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Abstract

In an Inventory Routing Problem (IRP), a decision-maker decides the number of units

delivered to each retailer and determines delivery routes, which becomes increasingly chal-

lenging as the network expands. Incorporating uncertainty and perishability into the IRP

gives rise to a more complex problem known as the stochastic Perishable Inventory Routing

Problem (PIRP). Traditional approaches, such as dynamic programming, often struggle to

efficiently solve this problem. This is due to the curse of dimensionality, which grows

exponentially with the number of retailers and the product’s shelf life. In this work, we

decompose the PIRP into a Perishable Inventory Problem (PIP) and a Vehicle Routing

Problem (VRP) and address them sequentially in two distinct phases. By successfully de-

termining the replenishment quantities first, we then solve the VRP using state-of-the-art

algorithms. Consequently, our primary focus lies in identifying the optimal replenishment

quantities for perishable products. To address the complexities of this problem, we propose

a Direct Lookahead Approximation (DLA) policy designed for sequential decision-making

problems under uncertainty. Specifically, we employ a two-stage approximation method

that considers a limited number of sample paths while still achieving promising results.

The problem is formulated as a mixed-integer programming (MIP) model with the objec-

tive of minimizing holding, shortage, wastage, and replenishment costs. In this context, a

fixed cost is employed as an approximation for the routing costs of the second phase. To

enhance the implementation of the DLA policy, we conduct a comprehensive analysis and

recommend techniques such as incorporating linear cuts into the MIP model. To evaluate

the effectiveness of the policy, we examine a blood supply chain focusing on perishable

platelet units. Through extensive experiments, we demonstrate that the proposed policy

can significantly outperform several known algorithms in the literature.
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Chapter 1

Introduction

A distribution network, comprising a supplier and several retailers, is referred to as a

Retailer-Managed Inventory system when retailers are responsible for monitoring and re-

plenishing their inventory. In this system, the routing decisions, which involve determining

the delivery routes, are handled by the supplier (Archetti & Speranza, 2016). Conversely,

if the supplier collaborates with the retailers, the system is referred to as Vendor-Managed

Inventory (VMI), wherein retailers must promptly share relevant information with the cen-

tralized decision-maker to facilitate inventory decisions (Crama et al., 2018). VMI is often

characterized as a mutually beneficial arrangement where both suppliers and retailers can

achieve cost savings: Suppliers can reduce distribution and production expenses by aligning

customer demands with shipments, while retailers can avoid allocating resources to control

and manage their inventory (Coelho et al., 2012). The decision-maker also determines the

most cost-effective routes for shipping the products to the retailers, further optimizing the

system’s overall efficiency.

Implementing VMI for a system with a set of retailers involves solving a challenging
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combinatorial problem known as the Inventory Routing Problem (IRP). This problem

integrates inventory and routing decisions to minimize the total cost associated with a

group of retailers (Bertazzi et al., 2015). In many real-world inventory systems, item

spoilage and perishability are common phenomena. Ignoring these aspects can adversely

impact the inventory decision-making process. Certain goods, such as dairy products,

blood units, medicines, and chemical reagents with expiration dates, are vulnerable to

perishability. This means that these goods need to be discarded once they exceed their

limited shelf life. As such, it is vital to find an efficient inventory policy that can reduce

costs for suppliers, retailers, and customers while ensuring the optimal usage of perishable

products. This new factor changes the IRP to a more challenging problem called Perishable

Inventory Routing Problem (PIRP).

The PIRP faces significant challenges when applied in the context of a Blood Supply

Chain (BSC). Specifically, perishability is a critical factor that greatly impacts the design

and management of the BSC. The short shelf life of blood products adds complexity to the

supply chain processes. For instance, platelets, a crucial blood component, have a limited

shelf life of up to 7 days (Service, 2023). Platelet transfusion is used to treat various medical

illnesses, including cancer, organ transplantation, hematopoietic stem-cell transplantation,

bone marrow failure, hepatitis, AIDS, cardiovascular surgery, and traumatology (Stroncek

& Rebulla, 2007). In North America, hospitals receive the platelets they require from a

centralized supplier. Examples of such suppliers include the Red Cross in the United States

and the Canadian Blood Services in Canada (Abouee-Mehrizi et al., 2022). These suppliers

are responsible for distributing platelet units to multiple hospitals within their coverage

area. Consequently, they face the challenge of addressing perishability in managing their

inventory and determining the optimal routes in their distribution networks.

To achieve efficiency, it is necessary to align the inventory policy with the demand across

2



the supply chain. However, since demand is usually unknown in supply chains, decision-

making occurs under uncertainty. This uncertainty is a new challenge to the problem and

makes it to be a stochastic PIRP, which is the focus of our work.

To overcome these challenges, we employ a two-phase approach. The first phase focuses

on solving the Perishable Inventory Problem (PIP), where the objective is to find optimal

inventory decisions for perishable products. Subsequently, in the second phase, the Vehicle

Routing Problem (VRP) needs to be addressed. The VRP is concerned with determining

the most cost-effective routes for a fleet of vehicles that start and end their travels at

the supplier’s site and serve a set of retailers. Each retailer is visited only once, and the

assignment of retailers to vehicles must adhere to the capacity constraints of the vehicles

(Solomon, 1987). While this two-phase decision-making process may not lead to making

optimal decisions, it provides a practical approach for effectively managing such a complex

system (Crama et al., 2018).

In PIPs, there are four primary costs that significantly impact the decision-making pro-

cess: wastage, penalty (shortage), holding, and replenishment (ordering) costs. Insufficient

products in inventory can result in shortages and loss of demand. On the other hand,

excessive products can result in waste. Besides, hidden costs may arise even when there

is no over- or under-stocking. For example, failure to order products at the right time can

alter their quality. Hence, determining the best inventory policy for perishable products is

essential.

In addition to managing these costs in PIPs, it is essential to manage the wastage by

implementing an appropriate issuing policy. In this work, we adopt the First-In, First-Out

(FIFO) policy under which the oldest units in inventory are used or sold first, reducing

the risk of spoilage. However, when freshness is a priority, the Last-In, First-Out (LIFO)

policy may be preferred, as it first dispatches the most recently received products. It is
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worth noting that when the shelf life of products received by retailers is not fixed, the

FIFO policy becomes the Oldest-Unit, First-Out policy. In this case, the oldest units in

inventory are not necessarily the earliest received. Conversely, the Newest-Unit, First-Out

policy prioritizes using the freshest products before the more aged ones.

Additionally, we have to handle the demand uncertainty in our PIP. In inventory man-

agement, unfulfilled demand can be handled in two ways: backlogged or lost. In a system

with backlogs, unfulfilled demands are saved and fulfilled in the next periods, which can

be thought of as a customer waiting for the item rather than seeking an alternative. On

the other hand, lost sales systems lose the demand if they cannot be satisfied immediately.

In this work, we focus on a lost-sale system.

Overall, the focus of this study is to design an inventory routing policy for a VMI

system where a single perishable product should be delivered from a supplier to a set of

retailers. The demand for the product is initially unknown and is realized over time. We

develop a two-phase approach to solve the problem. The key contributions of this work

can be summarized as follow:

• We propose a novel policy to solve the PIRP. This policy employs a two-stage ap-

proximation approach, allowing us to achieve cost-reduction solutions while utilizing

a minimal number of scenarios. This represents a significant departure from existing

literature, where a large number of scenarios is typically required. It is also worth

mentioning that our policy involves solving a large-scale Mixed Integer Programming

(MIP) model. To enhance the solution process, we provide several implementation

techniques, including the addition of linear cuts, which significantly improve efficiency

and effectiveness.

• We address the PIRP within a large-scale distribution network, which allows for
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practical consideration. Our research specifically aims to tackle the challenges of

relatively larger distribution networks and address the limitations identified in previ-

ous studies. These studies have highlighted the need for improved policies that can

effectively manage larger networks, such as those consisting of 20 retailers.

• We apply our policy to a case study within a BSC, where both replenishment and

routing decisions must be made. To assess the performance of our proposed policy,

we conduct extensive experiments and compare the results against well-established

benchmark policies from the stochastic PIRP literature. This comparison provides

valuable insights and highlights the strengths and advantages of our proposed policy.

The rest of the study is organized as follows. We review the related literature in Chapter

2, followed by a detailed analysis of a PIP and associated policies in Chapter 3. In Chapter

4, we extend the PIP to a PIRP by incorporating a second phase and discussing the new

challenges this presents. We then introduce a novel policy to handle these challenges. In

Chapter 5, we outline implementation matters related to our proposed policy and provide

some techniques for improving its performance. To demonstrate the effectiveness of our

policy, we conduct a BSC case study in Chapter 6 using platelet as a perishable product

in a distribution network that includes a production site and multiple hospitals. Finally,

we summarize our findings and suggest directions for future research in Chapter 7.

1.1 Notation

For any N ∈ N, we use [N ] to denote the set {1, 2, · · · , N}. With this notation, for any

other n ∈ N the set {n, n + 1, · · · , N} is shown by [n,N ]. To simplify, we represent a

5



vector (x1, x2, . . . , xN) as x[N ]. Additionally, we define the function x+ = max{x, 0}, which

returns the positive part of x, respectively.
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Chapter 2

Literature Review

Inventory management, particularly for perishable products, and the complexities involved

in shipping them within a distribution network, have drawn considerable attention in the

literature. The high cost associated with perishable products and the presence of demand

uncertainty have prompted numerous studies to optimize these systems. In this chapter,

we review the related studies, exploring various approaches that have been proposed to

improve the efficiency of such systems.

2.1 PIRP with Uncertainty (Stochastic PIRP)

Soysal et al. (2015) have developed a model for a PIRP with demand uncertainty in a

VMI system. They have enforced a probability constraint to ensure a target service level,

thereby transforming their formulation into a chance-constrained model. To handle the

complexity of this constraint, they have created deterministic approximations that result

in deterministic MIP models. These approximations have allowed them to obtain solutions
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using commercial solvers readily. The authors have implemented this multi-period model

to make all decisions for the entire planning horizon at once. In a distribution network with

less than 11 retailers, their models have successfully achieved significant savings in average

total cost. However, when they extended the analysis to a larger distribution network with

up to 20 retailers, they encountered higher complexity. In this case, optimal solutions have

not been obtained, or the optimality of the solutions has not been proven within a five-hour

time frame.

Crama et al. (2018) have suggested that incorporating uncertainty and combining in-

ventory with routing decisions for perishable products can significantly increase net profit

for retail chains in a VMI system. To address the challenge posed by the curse of dimen-

sionality, they have approached the PIRP in two phases: the PIP and VRP. The Expected

Value (EV) method serves as the main benchmark in their PIRP, where the daily ex-

pected demand is used to approximate the actual daily demand. In their network, they

have proposed several policies to maximize profit. These policies include the up-to-level

(UL) method, which considers a target service level, and the approximated dynamic pro-

gramming (ADP) method, which independently determines the delivery quantity for each

retailer. As their best policy, they have improved the ADP by applying a local search

metaheuristic to consider real routing costs for only two periods ahead. However, it is

important to note that their ADPs overlook three out of the four primary costs associated

with inventory systems: holding, penalty, and wastage costs. For the second phase, they

employ a classical VRP algorithm for each period.

The study conducted by Singla (2019) has focused on a PIRP that is built upon the

framework originally proposed by Coelho and Laporte (2014), with the objective of max-

imizing profit. They have employed a two-stage stochastic programming approach, where

the first stage involves determining routing decisions independent of demand realizations.
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To handle uncertainty, they have utilized a finite set of demand scenarios, resulting in a

scenario-based MIP model. To solve this model, they have utilized branch-and-cut and

Bender’s decomposition algorithms with the aid of a commercial solver. Their findings in-

dicate that the branch-and-cut algorithm outperforms Bender’s decomposition in terms of

both computation time and solution quality. However, it should be noted that a significant

number of demand scenarios are required to adequately capture the uncertainty, resulting

in computational efforts. In order to address this limitation, they have incorporated ro-

bust optimization techniques. The robust model handles demand uncertainty by utilizing

a smaller number of scenarios and aims to strike a balance between being conservative and

considering worst-case scenarios. Comparison results have demonstrated that the robust

model achieves average profit levels that lie between those obtained from the deterministic

and stochastic models.

Onggo et al. (2019) have formulated the PIRP within a VMI system as a MIP model.

In addition, they have proposed a simulation-based heuristic algorithm based on a local

search metaheuristic to solve it. The algorithm utilizes Monte Carlo simulation not only

to generate initial solutions but also to refine the solutions obtained through the local

search process. By incorporating stochastic demand through Monte Carlo simulation,

their approach distinguishes itself from previous similar studies.

In the study conducted by P. Liu et al. (2021), a mathematical model has been devel-

oped to optimize the PIRP with demand uncertainty in a BSC, utilizing the newest-unit,

first-out issuing policy. To solve the robust optimization model with a scenario set, a

three-phase heuristic algorithm has been proposed. In the first phase, routing decisions

are made, while the remaining decisions are deferred to the subsequent phases. Through

comparative analysis, it has been observed that the proposed algorithm, coupled with the

inclusion of transshipment, results in reduced product shortages and lower inventory levels,
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ultimately leading to a decrease in overall costs.

Mousavi et al. (2022) have introduced a two-stage stochastic programming model for

optimizing the total costs in a PIRP while incorporating production decisions to improve

product freshness and reduce wastage. The model has been evaluated under both normal

and pandemic conditions, showcasing its superior performance in dynamic and pandemic

settings. To solve the model, the researchers have proposed a metaheuristic algorithm

consisting of five phases, based on the decomposition technique proposed by Solyalı and

Süral (2017) with certain modifications. In the computational experiments, the proposed

method outperforms the CPLEX solver regarding solution quality while requiring less

computational time. It is important to note that although the proposed model allows for

shipping products of any age, the overall number of scenarios used in the algorithm is

limited. This may not fully capture the true uncertainty present in real-world situations.

For instance, in the computational experiments, a large network with up to 50 nodes is

considered, but only 30 scenarios are utilized throughout the decision-making process. This

limitation may not adequately capture the realistic range of uncertain situations for such

a large-scale network.

2.2 PIRP without uncertainty

The majority of the literature on PIRPs primarily focuses on deterministic problems, as-

suming that all relevant factors, including demand, are known. This assumption allows

researchers to explore different aspects of decision-making policies. However, it is impor-

tant to recognize that real-world PIRPs involve complexities and uncertainties that are not

captured in the deterministic setting. A notable study in this field is the work of Coelho and

Laporte (2014), which has served as a foundational reference for numerous subsequent stud-
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ies, for instance, the work of Singla (2019), as described earlier. In their study, Coelho and

Laporte (2014) have proposed a model for joint replenishment and delivery of perishable

products, with the aim of optimizing both inventory and routing decisions simultaneously.

The model is formulated as a MIP and solved exactly using branch-and-cut techniques.

The authors have investigated two variants of the PIRP, using oldest-unit, first-out and

newest-unit, first-out selling priority policies. Additionally, they have introduced an opti-

mized priority policy that determines which items to sell in each period, considering the

trade-off between cost and revenue. The model incorporates several assumptions, such as

having information on the age of products in both the supplier’s and retailers’ inventories,

as well as their demand, making it a deterministic MIP model. Moreover, the revenue and

holding costs vary with the product’s age. The authors have incorporated linear cuts into

their MIP and solved it using an exact classical branch-and-cut algorithm. However, the

NP-hard nature of the problem has made it difficult to solve for realistic problem sizes.

Overall, the paper presents an effective model for maximizing profits in medium-sized de-

terministic PIRPs. Furthermore, the authors have observed that the optimized priority

policy outperforms both the oldest-unit, first-out and newest-unit, first-out policies.

Alvarez et al. (2020) have presented four mathematical formulations for the same de-

terministic PIRP as described in Coelho and Laporte (2014). Two of these formulations

include a vehicle index, while the other two do not. To solve these formulations, the au-

thors have employed branch-and-cut algorithms. Furthermore, the authors have proposed

a hybrid heuristic approach that combines an iterated local search metaheuristic with two

mathematical programming components. It manages routing decisions through the local

search phase and the visit variables through a perturbation phase. The inventory variables

are then optimized using a multi-commodity flow problem formulation for a given set of

visit variables. Therefore, it performs like a two-phase approach where one decides about
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delivery quantities and the other works on routing decisions. Additionally, a MIP is used

as a solution improvement step in the final phase of the method.

Alkaabneh et al. (2020) have addressed a PIRP within a VMI system, with a focus on

estimating fuel costs and the supplier’s ability to deliver products of any age, similar to the

model proposed in Coelho and Laporte (2014). Their objective is to maximize the supplier’s

profit while minimizing costs associated with fuel consumption, inventory holding, and

greenhouse gas emissions. To tackle this problem, the authors have proposed two different

algorithms: Bender’s decomposition and a two-stage metaheuristic, inspired by Archetti et

al. (2017). In their approach using Bender’s decomposition, they have incorporated various

computational improvements, including the introduction of valid inequalities tailored to the

routing variables. The computational results demonstrate that Bender’s decomposition,

when combined with several acceleration strategies, exhibits efficiency in handling small to

medium-sized instances of the problem. On the other hand, their two-stage metaheuristic

demonstrates the capability to handle larger instances of the problem.

