therefore, in this study, we aim to provide a detailed analysis
of blockchain data to offer recommendations based on interactions (using CF recommender
methods) and contract attributes (using Hybrid recommender methods).

2.3 Recommender Systems

Recommender systems can be modeled as a ranking function R [1]. Given a user u; and
a list of interactions U, the ranking function takes as input the list of all items I =
{ig,41,...,1i,}. It produces a ranked list I’ as output:

R:-UXI—T

Given a user u and a set of previous interactions I, associated with that user, the
recommendation task aims to produce a top-k list of items based on the output of a rank-
ing function R. Numerous methodologies have been developed to refine and sophisticate
the nature of this ranking function [9, 32, 33]. Generally, ranking functions R can be
categorized into three main types, each providing a unique perspective on the interaction
data:

18



1. Collaborative Filtering (CF) Recommender Systems: CF recommender sys-

tems exclusively utilize interaction data [3]. The fundamental assumption is that
similarities exist in user interactions [30, 16]. These methods are primarily utilized
in contexts where interaction data is available, and user or item attributes are less
accessible.

2. Content-Based Recommender Systems: Content-based recommender systems
focus on the attributes of both items and users. Specifically, recommendations are
produced by aligning the attributes of users with those of items [17, 55, 7].

3. Hybrid Recommender Systems: Hybrid recommender systems integrate the
methodologies of both CF and content-based approaches by leveraging user and item
interactions as well as attributes to enhance recommendation quality [ 1, 60]. These
systems may be executed in several manners, such as by synthesizing predictions from
both methods or by integrating collaborative (interaction-based) and content-based
(attribute-oriented) features into a unified model.

One straightforward implementation of CF methods adopts rule-based architectures,
such as employing Association Rule Mining, a technique that identifies frequent itemsets
in interactions and then generates association rules that describe how these items often
appear together. For instance, if customers who buy book A also often buy book B, then
the rule [A = B] could be generated. Given a set of items [ = {i,42,...,7,} and a user
u who has interacted with a subset of these items I, C I, the goal is to find a set of rules
R = {ry,rs,...,ry} such that applying these rules to I, will yield a set of recommended
items R(u). Multiple implementations of rule-based architectures exist within CF meth-
ods, each with its own set of advantages and limitations. Early implementations often
relied on straightforward rule sets, typically based on if-then heuristics [2]. More recent
advancements incorporate machine learning techniques to dynamically update and refine
the rule sets based on interactions [52]. Some even integrate time-sensitive rules that adapt
recommendations based on seasonal or time-dependent patterns [93].

Transitioning to content-based methods, the primary distinction from CF methods is
that content-based methods focus on the attributes of users and items, whereas CF methods
emphasize the interactions [07]. For instance, in the context of the Amazon product review
dataset [15], each product possesses a multitude of attributes, such as descriptions, tags,
and reviews. Content-based methods tend towards leveraging these item attributes to
make recommendations. Additionally, hybrid methods provide recommendations based on
both interaction similarities and user and item attributes.

19



Memory-Based Collaborative Filtering: We begin with a brief summary of CF
methods: Memory-Based and Model-Based. Memory-Based methods are further classified
into Item-Based and User-Based collaborative filtering:

e Item-Based: This approach calculates the similarity between items based on user
interactions. If two items ¢ and j are often interacted with by the same users, they
are considered similar. Mathematically, this can be expressed as:

Similarity (i, j) = cos(Vec(i), Vec(5))

where Vec(i) and Vec(j) are vectors representing user interactions with items ¢ and
7 respectively.

e User-Based: Conversely, User-Based methods focus on finding users that are sim-
ilar to the target user, based on their interactions with items. The mathematical
expression for user similarity could be given as:

Similarity(u, v) = cos(Vec(u), Vec(v))

where Vec(u) and Vec(v) are vectors encapsulating the items interacted with by users
uw and v respectively.

The concept of Memory-Based Collaborative Filtering has a rich history in the litera-
ture, especially in the domains of e-commerce and content recommendation. Early work
by Sarwar et al. [69] provided a comprehensive study on item-based collaborative filter-
ing algorithms, focusing on scalability and effectiveness. Their work set the foundation
for utilizing item-item similarity metrics in large-scale e-commerce settings. In addition,
user-based approaches have also received substantial attention. The authors of [05] in-
troduced the GroupLens system, one of the first user-based collaborative filtering systems
for Usenet news. Furthermore, Herlocker et al. [31] later provided a detailed evaluation
framework for user-based methods, examining the impact of different similarity metrics
and recommendation algorithms. Some studies have combined both item-based and user-
based methods to overcome their individual limitations. For instance, Burke [12] discussed
such recommender systems that could integrate both user and item-based approaches to
improve recommendation quality.

Model-Based Collaborative Filtering: Model-based collaborative filtering encom-
passes various approaches, such as neighborhood-based [75], clustering-based [23], and

20



factorization-based methods [13]. Among these, Matrix Factorization [13] and Graph Neu-

ral Networks (GNNs) [38] are particularly prominent in the literature. Matrix Factoriza-
tion techniques, which include Singular Value Decomposition (SVD) [97] and Alternating
Least Squares (ALS) [77], are favored for their simplicity and effectiveness. Model-based

CF methods receive an interaction matrix containing user IDs as rows and item IDs as
columns. The interaction matrix can be constructed by putting 1 for every cell;; if there
is an interaction between user ¢ and item j, and 0 otherwise. They seek to decompose the
interaction matrix into latent factors, revealing hidden features that influence interactions
and improve recommendation accuracy. We focus on analyzing two methods: Collabora-
tive Filtering Matrix Factorization (CFyr) and Hybrid Matrix Factorization (Hybridyr)
recommender systems.

2.3.1 Matrix Factorization

CFnr Recommender System: Matrix Factorization involves decomposing an interac-
tion matrix into multiple lower-dimensional matrices, usually termed as the 'user matrix’
and 'item matrix’. These lower-dimensional matrices capture latent factors or hidden fea-
tures that help in making accurate recommendations. Suppose we have an interaction
matrix A of dimensions m x n, where m represents the number of users and n represents
the number of items. Matrix Factorization aims to approximate A as the product of two
lower-dimensional matrices U and V', each of dimensions m x k and k x n respectively.
Mathematically, this can be expressed as:

A=UxV

The objective is to minimize the difference between A and U x V', typically measured using

the Frobenius norm, given by:
min||A — U x V]2

Various optimization algorithms like Stochastic Gradient Descent can be used to solve this
problem. In the context of CF methods, the ranking function Rcr can be expressed as:

ch(ui,]) = UZ xV

where U; is the i row of the user matrix U, and V is the item matrix [13].

A frequent implementation of CF MF methods is Singular Value Decomposition (SVD)
[13]. In SVD, the original interaction matrix is decomposed into three other matrices: U,
¥, and VT, where U and V7 are orthogonal matrices and ¥ is a diagonal matrix containing

21



singular values. This decomposition helps to identify latent factors effectively and serves to
fill in the missing values for interactions, thereby facilitating the recommendation process.
Given an m x n matrix A representing interactions, SVD decomposes A into three matrices
U, %, and V7T such that:

A=UxLx VT

Here, U is an m X m orthogonal matrix, Y is an m X n diagonal matrix containing the
singular values in descending order, and V7 is an n x n orthogonal matrix. The idea is
to approximate A by considering only the top k singular values in X, and corresponding
vectors in U and V7. This approximation is given by:

AkZUk X Zk X (V}C)T

where Uy, ¥, and Vj, contain only the first k columns of U, ¥, and V respectively. In CF
MF methods, the SVD-based ranking function Rgyp can be defined as:

Rsvp(ui, 1) = (Ug)i x X x Vg
where (Uy); is the i row of the matrix Uy [65].

Hybridyr Recommender System: Hybrid Recommender Systems aim to combine
the strengths of different recommendation strategies to enhance overall recommendation
performance. In the context of Matrix Factorization (MF), a Hybrid approach often in-
volves integrating user and item attributes into the collaborative filtering framework. This
integration allows the system to not only exploit the interaction patterns in the interactions
matrix but also leverage side information such as user and item attributes.

The Hybrid Matrix Factorization model can be formalized by extending the original
factorization concept. Let C, and C; denote the content-based embeddings for users and
items respectively. The hybrid model then seeks to factorize the interaction matrix A while
simultaneously considering these content attributes. The factorization can be represented
as:

Ax (U+C) x (V+C)T

where U and V' are the user and item latent feature matrices as defined previously, and
C, and C; are matrices constructed from the content attributes. The matrices C, and C;
are usually of dimensions m X d and n X d respectively, where d is the number of content
attributes.

The optimization objective in a hybrid MF model is to minimize the error in predicting
the interactions while also minimizing the error in representing the content attributes. This
can be expressed as:

min [|A — (U + Cu) x (V + C) |7 + AU + IVIIE)

)

22



where A\ is a regularization parameter that controls the extent of regularization to prevent
overfitting.

The recommendation function Rpyiiq in @ Hybrid MF system can be formulated as:
RHybrid(ui, ]) = (Uz + Cuz) X (V + Cl)T

where Uj is the i*" row of the user attribute matrix and C,,, is the content attribute vector
for the i*" user.

