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Abstract

Bike-sharing systems provide sustainable and convenient mobility services for short-

distance transportation in urban areas. The dockless or free-floating bike-sharing systems

allow users to leave vehicles at any location in the service zones which leads to an imbalance

of inventory between different areas across a city. Hence, vehicles in such dockless bike-

sharing systems need to be repositioned throughout the day to be able to capture and

serve more demand. In this study, we analyze the impact of optimal repositioning on

the efficiency of dockless bike-sharing systems under several performance measures. We

first develop a multi-period network flow model to find the optimal repositioning decisions

which consist of the origin, destination, and the time of the repositioning that maximize

the total profit of the bike-sharing system. The proposed model is then implemented on

the real-world bike-sharing data of New York, Toronto, and Vancouver. After finding

the optimal repositioning actions, we analyze the effect of repositioning on the fulfilled

demand, the number of required vehicles, and the utilization rates of the vehicles. Through

computational experiments, we show that repositioning significantly increases the efficiency

of bike-sharing systems under these performance measures. In particular, our analyses show

that up to 41% more demand can be satisfied with repositioning. Moreover, it is possible

to reduce the required fleet size up to 61% and increase the average utilization rate of the

vehicles up to 21% by employing repositioning. We also demonstrate that the effect of

optimal repositioning is robust against the uncertainty of demand.
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Chapter 1

Introduction

As the motor vehicle population ascends in cities, people are struggling with short-distance

transportation at desired times due to traffic congestion. As a substitute for public trans-

portation, the bike- and scooter-sharing systems, providing short-term rentals of these

vehicles, have emerged in the last years. Although the first bike-sharing system was imple-

mented in 1965 in the Netherlands (Kabak et al., 2018), the new generation systems are

revolutionizing the transportation in last decades through the use of Global Positioning

Systems (GPS) and electric vehicles (Chen et al., 2020).

The demand for bike-sharing systems steadily increases in time (DeMaio, 2009). Li

et al. (2019) expect this increasing trend to continue since transportation with bikes and

scooters has numerous advantages such as not being stuck in traffic. Moreover, the authors

assert that people tend to use sharing systems rather than private bikes and scooters due

to the possibility of theft, which is also a boosting factor in the ascending demand.

The bike-sharing systems are classified into two groups; station-based and dockless bike-

sharing systems (Lazarus et al., 2020). Station-based bike-share systems allow people to
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rent and pick up bikes only from a pre-built bike station and drop them off at another

station. The dockless bike-sharing systems, which are also known as free-floating bike-

sharing systems, on the other hand, allow people to drop off the vehicle at any point in

the city. The pick-up locations of the vehicles, which actually correspond to the drop-off

locations of the previous trips, are generally provided to customers by a mobile application

or website. Figure 1.1 illustrates these two types of bike-sharing systems.

(a) Station-based (Styr&Ställ, 2022) (b) Dockless (Lime, 2022)

Figure 1.1: Bike-sharing systems

The dockless bike-sharing systems trended in recent years as they provide flexible and

sustainable transportation (Younes et al., 2020). Xu et al. (2019) underlines the cost-

effectiveness of the dockless sharing systems and therefore indicates that this new genera-

tion of dockless sharing systems is likely to outperform the station-based systems.

The dockless bike-sharing systems allow customers to leave the rented vehicles at any

location they want; accordingly, the customers do not have to end their trips at a station.

These sharing systems use GPS that attains the location and time information on each

vehicle from the satellites. The GPS is incorporated into mobile applications in which

customers can see the available vehicles and their current locations on a map. After signing
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up in the mobile application, customers can rent the vehicles by arriving at the vehicles’

existing locations. At the end of their trip, which refers to the travel from an origin to a

destination location, the customers are allowed to leave the bikes at any location. GPS

system detects the location where the customer is dropping off the vehicle and prepares the

bill. Although there are alternative systems that may allow customers to pay flat monthly

fees, the bill is usually calculated based on the duration of the trip. The mobile application

requests the payment information of customers while the customers are signing up and the

fee is then automatically charged.