In addition to the studies discussed above in relation to Coelho and Laporte (2014),

there have been several studies that attempted to address PIRPs using various heuristics.

The earliest one is the work by Le et al. (2013). They have developed a mathematical model

for PIRP and used a column generation-based heuristic algorithm to optimize inventory

and routing decisions in a deterministic PIRP. The formulation has been improved by incor-

porating linear cuts based on perishability and inventory bounds. The study demonstrates

that integrating routing and inventory decisions can result in significant cost savings.

Mirzaei and Seifi (2015) have suggested a model that efficiently handles a PIRP by pre-

venting overstocking and considering how the age of such inventory can negatively affect

demand in a VMI. To solve the proposed MIP, the authors have employed a commercial

solver for smaller cases and a metaheuristic approach for larger cases. The algorithm uses
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a predefined delivery quantity for each retailer and then a neighbourhood search to im-

prove the delivery quantities. Afterward, a VRP sub-problem and a PIP are implemented

consecutively within the metaheuristic framework to improve the solution in an iterative

two-phase approach.

Rohmer et al. (2019) have introduced a PIRP and proposed a metaheuristic approach

that combines an adaptive large neighbourhood search with a MIP formulation to solve it.

They have tested three variants of the heuristic on different instances using a two-phase

approach. In the first variant, the MIP is initially solved to obtain the solution for the

PIP, followed by the adaptive large neighbourhood search to identify the optimal values for

routing decisions. Conversely, in the second variant, the approach involves creating daily

delivery routes first and then solving the PIP. The last variant is a hybrid of the first two

and has demonstrated better performance on relatively larger networks. The results have

shown that the cost structure plays a significant role in selecting the best variant.

Qiu et al. (2019) have addressed a PIRP integrated with a production planning problem.

They have developed a MIP and have provided a branch-and-cut algorithm strengthened

with logical, lot-sizing, and lifted MTZ-type valid cuts. The solution process follows a

two-phase approach, with a sub-problem for production-distribution decisions and a VRP

phase, for which they have employed a neighbourhood heuristic from the existing literature.

Liu et al. (2020) have addressed a PIRP and have adopted a two-phase approach similar

to that of Crama et al. (2018). They have adopted this approach because they encountered

computational challenges when attempting to solve instances with 20 hospitals in the

network within a reasonable time frame. Their focus is on optimizing a BSC within a VMI

system. In the PIP phase, they issue platelet units using a FIFO policy. They have made

certain assumptions, such as assuming that expiration only occurs at the production center,

as transportation to hospitals is based on realized demand. This results in a deterministic
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MIP model. Like Crama et al. (2018), they have incorporated a path-related fixed cost

to their MIP model to maintain the connection between PIP and VRP. After solving the

multi-period MIP, they use the decided quantities in a multi-period VRP and apply an

adaptive large neighbourhood search to solve this NP-hard problem. To reduce costs, they

have designed a search procedure that integrates routing costs in the PIP by updating

fixed cost parameters and repeating the two phases until a stopping criterion is reached.

The authors argue against the exclusion of holding costs, as implemented by Crama et al.

(2018), emphasizing that holding costs play an important role in decision-making for a

BSC. They assert that disregarding holding costs is not a viable or practical approach,

especially in the BSC of China. However, it should be noted that their VMI system does

not account for stochastic demand, which limits its applicability to real-world situations.

2.3 IRP

Most of the earlier studies in the literature focused on inventory routing decisions for non-

perishable or standard products. For instance, Hemmelmayr et al. (2009) have investigated

the potential impact of introducing a VMI system in the BSC of the Austrian Red Cross.

Their focus is on minimizing travel costs while disregarding inventory costs and not explic-

itly considering spoilage in inventory. To address spoilage, they adjust inventory capacities

based on known demand and product shelf life. Hence, we categorize this study as an IRP.

The authors have proposed three solution approaches to establish regularity in the delivery

schedule: a basic heuristic, a MIP, and a variable neighbourhood. It is demonstrated that

the latter two methods have significant potential for reducing routing costs. They have

claimed that the proposed optimization techniques can handle non-stationary demand and

multiple blood products. However, uncertain demand is a challenging setting that cannot
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be easily accommodated by their approaches, necessitating further investigation.

Coelho et al. (2012) have investigated an IRP that allows transshipment between retail-

ers. They have developed an adaptive large neighbourhood search heuristic to determine

delivery quantities, optimal routes, and the amount of transshipment utilizing a single ve-

hicle. Their analysis incorporates uncapacitated and capacitated replenishment policies;

however, the study does not consider stochastic demand.

Bertazzi et al. (2015) have focused on addressing the IRP with stochastic demand and

transportation procurement in a VMI setting. They have found that finding an optimal

solution for the stochastic problem is not straightforward. To overcome this challenge, they

have proposed a heuristic approach that utilizes a rollout horizon algorithm based on the

ADP method. They approximate different aspects of the value function by solving MIP

models, enabling them to obtain near-optimal solutions. In order to handle the stochastic

nature of the problem, they use scenarios generated by sampling from the demand distri-

bution. In making routing decisions, they use a fixed-cost parameter as the transportation

procurement cost in the MIPs. They have compared the effectiveness of their approach

with the EV policy and emphasized the importance of incorporating the probability dis-

tribution of demand into the decision-making process. Although their approach shares

similarities with our developed policy, their transportation fixed cost does not represent a

realistic estimation of the routing costs and is not included in their metaheuristic.

Archetti et al. (2017) have presented a metaheuristic approach for solving the IRP with

the objective of minimizing distribution costs. They have developed MIP models that

ensure no stock-outs occur at retailer sites and vehicle capacity constraints are met. These

MIP models incorporate a maximum-level replenishment policy, which enables the delivery

of any quantity to retailers as long as the predetermined maximum level is not exceeded.
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Sonntag et al. (2023) have presented an exact branch-price-and-cut method for ad-

dressing the stochastic IRP in an infinite horizon setting. Their method involves group-

ing retailers and determining fixed replenishment intervals and UL values for each group.

This approach effectively balances transportation costs, emergency shipments, and holding

costs. To ensure target service levels and respect vehicle capacity, the authors introduce

two chance constraints. They convert the integer chance-constrained model into a MIP

formulation and solve it using a column generation algorithm. The authors emphasize

the importance of considering all cost components in the context of stochastic IRPs and

compare the performance with an EV policy to illustrate the impact of uncertainty.

2.4 Inventory Problems in BSC

There are papers in the literature that employ multi-stage or two-stage programming tech-

niques to address various inventory problems in the BSC. For instance, Dillon et al. (2017)

have proposed a two-stage stochastic programming model for making inventory decisions

in a hospital’s BSC. The model is based on the multi-period multi-product lot-sizing prob-

lem and operates under an (R, S) replenishment policy. It considers demand uncertainty

and the perishability of blood units. The authors have formulated a MIP model as the

deterministic equivalent of the two-stage stochastic programming problem, and scenarios

are generated using Monte Carlo sampling. They have used a commercial solver to find

the optimal solution to the problem. Their experiments have shown that reducing the UL

level, S, reduces the total cost without compromising service quality.

Hamdan and Diabat (2019) have introduced a two-stage stochastic programming ap-

proach for optimizing a red blood cell supply chain. The model incorporates four echelons:

mobile blood facilities, local blood banks, regional blood banks, and hospitals. It considers
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various factors, such as uncertainty in both demand and supply, as well as the perishability

of the product. In the first stage, the model determines the optimal number of mobile blood

collection facilities to deploy, while the second stage focuses on inventory and production

decisions. The authors have considered six scenarios, comprising various combinations of

demand and supply scenarios. They have transformed the tri-objective problem into a

single-objective MIP problem and solved it using a commercial solver.

Recently, Dillon et al. (2023) have proposed a two-stage stochastic programming model

for a PIP in a platelet supply chain. In the first stage, the model determines a UL value,

while the second stage focuses on allocating platelet units to hospitals without considering

routing decisions. The model is formulated as a deterministic MIP using scenario sets de-

rived from real-world data. The authors have employed the Progressive Hedging algorithm

to solve the model, which facilitates a decomposed version of the model through the use

of Lagrangian duality. One advantage of this approach is the ability to solve the model

in parallel, ensuring a manageable computational workload. It should be noted, however,

that this approach is most suitable when all decisions for a given planning horizon can

be made at once. If frequent decision-making is required, such as on a daily basis, the

computational steps involved may become too time-consuming.

Meneses et al. (2023) have addressed the challenges of defining optimal ordering policies

for blood products in the presence of demand uncertainty. They have proposed a two-

stage stochastic programming model to determine the optimal (R, S) policy parameters,

considering factors such as perishability, ABO substitutions, and demand uncertainty. In

the first stage of the model, the values for (R, S) are determined, and in the second stage,

operational-level decisions, such as the quantity to be ordered each day, are made. The

model is solved using a commercial solver. By replacing the unknown parameter with a

set of discrete scenarios with known probabilities, different ordering policies are obtained.
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The results show that the proposed model successfully reduces the UL level for various

blood types across different policies while maintaining service levels, reducing total costs,

and improving other relevant indicators.

Xu and Szmerekovsky (2023) have introduced a scenario-based multi-stage stochastic

program to optimize the integrated platelet supply chain. The model focuses on decision-

making regarding platelet collection, production, delivery, and transshipment among hos-

pitals, considering different demand scenarios. To capture the uncertainty, a scenario tree

is employed to represent all possible outcomes of discrete random events in the model.

Specifically, two demand scenarios are generated for each day within the eight-day plan-

ning horizon. The model is solved using a commercial solver. The numerical results

demonstrate the effectiveness of the proposed model in handling random daily demand,

outperforming a two-stage stochastic model in a small network. However, it is important

to acknowledge that their multi-stage programming approach faces challenges as the num-

ber of stages increases to 7 days. Additionally, the computational complexity increases

exponentially as the number of scenarios grows with the number of time stages.

In the above-mentioned papers, the performance of the proposed approaches is com-

pared to the deterministic formulations of their studied BSC. Moreover, routing decisions

are not the primary focus of these studies.
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Chapter 3

The Perishable Inventory Problem

While the primary focus of our work is on the stochastic PIRP, we believe it is essential to

begin with a simpler version, the stochastic PIP, to provide a clear problem definition and

develop a solid understanding of the applicable policy solutions. In particular, we discuss

policies obtained by directly solving the related Dynamic Programming (DP) method,

and the Direct Lookahead (DLA) models which offer practical solutions to the challenges

encountered in DP. By establishing the foundation with the PIP, we can effectively address

the integration of routing decisions into perishable inventory management. This will allow

us to smoothly transition to the more complex PIRP and introduce our proposed policy

in the next chapter.

3.1 Formulations

In inventory management systems, the decision at each period is how much to order to

satisfy the demand while minimizing the total cost, including holding, penalty, wastage,
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and replenishment costs. The objective of such inventory problems can be to minimize the

total cost or maximize the profit. The decision-making process typically occurs within a

finite planning horizon, denoted by T . In this paper, we use the terms time and period

interchangeably to denote the discrete period t, which is assumed to be one day.

When an inventory system deals with a product with limited shelf life, the problem

is considered as a PIP. In this work, we consider a single perishable product with a shelf

life of L periods, where L > 0. We assume that the demand in period t is a random

variable denoted by Dt where the distribution of Dt is known, and the demand in periods

1, 2, · · · , T are independent and identically distributed (i.i.d.). The realized demand in

period t is represented by dt, which corresponds to the actual value.

We adopt the common assumption from the literature that the finite planning horizon

begins with zero inventory for all levels of l ∈ [L]. Additionally, we assume that there are

no supply constraints. The sequence of events occurring in each period is as follows:

(i) The decision maker reviews the current state of the system, i.e. St = (R1
t , R

2
t , · · · , RL−1

t )

where Rl
t is the inventory level of products with a remaining shelf life of l periods at

time t.

(ii) Based on the state of the system and the unlimited supply, an order with the unit

price of a (if needed) is placed and fulfilled immediately. This implies that the

lead time for receiving the product from the supplier is zero. As a result, the total

inventory level is increased to
∑L−1

l=1 Rl
t + xt, where xt represents items received on

day t, which comprise the freshest units in the inventory.

(iii) The demand is observed and satisfied using the available inventory. It is assumed

that the issuing policy at the retailer is FIFO.
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(iv) Any unmet demand is lost, resulting in a penalty cost of p per unit lost. Thus, our

inventory system operates as a lost-sale system.

(v) Units expired in each period are discarded with a cost of e per unit expired.

(vi) All units available at the end of each period are carried to the next period, and

the inventory levels are updated to Rl
t+1 for all l ∈ [L − 1]. The system incurs the

holding cost of h per unit of inventory at the end of each period. We adopt a similar

assumption to Coelho and Laporte (2014) that products reaching their maximum

age (l = 1) at the end of a time period will not be stored in the regular inventory

area. Rather, they will be segregated and stored separately to be discarded in the

next period.

Let C(·) denote the cost function of the inventory system. Then, the cost incurred at

time t can be written as,

C(St, xt) = h

(
L−1∑
l=1

Rl
t + xt −Dt

)+

+ p

(
Dt −

L−1∑
l=1

Rl
t − xt

)+

+ e(R1
t −Dt)

+ + axt, (3.1)

where the holding, penalty, wastage, and replenishment costs are captured by the first,

second, third, and fourth terms, respectively. The dynamic of the system, which captures

how the state of the system changes going from period t to period t+1, can be written as,

Rl
t+1 =

Rl+1
t −

(
Dt −

l∑
j=1

Rj
t

)+
+

∀l ∈ [L− 2], (3.2a)

RL−1
t+1 =

xt −

(
Dt −

L−1∑
j=1

Rj
t

)+
+

. (3.2b)
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Equations (3.2) can be considered as the transition function St+1 = SM(St, xt, Dt) where

SM(St, ·) is a function that takes the system state at time t, along with any other relevant

information and returns the system state for the next period. We also assume that the

inventory level in each period should remain below a fixed number of Rmax. This means

that we have a capacity constraint as

L−1∑
l=1

Rl
t + xt ≤ Rmax. (3.3)

Clearly, this constraint indirectly puts an upper bound on the order quantity in each pe-

riod. A lower bound may also be considered to achieve a predetermined Target Service

Level, which reflects the desired level of service fulfillment and could be formulated deter-

ministically as a fixed percentage or as a probabilistic metric in a stochastic context.

To determine the optimal replenishment decision, we need to repeatedly minimize the

total cost of the system as new information is revealed at time t ∈ [T ]. Since the demand

in each period is unknown, the inventory Rt becomes a random variable, and so does

the ordering quantity xt. Due to this randomness, our multi-period problem turns into a

sequential decision-making problem, in which the decision variable xt is a function of St, the

state of the system at time t. This relationship is commonly referred to as a policy, denoted

by π, which holds the information that defines the decision-making function (Powell, 2022).

Therefore, we aim to find an optimal policy that solves the following base model

min
π∈Π

E

[
T∑
t=1

C(St, X
π
t (St))|S0

]
, (3.4)

where the initial state S0 is assumed to be known, and the feasible region is expressed as

Xt(St) = {xt|(3.2), (3.3), xt ≥ 0}. (3.5)

Note that by incorporating the randomness, we moved to a stochastic formulation of the

problem by replacing the decision variable xt with the policy function Xπ(St).
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3.2 Policy Solutions

The policy functionXπ(St) can be any form of the two general classes categorized by Powell

(2022). The first category is called Policy Search, where the parameters of a function

or an optimization problem are tuned to make it efficient. In policy search, parametric

models are commonly used to represent policies. Parametric models can be as simple as

linear functions, which directly map a state to an action. In these analytical functions,

parameters are coefficients of the independent variables. More complex structured models,

such as (s, S) policies for inventory systems, also fall into this category. Finding the optimal

values for parameters s and S is the main goal of the policy search here. Also, in the field

of computer science, neural networks that require parameter tuning are considered within

this category.

The second category is based on the Lookahead models, which capture the potential

downstream effects of a decision made in the present on future outcomes. The basic

statement of the Lookahead models would be

X∗
t (St) = arg min

xt∈Xt(St)

(
C(St, xt) + E

[
minπ∈ΠE

[ T∑
t′=t+1

C(St′ , X
π
t′(St′))|St+1)

]
|St, xt

])
,

(3.6)

where Xπ
t (St) is the Lookahead policy here (also referred to as policy-within-the-policy).

Note that the expectations E[· · · |St] and E[· · · |St+1] in Equation (3.6) are the contracted

forms of EStEWt+1|St and ESt+1EW[t+2,T ]|St+1 , respectively. These expectations are often

written as EW , but we add [· · · |S] to emphasize the dependence on the initial state S.