2.3.2 Graph Neural Network

Recently, GNN methods have gained attention for different data mining tasks, particu-
larly when interaction datasets naturally form graph structures (e.g. bipartite interaction
graphs). Social media platforms offer classic examples, where interactions between users
and items create such graphs. In recent years, GNNs have emerged as the go-to architec-
ture for handling graph-structured data, including in the domain of recommender systems.
These networks leverage the topological properties of graphs to capture higher-order inter-
actions between nodes (i.e., users and items). This enhances the quality of recommenda-
tions in the bipartite interaction graph. We first formulate a graph and then discuss GNN
network architectures to deliver downstream recommender systems.

A graph G can be formally defined as:
G=(V,E)

where V' represents the set of vertices (or nodes) and E represents the set of edges connect-
ing these vertices. The neighborhood of a node v; can be formally defined as a set N(v;)
containing all nodes that are directly connected to v; by an edge:

N(v;)) ={v; : (v;,v;) € E} or N(v;)={v;: (vj,v;) € E}

The fundamental mechanism of GNNs operates on two central components: Aggre-
gation and Update. The aggregation process accumulates the embeddings of a node’s
immediate neighborhood to generate an aggregated embedding a,,:

a, = AGGRECATE({z, : u € N(v)})

Several types of aggregation functions are commonly used in GNNs [1] such as:

23



e Mean Aggregator: Takes the mean of neighbor embeddings.

1
T INQ) Zﬁ“

uEN (v

e Sum Aggregator: Sums up all neighbor embeddings.

Ay = E Ty,

u€EN (v)
e Max Aggregator: Takes the maximum value among neighbor embeddings.

ay = MaX Ty
u€N (v)

After the aggregation phase, the aggregated embedding a, is used to update the embedding

x, of the node v using an update function UPDATE:

z!, = UPDATE(z,, a,)

The aggregation process is not limited to a single layer or immediate neighbors. A hierar-
chical or multi-layer approach is often applied to incorporate embeddings from nodes that
are further away.

CFenn Recommender System: A CFgyy recommender system can be formulated
as a link prediction problem [37]:

Predict(u,i) = DECODER(GNN (G, z,), GNN (G, x;))

Here, DECODER is a function that uses the embeddings from the GNN architecture
to predict the likelihood of a link (i.e., interaction) between user u and item i. Many
architectures have become popular in the field of GNNs. Each of these architectures
has its own advantages and disadvantages. Their underlying mechanisms are suited for
different needs and scenarios. Below, a comparison of two popular GNN architectures,
namely Graph Convolutional Network and Graph Sample and Aggregation, is provided.

e Graph Convolutional Networks (GCNs) [90]: Suited for homogeneous graphs;
assumes that closer nodes are more similar. Aggregation function:

where ReLU (Rectified Linear Unit) is defined as: ReL.U(x) = max(0, )

24



e Graph Sample and Aggregation (GraphSAGE) [20]: Allows for inductive
learning and can generalize to unseen nodes. Aggregation function:

a, = CONCAT (z,, MEAN ({z, : u € N(v)}))

where CONCAT refers to the concatenation of vectors.

To complement the GNN layer for a binary link prediction task, a binary classifier
component (i.e., DECODER) is essential. This component takes the node embeddings
from the GNN and predicts whether a link should exist. One common approach is to use
a sigmoid function, which outputs a probability score representing the likelihood of a link
between two nodes. The general form of the classifier component can be expressed as:

Binary Classifier(z,, z;) = 0 (We|zy||zi] + be)

Here, z, and z; are the learned embeddings for user u and item ¢ respectively, o denotes
the sigmoid activation function, W, represents the learnable weight matrix, b. is the bias
term, and || denotes the concatenation of the embeddings. The sigmoid function maps the
result into a range between 0 and 1, which can be interpreted as the probability of the
existence of a link.

Incorporating this classifier with the GNN layer, CFonyy method can effectively learn
to predict links that represent interactions, which is the fundamental goal in CF recom-
mender systems. This binary classification task is critical as it directly correlates with the
recommendation system’s performance in suggesting relevant items to users.

Hybridgnn Recommender System: To build on the concept of CFgnn recom-
mender systems, Hybridgyy methods aim to integrate additional sources of information to
enhance the recommendation power. These Hybrid approaches leverage both content-based
and CF techniques, utilizing node and edge attributes alongside the graph structure (i.e.,
bi-partite graph structure of interactions). The GNN serves as the backbone, processing
the interactions, while additional layers incorporate the additional information (i.e., user
and item attributes).

One common method is to integrate user and item attributes into the node embeddings.
This is achieved by concatenating or combining the GNN-generated embeddings with at-
tributes (i.e., semantic content) from users or items. The enriched embeddings capture
both the graph’s topological information and the semantic content of the nodes, leading
to more accurate recommendations.

25



The overall architecture of a Hybridgny recommender system could be formalized as
follows:

HybridPredict(u, i) = HybridDECODER (COMBINE(GNN(G, ), Fu),
(2.1)
COMBINE(GNN(G, z), E))

Here, F, and F; represent embeddings containing the attributes of user u and item 4,
respectively. The COMBINE function merges these embeddings with the GNN embed-
dings (i.e., constructed solely based on interactions), and the HybridDECODER function
then uses the combined embeddings to predict the likelihood of interaction. Considering
CFgnn methods, the same classifier (i.e., HybridDECODER) as described previously can
be utilized as the final layer to predict binary links (i.e., whether they exist or not).

2.4 Blockchain Recommender Systems

Research on recommender systems using only blockchain data (i.e., blockchain recom-
mender systems) is limited. Some studies consider Web2 data to provide recommendations
to Web2 users using blockchain as a ledger to store part of the recommendation data instead
of centralized databases [31]. Since they do not consider blockchain data, they are orthog-
onal to this study, where we focus on blockchain recommender systems. To the best of our
knowledge, there is only one study on blockchain recommender systems [94]. This study
focuses on a specific type of blockchain asset (NFTs) and leverages interactions with these
NFTs to provide new NFT recommendations. However, it does not consider recommend-
ing smart contracts. Therefore, our contribution is more general in that it considers any
interactions with contracts on a blockchain to provide further contract recommendations.

26



Chapter 3

Methodology

In this chapter, we outline the steps to create a blockchain interactions dataset focused
on Ethereum (Section 3.1). We then examine this dataset through Exploratory Data
Analysis (EDA) (Section 3.2). Following this, we introduce a blockchain data pipeline for
retrieving and processing data for recommender systems, as well as the architectures of
these recommender systems applied to the blockchain recommendation task (Section 3.3).

3.1 Dataset Creation

As of the time of writing this study, there are over 40 permissionless blockchains, each
with unique characteristics and capabilities. Among these, Ethereum stands out as a
particularly compelling network for the exploration of blockchain recommender systems
for several key reasons:

e Transaction History: Ethereum is the second most popular blockchain network,
second only to Bitcoin. Its widespread adoption has led to a long and detailed
history of user transactions, leading to more interactions for each user. Thus, with
increased user interactions, both Collaborative Filtering (CF) and Hybrid blockchain
recommender systems can bring higher recommendation power.

e Smart Contract Capabilities: Ethereum is different from other blockchains such
as Bitcoin by supporting the execution of contract code. This capability enables
the development of dApps. Thus, this research explores the feasibility of blockchain
recommender systems by considering contracts as items.

27



e Data Availability: Ethereum’s well-documented APIs and readily available chain-
scans facilitate the process of constructing a transactions (i.e., interactions) dataset.

Several methods are available for creating the dataset required for this study. One
approach is to operate an Ethereum node and synchronize it with the world state. However,
this approach requires substantial resources. An alternative is to utilize libraries such as
geth and web3. js, which facilitate data synchronization and retrieval by connecting to
publicly hosted nodes that contain the Ethereum ledger, such as Infura'. Nevertheless,
these approaches still require additional resources. Chain-scans are entities responsible
for reading the blockchain data and, by indexing them, providing better accessibility to
blockchain data for everyone. Consequently, Etherscan? was employed as a popular chain-
scan for the Ethereum network to obtain interaction data.

To test the feasibility of blockchain recommender systems, as in other recommender
system domains, interaction data is needed. Interactions stored on the Ethereum ledger
can be considered. However, due to the vast number of these interactions, it may be
computationally intensive to run downstream recommender systems on such a massive
interactions dataset. A moving window can be adopted to consider all blockchain data in
a time frame (e.g., the past 2 months). Considering nearly 1M transactions each day on
Ethereum, this yields around 600 transactions. Although this amount of data is larger
compared to other recommender systems datasets, such as MovieLens-100k and MovieLens-
1M, it may yield very sparse interactions. This is mainly because users may interact with
contracts over a wider time frame. Therefore, one approach can be to consider a set of
randomly selected users and fetch all their past transactions. We selected a random day;,
December 18, 2022, and, out of the 917,000 user addresses who called at least one contract
that day, we randomly selected 42,000 user addresses. Then, we downloaded these users’
most recent transactions utilizing the Etherscan API, up to the API limit of 50. The final
400,000 transactions are with 31,527 unique contracts, with an average of ten contracts
per user.