In dockless bike-sharing systems that utilize electric vehicles, the operating companies

tend to implement an overnight charging process. In this strategy, all vehicles in the

system are collected at the end of a day for recharge and redistributed to service zones at

the beginning of each day (Chen et al., 2018). Recharging is usually done during off-peak

hours, such as before 7 am (Bird, 2022). Alternatively, the empty batteries of the vehicles

can be swapped during the day.

In bike-sharing systems, as the customers do not have to return the vehicles to the origin

location, it is possible to have an imbalance of inventories between stations in station-based

systems, and on streets for dockless systems. This imbalance results in unfulfilled demand

during the day because potential customers may not find any vehicles in some desired

locations. Accordingly, to be able to satisfy more demand and increase their revenue, the

companies that operate these systems might need to change the locations of their vehicles

throughout the day, which is referred to as repositioning or rebalancing. In particular, one of

the operating companies named “Lime”, deploy a team which is composed of approximately

250 employees in San Francisco who are responsible for the rebalancing actions throughout

the day as well as being responsible for overnight charging (Vox, 2018). The vehicles can

also be recharged or their batteries can be swapped during the repositioning actions (Osorio
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et al., 2021).

In this study, we develop a mixed-integer programming model to create an optimal

repositioning strategy that maximizes the total profit of the bike-sharing system. Given a

service area, planning horizon, and demand, the repositioning strategy consists of deter-

mining the origin, destination, and the time of the repositioning. In other words, the model

aims to determine the number of vehicles to be repositioned between locations and when

to do it on the planning horizon. After determining the optimal repositioning decisions,

our aim is to analyze these decisions on real-world data sets to measure the effect of repo-

sitioning on different performance indicators and also to derive insights from repositioning.

Our contributions in this study are fourfold: (i) development of a mathematical model

to optimize for the repositioning decisions throughout a multi-period planning horizon,

(ii) implementation of the model on real-world data sets from three different cities, (iii)

presenting a data-driven analysis of the optimal repositioning decisions and their effects on

several performance measures, and (iv) verifying the effects of repositioning with scenarios

under demand uncertainty.

This thesis is organized as follows. Chapter 2 presents an overview of the literature

related to the problem. In Chapter 3, we describe the repositioning problem in dockless

bike-sharing systems and propose a model to optimize these decisions. We evaluate the

performance of the proposed model using real-world data from three different cities in

Chapter 4. In the last chapter, Chapter 5, we present some concluding remarks and future

research directions.
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Chapter 2

Literature Review

The repositioning, also known as rebalancing, strategies in bike-sharing systems have been

drawing attention in recent years with the increase in interest in sharing systems. The

repositioning strategies in bike-sharing systems are grouped into two main categories:

operator-based repositioning and user-based repositioning (Jin and Tong, 2020). In an

operator-based repositioning strategy, the repositioning processes are conducted by the

company which operates the bike-sharing system, whereas, in a user-based repositioning

strategy, the company offers incentives to their customers to reposition the vehicles to the

desired location. The research on user-based repositioning strategies mainly focuses on dy-

namic pricing and bidding strategies to convince the customers to reposition the vehicles

throughout the planning horizon. The research on operator-based repositioning strategies,

on the other hand, focuses on optimizing the vehicle routes that are used by the operating

companies to reposition the vehicles by owner-operated trucks or vans.

Among the user-based repositioning research, Cheng et al. (2021) proposes a dynamic

bidding-model-based incentive mechanism to encourage the customers to participate in the
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rebalancing process. In particular, they offer the customers a price incentive if they agree

to take the vehicles to the areas that lack inventory. Similarly, Neijmeijer et al. (2020)

introduce a dynamic pricing model for user-based rebalancing in dockless bike-sharing

systems. In this model, the authors test their algorithm in a real-world case and find out

that the incentives are able to overcome the supply-demand asymmetry in bike-sharing

systems. Reiss and Bogenberger (2017) build up a hybrid approach by combining the user-

based rebalancing strategies with operator-based rebalancing strategies. Accordingly, they

define an urgency index for each rebalancing action in the system. This urgency index is

calculated based on the magnitude of the imbalance in the inventories. If the urgency index

is above a threshold level, Reiss and Bogenberger (2017) propose to use operator-based

rebalancing actions, otherwise, they suggest using price incentives to attract customers to

perform rebalancing.