Equation (3.6) is the well-known Bellman’s equation which can be computed exactly

using the DP method in certain cases. However, in many instances, the computational

complexity necessitates approximating the value function in DP, which leads to the devel-

opment of a group of methods known as ADPs. When ADPs cannot effectively approximate
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the Lookahead problem, DLA methods can be utilized to create a reasonable approxima-

tion of the future directly. We can further categorize the DLA methods into deterministic

DLAs and stochastic DLAs (stochastic programming).

Since this chapter aims to develop a solid understanding of the solution approaches, we

begin by examining DP for the PIP. Later in Chapter 4, we will extend DP and explain its

complexities, which will lead us to the conclusion that DLAs are a more suitable approach.

3.2.1 Dynamic Programming

To develop a DP framework, the initial step involves identifying the action and state spaces.

Based on the defined PIP, the state space can be represented by the set of vectors

St = {St|
L−1∑
l=1

Rl
t ≤ Rmax}, (3.7)

where St = (R1
t , R

2
t , · · · , RL−1

t ).

Since, in this chapter, we seek the optimal value for the replenishment decision, the

action taken at time t would be to order xt units of the product. In order to stay in the

state space after each transition, the action space should be bounded from above by Rmax.

Hence, the feasible actions could be any element of the set

At(St) = {xt|0 ≤ xt ≤ Rmax −
L−1∑
l=1

Rl
t}, (3.8)

which clearly varies for each St ∈ St. The value function can be then stated as

Vt(St) = min
xt∈At(St)

(
C(St, xt) + E

[
Vt+1(St+1)|St

])
, (3.9)

where C(St, xt) is defined in Equation (3.1). Vt+1 represents the downstream impact of the

action xt taken in state St for all t ∈ [T ]. Since time, states, and decisions are all discrete,
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the optimal solutions can be found using the backward DP technique. Interested readers

can find more detailed information about the backward DP technique in Bertsekas (2005).

3.2.2 Direct Lookahead Approximations

As described earlier, when we cannot precisely solve the Lookahead model given in Equa-

tion (3.6), we can approximate the lookahead part (value function) by an ADP method.

Nonetheless, accurately approximating the future cost poses several challenges. One such

challenge arises from the dependencies and interactions among variables. For example,

the replenishment cost may be influenced by the current inventory level. Furthermore,

maintaining a precise estimate of the value function becomes challenging when the en-

vironment undergoes time-varying changes, such as fluctuating demand patterns. These

changes require frequent updates to handle the non-stationary nature of the environment.

Also, the curse of dimensionality presents another significant burden. As the problem’s

dimensionality increases, the size of the state and action spaces can grow exponentially,

making it increasingly difficult to achieve an accurate approximation.

To address these challenges, we propose an algorithm based on DLA methods. As

previously mentioned, DLAs directly approximate the impact of potential future outcomes

on the current decisions. To gain a deeper understanding of this approach, we first explore

the structure of sequential decision-making and Lookahead policies.

In a sequential decision-making problem, the decision-making process involves a se-

quence of states, decisions, and information that repeats until the end of the planning

horizon. In a Lookahead model, we aim to make a decision at time t while considering its

impact on future periods. This is akin to standing at the starting point of the sequence,

represented as St. The information regarding the subsequent period, denoted as Wt,t+1,
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becomes available after the decision of the current day is made, i.e., xt. When utilizing

DLA methods, we approximate the entire sequence as

(St, xt, W̃t,t+1, S̃t,t+1, x̃t,t+1, W̃t,t+2, . . . , S̃tt′ , x̃tt′ , W̃tt′ , . . . , S̃tT , x̃tT , W̃tT ), (3.10)

where W̃tt′ , S̃tt′ and x̃tt′ are approximations ofWtt′ , Stt′ and xtt′ , respectively. The subscripts

indicate that the decision is being made for the current time t while viewing its impact on

future periods t′ ∈ [t+ 1, T ].

We can simplify the Lookahead model using various approximation strategies, including

outcome aggregation. According to this strategy, we use an aggregated set of scenarios

instead of the entire set, i.e. Ω̃ ⊂ Ω. By adopting this widely used strategy, we can express

the DLA framework as

XDLA
t (St) = arg min

xt∈Xt(St)

(
C(St, xt) + E

[
min
π̃∈Π̃

Ẽ
[ T∑

t′=t+1

C(S̃tt′ , X̃
π̃
tt′(S̃tt′))|S̃t,t+1)

]
|St, xt

])
,

(3.11)

where Π̃ is the modified set of Lookahead policies and Ẽ is the expectation over the aggre-

gated set of random outcomes Ω̃.

It is important to note that Xπ
t (St) is a policy-within-the-policy, which means any other

type of policy can be employed within the DLA policy. As a case in point, Lookahead Cost

Function Approximation is a hybrid policy specifically designed for sequential decision-

making problems involving forecasts. As it falls beyond the scope of this study, we will

not elaborate on it further. Interested readers can refer to Powell and Ghadimi (2022) for

more detail.

In addition, there are other strategies to simplify the determination of the solution for

XDLA
t . One such strategy is known as stage aggregation, which involves combining stages

in the decision-making process. Each stage consists of an information-disclosure process
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followed by decision-making. By employing this strategy, we can establish an alternative

formulation for Equation (3.11), referred to as two-stage approximation of the sequential

problem. In the following, we first introduce multistage stochastic programming and then

apply the stage aggregation strategy.

Two-Stage Approximation

The PIP can also be formulated as a basic multistage stochastic program as follows:

min
xt∈Xt(St)

C(St, xt) + E

[
min

xt+1∈Xt+1(St+1)
C(St+1, xt+1) + E

[
· · ·

+ E
[

min
xT∈XT (ST )

C(ST , xT )|ST )

]
· · · |St+1

]
|St

]
.

(3.12)

In theory, Equation (3.12) is equivalent to the value function given in Equation (3.9) and

should provide the optimal solution. However, practical challenges associated with DP,

such as dependencies, non-stationary environments, and the curse of dimensionality, can

still pose difficulties and restrict its efficiency. To overcome these challenges, we adopt the

DLA methodology. Additionally, we employ different approximation strategies to further

improve the efficiency of the algorithm. One such strategy is stage aggregation, where we

approximate the problem in (3.12) as a two-stage problem by making the initial decision

first. This strategy helps simplify the problem and mitigate the computational complexity

associated with it. This is followed by observing all future events from an aggregated

sample set Ω̃t. Afterwards, all remaining decisions x̃tt′ for t′ ∈ [t + 1, T ] are made. This

results in a change to the sequence in (3.10), such that(
St, xt, (W̃t,t+1, W̃t,t+2, . . . ), (x̃t,t+1, x̃t,t+2, . . . )

)
. (3.13)
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The two-stage approximation of the sequential problem in Equation (3.12) can then be

presented as

min
xt∈Xt(St)

C(St, xt) + E

[
min(

x̃tt′∈X̃ (S̃tt′ )
)
t′=(t,T ]

T∑
t′=t+1

C
(
S̃tt′ , x̃tt′

)
|St

]
. (3.14)

The main idea behind this approach is to optimize an approximated problem across |Ω̃t|

number of scenarios and over the entire horizon, all at once, while only using the values

of xt at the end. This approach is distinct from the deterministic DLA only in terms of

considering |Ω̃t| samples instead of the actual value. Thus, we have(
St, xt, (W̃t,t+1(ω̃t), W̃t,t+2(ω̃t), . . . ), (x̃t,t+1(ω̃t), x̃t,t+2(ω̃t), . . . )

)
, (3.15)

where each ω̃t ∈ Ω̃t represents a full sequence of the random variables W̃[t+1,T ]. Such a

sequence is called a scenario or a sample path, and it occurs with a probability of P (ω̃t).

The use of scenarios proves to be an effective method for capturing the inherent un-

certainty of the problem. This involves assigning values to random variables, such as the

amount of each period’s demand in the PIP. By using scenarios, we can accurately account

for the variability in the problem. This allows us to express the two-stage approximated

problem in Equation (3.14) as follows:

min C(St, xt) +
∑
ω̃t∈Ω̃t

P (ω̃t)
T∑

t′=t

C
(
S̃tt′(ω̃t), x̃tt′(ω̃t)

)
(3.16a)

s.t. xt ∈ X (St), (3.16b)

x̃tt′(ω̃t) ∈ X̃
(
S̃tt′(ω̃t)

)
∀t′ ∈ [t+ 1, T ]. (3.16c)

Note that we use the tilde notation to distinguish the approximations. In fact, x̃tt′(ω̃t)

does not represent the actual decision made for the future time t′. Instead, they are
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decisions associated with the random variables that appear in scenario ω̃t. Their sole

purpose is to assist in making a more favorable decision for the current period by capturing

the potential future outcomes. In a concise representation, first-stage decisions are denoted

as xt, while x̃tt′(ω̃t) represents the second-stage decisions.

In conclusion of this chapter, our exploration of the stochastic PIP has enabled us

to define the problem and gain insights into diverse policy solutions. We have examined

policies derived from the DP approach, as well as the application of DLA policies. With

this groundwork established, we are well-prepared to explore the complexities of the PIRP

and introduce our innovative policy in the following chapter.
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Chapter 4

Perishable Inventory Routing

Problem and the Proposed Policy

The goal of this chapter is twofold. First, we aim to expand the stochastic PIP intro-

duced in Chapter 3 and formulate the stochastic PIRP. This will provide a comprehensive

understanding of the problem at hand. Second, we explore the DP solution approach,

building upon the foundations established in the previous chapter. We also examine ADP

methods and their potential for addressing the stochastic PIRP. We then propose a novel

algorithm based on the DLA methodology, which offers an effective and efficient solution

to the problem.

4.1 Formulations

When routing decisions are involved, the PIP becomes more complex and is referred to as

the PIRP. In our case, the PIRP is associated with a one-to-many distribution network,
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where a single supplier serves multiple retailers. We assume that the system operates as a

VMI where the supplier should determine the optimal quantity of the perishable product

to be delivered to each retailer while considering inventory constraints. Furthermore, the

supplier needs to develop an efficient routing plan and assign retailers to different delivery

routes, while considering the distribution constraints. To summarize, our PIRP involves

the challenges of managing perishable inventory and the complexities of designing optimal

routes for product delivery in a one-to-many distribution network that operates under the

VMI system.

We define the problem using a complete graph G = (N , E) where the sets N =

{0, 1, · · · , N} and E = {(i, j) : i, j ∈ N , i ̸= j} represent the sets of nodes and edges,

respectively. We let node 0 be the supplier, and the set N 0 = N \ {0} stands for N

retailers. The traveling cost through the edge (i, j) is also shown by cij. The deliveries are

performed by a sufficiently large fleet of homogeneous vehicles with capacity Q where every

travel begins and ends at the supplier, creating one route for the problem. We assume each

retailer is assigned to only one route and served by a single vehicle in each period. This

means that each vehicle can take one route at most, and there are no split deliveries.

We proceed under the assumption that the supplier does not hold any inventory and

has the capability to meet all demand with fresh products in each period. This assumption

aligns with the absence of supply constraint that we previously established in the PIP. This

can be understood as the supplier having unlimited capacity, which enables replenishment

quantities to be independent of one another. On the other hand, retailer i from N 0

operates an inventory system with a certain capacity denoted as Rmax
i ≤ Q. This capacity

assumption is consistent with perishable inventory systems, where fresh orders are typically

not placed in large quantities.

In a PIRP, a similar sequence of events to that of the PIP occurs for each retailer,

31



as described in Section 3.1. The only distinction is that a centralized decision maker, at

each period t, determines the replenishment quantities, denoted by xt,i, for every retailer

i ∈ N 0. Subsequently, the decision maker selects the delivery routes, represented by

yt = (yij,t)(i,j)∈E . Additionally, the decision maker may establish additional criteria, such

as defining a target service level for each retailer.

To provide a comprehensive understanding, we begin by separately defining the PIP

and VRP formulations. Subsequently, we combine these formulations to form the PIRP as

a unified problem. This approach enables us to set the foundation for the proposed policy

solution, which will be discussed in the subsequent section.

4.1.1 PIP’s Formulation:

We use similar formulations as in Section 3.1 with the only difference that the PIP’s nota-

tions are appended by a subscript i ∈ N 0 to differentiate between the multiple retailers in

the network. Based on the stochastic nature of the demand, the problem can be expressed

as follows:

C (St) = min C(St, xt)

=min E

[ ∑
i∈N 0

h

(
L−1∑
l=1

Rl
t,i + xt,i −Dt,i

)+

+ p

(
Dt,i −

L−1∑
l=1

Rl
t,i − xt,i

)+

+ e(R1
t,i −Dt,i)

+ + axt,i

] (4.1a)

s.t.
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Rl
t+1,i =

Rl+1
t,i −

(
Dt,i −

l∑
j=1

Rj
t,i

)+
+

∀l ∈ [L− 2], i ∈ N 0, (4.1b)

RL−1
t+1,i =

xt,i −

(
Dt,i −

L−1∑
j=1

Rj
t,i

)+
+

∀i ∈ N 0, (4.1c)

xt,i ≤Rmax
i −

L−1∑
l=1

Rl
t,i ∀i ∈ N 0, (4.1d)

xt,i ≥0 ∀i ∈ N 0, (4.1e)

where xt = (xt,i)i∈N 0 and St = (St,i)i∈N 0 = ((Rl
t,i)l∈[L−1])i∈N 0 . From this point, we define

the feasible set of the PIP as,

Xt (St) = {xt|(4.1b)− (4.1e)}. (4.2)

Equation (4.1a) aims to minimize the expected total cost of the PIP at time t. The

constraints (4.1b)-(4.1c) capture the dynamics of the system, assuming that the retailers

follow the FIFO issuing policy. Constraint (4.1d) ensures that orders are placed in a

manner that does not exceed the inventory capacity of each retailer upon receiving the

products. Lastly, constraint (4.1e) represents the non-negativity of the variables involved

in the formulation.
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4.1.2 VRP’s Formulation:

With all assumptions described earlier in Section 4.1, the VRP seeks an optimal solution

to the following formulation

G (xt) = min G(xt, yt) = min
∑

(i,j)∈E,i ̸=j

cijyij,t (4.3a)

s.t.
∑
i∈N 0

xt,i ≤ Qzt, (4.3b)

∑
i∈N ,i ̸=j

yij,t = 1 ∀j ∈ N 0, (4.3c)

∑
j∈N ,j ̸=i

yji,t = 1 ∀i ∈ N 0, (4.3d)

∑
i∈N 0

yi0,t = zt, (4.3e)

∑
j∈N 0

y0i,t = zt, (4.3f)

qt,j − qt,i ≥ xt,j −Q(1− yij,t) ∀i, j ∈ N 0, i ̸= j, (4.3g)

0 ≤ qt,i ≤ Q− xt,i ∀i ∈ N 0, (4.3h)

yij,t ∈ {0, 1} ∀(i, j) ∈ E , i ̸= j, (4.3i)

zt ∈ Z+, (4.3j)

where qt,i is the remaining capacity after visiting node i. The set of feasible solutions for

the VRP problem is

Yt (xt) = {yt|(4.3b)− (4.3j)}. (4.4)

The objective function in (4.3a) minimizes the travel cost at time t. Constraint (4.3b) en-

forces the number of vehicles required for the delivery. Constraints (4.3c)-(4.3d) represent

the flow conservation constraints governing the flow of the items between nodes. Con-

straints (4.3e)-(4.3f) guarantee that the vehicles return to the supplier after completing
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their travel. The constraints (4.3g)-(4.3h) are known as the MTZ constraints, which elim-

inate sub-tours while considering each vehicle’s capacity. Lastly, constraints (4.3i)-(4.3j)

indicate the type of the decision variables.

It can be seen that constraints (4.3b), (4.3g), and (4.3h) link the VRP to the PIP’s

decisions. Since demand is realized before this stage, the decisions derived from the PIP

serve as inputs to the VRP. In other words, the routing decisions in the VRP are based on

the earlier decisions made in the PIP.

4.1.3 PIRP’s Formulation Over a Finite Horizon:

Ultimately, we integrate the PIP and VRP formulations in (4.1) and (4.3) over the entire

horizon. The resultant is a multi-period stochastic PIRP as

PIRP(S0) = min
π∈Π

E

[
T∑
t=1

C(St, X
π
t (St)) +G(xt, Y

π
t (xt))|S0

]
, (4.5)

where Xπ
t and Y π

t are the policies that determine decision variables xt and yt based on the

feasible sets X (St) and Y (xt), respectively, for all t ∈ [T ].
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4.2 Policy Solutions

In this section, we attempt to solve the stochastic problem given in Equation (4.5) by

employing Lookahead policies where its basic statement for PIRP at time t would be

X∗
t (St) , Y

∗
t (xt) = arg min

xt∈Xt(St), yt∈Yt(St)

(
C(St, xt) +G(xt, yt)

+ E

[
min
π∈Π

E
[ T∑

t′=t+1

C(St′ , X
π
t′(St′)) +G(xt, Y

π
t (xt))

|St+1, xt+1)

]
|St, xt

])
.