The transactions in the dataset have three main attributes:

e From and To Addresses: These indicate the origin (i.e., source) of a transaction
and its destination. Often, the from attribute is a user address and the to attribute
is a contract address.

https://www.infura.io
’https://etherscan.io/

28


https://www.infura.io
https://etherscan.io/

e Contract Code: Ethereum’s smart contracts are written in Solidity programming
language. The contract’s Solidity code is retrieved from Etherscan’s endpoints.
The solidity-parser? library is utilized to prepare the contract data for the Hybrid
blockchain recommender system.

e Payload: Upon transaction submission by users, specifying which method of the
destination contract they wish to call, the required arguments are included as in-
puts, as defined by dApp developers within the contract methods’ signatures (i.e.,
contract’s method definition in Solidity code)

We obtain the raw Solidity code for each contract address using Etherscan’s public
API 4. Hybrid blockchain recommender systems require a contract’s code to find similar-
ities among different contracts. Moreover, the Solidity code in smart contracts can be
challenging to use directly by Hybrid recommender systems due to its complex structure
and special syntax. Preprocessing is required to make the data useful. Solidity has a special
comment structure that enables the easy separation of code and comments. We employ the
Solidity-parser Python package to examine various components of the contract, such
as classes, functions, and comments (see the contract parser module in Figure 3.3).

3.2 Dataset Exploration

To better understand the interactions dataset, we conduct an Exploratory Data Anal-
ysis (EDA). This analysis offers insights such as the distribution of transactions (that
is, interactions) across contracts and users. As shown in Figure 3.1, the distribution of
the number of interactions per unique user reveals that most users have engaged in only
a limited number of interactions. This characteristic indicates that interactions in the
blockchain context are sparse, similar to those observed in other domains of recommender
systems. The sparsity of interactions limits the effectiveness of CF methods that depend
exclusively on interactions to make recommendations. Consequently, the significance of
Hybrid recommender systems intensifies. Such methods can utilize additional information
from contracts, leading to enhanced recommendation capabilities by capturing similarities

3https://www.github.com/consensys/python-solidity-parser/

4Ethereum runs the bytecode of smart contracts, not the Solidity source code, which is readily inter-
pretable by humans. Thus, for the source code to be public, the contract developer must upload it to a
chain-scan platform like Etherscan. When uploaded, Etherscan compiles the source code and checks the
generated bytecode against the contract’s bytecode stored on the ledger. Upon matching, the source code
is marked as verified.

29



within contracts. Figure 3.1 also shows the distribution of interactions associated with each
contract, with some contracts—known as popular contracts—having a higher number of
interactions. This pattern is well-documented in other domains of recommender systems.
Based on this observation, we provide a baseline popular contract recommender—namely,
it produces popular contracts as recommendations—to compare with the effectiveness of
blockchain recommender systems in Chapter 4.

<

3 g
Number of Interactions

Number of Interactions

o 5000 10000 15000 20000 25000 30000 0 10000 20000 30000 40000
Contract IDs User IDs

(a) Distribution of Contract IDs (Log Scale) (b) Distribution of User IDs (Normal Scale)

Figure 3.1: Distribution of user and contract IDs over interactions dataset.

Prior to conducting CF and Hybrid recommender systems analyses, a basic recom-
mender system may be implemented as a rule-based method. Analogous to CF methods,
these encapsulate rules in interactions. Therefore, to examine whether blockchain data
contains insightful information for recommendations, initially, the identification of con-
tract pairs with the highest occurrence in the interaction data is conducted. Subsequently,
following interaction with the first contract in these pairs, the second contract is recom-
mended. Let C be the set of all contracts, i.e., C' = {¢1, ¢, ..., ¢, }. For any two contracts ¢;
and ¢; in C, the co-occurrence count is calculated, defined as the number of user addresses
that have interacted with both ¢; and c;.

Co-occurrence(c;, ¢;) = {u € U : (u,¢;) € T A (u,¢;) € T} (3.1)

where U is the set of user addresses and T represents the set of all interactions.

Figure 3.2 demonstrates that some pairs of contracts tend to be more popular among
users (i.e., contracts with smaller IDs), while others may be less popular (i.e., contracts
with higher IDs). This finding suggests that interaction data in the context of blockchain
do in fact convey valuable information to base recommendations on. In the next section, we
discuss more advanced recommender methods concerning the extent to which blockchain-
based recommendations can be enhanced.

30



Number of Users

Number of Users

nnnnnnnnnnnnnnnnnnnnnnnnn

Contract Pair IDs Contract Pair IDs

(a) Distribution of Contract Pair IDs(Normal Scale)  (b) Distribution of Contract Pair IDs(Log Scale)

Figure 3.2: Distribution of the top 50,000 most frequently interacting pairs of contracts. The x-axis
represents each unique pair of contract IDs, and the y-axis represents the number of unique users who

interacted with both contracts within a contract pair ID.

3.3 Recommender Methods

This study considers two recommender methods (i.e., CF and Hybrid recommender sys-
tems) each with two architectures (i.e., MF and GNN) named as CFyr, Hybridyr, CFann,
and Hybridgyy. Additionally, to hybridize both CFyr and CFgnn, we utilize clustering
and embedding approaches, leading to six recommender methods: CFyr, Hybridyre.crLustERING,
Hybridye-sgert, CFann, Hybridgnn-crustering, and Hybridgnn.sgerr. Figure 3.3 depicts

a blockchain data pipeline. It connects to various chain-scans, fetches blockchain data,
and performs unique processing steps (i.e., Graph Inserter, Contract Embedder, Matrix
Creator, and Clustering) to provide compatible data to each recommender method.

The MF blockchain recommender systems (i.e., CFyr, Hybridyr. cLustering, and Hybridyg spert)
require an adjacency matrix of interactions to provide recommendations. Therefore, the
Matriz Creator module creates the adjacency matrix as illustrated in Figure 3.3. The
adjacency matrix, also known as the interaction matrix, can be input into the MF meth-
ods to produce the top-k£ contract recommendations. The CFyr method requires only
the interaction matrix to generate recommendations. However, Hybridyr.crustering and
Hybridyr.spert require additional information (i.e., contract cluster IDs and contract em-
beddings respectively). This additional information (i.e., contract features) conveys the
notion of similarity among contracts to aid in the functionality of the MF methods. This
process is depicted by the clustering and contract embedder module in Figure 3.3. The clus-

31



Processed Data Recommenders

Blockchain Data : & /7‘
N R °// /-//' ° B CFenn
Processors : o }‘
Chain-scan : .
! Graph i 7‘.
Inserter i 0,,//
Qe
’_ @J = -y Hybrid gun_cLustering
i s Node $°-
Chain-scan i ontra
2 Extractor Processor Hybridization :
> v, Methods :
Edge . Q/ ) ﬂ‘ -

Processor SBERT
- Hybrid gy spert

o
é

Chain-scan
3

Contract
Parser

v
sioydepy
Y.

v

Y.

: ihe user
Cur (10

CLUSTERING s 42 0}{}{} R CF e
A P

item £

Matrix abe earr
User Extractor » — wr (110
Creator ol
» us oo - »  Hybrid yeciysterine

EEEm
b ¢ Latent Features
Chain-scan - §
n H abe UserF Item F
wi [110
uz 101 :
» w3 (oo 7 { } '{ } prrm Hybrid ; ogeer
i &
.- ..
a b oo Latent Features
@ Uuser @ Contract — Interaction M Contract SBERT Embedding W Contract Cluster ID

Figure 3.3: Transaction Processors Pipeline. The output of the pipeline will be utilized by blockchain

recommender systems.

tering module assigns a cluster ID to each contract as the output of the clustering method
performed over the corpus of contract comments. Moreover, the contract embedder module
derives the necessary contract embeddings for the Hybridgnn.sgerT method.

Conversely, GNN recommender systems (i.e., CFgnn, Hybridgnn.cLusteriNg, and Hybridgnn.sBerT)
require the interaction graph (i.e., users and contracts as nodes, and interactions as edges).
Therefore, additional modules are required to create such a graph, as shown by the Graph
Inserter module in Figure 3.3. The CFgny method requires only the interaction graph
to provide recommendations. However, Hybridgnn.crLustering and Hybridgnn.sBerT re-
quire contract cluster IDs and contract embeddings respectively to encapsulate similarities
within contracts and offer enhanced recommendation accuracy.

In this study, we develop a blockchain data pipeline and adopt recommendation meth-

32



ods using Python version 3.9. To implement the Matrix Factorization (MF) methods,
the LightF'M library is utilized [11]. Additionally, to implement and train Graph Neu-
ral Network (GNN)-based recommender methods, the PyTorch version 1.13 ® library is
utilized.

3.3.1 Contract Embedding

In this study, we incorporate contract similarities as additional features to enhance the
pure CF recommender methods. To identify similar contracts, we consider two methods:
1) clustering and 2) embedding of similar contracts. Figure 3.4 demonstrates lending
contract comments (i.e., Aave lending protocol) and staking contract comments (i.e., Lido
staking protocol). A staking contract allows users to lock up their cryptocurrency tokens to
participate in network operations and earn rewards. Therefore, we consider these contract
comments for both clustering and embedding methods.

/*x
* @title Liquid staking pool implementation

X *
Staking Contract g »+ Lido is an Ethereum liquid staking protocol solving the problem of frozen staked ether on Consensus Layer
* being unavailable for transfers and DeFi on Execution Layer.

*

29 ~ /¥%

* @title LendingPool contract

* @dev Main point of interaction with an Aave protocol's market

* - Users can:

# Deposit

# Withdraw

# Borrow

# Repay

# Swap their loans between variable and stable rate

# Enable/disable their deposits as collateral rebalance stable rate borrow positions

# Liquidate positions

# Execute Flash Loans

* — To be covered by a proxy contract, owned by the LendingPoolAddressesProvider of the specific market
* — All admin functions are callable by the LendingPoolConfigurator contract defined also in the
*  LendingPoolAddressesProvider

* @author Aave

*k/

Lending Contract

XK KK K K X ¥

Figure 3.4: Lending and staking contract comments.