(4.6)

As discussed in Chapter 3, DP, ADP, and DLAs are various forms of the Lookahead policy.

While we can directly focus on the DLA approach, we choose first to establish the DP

framework. This allows us to highlight the challenges associated with high dimensions and

the limitations of DP in solving the stochastic PIRP. We then apply approximation tech-

niques to show that the complexities persist even when using ADP methods and seeking

optimal solutions through the backward DP technique. Consequently, a DLA methodology

is more suitable for addressing the problem. Specifically, we adopt a two-stage approxi-

mation approach within the stochastic DLA framework as it offers superior capabilities in

handling complexities more effectively than other methods.

4.2.1 Dynamic Programming

We start at T and proceed backward. The state space consists of ST = (ST,i)i∈N 0 where

ST,i = (Rl
T,i)l∈[L−1]. With the same notation, we show the replenishment decision by the

vector xT = (xT,i)i∈N 0 where xT,i ≤ Rmax
i −

∑L−1
l=1 Rl

T,i. Moreover, one routing decision
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should be taken at this time, shown by yT . The action space is then AT (ST ) = XT (ST ) ∪

YT (xT ) and the value function can be written as,

VT (St) = min
xT , yT∈AT (St)

C(ST , xT ) +G(xT , yT )

= min
xT∈XT (St)

{
C(ST , xT ) + min

yT∈YT (xt)
G(xT , yT )

}
,

(4.7)

where minyT∈YT (xt) G (xT , yT ) is a VRP that needs to be solved for every vector of the

replenishment quantities, i.e., ∀xT ∈ XT (ST ). The same procedure is carried out for

period T − 1, with the difference that the value function now includes the expected cost of

future periods, which is only period T here:

VT−1(ST−1) = min
xT−1, yT−1∈AT−1(ST−1)

C(ST−1, xT−1) +G(xT−1, yT−1)

+ EDT−1

[
VT (ST−1, xT−1, DT−1)

]
= min

xT−1∈XT−1(ST−1)

{
C(ST−1, xT−1) + EDT−1

[
VT (ST−1, xT−1, DT−1)

]
+ g(xT−1)

}
,

(4.8)

where

g(xT−1) = min
yT−1∈YT−1(xT−1)

G(xT−1, yT−1). (4.9)

In the same vein, the value function at time t becomes

Vt (St) = min
xt∈Xt(St)

{
C(St, xt) + EDt

[
Vt+1(St, xt, Dt)

]
+ g (xt)

}
, (4.10)

where the VRP is

g (xt) = min
yt∈Yt(xt)

G(xt, yt). (4.11)

It is straightforward to verify there are
∏

i∈N 0(Rmax
i + 1)(L−1) number of states that

needs to be observed to find N + 1 optimal decisions at period t. Therefore, the curse

of dimensionality makes the backward DP technique inefficient. Due to this complexity,
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approximations can be applied to different parts of Vt, namely the state space, action

space, sample space, and lookahead part, resulting in an ADP policy. We apply all these

approximations and use the backward DP technique to find the solutions. The backward

DP technique iterates over the loops in Algorithm 1, where St = (St,i)i∈N 0 and xt =

(xt,i)i∈N 0 . To explain further, we start from the last period and calculate the value function

for every possible state ST ∈ S̃T . Then, we proceed backward and repeat the process for

each prior period (T ↓ 1). This is why it is referred to as a backward technique. The crucial

aspect is to consider all possible actions xt ∈ X̃t (St) and determine which one yields the

best value for the value function Vt (St) for all St ∈ S̃t. This evaluation takes into account

various scenarios of the random demand Dt ∈ Ω̃t with their corresponding probabilities

P (Dt).

The ADP algorithm outlined in Algorithm 1 involves solving a VRP for each decision

vector, which makes the problem to be still computationally intractable. To address this

challenge, there are papers that attempt to approximate g (xt) as defined in Equation

(4.11). One example of a policy that incorporates this approximation is the Decomposition

algorithm (DE) proposed by Crama et al. (2018). In the DE, the VRP is eliminated, and

instead, a fixed cost parameter is used for each retailer. This eliminates the need to solve

the VRP repeatedly. Subsequently, the DP is decomposed into separate sub-problems,

resulting in N individual DP instances, one for each retailer. The replenishment decisions

obtained from this ADP are then utilized to solve the VRP only once. Thus, this approach

addresses the problem in two phases, which ignores the true effect of routing costs on

replenishment decisions in the first phase.

To improve the outcomes of the ADP methods, some papers apply (meta)heuristics.

For instance, by implementing a neighbourhood search, Crama et al. (2018) improve their

routing decisions made through the decomposition method, DE. As they search locally for
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Algorithm 1 ADP with Backward Technique (Bertsekas, 2005)

Initialize: K = 0, VT+1(ST+1) = 0 ∀ST+1 ∈ S̃T+1

for t = T ↓ 1 do

for St ∈ S̃t do

Vt (St)←M

for xt ∈ X̃t (St) do

K ← C(St, xt)

for Dt ∈ Ω̃t do

K ← K + P(Dt)Ṽt+1(St, xt, Dt)

end for

K ← K + g (xt)

if K < Vt (St) then

Vt (St)← K

end if

end for

end for

end for
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a better routing plan, they update their replenishment decision vector by solving an integer

programming model. While this Decomposition-Integration algorithm (DI) appears to

produce favourable results, it suffers from the same drawback as all other ADPs. To be

more specific, an increase in the shelf life by one unit would result in having additional

Rmax
i (Rmax

i + 1)L−1 number of states for retailer i ∈ N 0. Thus, as the shelf life increases,

the exponential growth in computational complexity becomes increasingly challenging to

manage. In our preliminary numerical experiments, we observed that the computational

complexity of the ADPs grows significantly and becomes impractical to solve the problem

when the product’s shelf life exceeds 5. In summary, for the majority of supply chains with

perishable products, partially approximating the DP is inadequate for overcoming the

curse of dimensionality. Therefore instead of ADPs, we propose employing DLA methods

for stochastic PIRPs.

4.2.2 Direct Lookahead Approximation

To overcome the challenges associated with finding the optimal values for Equation (4.10),

we explore adopting the two-stage approximation approach from the stochastic DLA cat-

egory. Following the structure of the model in (3.16), we incorporate multiple scenarios

in the stochastic PIRP to estimate the costs of future days. Hence, we aim to solve the

following DLA model:

DLA (St) = min C(St, xt) +G(xt, yt) +
∑
ω̃t∈Ω̃t

P (ω̃t)
( T∑

t′=t+1

C(S̃tt′ (ω̃t) , x̃tt′ (ω̃t))

+G(x̃tt′ (ω̃t) , ỹtt′ (ω̃t))
) (4.12a)

s.t.
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xt ∈ X (St) , (4.12b)

x̃tt′ (ω̃t) ∈ X̃
(
S̃tt′ (ω̃t)

)
∀t′ ∈ [t+ 1, T ], ∀ω̃t ∈ Ω̃t, (4.12c)

yt ∈ Y (xt) , (4.12d)

ỹtt′ (ω̃t) ∈ Ỹ
(
x̃tt′ (ω̃t)

)
∀t′ ∈ [t+ 1, T ], ∀ω̃t ∈ Ω̃t. (4.12e)

Based on the problem structure, it can also be written as

DLA (St) = min
xt,x̃tt′ (ω̃t), ∀t′∈[t+1,T ], ∀ω̃t∈Ω̃t

{
C(St, xT ) +

∑
ω̃t∈Ω̃t

P (ω̃t)
T∑

t′=t+1

C(S̃tt′ (ω̃t) , x̃tt′ (ω̃t))

+ min
yt,ỹtt′ (ω̃t) ∀t′∈[t+1,T ], ∀ω̃t∈Ω̃t

{
G(xT , yT )

+
∑
ω̃t∈Ω̃t

P (ω̃t)
T∑

t′=t+1

G(x̃tt′ (ω̃t) , ỹtt′ (ω̃t))
}}

(4.13)

s.t. (4.12b)− (4.12e).

This decomposition is possible because the first two terms in Equation (4.13) do not include

any routing decision variables yt and ỹtt′ . Therefore, we can separate these terms and place

the ones that involve the routing decisions into an inner minimization problem.

The last term in Equation (4.13) involves solving a VRP for every future day in each

scenario. This imposes the same significant computational burden that was evident in

Algorithm 1. At this stage, we adopt a two-phase approach that aligns with previous

studies that have acknowledged the computational complexity of such problems (see e.g.

Crama et al. (2018) and Liu et al. (2020)). To elaborate, we divide the problem into two

subsequent phases. The first phase involves solving problem (4.1), addressing the PIP,

while the second phase focuses on problem (4.3), targeting the VRP for each period.

Dividing the problem in (4.13) into two separate phases may overlook the effect of route
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plans on the replenishment decisions. Therefore, to bridge the gap between the optimal

solutions of the two-phase approach and those of the PIRP, we use an idea from the existing

literature (see e.g. Crama et al. (2018) and Liu et al. (2020)). Specifically, we introduce

a fixed cost parameter as an estimation of the routing costs on each day of the planning

horizon. This approximation allows the decisions made in the first phase to have insights

into potential optimal solutions of the subsequent phase, thereby enabling more efficient

decision-making.

With the implementation of the two-phase approach, the DLA policy focuses solely on

the decision variables of the PIP. The routing decisions, on the other hand, are left to be

determined by a VRP algorithm in the second phase. Consequently, there is no longer a

need to make routing decisions for future periods, denoted as ỹt[t+1,T ] (ω̃t). Therefore, the

formulation used in the first phase with the presence of ĝt′ as the fixed cost, becomes

D̂LA (St) = minC(St, xt) + ĝtb
1
t +

∑
ω̃t∈Ω̃t

P (ω̃t)
( T∑

t′=t+1

C(S̃tt′ (ω̃t) , x̃tt′ (ω̃t))

+ ĝt′ b̃
1
tt′(ω̃t))

) (4.14)

s.t. (4.12b)− (4.12c),

xt ≤ Rmaxb1t ,

x̃tt′(ω̃t) ≤ Rmaxb̃1tt′(ω̃t) ∀t′ ∈ [t+ 1, T ], ∀ω̃t ∈ Ω̃t,

b1t , b̃
1
tt′(ω̃t) ∈ {0, 1} ∀t′ ∈ [t+ 1, T ], ∀ω̃t ∈ Ω̃t,

where b1t is a binary variable that equals one if an order is placed for the period t.

It is noteworthy that all variables pertaining to the future require the notation ˜vartt′ (ω̃t)

to indicate their association with the sample path of ω̃t in the approximated problem.

Nonetheless, for the sake of simplicity, we will use ˜vart′ to represent the same concept.
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Algorithm 2 DLA Policy

Step 1: Solve problem (4.14) and keep the optimal values of xt

Step 2: Solve a VRP

Step 3: Observe the realized demand, dt, and compute the actual cost via Equation (4.1a)

Step 4: Update the inventory of each retailer via Equations (4.1b)-(4.1c)

Algorithm 2 displays the steps for implementing the DLA policy at time t. The initial

step involves determining the optimal solutions for the decision variables in problem (4.14).

Afterwards, only the optimal values of xt are considered, while the remaining values are

disregarded. This is because the values of x̃tt′ serve the purpose of capturing the poten-

tial impact of future scenarios. In other words, they are solely intended to evaluate the

downstream effects of the current period’s replenishment decisions on all future periods,

as per the definition of the Lookahead policy. In the next step, a VRP needs to be solved,

with the replenishment decisions of all retailers serving as input. Any well-developed VRP

algorithm can be applied in this context. At this stage, the demand becomes known, and

the actual cost of the network can be computed using Equation (4.1a). At the end of

the procedure, all remaining inventory levels are updated based on Equations (4.1b) and

(4.1c). Once these updates are completed, the entire process is repeated from the initial

step on the next day. By iterating through this sequence until the final day, it is possible

to determine the total cost incurred by the DLA policy throughout the planning horizon.

The problem (4.14) in Step 1 of Algorithm 2 is nonlinear due to the inclusion of terms

(x)+ = max{0, x} in both the objective function and constraints. Consequently, in order to

utilize a state-of-the-art solver (optimizer) such as Gurobi, it becomes necessary to linearize

the problem. This linearization process results in the following expanded MIP model:
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MIP (St) = min
∑
i∈N 0

(
axt,i + ĝt,ib

1
t,i +

∑
ω̃t,i∈Ω̃t,i

P (ω̃t,i)

(
hũt,i + pṽt,i + eõt,i

+
T∑

t′=t+1

(
hũt′,i + pṽt′,i + eõt′,i + ax̃t′,i + ĝt′,ib̃

1
t′,i

)))
, (4.15a)

s.t. ∀i ∈ N 0, ∀t′ ∈ [t, T ], ∀ω̃t,i ∈ Ω̃t,i :

xt,i = x̃t,i (4.15b)

b1t,i = b̃1t,i (4.15c)

ũt′,i ≥
L−1∑
l=1

R̃l
t′,i + x̃t′,i − D̃t′,i (4.15d)

ṽt′,i ≥ D̃t′,i −
L−1∑
l=1

R̃l
t′,i − x̃t′,i (4.15e)

õt′,i ≥ R̃1
t′,i − D̃t′,i (4.15f)

x̃t′,i ≤ Rmax
i b̃1t′,i (4.15g)

x̃t′,i ≤ Rmax
i −

L−1∑
l=1

R̃l
t′,i (4.15h)

ỹlt′,i ≥ D̃t′,i −
l∑

j=1

R̃j
t′,i ∀l ∈ [L− 1] (4.15i)

ỹlt′,i ≤ D̃t′,i −
l∑

j=1

R̃j
t′,i +Mb̃2,lt′,i ∀l ∈ [L− 1] (4.15j)

ỹlt′,i ≤M
(
1− b̃2,lt′,i

)
∀l ∈ [L− 1] (4.15k)
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R̃l
t′+1,i ≥ R̃l+1

t′,i − ỹlt′,i ∀l ∈ [L− 2] (4.15l)

R̃l
t′+1,i ≤ R̃l+1

t′,i − ỹlt′,i +Mb̃3,lt′,i ∀l ∈ [L− 2] (4.15m)

R̃L−1
t′+1,i ≥ x̃t′,i − ỹL−1

t′,i (4.15n)

R̃L−1
t′+1,i ≤ x̃t′,i − ỹL−1

t′,i +Mb3,L−1
t′,i (4.15o)

R̃l
t′+1,i ≤M

(
1− b̃3,lt′,i

)
∀l ∈ [L− 1] (4.15p)

x̃t′,i, õt′,i, ũt′,i, ṽt′,i ≥ 0 (4.15q)

R̃l
t′,i, ỹ

l
t′,i ≥ 0 ∀l ∈ [L− 1] (4.15r)

b̃1t′,i ∈ {0, 1} (4.15s)

b̃2,lt′,i, b̃
3,l
t′,i ∈ {0, 1} ∀l ∈ [L− 1] (4.15t)

Constraints (4.15b) and (4.15c) in the two-stage programming formulation are referred

to as nonanticipativity constraints. These constraints address an important issue: the

inclusion of x̃t,i for all possible future scenarios. However, this contradicts the definition

as it would imply that the first-stage variables have access to future information and

have different values for each scenario. Our objective is to find a single optimal value

for the decision variable of the current period without knowledge of future demands. To

ensure a unique optimal solution for xt,i, we introduce nonanticipativity constraints. These

constraints guarantee that all decision variables for the current period have the same value

among all future scenarios.

Equation (4.15a) and Equations (4.15d)-(4.15t) are linearized forms of the objective

function and constraints from the problem in (4.14). To linearize the term y = max{0, x},

we introduce three additional constraints: y ≥ x, y ≤ x + Mb, and y ≤ M(1 − b),

where x is assumed to be non-negative, b is a binary variable, and M is a large constant.

Regarding the nonlinear term inside the objective function, we define auxiliary variables,
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specifically ut,i = (
∑L−1

l=1 Rl
t,i+xt,i−Dt,i)

+, vt,i = (Dt,i−
∑L−1

l=1 Rl
t,i−xt,i)

+, and ot,i = (R1
t,i−

Dt,i)
+. However, since these terms are present in the objective function and are meant to

be minimized, we simplify the linearization process by utilizing only the lower bound

constraint (y ≥ x). Therefore, including the constraints with big-M in the linearization of

the objective function is unnecessary.

To sum up, in this chapter, we have formulated the stochastic PIRP based on the

groundwork laid in Chapter 3. Additionally, we have explored policy solutions, including

DP and ADP methods, leading to the proposal of our novel DLA policy. With this founda-

tion, we will empirically evaluate our proposed policy’s effectiveness in Chapter 6. Before

that, we want to fix the implementation framework for it and offer some improvement

techniques in the next chapter.
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Chapter 5

Implementation Techniques

In this chapter, we analyze how the proposed algorithm can be efficiently implemented.

Our goal is to shed light on the practical implementation of the algorithm and suggest

viable ways to enhance its performance and runtime. We will illustrate the effectiveness of

these approaches through numerical experiments in the next chapter.

5.1 Tuning the Number of Sample Paths

As expected, increasing the number of sample paths will yield improved results, but it

comes at the cost of longer runtime. Inherently, there is a trade-off between the size of

the approximated sample space and runtime. An important challenge is determining an

appropriate number of sample paths that strikes a balance between these factors.

Scenario-based optimization approaches require a large number of sample paths to

achieve high-quality solutions, which can be computationally intensive. Many studies in

the literature have adopted greedy decision-making approaches that consider only selected
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sets of scenarios, which may overlook the true impacts of future events (see e.g. Bertazzi

et al. (2015), Solyalı and Süral (2017), Hamdan and Diabat (2019)). However, recent

papers have focused on developing techniques that can achieve the desired solution while

using a smaller number of scenarios. Two popular techniques in this regard are Lagrangian

relaxation and progressive hedging. For instance, Alvarez et al. (2021) have proposed a

two-stage stochastic programming formulation using the progressive hedging algorithm to

address an IRP with uncertain demand and supply. Similarly, as reviewed in Chapter 2,

Dillon et al. (2023) have applied the progressive hedging algorithm to solve their two-stage

stochastic programming model for a PIRP, where the first stage involves determining a UL

value. Nguyen and Chen (2022) have accounted for stochastic supply and demand but in

a PIP and developed an algorithm based on Lagrangian relaxation to obtain near-optimal

UL levels. It is worth highlighting that the techniques mentioned above make decisions for

the entire planning horizon in a single step.

In contrast, our proposed policy adopts a different approach by solving the model in

each period. This eliminates the need for a large approximated sample space. Instead, we

consider distinct scenarios each day with the true knowledge of the system state on that

day. By making decisions on a daily basis, we ensure reliability and accuracy that may be

compromised by making decisions for the entire horizon at once. Our findings suggest that

a small number of scenarios is sufficient to achieve high-quality solutions. Furthermore, we

have discovered that the size of the sample space can be determined by fine-tuning it in

the simulation laboratory for each specific problem instance.
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5.2 Decomposition and Parallel Processing

The model represented by Equation (4.15) can be classified as a large MIP due to the

presence of a set of variables for each retailer. Besides, there are no constraints that

directly link the decisions of one retailer to those of another retailer. This arises from

assuming an unlimited supply discussed in Section 4.1, which enables the decision maker

to place an order for a retailer without considering the needs of other retailers. Thus, we

can decompose the MIP into N sub-problems and solve them independently.

This decomposition reduces the run time by enabling us to use parallel processing.

That means we can determine the values of decision variables concurrently, resulting in

a modification of Algorithm 2 to Algorithm 3. Step 1 in Algorithm 2 is now expanded

to two steps in Algorithm 3. In this modified algorithm, Step 1 involves assigning each

sub-problem to a separate core within a multi-core machine. State-of-the-art optimizers

like Gurobi are then called to solve each sub-problem concurrently. In Step 2, Algorithm 3

waits for all sub-problems to be solved and combines their optimal decisions into a decision

vector xt = (xt,i)i∈N 0 . The last three steps of the algorithm remain the same.

Algorithm 3 Parallel DLA Policy
Step 1: Send each sub-problem i to an idle core, solve it, and keep the optimal value of xt,i

Step 2: Wait for all sub-problems to be solved in parallel, and assemble the vector xt = (xt,i)i∈N 0

Step 3: Solve a VRP

Step 4: Observe the realized demand, dt = (dt,i)i∈N 0 , and compute the actual cost via Equation

(4.1a)

Step 5: Update the inventory of each retailer via Equations (4.1b)-(4.1c)

To make the notation less unwieldy, we will exclude the index i when referring to the

MIP model in each sub-problem going forward, even though it is still implicitly considered.
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5.3 Linear Cuts

In the context of MIP, a practical approach for enhancing performance is to introduce

valid linear cuts. These inequalities can help to tighten the MIP formulation in (4.15) by

remaining a smaller part of the feasible set while preserving the optimal solution. First,

we propose three linear cuts that are tailored to our specific problem structure.

Proposition 1. The following linear cuts for all t′ ∈ [t, T ] and ω̃t,i ∈ Ω̃t,i are valid for the

MIP formulation in (4.15):

b̃2,lt′ ≤ b̃2,l+1
t′ ∀l ∈ [L− 1], ∀t′ ∈ [t, T ] (5.1)

b̃1t′ + b̃3,L−1
t′ ≥ 1 ∀t′ ∈ [t, T ] (5.2)

b̃1t′ + b̃2,L−1
t′ + b̃3,L−1

t′ ≤ 2 ∀t′ ∈ [t, T ] (5.3)

The linear cut in Equation (5.1) ensures that after satisfying the demand at inventory

level l, fresher products in higher inventory levels are not considered, and they will be

carried over to the next period without resizing. This chain of linear cuts effectively

accelerates the implementation of the FIFO policy.

The second cut in Equation (5.2) establishes a connection between b̃1t′ and b̃3,L−1
t′ by

analyzing the constraints in the MIP formulation (4.15). This linear cut ensures that if

no order is placed, the inventory with a remaining lifespan of L − 1 will be empty in the

following period, leading to a more efficient representation of system dynamics.

By analyzing the constraints in the MIP formulation for l = L − 1, we establish a

relationship between certain binary variables, as shown in Equation (5.3). By incorporating

additional constraints, we can eliminate certain permutations of these binary variables that

are never valid. This linear cut significantly improves efficiency.

50



Moreover, by analyzing individual sample paths, we can consider the MIP formulation

as a deterministic version of the PIRP, similar to the one in Le et al. (2013), where stock-

outs are not allowed. Consequently, for any period of length L, at least one order should be

placed to meet the demand during that range. This implies that if, for instance, an order

is placed today and received immediately, it can cover today’s demand and the demand for

the subsequent L− 1 days. However, it is important to note that this is not valid for the

final L− 1 days of the planning horizon. Therefore, the following inequality can be added

to the set of linear cuts:

t′+L−1∑
τ=t′

b̃1τ ≥ 1 ∀t′ ∈ [t+ 1, T − L+ 1]. (5.4)

It should be noted that we should exclude b̃1t since it gets the same single value among all

sample paths (see Constraint (4.15c)) and could potentially violate the linear cut of other

sample paths. Therefore, we write the linear cut in Equation (5.4) starting from t+ 1.

In addition, we generate the following two sets of valid inequalities for the PIRP formu-

lation, which draw inspiration from the lot sizing problem with fixed costs and inventory

bounds investigated by Atamtürk and Küçükyavuz (2005).

Proposition 2. The following linear cut for all t′ ∈ [t + 1, T ] and ω̃t ∈ Ω̃t are valid for

the MIP formulation in (4.15), where τ = min{t′ + L − 1, T}, ũbt′ = min{Rmax, D̃[t′,τ ]},

and S ⊆ [t′, τ ]:

∑
t′′∈S

x̃t′′ ≤
∑
t′′∈S

D̃[t′′ ,τ ]b̃
1
t′′
+

L−1∑
l=1

R̃l
τ+1 (5.5)

L−1∑
l=1

R̃l
t′ +

∑
t′′∈S

x̃t′′ ≤ ũbt′ +
∑
t′′∈S

min{ũbt′′+1 + D̃[t′,t′′ ] − ũbt′ , D̃[t′,τ ] − ũbt′ , D[t′′ ,τ ]}b̃1t′′ +
L−1∑
l=1

R̃l
τ+1

(5.6)
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The linear cuts in Equations (5.5) and (5.6) are introduced by Atamtürk and Küçükyavuz

(2005) as uncapacitated and capacitated inequalities for blocks of periods S ⊆ [t′, τ ]. In

our problem, τ must be exactly L days after the starting period t′, if feasible, or the last

day of the horizon, for all t′ ∈ [t+ 1, T ]. Upon further analysis, we discovered a means to

streamline these linear cuts while preserving their effectiveness. This leads to the simplified

version of these cuts presented in the following corollary.

Corollary 1. The following linear cut for all t′ ∈ [t + 1, T ] and ω̃t ∈ Ω̃t are valid for the

MIP formulation in (4.15), where τ = min{t′ + L− 1, T} and ũbt′ = min{Rmax, D̃[t′,τ ]}:

x̃t′ ≤ D̃[t′,τ ]b̃
1
t′ +

L−1∑
l=1

R̃l
τ+1 (5.7)

L−1∑
l=1

R̃l
t′ + x̃t′ ≤ ũbt′ +min{ũbt′+1 + D̃t′ − ũbt′ , D̃[t′,τ ] − ũbt′}b̃1t′ +

L−1∑
l=1

R̃l
τ+1 (5.8)

Detailed proofs of the propositions and the corollary can be found in Appendix.

5.4 Specially Ordered Sets Constraints, and Optimizer’s

Parameters

Special Ordered Sets (SOS) constraints are a particular type of linear constraint that

restrict the number of variables that can have non-zero values. These limitations can

be used to simplify optimization problems, allowing the optimizer to focus on the most

promising areas of the feasible region. By incorporating SOS constraints, optimization

problems can be solved more efficiently, resulting in faster and more effective solutions.

SOS1 and SOS2 are two different types of SOS constraints. At most, one variable out of
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a possible set of variables can have a value other than zero in SOS1. In SOS2, a set of

variables is provided where no more than two adjacent variables may have non-zero values.

A linear constraint in the form of y ≤ M(1− b) can be considered a SOS1 constraint,

where b is a binary variable. Through this constraint, there are three possible outcomes

of (y = 0, b = 0), (y ̸= 0, b = 0), and (y = 0, b = 1). This suggests that y and b can form

a set of variables in which, at most, one of them can have a non-zero value. This aligns

with the definition of a SOS1 constraint. Accordingly, Constraints (4.15k) and (4.15p) can

be considered as SOS1 constraints. Thus, we rewrite these constraints in a SOS1 form

and use the Gurobi optimizer to handle it, as it is capable of solving a problem with SOS

constraints. It is important to highlight that by taking this step, we can gain an extra

benefit for our MIP, which is eliminating any negative impact that the value of the big-M

may have on the problem through these two constraints.

We can further enhance the performance of the algorithm by modifying specific pa-

rameters of the optimizer. By default, the Gurobi MIP solver balances the search for new

feasible solutions and proving that the current solution is optimal. Nonetheless, we have

noticed that our model could easily discover high-quality solutions; therefore, we have in-

structed the solver to focus more on proving optimality by configuring MIPFocus = 2.

It should be noted that the proper value for this parameter is highly dependent on the

problem structure, including size, data set, and objective. Thus, modifying this parameter

might reduce runtime in some circumstances.

In closing, this chapter has explored the practical implementation techniques for the

proposed DLA policy. Our focus was to provide actionable ideas for an efficient implemen-

tation process, optimizing performance and runtime. These ideas will be put to the test

in numerical experiments in the upcoming chapter, where we aim to validate their impact

on the algorithm’s effectiveness.
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Chapter 6

Numerical Experiments

The goal of this chapter is to demonstrate the reliability and efficiency of the proposed

policy based on a case study. We first briefly discuss the case study and the related

data set. Afterward, the impact of the implementation techniques presented in Chapter

5 is examined. Then, we investigate the performance of the proposed policy compared to

alternative approaches.

For computations, we engaged the Standard-F32s-v2 machine provided by Microsoft

Azure Machine Learning Studio, which featured 32 cores, 64 GB RAM, and 256 GB disk.

In the PIP phase, we used Gurobi 10.0 for optimization, and in the second phase, we utilized

the VRP algorithm supported by Google OR-Tools, along with some modifications. We

assume Q = 120, and the maximum travel distance is 230.
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6.1 Case Study and Data Set

We evaluate the effectiveness of the proposed policy in a BSC tasked with satisfying the

demand for platelet units from multiple hospitals. The shelf life of platelet units is seven

days. The distribution network for our study centers around the Canadian Blood Services

production site, located in Brampton, Ontario, Canada. This production site serves as the

primary distribution center responsible for supplying hospitals located within the nearby

cities. For our analysis, we designate this production site as the supplier within our distri-

bution network. Furthermore, our study focuses on a chosen group of 20 hospitals that fall

within the coverage area of the production site. These hospitals play the role of retailers

in our distribution network. The traveling cost of ci,j for all (i, j) ∈ E is calculated based

on the Euclidean distances.

We carefully selected hospitals for our study based on their likelihood of requiring

platelet units. Factors such as specialty and the range of services provided were considered

in the selection process. According to “NHLBI, Platelet Disorders, Thrombocytopenia”

(n.d.), most platelet recipients are hospitals that primarily treat cancer (chemotherapy),

bone marrow disorders, blood disorders (such as aplastic anemia and leukemia), liver

disease, and platelet function disorders (such as idiopathic thrombocytopenic purpura).

Moreover, massive blood loss due to injury or surgery often requires platelet transfusion.

To analyze the data effectively, we categorize the hospitals into three groups: A, B,

and C. The categorization is based on the extent of the services they provide that require

platelet units. Hospitals in category A have the highest demand, followed by those in

categories B and C. Figure 6.1 illustrates the network of hospitals and their categorization.

In this figure, the three categories, A, B, and C, are distinguished by different colors.

To estimate the average daily demand (ADD) of the hospitals, we rely on Mirjalili et
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Figure 6.1: The studied network consisting of the Canadian Blood Services production site

and 20 hospitals categorized as A B C .
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al. (2022) as our primary reference. This study analyzes the ADD and standard deviation

(SD) of two hospitals, abbreviated as HGH and JH. According to our categorization scheme,

HGH falls into Category A, while JH falls into Category C.

To obtain more precise estimations for the remaining hospitals, we implement additional

clustering within each category. In this process, we utilize the number of beds in each

hospital as a criterion for categorizing them into the following groups:

Group 1: 0 < number of beds < 250

Group 2: 250 ≤ number of beds < 500

Group 3: 500 ≤ number of beds < 1000

Group 4: 1000 ≤ number of beds

Based on this clustering, both HGH and JH share the same group number, which is 2

in this case. Using the ADD and SD values from HGH and JH as reference points, we

estimate the corresponding values for Group 2 within Category B. This estimation assumes

that the ADD and SD values of Group 2 in Category B are equal to the average values of

those of HGH and JH. Subsequently, we calculate the ADD and SD values for the other

groups within each category relative to their group numbers. We present a heat map in

Figure 6.2 to visualize the ADD values. The heat map utilizes proportional symbols to

relatively represent the ADD values for all hospitals.

For the purpose of the numerical experiments, we require demand distributions from

which we can extract samples to generate scenarios. In our case study, we assume that the

demand distribution for each retailer follows a normal distribution with known mean and

SD. Hence, we model the demand for retailer i as Di ∼ Norm(ADDi, SDi). Regarding
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Figure 6.2: Proportional symbol map of ADD in the studied network.
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inventory capacities, we set the maximum inventory level for each hospital as Rmax
i =

L×ADDi. This implies that each hospital is equipped to store units to serve the average

daily demand for a period of L days. It is important to note that this value typically

exceeds the three-sigma limit of the hospitals in this distribution network, which represents

a conservative estimate of the maximum potential demand.

6.2 Benchmarks

We consider the policies proposed by Crama et al. (2018) as our benchmark, since this paper

specifically addresses the stochastic PIRP, making it a relevant and comparable reference.

Moreover, Crama et al. (2018) address the PIRP using a two-phase approach involving

a PIP and a VRP. This is similar to our approach, where we also consider the PIRP in

two phases. Hence, we can gain valuable insights and draw meaningful comparisons by

examining the performance of the proposed DLA policy with the four policies suggested

by Crama et al. (2018).

To solve the PIP phase, they first use a basic policy called EV , in which they ignore

the random demand by using its expected value and replenish the inventory accordingly.

The second policy is a simple heuristic of the classic up-to-level algorithm (UL) in which

S from the (s, S) policy is established to meet a predefined target service level for the λ

consecutive periods. Note that S may be referred to as the UL level, and λ is an adjustable

parameter. To clarify further, when λ = 1, the order quantity, in addition to the current

inventory, should be enough to meet the demand for the current day with a probability

higher than the target service level. This ensures the inventory level stays above a specific

threshold to maintain the desired service level for each period. The maximum value for

the parameter λ is indeed λ = L, which corresponds to ordering once every L day while
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still meeting the target service level. These two instances are shown by UL1 and ULL,

respectively.

The aforementioned DE policy in Subsection 4.2.1 is the third policy in Crama et al.