Considering the clustering method, various clustering approaches exist, but one no-
tably efficient and effective method is Latent Dirichlet Allocation (LDA). LDA can be
formulated as a generative probabilistic model where each document (contract comments)
is represented as a mixture of a small number of topics, with the generation of each word
being attributable to one of the document’s topics.

Shttps://pytorch.org/docs/stable/torch.html

33


https://pytorch.org/docs/stable/torch.html

D K
LDA(D,K) = Z Z P(Topic;|Document;) x P(Word|Topic;)

i=1 j=1

Here, D denotes the set of contracts, K denotes the number of topics (i.e, clus-
ters), P(Topic;|Document;) is the probability of Topic; occurring in Document;, and
P(Word|Topic;) is the probability of a word occurring given Topic;. Fundamentally, LDA
enables us to map each contract to a particular cluster. To run the LDA model effectively
on contract codes, it is necessary to preprocess them first. Given that LDA is most ef-
fective with textual data, the process begins by separating the comments from the actual
code. The Solidity-parser assists in this process, extracting different classes and functions
from each contract. Subsequently, the extracted developers’ comments linked to these
parts are provided to the LDA model. Selecting an appropriate number of topics, k, is
imperative for effective clustering. To determine the best k, the Elbow Method is used.
The Elbow Method looks at how adding more topics affects the model’s performance. The
search is conducted for the point where increasing topics doesn’t make much difference
anymore—this point is the "elbow.” Upon considering this method, the conclusion was
reached that £ = 15.

Transitioning to the contract embedding method, we utilize Sentence-BERT [63] (i.e.,
SBERT) embedding approach to encode sentences (i.e., contracts) into embedding vectors
in a manner that places contracts with similar meanings close together in the embed-
ding space. This is accomplished through pre-training on a substantial text corpus and
leveraging a transformer architecture [$1], which enables it to understand the context and
semantic meaning of sentences.

3.3.2 Matrix Factorization Recommender Systems

Consider T' = [ty,ts,...,t,] to denote the set of all transactions, U = [ug, us, ..., uy| be
the set of user addresses, and C' = [¢1,¢a, ..., ¢] to denote the set of contract addresses.
The objective is to derive a structured representation that can capture the relationships
between these sets. One approach to accomplish this is by constructing an adjacency
matrix A of dimensions m X ¢, where each cell A;; signifies the existence of at least one
transaction between user u; and contract Cj.

The goal of MF recommender methods is to derive user and item latent feature matri-
ces from the interaction matrix. As previously discussed, Singular Value Decomposition
(SVD) is employed for both CFyr and Hybridyg recommender methods. Given a user

34



u;, and contract c;, the multiplication of the corresponding values in user and contract
latent feature matrices yields the relevance score of contract ¢; to the user u;. Given the
calculation of this score for all pairs of users and contracts, we sort to derive the top-k
contracts with the highest relevance score for each user. This study utilizes the LightF'M
[14] Python library, a well-regarded and efficient implementation of SVD for MF.

Transitioning to Hybridyr.sgerr, similar to Hybridyir.cr,usTeErING, We utilize the LightFM
implementation of MF recommender methods by passing the SBERT embeddings of con-
tracts to the model. The remainder of the process is identical to the Hybridyr.cLusTerRING
method.

3.3.3 Graph Neural Network Recommender Systems

Matrix Factorization (MF)-based blockchain recommender systems, which include both
CF and Hybrid methods, do not adequately capture higher-order interactions between
users and contracts. Graph Neural Networks (GNNs) have recently demonstrated signif-
icant capabilities in capturing higher-order relationships in interactions data. Utilizing
GNN methods results in enhanced recommendation accuracy for blockchain recommender
systems.

Considering the vast number of daily transactions on the Ethereum blockchain, it is
crucial to have a robust methodology for constructing the transaction graph. Therefore,
we establish a modular transaction graph processing pipeline capable of integrating with
any chain-scans to provide transactions to the blockchain recommender systems. For this
study, we integrate the pipeline with the Ethereum blockchain, focusing exclusively on
a selected group of user addresses. Our comprehensive pipeline is composed of two key
components:

e Graph Inserter: Has two main processors: 1) Node processor and 2) Edge pro-
cessor. The Node processor manages the preliminary processing of nodes, preparing
them for insertion into the graph. The Edge processor establishes vertices between
each user and contract nodes appear within an interaction.

e Contract Embedder: This component receives contract nodes from the Graph
Inserter module and computes embeddings from contract comments.

The Node Processor’s task begins by examining a transaction ¢, distinguishing between
user and contract addresses, and thereby categorizing nodes into two types: users and

35



contracts. It then employs the contract-parser to append the parsed contract code to each
contract node, utilizing the Etherscan contract API endpoint. Consequently, a collection
of nodes, including contracts and user addresses, is forwarded to the Edge Processor. The
Edge Processor processes batches of transactions ¢ along with an array of predefined nodes.
It examines the “from” and “to” attributes in a transaction ¢, establishing an edge between
the corresponding nodes.

CFany is capable of providing recommendations exclusively by considering the transac-
tion graph. HOWGVGI, when transitioning to the HybridGNN—CLUSTERING and HybridGNN—SBERT
methods, the latter requires additional contract information. This supplementary infor-
mation enables the Hybrid method to account for the notion of similarity among contracts
and to offer better recommendations. One effective strategy for this is the construction
of contract embeddings that map similar contracts closely together in a numerical space.
Thus, in the contract embedder module (illustrated in Figure 3.3), SBERT and LDA Clus-
tering methods are employed to generate the contract embeddings and contract cluster IDs
required for the Hybridgnn.sgerr and Hybridgnn.crustering methods respectively.

GNN recommender systems may be conceptualized as binary link prediction tasks [20].
Specifically, the edges connecting user and contract nodes in the transaction graph can be
predicted via a binary classification approach. Figure 3.5 illustrates the construction of
CFGNN and HybI‘idGNN (i.e., HybridGNN—CLUSTERING and HybridGNN—SBERT) with two main
layers: 1) Blockchain data layer, and 2) Recommendation layer. The Blockchain Data
Layer fundamentally constitutes a series of steps essential for generating the transaction
graph as demonstrated in Figure 3.3. The recommendation layer is principally derived from
the Deep GraphSage recommender design [20], utilizing the GraphSage GNN architecture
to learn user and contract embeddings, given the premise that nodes representing users
and contracts with an edge (i.e., interaction) between them should be close to each other
in the numerical space.

The CFgny recommender method solely requires a transaction graph to generate rec-
ommendations. Conversely, HYBRIDgyy methods additionally necessitate contract fea-
tures (i.e., contract embedding or contract cluster ID) to consider contract similarity as
well as interaction data. Hence, the architectures of both CFgny and HYBRIDgNN rec-
ommender methods encompass two primary components: 1) two GraphSage layers, and
2) a classifier layer. HYBRIDgnN methods additionally incorporate contract features. The
GraphSage layers facilitate the integration of higher-order features by aggregating informa-
tion from adjacent nodes, employing GraphSAGE [26]. The classifier, using the acquired
embeddings, executes a dot-product operation between source and destination node embed-
dings to generate edge-level predictions, i.e., the likelihood of interactions existing between
user and contract nodes. The sole distinction between CFony and HYBRIDony methods

36



CFonn i
Hybrid gnp.sperr

i . H ~

i Hybrid gy crustering o

o

3

3

m

3

Q.

:

rainin, =5

8 (=]

000 5

-

Graph Graph " : L)

Nede ) oy BiRATY i <

Sampler > > sage SaEe ’Classifier o
XXX *

A

i w
2
i Transaction Graph ey
i Generation Pipeline N g
< 3

= 3
% g

Q

-+

Q9

S Chain-scans :

@ User @ Contract == Interaction <.« Recommendation =H Contract SBERT Embedding m Contract Cluster ID

Figure 3.5: CFgny and Hybridgny blockchain recommender systems

is that the latter accounts for additional contract features, thus learning from both the
similarity of contracts and interactions in the GraphSage layers. The node sampler mod-
ule samples positive and negative nodes; positive nodes are pairs of nodes with an actual
edge (i.e., interaction) between them, while negative nodes are randomly selected pairs
of nodes where there is no interaction. This sampling strategy assists the model in effec-
tively learning user and contract embeddings by bringing positive nodes closer together
and distancing negative nodes. It should be noted that this sampling is different from the
sampling strategy utilized during test time (Subsection 4.1.2).

37



Chapter 4

Evaluation

In this chapter, we explore the feasibility of providing recommendations based on blockchain
data. We first elaborate on the evaluation metrics utilized, such as Hit Rate at k, Mean Av-
erage Precision at k, and Normalized Discounted Cumulative Gain at k (Subsection 4.1.1).
Then, we evaluate the effectiveness of different blockchain recommender systems, includ-
ing CFyr, Hybridur.cLustering, Hybriduesgerr, CFany, Hybridenn-crusrering, and
Hybridgyn.sperT (Subsection 4.1.2). Finally, we provide a comparison of the efficiency
of these recommender systems in terms of inference latency and memory usage (Subsec-
tion 4.1.3).

Our experiments were run on a Linux-based server operating Ubuntu 21.10, equipped
with 24 CPU cores and an NVIDIA 2080 Ti GPU. While the GPU notably enhances the
training phases of GNN recommender methods, it is important to highlight that the entire
data processing pipeline is designed to function independently of GPU resources.

4.1 Recommendation Performance

This section presents the experimental results on the performance of the Popular Contract
Recommender (POP), CFyr, Hybridwr.cLusrerine, Hybridur_sgerr, CFann, Hybridann-crusterinG,
and Hybridgnn.sperr. The POP recommender ranks contracts by their popularity, defined

by their frequency in user-contract interactions. Users often exhibit satisfaction with pop-

ular recommendations [99], which is why the POP recommender is used as a baseline.

38



4.1.1 Evaluation Metrics

To evaluate the performance of different methods, we use the following metrics which are
common metrics in the context of recommendation systems:

Hit at £ (HR@Fk): The HRQK evaluates the ability of the model to recommend a
relevant item within the top k positions of a ranked list. Mathematically, it is defined as:

U]

K
1
HITQk = i S K ( {rel,; > 0})
u=1 =1

where U is the set of user addresses (i.e., public keys), ¥(-) is the indicator function which
equals 1 if the user u has at least one relevant contract in the top-k contracts and 0
otherwise, and rel,; indicates the relevance of contract 7 to user w.

Mean Average Precision at & (M AP@Fk): MAPQF assesses the average precision
of the model across all users, up to the position K in the ranked list. Mathematically,
MAPQE is defined as:

1 L &

MAPQk = — _ Precision@k - Arel,,

|U|;min(m,[(); g
where U is the set of user addresses on chain, m is the number of relevant contracts for user
u, and Arel,; is a binary indicator variable that takes a value of 1 when the condition of
the contract at rank k being relevant is met, and 0 otherwise. Precision@f is the precision
at cutoff k£ in the ranked list. It is defined as the proportion of relevant items found in the
top k positions of the ranked list and is expressed as:

Number of relevant items among the top k

k

PrecisionQk =

Normalized Discounted Cumulative Gain at £ (NDCG@Fk): NDCG accounts
for the position of the relevant items in the ranked list, giving higher importance to hits
at the top of the list. For a list of k£ ranked items, NDCG is defined as:

DCGy,
IDCGy

where DCG, = Zle 1og;2i+1)7 and IDCGy is the DCG value of the ideal best-possible
ranking. The rel; is the relevance score of each item in the ranked list. Simply put if the
recommended item exists in the ground truth (i.e., list of actual items user interacted with)

the rel; will be 1 and otherwise 0.

NDCGy, =

39



4.1.2 Effectiveness

We compute evaluation metrics utilizing 5-fold cross-validation. We also adopt a negative
sampling strategy in the evaluation step, for each user wu;, incorporates n negative con-
tracts (i.e., contracts that user u; did not interact with) alongside positive contracts (i.e.,
contracts that user u; did interact with). Each recommender method aims to produce a
ranked list of negative and positive contracts, placing the positive contracts higher on the
list. This negative sampling approach accelerates the evaluation process and is a common
practice in the literature [29, 64, 87]. A larger number of negative samples (i.e., n) leads
to longer testing time while smaller n values make it trivial for all recommender methods
to differentiate positive and negative samples. Thus, from an empirical standpoint, we
consider n = 100.

Table 4.1: Effectiveness comparison of recommender systems—POP, CFyp, Hybridye cLUSTERING
HybridMF—SBERT; CFGNN7 HybridGNN—CLUSTERING7 and HybridGNN_SBERT—acrOSS multiple rank thresh-
olds (i.e., k =1,5,10,15,20), with bold numbers highlighting the best-performing model.

‘ k ‘ POP CFyr Hybridyr.cLusterine  Hybridyr.sperr  CFaxn  Hybridenn.crusterive  Hybridens-sserr

1 ]0.5251 0.6285 0.5943 0.5897 0.6261 0.6206 0.6521
5 10.5316 0.7775 0.7391 0.7750 0.8226 0.8209 0.8449
HITQk 10 | 0.5316 0.8261 0.7879 0.8262 0.8811 0.8799 0.9049
15 1 0.5316  0.8539 0.8198 0.8556 0.9115 0.9077 0.9310
20 | 0.5316 0.8740 0.8398 0.8754 0.9335 0.9264 0.9486
1 10.5251 0.6285 0.5943 0.5897 0.6261 0.6206 0.6521
5 10.5282 0.6699 0.6383 0.6469 0.6802 0.6763 0.7033
MAPQk 10 | 0.5282 0.6514 0.6218 0.6287 0.6584 0.6553 0.6789
15| 0.5282 0.6361 0.6059 0.6137 0.6430 0.6380 0.6604
20 | 0.5281 0.6238 0.5943 0.6012 0.6292 0.6247 0.6462
1 ]0.5251 0.6285 0.5943 0.5897 0.6261 0.6206 0.6521
5 10.3770 0.5523 0.5051 0.5328 0.5806 0.5778 0.6070
NDCG@k | 10| 0.3726 0.5730 0.5220 0.5559 0.6131 0.6111 0.6429
15 1 0.3726  0.5893 0.5393 0.5728 0.6346 0.6331 0.6657
20| 0.3726 0.6007 0.5502 0.5846 0.6496 0.6481 0.6811

The effectiveness of the recommender methods is demonstrated in Table 4.1. The
Hybridgnn.serr method outperforms the POP method and works better compared to
other recommender methods (i.e., CFMF, HybridMF-CLUSTERINGa HybridMF_SBERT, CFGNNa

40



and Hybridgny.cLustering ). This is mainly due to Hybridgnn.spert’s capability of captur-
ing higher-order interactions and utilizing SBERT embeddings to find contract similarities.
Both of these help the method to construct representations of users and contracts and pro-
vide greater recommendation effectiveness. Furthermore, the POP recommender method
demonstrates comparable effectiveness for k£ = 1, indicating that a majority of users have
engaged with the most popular contract. Nonetheless, as k increases, the effectiveness of
the POP recommender fails to improve, suggesting its inability to capture additional inter-
actions from users as effectively as other models. For all methods except POP, the HITQE
results are generally better compared to MAP@Qk and NDCGQF results. Unlike MAPQE
and NDCG@E, which consider both the presence and the position of relevant contracts,
HIT@QFk simply checks if at least one relevant contract appears in the top-k recommen-
dations list. Therefore, HITQE can be high even if relevant contracts are not optimally
ranked, as long as they are within the top-k recommendations.

Considering CF methods, especially when £k grows, CFgny provides more effective
recommendations compared to CFyp. This is mainly due to considering higher-order
relationships among users and contracts within interaction data. However, this comes
at the expense of increased latency and memory usage, as discussed in Subsection 4.1.3.
Transitioning to Hybrid methods, incorporating smart contract SBERT embeddings to
create hybrid methods is effective for GNN but not for MF. This could be because GNNs
are already designed to learn embeddings to represent the graph structure, and SBERT
can enrich these embeddings with additional contract information. On the other hand,
utilizing cluster IDs of contracts to create hybrid methods is not effective for both GNN
and MF. It shows the current method of clustering (i.e., LDA) is incapable of providing
useful additional information to recommender methods compared to SBERT embeddings
of contracts.

To adequately address the primary research question of this study, ”Is it feasible to pro-
vide recommendations solely based on blockchain data?”, we compare the best-performing
recommender method, Hybridgnn.sgerT, in two scenarios: first, when fed with Ethereum
dataset, and second, when fed with a popular interactions dataset like user-movie interac-
tions in MovieLens-100k [27]. In the case of MovieLens-100k, movie genres serve as inputs
to construct movie embeddings. Given the disparity in the average number of interactions
per user (182 in the MovieLens-100k vs. 10 in Ethereum), we consider two variants of Movie-
Lens recommenders: MovieLensgyrr,, containing all interactions, and MovieLensgamprep
maintaining the same users-to-items ratio as the Ethereum dataset (approximately 1.3)
while randomly retaining 10% of each user’s interactions, resulting in an average of 16
interactions per user.

Table 4.2 shows the results at various rank thresholds. Hybridgnn.sperr performs 10-

41



Table 4.2: Effectiveness of Hybridgnn.sgerT on Ethereum and MovieLens across multiple rank thresholds
(i.e., k =1,5,10,15,20), with bold numbers highlighting the best-performing model.

HybridgNN-SBERT

k  Ethereum MovieLensganipLep MovieLenspyr,

1 0.6521 0.3648 0.7763
5 0.8449 0.7403 0.9671
HITQk 10 0.9049 0.8390 0.9917
15 0.9310 0.8927 0.9967
20 0.9486 0.9206 0.9983
1 0.6521 0.3648 0.7763
5 0.7033 0.4890 0.8308
MAPQk 10 0.6789 0.4623 0.7976
15 0.6604 0.4412 0.7743
20 0.6462 0.4236 0.7587
1 0.6521 0.3648 0.7763
5 0.6070 0.3936 0.7486
NDCG@k 10 0.6429 0.4335 0.7476
15 0.6657 0.4664 0.7578
20 0.6811 0.4914 0.7682

15% worse on Ethereum compared to MovieLenspyr,. The primary difference in their
effectiveness stems from the higher number of interactions per user that MovieLenspyry,
has access to. Generally, the more interactions (for each user) a recommender method has
access to, the better the recommendations it can provide. Additionally, Hybridgnn.sBERT
on Ethereum outperforms MovieLenssanprep demonstrating the usefulness of Ethereum
data to provide recommendations. However, a user study should be conducted to verify
the effectiveness of these recommendations. This can be considered an interesting direction
for future work.