(2018). This policy is an ADP with a fixed cost as an approximation to the routing cost,

which is decomposed into N smaller ADPs, one for a retailer. A VRP algorithm should

be subsequently performed in the second phase of these first three policies. Among the

policies examined in their study, the fourth policy, denoted as DI, demonstrates the best

performance. It is an enhanced version of the DE policy that incorporates a neighborhood

search and refines the replenishment decisions if needed. Notably, Crama et al. (2018) claim

that these ADPs could also be estimated by a (s, S) policy with insignificant alterations

in their outcomes. In our subsequent discussions, when we mention ADPs in Crama et al.

(2018) study, we specifically refer to the DE and DI policies. Furthermore, we refer to

the policies proposed by this study as the benchmark policies.

Crama et al. (2018) demonstrate the effectiveness of their ADPs in numerical examples

for shelf life values of L ∈ {2, 3, 4}. However, as discussed in Subsection 4.2.1, it is known

that ADP methods face the curse of dimensionality when shelf life surpasses a certain

threshold. In our experimental setups, we encountered computational difficulties when

running the backward DP algorithm for L = 5 and beyond. Therefore, to compare the

results of these policies and the DLA policy, we initially set the shelf life to L = 3. We

evaluate and identify the best policies based on this initial setting. Subsequently, we

compare the policies, except ADPs, in a dedicated section, maintaining the original setting

with a shelf life of L = 7. By examining the performance of the policies under both settings,

we can provide insights into their effectiveness and abilities to handle a longer shelf life.

To establish a lower bound for these policies, we adopt an offline policy that knows

the actual demand. This policy supplies the product for λ ≤ L periods in the PIP phase,
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which results in zero wastage and shortage. Crama et al. (2018) call this policy the Full

Information policy (FI). It is important to note that the optimal value of λ is problem-

dependent for both UL and FI.

Regarding the fixed cost parameter, we utilize the distance-based cost used in Crama

et al. (2018) in the DE, DI, and DLA policies. An alternative method called route-based

cost is also introduced for determining the values of the fixed cost parameter. However,

in their numerical experiments, the route-based cost showed improvement in only a few

cases compared to the distance-based cost, despite being more complex. Therefore, for our

analysis, we employ the distance-based cost. This choice is based on its overall effectiveness

and simplicity compared to the route-based cost used in the Crama et al. (2018) study.

The distance-based cost for the fixed cost considered by Crama et al. (2018) is

ĝt,i =

∑
j∈Ji
cij
|Ji|, (6.1)

where Ji refers to a group of retailers located near retailer i, and it is argued that Ji has a

connection with the shelf life L. It is suggested that a suitable value for |Ji| is 2L, which

was also employed in our experiments.

Furthermore, Crama et al. (2018) constrain the decision variables to a smaller feasible

region by using a lower bound based on the target service level whenever an order needed

to be placed in DE and DI. This value is denoted as x
(1)
t,i and computed using UL1.

To provide a brief overview, the UL policy uses an adjustable parameter λ to determine

the order quantity. This quantity is designed to fulfill the demands of λ consecutive days

with a probability higher than the target service level. In this context, setting λ = 1

ensures that the lower bound, represented as x
(1)
t,i , is enough to meet the demand for the

current period while achieving the desired service level. To ensure a proper comparison,

we also incorporate this lower bound into our DLA policy, leading to adding the following
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constraint to the MIPs:

xt ≥ x
(1)
t b1t . (6.2)

We will later explore how this lower bound affects the overall cost and investigate any

potential trade-offs or benefits it may offer. Before doing experiments to compare the

policies in the settings of L = 3 and L = 7, we do some experimental setups to determine

the best number of simulations and fix the implementation framework for the DLA policy.

6.3 Experimental Setup

We perform these numerical examples specifically for platelet units that have a shelf life

of L = 7 days and within a planning horizon of T = 30 days. The cost combination of

(h, p, e, a) = (2, 8, 8, 0) is chosen as the baseline for our experiments. Recall that (h, p, e, a)

represents holding cost, penalty cost, wastage cost, and replenishment cost parameters,

respectively. This choice is motivated by the consideration that a ratio of p
e
≥ 1 is more

applicable in the platelet supply chain, and shortages are typically considered to be more

costly than wastage (Zhou et al., 2011). By selecting a ratio of 1, we ensure that penalty

and wastage costs are treated equally. This approach prevents the model from being biased

towards any particular goal and helps maintain a balanced perspective. Furthermore, in

the literature of BSC, the holding cost is given the lowest priority if not ignored (see, e.g.

Civelek et al. (2015)). Also, since the suppliers in BSC operate as non-profit organizations,

no replenishment costs are involved (“About Us - Canadian Blood Services”, n.d.).

To compare policy A and policy B, we use the relative gap between them, defined as

Gap(A,B) =
PA − PB

PB

× 100, (6.3)

where PA and PB are performance measures obtained from policies A and B, respectively.
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Figure 6.3: The mean and confidence interval of the DLA policy’s total cost over different

numbers of simulations

6.3.1 Determining the Number of Simulations

By running the policies multiple times and sampling the values of the random demand,

we simulate the system’s behaviour under various cases. Subsequently, we evaluate the

performance of the policies by averaging the outcomes across the simulations, thereby

obtaining a reliable estimate of their overall performance.

In this subsection, we aim to find the best number of simulations that are sufficient

to evaluate the DLA policy. We ascertain the ideal number of simulations by gradually

increasing the initial value from 15 to 50 simulations. Then we plot the mean and con-

fidence interval of the total costs over each number of simulations in Figure 6.3. It can

be observed that conducting 40 simulations is adequate to ensure sufficient reliability for

all experiments. Further increasing the number of simulations beyond this point does not

significantly change the mean and confidence interval of the total cost obtained from the

DLA policy.
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(a) The average total cost of the DLA policy over 40

simulations, through 30 different random seeds for gen-

erating the inner sample paths

(b) The mean and confidence interval of the aver-

age values in (a)

Figure 6.4: Tuning the Number of Sample Paths

6.3.2 Tuning the Number of Sample Paths (Scenarios)

The most important experimental setup is adjusting the number of sample paths or scenar-

ios within the DLA policy. Specifically, we investigate how the average total cost varies for

different values of |Ω̃t| chosen from the set {1, 3, 6, 9, 12}. For each value, we conduct the

experiment using 30 distinct sets of |Ω̃t| number of sample paths. The goal is to determine

whether obtaining the outcomes with a specific sample path is purely coincidental or if we

can achieve similar outcomes with various sets of sample paths. Subsequently, we plot the

mean and confidence intervals of these 30 distinct sets to visualize the degree of variation

when employing different sets of random sample paths. Since these goals necessitate a large

number of executions, we limit the implementation of the DLA policy to L = 3. However,

we expect the same behaviour in the setting of L = 7.

In Figure 6.4a, the x-axis represents different random seeds used for generating inner

scenarios. Each point represents the average total cost of the DLA policy over 40 simu-
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lations. To generate the data points shown in Figure 6.4b, we calculated the mean and

confidence interval of the average values obtained from Figure 6.4a. For example, the final

data point in Figure 6.4b, corresponding to |Ω̃t| = 12, is the mean of 30 average values.

Each average value is computed as the average of the total cost associated with the DLA

policy within which a distinct set of 12 scenarios is used. In simpler terms, this point

represents the average value for the line plot corresponding to |Ω̃t| = 12 in Figure 6.4a.

Based on Figure 6.4b, we can draw two conclusions. First, there is minimal variation

among different sets of sample paths used by the DLA policy. In other words, any sets of

sample paths yield close results as long as they contain a similar number of paths. This

is evident from the small confidence intervals. Second, we observe that increasing the

number of inner sample paths improves the performance of the policy, as it is approved

by the decreasing trend. Based on this extensive experiment, using any 9 sample paths

is sufficient for our specific case study. This is because, beyond that point, the mean and

confidence interval show a minor decrease while the runtime increases exponentially.

It should be noted that the number of sample paths chosen for our experiments may be

considered small. Nonetheless, the results presented in the subsequent sections demonstrate

that the DLA policy can yield cost-reduction outcomes even with this limited number of

sample paths. This suggests that the DLA policy effectively leverages the available infor-

mation and makes effective decisions, even when working with a relatively small number

of scenarios.

6.3.3 Implementation Techniques

In Chapter 5, we presented a set of implementation techniques aimed at enhancing the

execution of the MIP formulation in the DLA policy. These techniques include decompo-
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(a) The runtime improvement in each simulation

(b) The mean of runtime improvement

over 40 simulations

Figure 6.5: The runtime improvement of the DLA policy by applying implementation

techniques

sition and parallel processing, linear cuts, SOS constraints, and optimizer modification. To

evaluate the impact of each of these techniques on the policy’s runtime, we do experiments

focusing on the baseline case where (h, p, e, a) = (2, 8, 8, 0) for L = 7.

First, we conduct a runtime comparison between the original DLA policy (Algorithm

2) and the parallel DLA policy (Algorithm 3). The parallel DLA policy assigns one core

of the machine to each hospital’s MIP independently. Our findings reveal a remarkable

reduction in the runtime when employing parallelism. Specifically, the parallel DLA policy

demonstrates a runtime improvement of 92.03% compared to the original version. This

translates to a speedup of approximately 7.97 times, indicating the effectiveness of Algo-

rithm 3 in accelerating the computation process.

Figure 6.5 illustrates the runtime improvement achieved by implementing other tech-

niques in our model, including the addition of linear cuts, the substitution of SOS con-
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straints, the adjustment of the MIPFocus parameter, and a combination of all these tech-

niques. On average, we observe a further runtime improvement of up to 25% by applying

these implementation techniques. It is important to note that when analyzing the effect of

adding linear cuts to the model, we disable the automatic cut generation feature of Gurobi

by setting the cut parameter to zero, i.e., Cuts = 0.

6.4 The Setting of L = 3

Figure 6.6 displays the relative gap between the average total cost of each policy Π and

FI over 40 simulations, for various combinations of cost parameters. The gap is computed

based on Gap(Π, F I) as defined in Equation (6.3). Recall that the UL1 policy aims to

place an order that makes the total inventory to be sufficient to meet the target service

level for the current day. On the other hand, the ULL policy aims to do this not only for

today but also for the next L− 1 days.

It is observed that in this PIRP, the UL1 policy performs better than the ULL policy.

This is due to the fact that the UL1 focuses on replenishing more frequently with smaller

quantities, which helps reduce holding, penalty, and wastage costs, although it increases

routing costs. However, in the problem setting studied in Crama et al. (2018), the opposite

was true since their objective function did not consider any of these costs, and routing cost

played the main role. It is important to note that the difference between these two UL

policies is the smallest when the holding cost is zero.

Figure 6.6 reveals an unexpected outcome, with DE and DI having the worst perfor-

mance, even underperforming compared to EV . This contrasts with the findings reported

in Crama et al. (2018). Conversely, the DLA policy exhibits the opposite behaviour,

performing remarkably well in our PIRP. This suggests that (s, S) policies are not viable
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Figure 6.6: The relative gap between the average total cost of each policy Π and FI over

40 simulations in the setting of L = 3, i.e. Gap(Π, F I), for various combinations of cost

parameters

options when dealing with holding, penalty, and wastage costs along with the routing costs.

Among these policies, only UL shows relative reliability due to its adjustable parameter

λ, which ensures that the order quantity is sufficient to meet the demand for λ consec-

utive days with a higher probability than the target service level. Overall, we find that

the algorithms studied in Crama et al. (2018) have a notable weakness in not considering

standard inventory expenses. In contrast, the DLA policy consistently produces favourable

outcomes in these scenarios.

Table 6.1 displays the average values of various performance indicators given in the

Crama et al. (2018) study. The first indicator assesses the Actual Service Level and is

defined by Equation (6.4a). In this equation, the variable ξL represents the average fill

rate of demand across all hospitals over the planning horizon when the shelf-life is L.

The second indicator pertains to the evaluation of the Actual Freshness and is expressed

through Equation (6.4b) as ϕL, indicating the average actual freshness from the standpoint
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of patients. The term (rl)ti denotes the number of units with a remaining shelf-life of l

transferred to a patient in period t at hospital i. Lastly, Table 6.1 reveals the number of

outdated products within the observations.

ξL =

∑
t

∑
i min{dti,

∑L−1
l=1 Rl

ti + xti}∑
t

∑
i dti

(6.4a)

ϕL =

∑
t

∑
i{
∑L−1

l=1 lrlti + LrLti}∑
t

∑
i

∑L
l=1 r

l
ti

(6.4b)

The results presented in Table 6.1a provide insights into the performance of different

policies in terms of actual service levels. The DLA policy shows a relatively lower ac-

tual service level compared to the other policies; nonetheless, it consistently maintains an

average above 90%. On the other hand, Table 6.1b demonstrates that the DLA policy

excels in achieving the highest actual freshness level among all the other policies. More-

over, examining Table 6.1c, we observe that the DLA policy lead to the least amount of

wastage. Conversely, the ADPs deliver higher service levels but result in a considerably

larger number of outdated products. Overall, these findings highlight a trade-off between

service level and product wastage, with the DLA policy achieving a better balance in

minimizing wastage while maintaining a slightly lower actual service level.

6.5 The Setting of L = 7

We repeat the experiments with L = 7 to align with the shelf life of platelet units. Our

results in the previous section revealed that theDLA policy outperformed all other policies.

Nevertheless, we compare theDLA policy to benchmark policies again, exceptDE andDI,

to better understand a longer shelf life’s effects. This exclusion is due to the impracticality

of solving a backward DP algorithm for a shelf life of this magnitude. The results obtained
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(h, p, e, a) (0, 8, 8, 0) (2, 8, 8, 0) (2, 6, 8, 0) (2, 8, 6, 0) (2, 8, 4, 0) (2, 8, 8, 4)

EV 97 97 97 97 97 97

UL1 95 95 95 95 95 95

ULL 99 99 99 99 99 99

DE 99 99 99 99 99 99

DI 99 99 99 99 99 99

DLA 96 93 92 93 93 75

FI 100 100 100 100 100 100

(a) ξ3(%)

(h, p, e, a) (0, 8, 8, 0) (2, 8, 8, 0) (2, 6, 8, 0) (2, 8, 6, 0) (2, 8, 4, 0) (2, 8, 8, 4)

EV 2.1 2.1 2.1 2.1 2.1 2.1

UL1 2.4 2.4 2.4 2.4 2.4 2.4

ULL 1.9 1.9 1.9 1.9 1.9 1.9

DE 2.1 1.9 1.9 1.9 1.8 1.8

DI 2.1 1.8 1.8 1.8 1.8 1.8

DLA 2.3 2.5 2.5 2.5 2.5 2.5

FI 3.0 3.0 3.0 3.0 3.0 3.0

(b) ϕ3

(h, p, e, a) (0, 8, 8, 0) (2, 8, 8, 0) (2, 6, 8, 0) (2, 8, 6, 0) (2, 8, 4, 0) (2, 8, 8, 4)

EV 77 77 77 77 77 77

UL1 10 10 10 10 10 10

ULL 89 89 89 89 89 89

DE 70 85 85 85 86 89

DI 70 89 89 88 86 89

DLA 21 9 8 9 9 5

FI 0 0 0 0 0 0

(c) Number of Outdated products

Table 6.1: Results of 40 simulations in the setting of L = 3 for various combinations of

cost parameters
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Figure 6.7: The relative gap between the average total cost of each policy Π and FI over

40 simulations in the setting of L = 7, i.e. Gap(Π, F I), for various combinations of cost

parameters

from this set of experiments demonstrate similar outcomes to those observed in the setting

of L = 3. Specifically, the DLA policy shows superior performance in terms of the relative

gap between average total costs, as illustrated in Figure 6.7.

Table 6.2a shows that the DLA policy maintains a lower actual service level than the

alternative policies. However, it is important to note that this performance indicator has

improved compared to the setting of L = 3. In other words, when the shelf life is extended

from 3 to 7, the DLA policy performs better in terms of the actual service level, with an

average exceeding 91%. Additionally, examining Table 6.2b, we find that the DLA policy

consistently achieves the highest levels of freshness for the ordered products. This indicates

that the products supplied through the DLA policy are generally fresher compared to those

from other policies. Lastly, considering Table 6.2c, it is evident that the DLA policy incurs

almost zero wastage, indicating its efficient utilization of perishable products.
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(h, p, e, a) (0, 8, 8, 0) (2, 8, 8, 0) (2, 6, 8, 0) (2, 8, 6, 0) (2, 8, 4, 0) (2, 8, 8, 4)

EV 99 99 99 99 99 99

UL1 93 93 93 93 93 93

ULL 99 99 99 99 99 99

DLA 99 91 91 91 91 84

FI 100 100 100 100 100 100

(a) ξ7(%)

(h, p, e, a) (0, 8, 8, 0) (2, 8, 8, 0) (2, 6, 8, 0) (2, 8, 6, 0) (2, 8, 4, 0) (2, 8, 8, 4)

EV 4.3 4.3 4.3 4.3 4.3 4.3

UL1 6.4 6.4 6.4 6.4 6.4 6.4

ULL 4.1 4.1 4.1 4.1 4.1 4.1

DLA 4.6 6.4 6.5 6.4 6.4 6.5

FI 7.0 7.0 7.0 7.0 7.0 7.0

(b) ϕ7

(h, p, e, a) (0, 8, 8, 0) (2, 8, 8, 0) (2, 6, 8, 0) (2, 8, 6, 0) (2, 8, 4, 0) (2, 8, 8, 4)

EV 44 44 44 44 44 44

UL1 0 0 0 0 0 0

ULL 48 48 48 48 48 48

DLA 9 0 0 0 0 0

FI 0 0 0 0 0 0

(c) Number of Outdated products

Table 6.2: Results of 40 simulations in the setting of L = 7 for various combinations of

cost parameters
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6.6 Comparison with the Best Benchmark Policy

We obtain the relative cost improvement of the DLA policy to the best benchmark policy,

denoted as −Gap(DLA,Πbest) via Equation (6.3). In the initial setting of L = 3 in Section

6.4, the best benchmark policy was consistently found to be UL1 across all combinations of

cost parameters. On average, the DLA policy approach demonstrated a cost improvement

of 8.5% compared to UL1, with an SD of 0.89%, based on only 9 scenarios used within the

DLA policy framework.

In the setting of L = 7 in Section 6.5, theDLA policy outperformed the best-performing

policy, Πbest, with an average relative cost improvement of 10.0% and an average SD of

0.66%. When the holding cost is eliminated, the optimal policy ULL achieves the highest

relative cost improvement of 23.1%. However, in all other cases, UL1 remains the best-

performing benchmark policy. Overall, the best-performing policy consistently appears to

be the UL policy. Therefore, we may refer to the best benchmark policy as the best UL

policy.

Figure 6.8 illustrates the results. It is evident that the average of the relative cost

improvements for L = 7 surpassed those for L = 3, accompanied by a lower SD. This

observation suggests that DLA exhibits more cost-reduction outcomes as the shelf life of

the product increases.

6.7 Sensitivity Analysis of the Cost Parameters

In this section, we perform a sensitivity analysis to examine the impact of small changes

in each cost parameter on the total cost and the order quantity. Our analysis evaluates
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Figure 6.8: The mean of cost improvements of the DLA policy relative to Πbest, i.e.

−GAP (DLA,Πbest), in the setting of L = 3 and L = 7

the sensitivity of the total cost and the ordering decisions to variations in the holding cost,

penalty cost, wastage cost, and replenishment cost parameters.

6.7.1 Holding Cost

Figure 6.9a shows that when the holding cost, h, is set to zero, the DLA policy adopts

a strategy of maximum ordering. The policy focuses on minimizing penalty and fixed

routing costs by ordering as many products as possible. However, ordering a large number

of products leads to high wastage. This is because a significant number of items are held

in inventory, and over time, some may perish or expire. Nevertheless, it is important to

note that the wastage is considerably lower than the unsatisfied demand. This aligns with

the earlier understanding that shortages are generally considered more costly than wastage

(Zhou et al., 2011). Therefore, while wastage cost is a concern, the impact of unsatisfied
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(a) The average total cost (b) The average total orders by the DLA policy

(c) The gap with FI

(d) The cost improvement of theDLA policy relative

to the best UL

Figure 6.9: Sensitivity Analysis of the Holding Cost
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demand is typically more significant in the DLA policy’s objective. This is why the highest

orders are placed at this point compared to other cases of h.

It is important to note that the routing cost may be higher for larger order quantities.

This occurs in specific cases. For example, when setting the holding cost to zero changes the

decision from not placing an order to ordering a positive quantity for a hospital. Another

case is when increasing the order quantities results in the need for more vehicles, leading

to an increase in routing costs. The extent of this impact on routing costs depends on

the sensitivity of routing costs to the vehicle capacity. Thus, the routing cost is the main

portion of the total cost at h = 0 in Figure 6.9b.

As the holding cost increases, the total cost also increases due to the addition of a new

cost term per product unit. This leads to a decrease in the order quantity, as shown in

Figure 6.9a. Consequently, a larger proportion of demand will be lost after realization.

This results in a shift in the total cost, where the penalty cost becomes more substantial

than the holding cost, despite an expected increase in the holding cost due to the higher

value of the parameter h.

Once the holding cost surpasses or equals the other cost parameters, which is h ≥ 8

in our case, the DLA policy adjusts its ordering strategy accordingly. It tends to place

more frequent orders, potentially on a daily basis, to meet the demand for each specific

day while holding fewer units, as depicted in Figure 6.9a. The DLA policy’s preference for

more frequent orders significantly reduces the wastage cost. Because ordering fewer units

at a time and receiving more daily fresh products minimizes the risk of excess inventory

that may expire. Moreover, although the frequent ordering approach in the DLA policy

may significantly increase the fixed routing cost, the actual rise in routing cost is usually

milder. This is because the smaller number of ordered units requires fewer vehicles for

transportation than in previous cases. This observation is evident in Figure 6.9b, where
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the proportional increase in the total cost becomes more gradual once the holding cost

parameter reaches or exceeds a certain threshold, in this case, h ≥ 8.

In Figure 6.9c, the behaviour of FI can be explained as follows. Based on the FI

policy, the delivery quantity is precisely equal to the actual demand of all hospitals each

day, resulting in no wastage or penalty costs. Therefore, when h is equal to zero, the

only concern is the routing cost. In this case, ordering once every L day is preferred as it

minimizes the routing cost. Ordering every L day represents the longest period in which

the policy can fulfill the demand with a single batch of vehicles. Interestingly, even though

larger order quantities might be expected to increase the number of required vehicles, it

appears that the impact of less frequent transportation has a greater effect on reducing

routing costs in this specific case study. This suggests that the vehicles’ capacity may

have minimal influence on the routing cost here. We will further analyze the effect of this

parameter in the next section to gain a deeper understanding.

In contrast, when h is greater than zero, the policy shifts its approach and adopts a

daily ordering strategy. The primary objective becomes minimizing the holding cost, even

if it leads to higher routing costs. This shift occurs because, in our case study, the routing

cost is relatively less than the other cost terms. In the daily ordering strategy, there is no

product holding, and the vehicles follow the same routes to visit all hospitals and deliver

their exact demand. Therefore, the routing cost remains constant and is unaffected by

the variation in h. It is worth noting that due to the opposing strategies of the policies

at h = 0 and h > 0, sudden increases are observed at h = 2 with the relative growth of

FI > DLA >> UL. This characteristic is responsible for the atypical appearance of the

plots in Figures 6.9c and 6.9d during the transition from h = 0 to h = 2.

Furthermore, Figure 6.9d shows a great improvement in the average cost of the DLA

policy relative to the best UL policy at h = 0. This improvement can be attributed to
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the maximum ordering strategy employed by the DLA policy at h = 0, which enhances

its robustness against lost demand. In other words, the policy addresses its weakness of

having a lower service level, as observed in the previous section. It also displays minimal

improvement when going from h = 2 to h = 6. The slight variations may be attributed to

potential experimental errors or discrepancies arising from the VRP algorithm. However,

it is noteworthy that beyond the point where h = 8, the DLA policy exhibits significantly

superior performance compared to the best UL. This favourable performance allows the

DLA policy to achieve a relative cost improvement of up to 23.1% compared to the best

UL policy, as shown in Figure 6.9d. Overall, the relative cost improvement has an average

of 12.5% with an SD of 1.8% in this sensitivity analysis.

6.7.2 Penalty Cost

In our analysis, we excluded the case where p < h from our study. This choice was made

based on our observation in the case study, where we noticed that the model decided not

to fulfill any demand in this particular case. This decision is because even ordering a small

quantity of product units would result in higher holding and fixed routing costs, which

would outweigh the minimal penalty costs associated with not fulfilling the demand.

Moving forward, we observe that at p = 2 in Figure 6.10a, the DLA policy starts

placing orders, but the replenishment quantities remain relatively low compared to the

ones with higher penalty cost parameters. This is because incurring penalty costs is still

considered more beneficial than incurring holding and fixed routing costs. The DLA policy

also ensures no wastage occurs, as pushed by the relationship p = h << e. As a result,

after fulfilling the demand, the total cost of the DLA policy at this point in Figure 6.10b

mainly consists of minor penalty and routing costs. However, it is essential to note that
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(a) The average total cost (b) The average total orders by the DLA policy

(c) The gap with FI

(d) The cost improvement of theDLA policy relative

to the best UL

Figure 6.10: Sensitivity Analysis of the Penalty Cost
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the absence or minimal impact of holding and wastage costs, also contributes to the overall

lowest total cost in this figure. The DLA policy’s strategy of minimizing the order quantity

while accepting some penalty and routing costs results in a smaller total cost compared to

the UL policy, which may incur additional costs.

When the value of p exceeds h, the choice of not placing any or a few orders becomes

less desirable in the DLA policy. The policy starts to maintain higher inventory levels by

ordering more, as shown in Figure 6.10a. This results in higher holding costs, as more

products are kept in inventory for longer duration. Furthermore, the higher inventory level

also contributes to the wastage cost, as more products are at risk of spoilage. In addition

to the rise in holding and wastage costs, there is a corresponding increase in routing costs,

as more vehicles are required for product delivery. These factors collectively contribute to

a significant overall increase in the total cost. Therefore, as the value of p surpasses h, the

combination of a higher holding cost, an increased wastage cost, and augmented routing

cost lead to a sharp rise in the total cost, as observed in Figure 6.10b.

When p = e = 8, the primary focus of the DLA policy shifts towards minimizing

demand losses as much as possible. To achieve this, the policy places the maximum feasible

order quantity. The approach remains consistent as we move beyond this point, but the

increase in order quantities becomes less noticeable due to various limitations, such as

capacity constraints. This behavior can be observed in Figure 6.10a. Consequently, the

total cost experiences a minor increase for each unit increase in p compared to the cases

when p < 8, as shown in Figures 6.10b and 6.10c. This outcome can be attributed to

the fact that the penalty cost, which plays a significant role in the objective, is minimized

at this stage. Recall that the FI policy benefits from having access to actual demand

information, resulting in no demand loss. This characteristic ensures a stable total cost for

the FI policy when p varies.
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To compare the performance of the DLA policy with the best UL policy, we can refer

to Figure 6.10d. Since the UL policy is functional and not directly influenced by the

parameter p, it exhibits a consistently increasing trend. On the other hand, as the value of

p increases, the total cost of the DLA policy approaches that of the best UL policy. This

observation suggests that the DLA policy is more susceptible to changes in the penalty

cost. In general, when p < 8, theDLA policy demonstrates a more significant improvement

in cost compared to the best UL policy. However, as the value of p increases, the extent of

this improvement diminishes. This observation emphasizes the importance of the penalty

cost and underscores the sensitivity of the DLA policy to variations in this parameter. On

average, the policy maintains a cost improvement of 9.7% with an SD of 1.1% relative to

the best UL policy.

6.7.3 Wastage Cost

Examining Figure 6.11a, the cost associated with wastage is excluded at e = 0, and the

DLA policy primarily focuses on minimizing penalty, holding, and fixed routing costs.

Since h < e << p, the objective becomes minimizing lost demand by increasing replenish-

ment quantities, despite increasing holding and routing costs. On the other hand, as the

value of e increases, the policy adopts a more cautious approach by aiming to reduce the

quantity of inventory held to lower the risk of wastage. However, the decision to reduce

the order quantity introduces a higher penalty cost, which plays a significant role in the

total cost. Upon examining the instances, no definite pattern emerges in the ordering

quantities determined by the DLA policy due to this trade-off; see Figure 6.11a. The same

observations hold when calculating the relative cost between the DLA policy and the best

UL policy, as evident in Figure 6.11d. In this figure, the average and SD values are 7.0%
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(a) The average total cost (b) The average total orders by the DLA policy

(c) The gap with FI

(d) The cost improvement of theDLA policy relative

to the best UL

Figure 6.11: Sensitivity Analysis of the Wastage Cost
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and 1.2%, respectively.

The FI policy is expected to maintain a constant total cost regardless of variations in e.

As previously explained, the FI policy possesses knowledge of the actual demand, allowing

it to avoid incurring wastage costs. Consequently, the wastage cost associated with the

FI policy remains zero, resulting in almost the same cost as e varies. However, it is worth

noting that Figure 6.11b displays slight fluctuations in the FI cost. These fluctuations

should result from the specific implementation and execution of the VRP algorithm rather

than reflecting any meaningful behavior of the FI policy to different values of e.

6.7.4 Replenishment Cost

As previously mentioned, due to the non-profit nature of BSC organizations, the replenish-

ment cost is typically considered zero. However, the concept of this cost can be analogously

represented by other hidden costs per product unit, such as advertising expenses, which

could be incurred by the organization. If we incorporate this concept of replenishment

cost into the PIP, a more complicated procedure emerges, wherein fewer orders might be

placed. This can be observed in the decision-making pattern of the DLA policy in Figure

6.12a, which progressively decreases the number of orders placed as a increases from zero

to 6. Ordering fewer units implies a higher likelihood of losing demand, leading to an

increase in the penalty cost. This trend lasts until a point where no or minimal orders are

placed, and the total cost solely consists of the penalty and possibly routing costs. In our

experiments, this threshold is observed at a = 6 in Figure 6.12a.

One notable observation in Figure 6.12b is that at a = 6, the total cost of the DLA

policy aligns with that of FI. This similarity can also be observed in having a zero relative

gap in Figure 6.12c. However, it is important to note that this convergence does not
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(a) The average total cost (b) The average total orders by the DLA policy

(c) The gap with FI

(d) The cost improvement of theDLA policy relative

to the best UL

Figure 6.12: Sensitivity Analysis of the Replenishment Cost
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necessarily indicate that the DLA policy is making more optimal decisions. Instead, the

FI policy aims to meet all demand regardless of the replenishment cost, resulting in the

same routing cost and augmented replenishment costs. On the other hand, the DLA policy

chooses not to fulfill the demand, resulting in penalty and routing costs. This coincidentally

led to a total cost similar to that of the FI policy at this specific point.

Furthermore, it is important to recognize that the cost improvement of the DLA policy

relative to the best UL policy for a > 4 in Figure 6.12d should not be misinterpreted as

well. While it may appear that the DLA policy exhibits significant improvement, this

improvement is primarily a consequence of almost not satisfying any demand. This has

been validated by looking into the ordering quantities in Figure 6.12a, which effectively

eliminated all cost terms except for the penalty term. Therefore, it is more reasonable to

consider the changes in relative cost improvement for a ≤ 4, where we observe the average

cost improvement of approximately 7.0% with an SD of 1.3%.

6.8 Sensitivity Analysis of Other Parameters

In this section, we analyze the sensitivity of theDLA policy and the best UL policy to some

additional parameters. We examine how variations in the planning horizon, the capacity

of vehicles, and the lower bound influence the performance of the policies.

6.8.1 Planing Horizon

Figure 6.13 depicts the variations in the total cost as T , the length of the planning horizon,

changes using the baseline combination of parameters (h, p, e, a) = (2, 8, 8, 0). Notably, the

plot demonstrates high consistency in the cost changes across different planning horizons.
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(a) The gap with FI

(b) The cost improvement of theDLA policy relative

to the best UL

Figure 6.13: Sensitivity Analysis of the Planing Horizon

This consistency indicates the effectiveness and applicability of the proposed DLA policy

across various planning horizons. It further underscores the robustness and reliability of

the DLA policy in addressing PIRP across different time frames.

6.8.2 Capacity of Vehicles

Given that platelet units are small in size and capacity is not a limitation in reality, it makes

sense to consider a large vehicle capacity in the VRP. However, practical considerations,

such as limited daily working hours that necessitate maintaining a maximum travel distance

limit, impact the feasibility of increasing capacity (Hemmelmayr et al., 2009). In our

specific case study, we examined the effect of increasing vehicle capacity. Despite the

potential benefits, such as reducing the number of vehicles required and lowering routing

costs, the overall effect was insignificant. This can be attributed to the dispersed locations
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(a) The gap with FI

(b) The cost improvement of theDLA policy relative

to the best UL

Figure 6.14: Sensitivity Analysis of the Vehicle Capacity

of hospitals within the network, which necessitate the use of multiple vehicles to ensure

efficient delivery while adhering to the maximum travel distance limit. It is important

to note that increasing vehicle capacity may yield more substantial advantages in denser

network settings, where distance limitations have a less pronounced impact.

It is worth mentioning that the capacity of 10Q in Figure 6.14 can be interpreted

as having no capacity constraint since it can satisfy the demand of almost all hospitals.