42



4.1.3 Efficiency

In this section, we compare the efficiency of recommender methods in terms of latency
and memory usage during inference time. The POP recommender is excluded from this
comparison because both its memory usage and latency are O(1) (it always recommends
the same contracts for each user, resulting in constant time complexity). All recommender
methods perform the recommendation task on the CPU to allow a fair comparison of their
latency and memory usage. Latency refers to the time required to calculate all necessary
recommendation scores in the test set (with n = 10, yielding nearly 100k predictions).
Memory usage denotes the amount of memory required to perform recommendations (i.e.,
for 100k pairs of users and contracts). The results are presented in Table 4.3. We assume
that the contract cluster IDs and SBERT embeddings have been computed beforehand
and are ready to be used. Therefore, we do not consider their memory footprint and the
additional time required to calculate them in the latency measurement.

Table 4.3: Latency and Memory wusage comparison of recommender systems—CFyp,

Hybridvr.cLusteriNg, Hybridur.sperr, CFann, Hybridenn.cLustering, and Hybridgnn-sBert-
with bold numbers highlighting the best-performing model.

Latency (s) Memory (MB)

CFur 6.66 608
Hybridmp-cLUSTERING 6.76 611
Hybridmr-sBerT 6.74 1216
CFaNN 27.73 2518
HybridgNN-CLUSTERING 28.05 2535
Hybridenn-sBERT 30.34 2621

As observed in Table 4.3, CFyr surpasses other recommender systems in terms of
memory usage and latency during inference time. This is mainly because of the simpler
MF architecture utilized in CFyr compared to GNN-based methods and the fact that
CFyr does not utilize any additional contract features. Consequently, the best perform-
ing method (i.e., CFyp) produces each recommendation in 0.05 milliseconds, which is an
acceptable latency in real-world applications [73]. In terms of memory usage, hybridizing
both GNN and MF-based CF methods with contract cluster IDs does not significantly
impact memory usage, as each contract feature in this case is a one-hot vector of size 15.
However, hybridizing these methods with SBERT embeddings of contracts affects memory
usage, since each contract in this case has a vector of size 768. In terms of latency, the

43



choice of architecture (i.e., GNN or MF) tends to have a greater impact as opposed to the
choice of additional contract features (i.e., SBERT embeddings or clusters of contracts).
Therefore, the GNN-based methods demonstrate nearly 4.5 times more latency during
inference time.

4.2 Discussion

In this chapter, we investigated how recommender systems can use blockchain data to pro-
vide contract recommendations. We compared seven recommender methods: POP, CFy,
Hybridyr-crustering, Hybridyr sgert, CFann, Hybridann-crusterivg, and Hybridann-spert-
We considered the effectiveness and efficiency of these methods on the Ethereum dataset.
From these, we conclude the following points:

e The Hybridgnn.sgerr method outperforms the POP method and demonstrates bet-
ter performance compared to other recommender methods (Table 4.1), such as CFyp,
Hybridyr.cLustering, Hybridursgerr, CFann, and Hybridgnn.crustering.  The
better performance of Hybridgnn.sgerT can be attributed to its ability to capture
higher-order interactions and to effectively use SBERT embeddings of contracts
in identifying similarities between contracts. Additionally, POP performs well for
k = {1}. This indicates that the most popular item is relevant to most users. How-
ever, as k increases, the performance of this method remains constant, failing to
improve, unlike the other recommender methods.

e Considering CF methods, CFgnn demonstrates greater recommendation power com-
pared to CFyp, especially for higher k values (i.e., k = [5, 10, 15, 20]). The better
performance of CFgny is mainly due to the consideration of higher-order interac-
tions to construct representations of users and contracts. However, as demonstrated
in Table 4.3, the greater recommendation power of CFgnn comes at the expense of
increased latency and memory usage on inference time.

e Considering Hybrid methods, utilizing SBERT embeddings tends to improve the
GNN effectiveness. Conversely, doing the same for MF methods fails to improve the
effectiveness. This could be because GNNs are already designed to learn embeddings
to represent the graph structure, and SBERT can enrich these embeddings with
additional contract information. On the other hand, neither MF nor GNN seem to
benefit from the addition of contract cluster IDs, suggesting that clustering cannot
reflect code similarity well.

44



e Hybridgnn.sgerr performs 10-15% worse on Ethereum compared to MovieLenspuyrr,.
The difference in their performance is primarily due to the higher average number
of interactions per user in the MovieLenspyy, dataset. Additionally, Hybridgnn.sBERT
on Ethereum outperforms MovieLensganprep demonstrating the usefulness of Ethereum
data to provide recommendations. However, a user study is necessary to confirm the
usefulness of our blockchain recommendations.

45



Chapter 5

Conclusion and Future Directions

In this chapter, we begin with a summary of major contributions and insights into the
feasibility of blockchain recommender systems using blockchain data (Section 5.1). We then
explore future directions, focusing on advanced architectures for improved recommendation
performance (Subsection 5.2.1). Finally, we discuss potential blockchain implementations
of recommender methods using exclusively blockchain data (Subsection 5.2.2).

5.1 Summary

In this study, we investigated the potential of providing recommendations using only the
blockchain data. ThI’OUgh empirical analysis of CFMF, CFGNN, HybridMF—CLUSTERINGa
HybridMF-SBERT; HybridGNN—CLUSTERINGa and I‘Iy‘bl‘id(;,]\n\j_SB];;R”[‘7 each recommender method’s
effectiveness and efficiency on interactions data were evaluated. In summary, we present
the following contributions and insights:

e We constructed a dataset of 400,000 real interactions on the Ethereum network.
These addresses were randomly selected from a group of addresses that had at least
one transaction during a certain time frame . This dataset is provided as part of
this study to encourage further research into blockchain recommender systems.

e We demonstrated that the Hybridgnn.sgerr outperforms other recommender meth-
ods. Additionally, the Hybridgnn-spert’s performance on Ethereum was compared

'We selected a random day, December 18, 2022, and, out of the 0.917 million public keys who ran at

46



with its performance on the MovieLensganvprep and MovieLensgyrr,. Hybridgnn.sBerT
on Ethereum outperforms MovieLenssanprep underscoring the feasibility of design-
ing blockchain recommender systems based solely on blockchain data.

o We demonstrated that incorporating SBERT embeddings tends to improve the GNN
effectiveness. However, applying the same approach to MF does not improve its effec-
tiveness. On the other hand, neither MF nor GNN seem to benefit from the addition
of contract cluster IDs, suggesting that clustering cannot reflect code similarity well.

e We demonstrated that the CFyr method, which considers only interactions, outper-
forms other recommender methods in terms of efficiency, including memory usage and
latency at inference time. Additionally, the choice of architecture (i.e., MF or GNN)
has a greater impact on latency and memory usage compared to the choice of hy-
bridization method (i.e., contract cluster IDs or SBERT embeddings). Lastly, SBERT
embeddings of contracts require more memory as they provide higher-dimensionality
embeddings of contracts (i.e., 768) as opposed to contract cluster IDs (i.e., 15).

5.2 Future Work

As future work, several approaches are considered to enhance the efforts in designing
blockchain recommender systems. In the subsequent sections, various methods to improve
the overall performance of recommender systems are discussed. Furthermore, an explo-
ration is conducted on the potential implementation of blockchain recommender systems
on a blockchain as a practical consideration.

5.2.1 Recommendation Performance
Transformer-based GNN

In this study, a GraphSAGE [20] GNN architecture was employed to derive the construction
of both user and contract embeddings based on interactions data and the initial contract
embedding (i.e., the output of a pre-trained model). Recent developments indicate that
transformer-based architectures, especially Graphormer [72, 93], have utilized the attention
mechanism to construct more nuanced user and item embeddings. The attention mech-
anism may enhance the embedding of users and items in a GNN-based recommendation

least one smart contract that day, we selected 42,000 at random.

47



system, particularly when formulated as binary link prediction. By focusing on specific
parts of the graph that are more relevant for predicting a link between a user and an item,
the attention mechanism can learn the importance of different neighbors or paths in the
graph. This approach enables the model to capture complex dependencies and interac-
tions within the graph, resulting in more accurate predictions of whether a link should
exist between a user and an item.

Beyond Smart Contracts

In this study, we considered all smart contracts as items, each accompanied by its cor-
responding Solidity code. A significant proportion of smart contracts constitute token
contracts. These token contracts may be classified into fungible tokens and Non-Fungible
Tokens (NFTs). Fungible tokens are recognized as cryptocurrencies, such as the Tether
token, for example, implemented on the Ethereum chain, which is an abstraction from the
ERC20 token contract. This abstraction enables the expedited design of token contracts
through the reuse of their principal components and predefined methods, such as transfer,
burn (i.e., destroying a certain amount of tokens), and mint (i.e., creating new tokens).
Conversely, NFTs exhibit uniqueness, in contrast to fungible tokens, with each NFT pos-
sessing distinct characteristics. Commonly, NFTs encompass visual content in addition to
textual content. The textual content may be stored on the blockchain ledger, while the
visual part is often stored in decentralized storage systems such as IPFS [61]. Given the
unique visual components, these non-textual features may be considered as supplementary
data to construct more nuanced contract embeddings. Clearly, such item embeddings are
not limited to just the Solidity code of contracts, which often exhibit substantial similar-
ity. Rather, they can capture the distinctive characteristics of each NFT that a user has
interacted with, thereby facilitating the recommendation of novel content.

5.2.2 Practical Consideration

An important direction for future work is to build a real-life implementation of a blockchain
recommendation service on an actual blockchain platform. One way to do this in a cen-
tralized manner is to build it as a centralized Oracle. In that case, this would be similar
to Oracles for weather data as discussed in Section 1.1. Specifically, dApps may contact
external Oracles with a user’s public key, and the Oracle returns the recommendation
results (i.e., top-k relevant contracts based on the specified public key’s previous transac-
tions). To do this, the external Oracle needs to download the transaction (i.e., interactions)
blockchain data as we did in this thesis. Then, by training recommender algorithms on

48



such data, it can serve the recommendation requests. For this to work, Oracle would expect
some service fee to be paid by the users who request recommendations. However, this is
equivalent to a Web2 solution where users pay a centralized entity to receive services. For
instance, when advertisers pay Google to advertise their business, they are at the mercy of
Google regarding what algorithms it uses to show their advertisements to users, and they
can raise prices for their services.

On the other hand, to align with the principles of blockchains, another implementa-
tion of a blockchain recommender system is possible in a decentralized manner. In this
decentralized solution, there are two approaches: 1) Everything to be decentralized: This
means that a subset of nodes in the blockchain should agree to collect the data, train the
recommendation algorithms, and respond to dApp requests for recommendations. This
could be implemented through smart contracts. Such decentralized solutions have multi-
ple advantages, such as Users have a choice of algorithms to use for their recommendation
requests, and they can pay different transaction fees determined in a transparent manner,
eliminating the single point of control as seen in the centralized Oracle solution. 2) In an-
other approach in this design space, the recommender models can be trained off-chain (i.e.,
on a centralized server), and a hash of the model is stored on the ledger. Such approaches
can reduce the service fee cost since running computation-intensive smart contracts on a
blockchain is expensive?.

2For comparison, a simple multiplication of two numbers costs approximately 300 gas units on
Ethereum. With a gas price of 30 GWEI (i.e., 30 x 107Y Ether) and an Ether price of $2,000, the trans-
action fee for execution on the Ethereum blockchain is around $0.00003. Considering a dataset of 100,000
interactions to rank contracts, yielding top-k relevant items for a user, involves numerous such multipli-
cations. This makes such implementations challenging in real-world scenarios with billions of interactions
and high recommendation requests per user per day.

49



References

1]

2]

3]

[7]

8]

[9]

Sergi Abadal, Akshay Jain, Robert Guirado, Jorge Loépez-Alonso, and Eduard
Alarcén. Computing graph neural networks: A survey from algorithms to acceler-
ators. ACM Computing Surveys, 2021.

Fabian Abel, Ig Ibert Bittencourt, Nicola Henze, Daniel Krause, and Julita Vassileva.
A rule-based recommender system for online discussion forums. In International Con-
ference on Adaptive Hypermedia and Adaptive Web, 2008.

G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender sys-
tems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on
Knowledge and Data Engineering, 2005.

Gediminas Adomavicius, Nikos Manouselis, and YoungOk Kwon. Multi-criteria rec-
ommender systems. In Recommender Systems Handbook. 2011.

C.C. Aggarwal. Attack-resistant recommender systems. 2016.

Cuneyt Gurcan Akcora, Yulia R. Gel, and Murat Kantarcioglu. Blockchain: A graph
primer. arXiwv, 2017.

N. Antonopoulus and J. Salter. Cinema screen recommender agent: combining col-
laborative and content-based filtering. IEEE Intelligent Systems, 2006.

Y.M. Arif, H. Nurhayati, F. Kurniawan, S.M.S. Nugroho, and M. Hariadi. Blockchain-
based data sharing for decentralized tourism destinations recommendation system.
International Journal of Intelligent Engineering and Systems, 2020.

John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predic-
tive algorithms for collaborative filtering. In Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence, 1998.

20



[10]

[11]

[12]

[13]

[14]
[15]

[18]

[19]

[20]

[21]

Lorenz Breidenbach, Christian Cachin, Benedict Chan, Alex Coventry, Steve Ellis, Ari
Juels, Farinaz Koushanfar, Andrew Miller, Brendan Magauran, Daniel Moroz, Sergey
Nazarov, Alexandru Topliceanu, Florian Tramér, and Fan Zhang. Chainlink 2.0: Next
steps in the evolution of decentralized oracle networks. 2021.

R. Burke. Hybrid recommender systems: survey and experiments. User Modeling and
User-Adapted Interaction, 2002.

Robin Burke. Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction, 2002.

Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized ap-
plication platform. white paper, 2013.

Vitalik Buterin. What proof of stake is and why it matters. Bitcoin Magazine, 2013.

H. Cai and F. Zhang. An unsupervised method for detecting shilling attacks in rec-
ommender systems by mining item relationship and identifying target items. The
Computer Journal, 2019.

L. Candillier, F. Meyer, and M. Boullé. Comparing state-of-the-art collaborative
filtering systems. In Lecture Notes in Computer Science, 2007.

Y. Cao, X. Chen, L. Yao, X. Wang, and W.E. Zhang. Adversarial attacks and detection
on reinforcement learning-based interactive recommender systems. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2020.

S. Chowdhury. Fvaluating Cold-Start in Recommendation Systems Using a Hybrid
Model Based on Factorization Machines and SBERT Embeddings. PhD thesis, 2022.

Y. Deldjoo, T. DI NOIA, and F.A. MERRA. A survey on adversarial recommender
systems: From attack/defense strategies to generative adversarial networks. ACM
Computing Surveys, 2020.

D. El Alaoui, J. Riffi, A. Sabri, et al. Deep graphsage-based recommendation system:
jumping knowledge connections with ordinal aggregation network. Neural Computing
and Applications, 2022.

M. Fang, G. Yang, N.Z. Gong, and J. Liu. Poisoning attacks to graph-based recom-
mender systems. In Proceedings of the 3/th Annual Computer Security Applications
Conference, 2018.

ol



[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

Ethereum Foundation. Logging data from smart contracts with events, 2021.

Thomas George and Srujana Merugu. A scalable collaborative filtering framework
based on co-clustering. In Proceedings of the 5th IEEE International Conference on
Data Mining, 2005.

Christian Gorenflo. Towards a New Generation of Permissioned Blockchain Systems.
PhD thesis, University of Waterloo, 2020.

Michele Gorgoglione, Umberto Panniello, and Alexander Tuzhilin. Recommendation
strategies in personalization applications. Information & Management, 2019.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning
on large graphs. Neural Information Processing Systems (NeurIPS), 2017.

F. Maxwell Harper and Joseph A. Konstan. Movielens datasets: History and context.
ACM Transactions on Interactive Intelligent Systems (TiiS), 2016.

J.D. Harris and B. Waggoner. Decentralized and collaborative ai on blockchain. In
IEEE International Conference on Blockchain, 2019.

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng Chua.
Neural collaborative filtering. In Proceedings of the 26th International Conference on
World Wide Web, 2017.

J.L. Herlocker, J.A. Konstan, A.L. Borchers, and J.T. Riedl. An algorithmic frame-
work for performing collaborative filtering. In Proceedings of the 22nd Annual In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval, 1999.

Jonathan L Herlocker et al. Evaluating collaborative filtering recommender systems.
ACM Transactions on Information Systems, 2004.

Jonathan L. Herlocker, Joseph A. Konstan, and John T. Riedl. An empirical analysis
of design choices in neighborhood-based collaborative filtering algorithms. Information
Retrieval, 2002.

Jonathan L. Herlocker, Joseph A. Konstan, John T. Riedl, and Loren G. Terveen.
Evaluating collaborative filtering recommender systems. ACM Transactions on Infor-
mation Systems, 2004.

o2



[34]

[40]

[41]

[42]

[43]

[44]

Yassine Himeur, Aya Sayed, Abdullah Alsalemi, Faycal Bensaali, Abbes Amira, Irak-
lis Varlamis, Magdalini Eirinaki, Christos Sardianos, and George Dimitrakopoulos.
Blockchain-based recommender systems: Applications, challenges and future oppor-
tunities. Computer Science Review, 2022.

R. Hu, Y. Guo, M. Pan, and Y. Gong. Targeted poisoning attacks on social recom-
mender systems. In 2019 IEEE Global Communications Conference, 2019.

Yao-Chieh Hu, Ting-Ting Lee, Dimitris Chatzopoulos, and Pan Hui. Analyzing smart
contract interactions and contract level state consensus. Concurrency and Computa-
tion: Practice and Fxperience, 2019.

Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, Xinyu Wang,
and Jie Tang. Mixgcf: An improved training method for graph neural network-based
recommender systems. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery € Data Mining. Association for Computing Machinery, 2021.

D. Jannach, M. Zanker, M. Ge, and M. Groning. Recommender systems in computer
science and information systems - a landscape of research. In Proceedings of the 15th
International Conference on E-Commerce and Web Technologies, 2012.

M. Jourdan, S. Blandin, L. Wynter, and P. Deshpande. Characterizing entities in the
bitcoin blockchain. In IEEFE International Conference on Data Mining Workshops,
2018.

H.N. Kim, A.T. Ji, I. Ha, and G.S. Jo. Collaborative filtering based on collaborative
tagging for enhancing the quality of recommendations. Electronic Commerce Research
and Applications, 2010.

F. Kong, X. Sun, and S. Ye. A comparison of several algorithms for collaborative
filtering in startup stage. IEEE Transactions on Networks, Sensing and Control,
2005.

Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. 2008.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30-37, 2009.