Moreover, it should be recognized that the best UL policy does not show any improvement

because it does not consider the routing cost from the second phase when determining the

replenishment quantities.
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(a) The gap with FI

(b) The cost improvement of theDLA policy relative

to the best UL

Figure 6.15: Sensitivity Analysis of the Lower Bound

6.8.3 Lower Bound

In Section 6.2, we indicated that we utilize the lower bound from Crama et al. (2018) in the

DLA policy, aiming to establish a fair comparison between the ADPs from Crama et al.

(2018) and the DLA policy. In this subsection, our goal is to assess whether retaining this

lower bound in the DLA policy can truly yield benefits in the setting of L = 7. To assess

this, we conduct a penalty cost analysis without employing the lower bound and compare

the results with the findings presented in Subsection 6.7.2. This choice was driven by our

realization that the penalty cost term holds the highest impact among the other cost terms

considered in the objective function.

Figure 6.15 demonstrates that the presence of a lower bound has a negligible impact

when p = 8 = e. However, some improvements can be observed as p increases. In contrast,
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when p < 8, the absence of a lower bound can lead to an additional improvement of up

to 3%. This reversal in behavior is due to the relevant importance of the penalty cost.

When the penalty cost is of utmost significance, enforcing a lower bound and increasing

the order quantity in the DLA policy can result in a lower total cost. This is because a

higher order quantity enhances the robustness of the DLA policy against potential demand

loss, mitigating the impact of penalties. However, when the penalty cost is relatively small

compared to the wastage cost, and the wastage cost becomes the dominant factor, it

becomes more reasonable to order fewer units. In such cases, the cost associated with

the lost demand is lower, outweighing the potential increase in other cost terms such as

wastage. Consequently, enforcing a lower bound and ordering more units in the DLA

policy does not yield significant benefits.
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Chapter 7

Conclusions

In this chapter, we begin by reviewing the PIRP and its key challenges. We then summarize

the main findings and insights obtained from this study. Finally, we discuss potential

directions for future research and development of the PIRP.

7.1 Summary of the Findings

In this study, we investigated a VMI system characterized by a centralized decision-maker

who is responsible for making both inventory and routing decisions within a one-to-many

distribution network. In each time period, the decision maker receives system states from

retailers about the inventory level of a perishable product and then acts accordingly. We

considered the presence of demand uncertainty to ensure more resilient decision-making

in the supply chain. As a result, the problem under investigation can be classified as a

stochastic PIRP.

To effectively make decisions for the planning horizon, we focused on policies grounded
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in Lookahead models. These models enable the assessment of the downstream impacts

of a decision made in the current period on all future periods. In the VMI, this appeals

to determining replenishment quantities and route plans while considering their potential

effects on subsequent periods.

In Chapter 4, the basic statement of the Lookahead model for our PIRP resembles

the widely recognized Bellman’s equation. The Lookahead model can be solved optimally

using the DP approach. However, in more complex instances, certain terms of the equation

require approximations, leading to the application of ADP methods. We showed that when

dealing with relatively larger distribution networks in this field, such as those involving 20

retailers, and when the product’s shelf life exceeds a certain threshold, such as 5 days,

the curse of dimensionality makes the problem inefficient to be solved using both DP and

ADP methods. Consequently, we decided to explore DLA methods, which approximate

the downstream impact on future decisions directly.

As a DLA policy, we developed a two-stage approximation-based model in which we

consider multiple scenarios throughout the entire planning horizon in Chapter 4. Con-

sidering the structure of the problem, we employed a two-phase decomposition approach.

Firstly, we incorporated the inventory decisions into the optimization problem; then, in

the second phase, we address a single VRP.

In order to obtain optimal solutions in the DLA policy, we encountered the need for

linearization. This resulted in a large MIP model that poses computational difficulties. In

Chapter 5, we proposed implementation techniques to enhance the execution of the MIP,

including leveraging parallelism and incorporating linear cuts.

To examine the performance of the proposed policy, we conducted a BSC case study

based on a supplier located in Brampton, with platelets serving as a perishable product.
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Before doing numerical experiments, it was necessary to determine the number of sample

paths required for the DLA policy. To address this, we ran an extensive experiment, which

revealed two key findings. First, there was minimal variation observed among different sets

of random sample paths. Second, using only a few sample paths yielded desirable results.

This can be attributed to the fact that the DLA policy was employed in each period,

eliminating the need to consider a large approximated sample space.

Our numerical experiments in Chapter 6 indicated that the proposed policy consistently

outperformed all other policies in terms of total cost and the freshness of the transfused

platelet units, while achieving comparable or better results in terms of the number of

expired units. It is noteworthy that the use of fresher blood products may contribute to

enhanced treatment efficiency. Notably, the superiority of our proposed policy became

more pronounced as the shelf life of the products increased. These findings highlighted the

effectiveness of the DLA policy in managing inventory and routing decisions for perishable

products under demand uncertainty. Furthermore, we conducted a series of sensitivity

analyses, which demonstrated an average cost improvement of 9.1% with an SD of 1.3%.

These results underscored the robustness and stability of our proposed policy across various

settings.

7.2 Future Research

One limitation of the proposed policy was that it resulted in a slightly lower actual service

level compared to other policies. As a future research direction, one can explore strategies

to increase the service level, particularly by reducing the sensitivity of the policy to the

penalty cost.

Furthermore, although our model focuses on perishable products with a fixed shelf life,
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it has the potential to be extended to include the products whose values gradually decrease

over time. In such cases, the model can incorporate the cost of quality loss over time as

an added component.

Additionally, investigating more implementation techniques to enhance the performance

of the MIP model might be a promising area for further investigation.

Lastly, an interesting avenue for future research would be to study the performance and

behavior of the proposed DLA policy in other supply chains, such as food supply chains,

where the objective is to maximize profit. Investigating the applicability and effectiveness

of the DLA policy in different supply chain contexts would contribute to a deeper under-

standing of its capabilities and potential for optimizing various industry-specific settings.
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Appendix

Proof. Proof of Proposition 1. According to Constraints (4.15j) and (4.15k), the value

of b̃2,lt′ is equal to 1 if the term D̃t′ −
∑l

j=1 R̃
j
t′ becomes non-positive, which results ylt′ to

be zero. Moving on to the next level of the constraint and adding R̃l+1
t′ leads to the same

condition for b̃2,l+1
t′ and yl+1

t′ ; this is due to the fact that adding any additional non-negative

values to the summation
∑l

j=1 R̃
j
t′ will keep the overall term non-positive. Hence, we can

ensure that b̃2,jt′ is also equal to 1 for all j ∈ [l+1, L−1]. This can be achieved by applying

the chain of linear cuts given in Equation (5.1).

Intuitively, to implement the FIFO policy, we begin by using the lowest inventory level and

turn to higher levels only if there is any unsatisfied demand. Once all the demand has been

met using inventory with a shelf life less than or equal to l, we no longer need to consider

higher inventory levels. This means that any remaining inventory gets carried over to the

next period without any change in size. The linear cuts in Equation (5.1) remove the need

to check higher levels for fulfilling the demand once it gets satisfied at the current level.

We can discover the second cut in Equation (5.2) by examining Equation (4.15a) and

Constraints (4.15n), (4.15o), and (4.15p). To elaborate, when x̃t′ is set to zero, the mini-

mization objective in Equation (4.15a) causes b̃1t′ to also be zero. Additionally, when x̃t′ is

zero, the expression x̃t′ − ỹL−1
t′ in Constraint (4.15n) has a non-positive value. This makes
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it necessary for b̃3,L−1
t′ to equal 1, in order to ensure that Rt′+1 becomes zero by Constraints

(4.15o) and (4.15p). The reverse is true when x̃t′ is non-zero. Accordingly, if b̃1t′ is zero

then b̃3,L−1
t′ must equal 1, and vice versa.

The intuition behind this is that if no order is placed, no fresh product will be received,

causing the inventory with a remaining lifespan of L− 1 to be empty in the next period.

By investigating the Constraint (4.15g) and the Constraints (4.15j), (4.15k), (4.15o),

and (4.15p) for l = L − 1, we can establish a relation between the binary variables b̃1t′ ,

b̃2,L−1
t′ , and b̃3,L−1

t′ . Specifically, out of the eight possible permutations of these three binary

variables, (1, 1, 1), (0, 1, 0), and (0, 0, 0) never occur. Therefore, we can eliminate these

permutations by incorporating two constraints, b̃1t′ + b̃2,L−1
t′ + b̃3,L−1

t′ ≥ 1 and b̃1t′ + b̃2,L−1
t′ +

b̃3,L−1
t′ ≤ 2. However, since the last two permutations are already excluded by the second

linear cut in Equation (5.2), we only need to consider the second inequality as the third

linear cut for our MIP.

Proof. Proof of Proposition 2. Looking at each sample path separately, we can view the

MIP formulation as a deterministic lot sizing problem with bounded inventory, which is

considered in Atamtürk and Küçükyavuz (2005). In the MIP formulation in (4.15), the

binary variable b̃1t′ acts as the fixed-charge variable for ordering in their problem. We

assume that their other fixed-charge variable for inventory is set to zero. Additionally, the∑L−1
l=1 R̃l

t′ corresponds to the inventory at period t′ in their formulation. Hence, with some

modifications, we can use the inequalities introduced in Atamtürk and Küçükyavuz (2005).

As the first modification, we exclude x̃t from consideration, given that it is shared among

all sample paths, as indicated by Constraint (4.15b). Therefore, we initiate the linear cut

for the period t′ ∈ [t+1, T ]. Furthermore, according to Atamtürk and Küçükyavuz (2005),

this linear cut refers to the so-called (l, S) inequalities. We should consider the subset
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S ⊆ [t′, t′+L−1] in our MIP model since the replenishment quantity at period t′ can fulfill

the demand for a maximum of L−1 future days due to the limited shelf life. It is important

to note that after t′ = T − L + 1, fewer than L periods remain on the planning horizon.

Therefore, we adjust the block of periods to [t′, τ ], where τ = min{t′ + L − 1, T}. These

modifications lead to the creation of the linear cut in Equation (5.5), which is tailored to

our MIP model.

The subsequent set of inequalities, introduced by Atamtürk and Küçükyavuz (2005),

are capacitated inequalities for blocks of periods S ⊆ [t′, l], where l must be exactly L

days after the starting period t′ for all t′ ∈ [t + 1, T ]. Employing the same modifications

discussed earlier, we arrive at the linear cut in Equation (5.6).

Proof. Proof of Corollary 1. We limit our linear cut in Equation (5.5) to the blocks of

size 1, denoted by |S| = 1, for the MIP formulation in (4.15). Since we discovered in our

preliminary numerical experiments that including larger subsets would not significantly

improve the runtime and might even have adverse impacts. Therefore, adding the linear

cut for |S| = 1 remains adequate to achieve optimal solutions for our MIP model while

greatly reducing computational overhead. This alters Equation (5.5) to Equation (5.7).

It is worth mentioning that Atamtürk and Küçükyavuz (2005) have strengthened this

inequality by replacing D̃[t′,l] with min{D̃[t′,l], D̃t′ + ũbt′}, where ũbt′ denotes the upper-

bound or capacity to their inventory. In our case, the upper-bound would be ũbt′ =

min{Rmax, D̃[t′,τ ]} at period t′. If the first term is true, adding it has no advantage since

it is dominated by Constraint (4.15g). If the second term holds, then we have D̃t′ + ũbt′ =

D̃t′ + D̃[t′,τ ], which is weaker than the original inequality in Equation (5.7). Therefore, this

reinforcement is not beneficial to our MIP model.
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With the same adjustment of |S| = 1, the Equation (5.5) is changed to

L−1∑
l=1

R̃l
t′ + x̃t′ ≤ ũbt′ +min{ũbt′+1 + D̃t′ − ũbt′ , D̃[t′,τ ] − ũbt′ , D̃[t′,τ ]}b̃1t′ +

L−1∑
l=1

R̃l
τ+1.

We can further simplify this inequality by applying ũbt′ = min{Rmax, D̃[t′,τ ]}. To explain

more, four possible events could occur:

• if ũbt′+1 = Rmax and ũbt′ = Rmax, then the minimum term equals min{D̃t′ , D̃[t′,τ ] −

Rmax, D̃[t′,τ ]} = min{D̃t′ , D̃[t′,τ ] −Rmax}

• if ũbt′+1 = D̃[t′+1,τ+1] and ũbt′ = Rmax, then the minimum term equals min{D̃[t′,τ+1]−

Rmax, D̃[t′,τ ] −Rmax, D̃[t′,τ ]} = D̃[t′,τ ] −Rmax

• if ũbt′+1 = D̃[t′+1,τ+1] and ũbt′ = D̃[t′,τ ], then the minimum term equals min{D̃t′+L, 0,

D̃[t′,τ ]} = 0

• if ũbt′+1 = Rmax and ũbt′ = D̃[t′,τ ], then the minimum term equals min{Rmax −

D̃[t′+1,τ ], 0, D̃[t′,τ ]} = 0

Based on the above simplifications, we eventually have three different forms of the linear

cut, in none of which the third term D̃[t′,τ ] would appear as the final output. As a result,

we can simplify the linear cut with |S| = 1 to the one shown in Equation (5.8).
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Glossary

Average Daily Demand Typical amount of products or services that customers require

on a given day

Combinatorial Problem Arranging, selecting, or counting objects based on rules or

constraints to find the optimal solution from a finite discrete set of feasible solutions

Curse of Dimensionality Strange phenomena and challenges that arise when analyzing

data in high-dimensional spaces, such as data sparsity, computational complexity,

and degraded algorithmic performance

Execution Time Total time spent by a system to complete a task, including both the

direct task execution and any associated time for system service. Also known as

run-time

Expectation of a Distribution A weighted average of all possible outcomes of a random

variable, where the weights are determined by the probabilities associated with each

outcome

Fine-tuning A process of making small and precise adjustments to a pre-trained model

to maximize its effectiveness
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Finite Horizon A limited timeframe within which plans, decisions, and actions are de-

veloped and evaluated, taking into account available resources and constraints

Heuristic Experimental and trial-and-error methods, utilizing experience, intuition, or

domain-specific knowledge to guide the search for a solution

Linear Cuts Additional linear constraints incorporated into an optimization model to

enhance efficiency by downsizing the feasible region and narrowing the search for

optimal solutions

Lookahead The process of considering future outcomes and consequences before making

a decision

Mixed Integer Programming Finding the optimal solution to a mathematical model

with some or all variables restricted to be integers

Multi-period Decision-making Making decisions for multiple time periods, consider-

ing the inter-dependencies and trade-offs between decisions made in each period to

optimize outcomes over the entire planning horizon

Local Search An iterative technique that starts with an initial solution and, in each

iteration, moves to a neighbouring solution, aiming to find an improved solution

within the local search space. Also known as Neighbourhood search

Platelets Small blood cells that help with blood clotting and wound healing

Sensitivity Analysis A method to evaluate how changes in parameters affect the out-

comes of a model or system
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Sequential Decision-making Making a series of interconnected decisions over a plan-

ning horizon, by considering uncertainty and the impact of each decision on future

actions

Simulation Laboratory A controlled environment for conducting experiments or studies

that replicate real-world scenarios

Standard Deviation A measure of how spread out the values are from the mean (aver-

age) of a data set

Stochastic Programming Modelling problems where some parameters or variables are

subject to randomness or variability, and seeking optimal solutions that are resilient

to uncertain future outcomes

Target Service Level A performance metric expressed as a percentage of a predefined

goal, measuring the effectiveness of a system or service in meeting customer demands

Up-to-Level Placing an order to maintain a desired stock level

106


	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Notation

	Literature Review
	PIRP with Uncertainty (Stochastic PIRP)
	PIRP without uncertainty
	IRP
	Inventory Problems in BSC

	The Perishable Inventory Problem
	Formulations
	Policy Solutions
	Dynamic Programming
	Direct Lookahead Approximations


	Perishable Inventory Routing Problem and the Proposed Policy
	Formulations
	PIP's Formulation:
	VRP's Formulation:
	PIRP's Formulation Over a Finite Horizon:

	Policy Solutions
	Dynamic Programming
	Direct Lookahead Approximation


	Implementation Techniques
	Tuning the Number of Sample Paths
	Decomposition and Parallel Processing
	Linear Cuts
	Specially Ordered Sets Constraints, and Optimizer's Parameters

	Numerical Experiments
	Case Study and Data Set
	Benchmarks
	Experimental Setup
	Determining the Number of Simulations
	Tuning the Number of Sample Paths (Scenarios)
	Implementation Techniques

	The Setting of L=3
	The Setting of L=7
	Comparison with the Best Benchmark Policy
	Sensitivity Analysis of the Cost Parameters
	Holding Cost
	Penalty Cost
	Wastage Cost
	Replenishment Cost

	Sensitivity Analysis of Other Parameters
	Planing Horizon
	Capacity of Vehicles
	Lower Bound


	Conclusions
	Summary of the Findings
	Future Research

	References
	Appendix
	Glossary