Maciej Kula. Metadata embeddings for user and item cold-start recommendations.
In Toine Bogers and Marijn Koolen, editors, Proceedings of 9th ACM Conference on
Recommender Systems, 2015.

23



[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Himabindu Lakkaraju, Julian McAuley, and Jure Leskovec. Understanding the inter-
play between titles, content, and communities in social media. In Proceedings of the
Seventh International AAAI Conference on Weblogs and Social Media, 2013.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems (TOPLAS), 1982.

Ken Lang. Newsweeder: learning to filter netnews. In Proceedings of the 12th Inter-
national Conference on Machine Learning, 1995.

Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: [tem-
to-item collaborative filtering. IEEFE Internet Computing, 2003.

A. Lisi, A. De Salve, P. Mori, and L. Ricci. A smart contract based recommender

system. In International Conference on the Economics of Grids, Clouds, Systems, and
Services, 2019.

Siwei Liu. Effective graph representation learning for ranking-based recommendation.
PhD thesis, 2023.

Xiao Fan Liu, Xin-Jian Jiang, Si-Hao Liu, and Chi Kong Tse. Knowledge discovery
in cryptocurrency transactions: A survey. arXiv, 2021.

M Loukili, F Messaoudi, and M El Ghazi. Machine learning based recommender
system for e-commerce. International Journal of Artificial Intelligence, 2023.

Ralph Charles Merkle. Secrecy, authentication, and public key systems. PhD thesis,
Stanford University, 1979.

Ralph Charles Merkle. A digital signature based on a conventional encryption function.
In Advances in Cryptology, 1988.

R. Meteren and M. Someren. Using content-based filtering for recommendation. In
Proceedings of ECML 2000 Workshop: Machine Learning in the Information Age,
2000.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

M. Niranjanamurthy, B. Nithya, and S. Jagannatha. Analysis of blockchain technol-
ogy: pros, cons and swot. Cluster Computing, 2019.

Harris Papadakis, Antonis Papagrigoriou, Costas Panagiotakis, Eleftherios Kosmas,

o4



[59]

[60]

[61]
[62]

[63]

[64]

[65]

and Paraskevi Fragopoulou. Collaborative filtering recommender systems taxonomy.
Knowledge and Information Systems, 2022.

Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM (JACM), 1980.

C. Porcel, A. Tejeda-Lorente, M.A. Martinez, and E. Herrera-Viedma. A hybrid rec-
ommender system for the selective dissemination of research resources in a technology
transfer office. Information Sciences, 2012.

Protocol Labs. InterPlanetary File System (IPFS), 2015.

S. Ranshous, C. A. Joslyn, S. Kreyling, K. Nowak, N. F. Samatova, C. L. West, and
S. Winters. Exchange pattern mining in the bitcoin transaction directed hypergraph.
In in Proceedings of the 21th International Conference on Financial Cryptography and
Data Security, 2017.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using
siamese BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing, 2019.

Steffen Rendle, Walid Krichene, Li Zhang, and John Anderson. Neural collaborative
filtering vs. matrix factorization revisited. In Proceedings of the 14th ACM Conference
on Recommender Systems, 2020.

Paul Resnick, Neophytos Tacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.
Grouplens: an open architecture for collaborative filtering of netnews. In Proceedings
of the 1994 ACM conference on Computer supported cooperative work, 1994.

F. Rezaimehr and C. Dadkhah. A survey of attack detection approaches in collabo-
rative filtering recommender systems. Artificial Intelligence Review, 2021.

Francesco Ricci, Lior Rokach, and Bracha Shapira. Recommender Systems: Introduc-
tion and Challenges. 2015.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Application of
dimensionality reduction in recommender system—a case study. ACM Web mining
and social network analysis workshop, 2000.

Badrul Sarwar, George Karypis, Joseph A Konstan, and John Riedl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th Inter-
national Conference on World Wide Web, 2001.

95



[70]

[71]

[72]

[73]

[77]

[78]

[79]

[30]

[81]

[82]

Fred B. Schneider. Byzantine generals in action: Implementing fail-stop processors.
ACM Transactions on Computer Systems (TOCS), 1984.

Ilya Sergey and Aquinas Hobor. A concurrent perspective on smart contracts. In
Financial Cryptography and Data Security, 2017.

Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan He, Shengjie
Luo, Chang Liu, Di He, and Tie-Yan Liu. Benchmarking graphormer on large-scale
molecular modeling datasets. arXiv, 2022.

M. Singh. Scalability and sparsity issues in recommender datasets: a survey. Knowl-
edge and Information Systems, 2020.

Douglas R. Stinson. Some observations on the theory of cryptographic hash functions.
Designs, Codes, and Cryptography, 2006.

Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering tech-
niques. In Advances in Artificial Intelligence, 2009.

P. Symeonidis, A. Nanopoulus, and Y. Manolopoulos. Movieexplain: a recommender
system with explanations. In Proceedings of the 2009 ACM Conference on Recom-
mender Systems, 2009.

Gébor Takacs and Domonkos Tikk. Alternating least squares for personalized ranking.
In Proceedings of the 6th ACM Conference on Recommender Systems, 2012.

Yaniv Tal, Brandon Ramirez, and Jannis Pohlmann. The graph: A decentralized
query protocol for blockchains. 2018.

K. Toyoda, P. T. Mathiopoulos, and T. Ohtsuki. A novel methodology for hyip
operators’ bitcoin addresses identification. IEEE Access, 2019.

Muneeb Ul Hassan, Mubashir Husain Rehmani, and Jinjun Chen. Anomaly detection
in blockchain networks: A comprehensive survey. [EEE Communications Surveys
Tutorials, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, 2017.

Haodi Wang and Thang Hoang. ezdps: An efficient and zero-knowledge machine
learning inference pipeline, 2023.

o6



[83] Q. Wang, R. Li, Q. Wang, and S. Chen. Non-fungible token (nft): Overview, evalua-
tion, opportunities and challenges. arXiv, 2021.

[84] Qin Wang, Guangsheng Yu, Shange Fu, Shiping Chen, Jiangshan Yu, and Sherry Xu.
A referable nft scheme. arXiv, 2022.

[85] S. Wang, C. Huang, J. Li, Y. Yuan, and F.-Y. Wang. Decentralized construction of
knowledge graphs for deep recommender systems based on blockchain-powered smart
contracts. IEEE Access, 2019.

[86] Shoujin Wang, Xiuzhen Zhang, Yan Wang, and Francesco Ricci. Trustworthy recom-
mender systems. ACM Transactions on Intelligent Systems and Technology, 2022.

[87] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural
graph collaborative filtering. In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2019.

[88] Xiang Wang, Xiangnan Yu, Ziqi Gu, Yuanchao Liu, Mengqi Zhang, Shuxian Zhang,
and Yujing Gao. Graph neural networks for social recommendation. The World Wide
Web Conference, 2019.

[89] C.A. Williams, B. Mobasher, and R. Burke. Defending recommender systems: De-
tection of profile injection attacks. Service Oriented Computing and Applications,
2007.

[90] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Wein-
berger. Simplifying graph convolutional networks. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, 2019.

[91] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in
recommender systems: A survey. ACM Computing Surveys, 2022.

[92] H. H. Sun Yin, K. Langenheldt, M. Harlev, R. R. Mukkamala, and R. Vatrapu. Reg-
ulating cryptocurrencies: A supervised machine learning approach to de-anonymizing
the bitcoin blockchain. Journal of Management Information Systems, 2019.

[93] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming
Shen, and Tie-Yan Liu. Do transformers really perform badly for graph representation?
In 35th Conference on Neural Information Processing Systems, 2021.

[94] G Yu, Q Wang, T Altaf, X Wang, X Xu, and S Chen. Predicting nft classification with

57



gnn: A recommender system for web3 assets. In 2023 IEEFE International Conference
on Blockchain and Cryptocurrency (ICBC), 2023.

[95] F. Zhang and S. Wang. Detecting group shilling attacks in online recommender sys-
tems based on bisecting k-means clustering. IEEFE Transactions on Computational
Social Systems, 2020.

[96] F. Zhang and Q. Zhou. Hht-svm: An online method for detecting profile injection
attacks in collaborative recommender systems. Knowledge-Based Systems, 2014.

[97] Shuai Zheng, Chris Ding, and Feiping Nie. Regularized singular value decomposition
and application to recommender system. arXiv, 2018.

[98] Morteza Zihayat, Anteneh Ayanso, Xing Zhao, Heidar Davoudi, and Aijun An. A
utility-based news recommendation system. Decision Support Systems, 2019.

[99] Oscar Celma and Paul Lamere. A music similarity function based on signal analysis.
In Proceedings of the International Conference on Multimedia, 2008.

o8



	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Our Contributions
	Thesis Overview

	Preliminaries and Related Work
	Blockchains
	Fault Tolerance
	Consensus
	Smart Contracts
	Blockchain Data

	Blockchain Data Analysis
	Recommender Systems
	Matrix Factorization
	Graph Neural Network

	Blockchain Recommender Systems

	Methodology
	Dataset Creation
	Dataset Exploration
	Recommender Methods
	Contract Embedding
	Matrix Factorization Recommender Systems
	Graph Neural Network Recommender Systems


	Evaluation
	Recommendation Performance
	Evaluation Metrics
	Effectiveness
	Efficiency

	Discussion

	Conclusion and Future Directions
	Summary
	Future Work
	Recommendation Performance
	Practical Consideration


	References