The operator-based repositioning strategies are further categorized into two sub-strategies:

static repositioning and dynamic repositioning (Médard de Chardon et al., 2016). In static

repositioning, the user intervention in the bike-sharing system throughout the planning

horizon is negligible. In dynamic repositioning, on the other hand, the system is still in

use while the vehicles are being repositioned. Another difference between the static and

dynamic repositioning strategies is that in static repositioning, the demand data is revealed

at the beginning of the planning horizon, whereas in dynamic repositioning, the demand

information changes throughout the planning horizon.

Contardo et al. (2012) present a mathematical formulation for dynamic rebalancing

problems in bike-sharing systems. To be able to solve large-scale instances they implement

Dantzig-Wolfe and Benders decomposition methods. As a result, they find the lower and

upper bounds to this problem: however, they are not able to reduce the gap between these

lower and upper bounds. Chiariotti et al. (2018) analyze the bike-sharing data of New York
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and estimate the inventory levels of the stations dynamically. Based on their forecast, they

determine the time of the rebalancing actions and afterward implement a heuristic to create

the rebalancing routes. Similarly, Cipriano et al. (2021) implement frequent pattern mining

on the Barcelona bike-sharing system and propose a dynamic rebalancing method based

on this pattern mining. Using the data, they analyze the critical stations that are likely

to cause customer dissatisfaction due to inventory shortages. Afterward, they dynamically

plan the rebalancing actions to overcome the possible shortages.

The research related to static repositioning strategies in bike-sharing systems approach

the problem from a vehicle routing perspective. For example, Erdoǧan et al. (2014) identi-

fies the problem as a variant of the One Commodity Pickup and Delivery Traveling Sales-

man Problem (1-PDTSP) which is introduced by Hernández-Pérez and Salazar-González

(2007). In the 1-PDTSP, there is a given list of customers and a single vehicle. This

single vehicle picks up certain amount of commodities from some customers and delivers

these commodities to another customers. Erdoǧan et al. (2014) finds the minimum cost

route of the single capacitated vehicle which redistributes the bicycles to stations while

considering demand constraints. Erdoǧan et al. (2014) proposes exact solution algorithms

for this problem and tests the proposed algorithms with the instances that are proposed

by Hernández-Pérez and Salazar-González (2007). The maximum number of the nodes

(customers) in these test instances is 50.

To evaluate different static repositioning strategies, Dell’Amico et al. (2014) tests four

mixed-integer linear programming models on the data obtained for the city of Reggio

Emilia, Italy. The first two models are based on the well-known Multiple Traveling Sales-

man Problem (m-TSP), presented in Bektas (2006). The third approach is similar to 1-

PDTSP studied in Erdoǧan et al. (2014). The last model is inspired by the two-commodity

flow model proposed by Baldacci et al. (2004). All four models aim to determine the repo-
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sitioning routes with minimum total transportation cost. Dell’Amico et al. (2014) imple-

ments a branch-and-cut algorithm to solve the models and tests the performance of the

algorithm on real-world data from different cities. The number of nodes in these instances

varies between 13 and 116.

Pal and Zhang (2017) presents a novel mixed-integer model to find the optimum repo-

sitioning routes. This model is similar to 1-PDTSP but allows for multiple visits to a node

with the same vehicle as well as the use of multiple vehicles. Bruck et al. (2019) formulates

the problem similar to Pal and Zhang (2017) but extends the concept by considering the

forbidden temporary operations. The forbidden operations are the cases that prevent some

of the vehicles in the fleet to be transported.

In this study, we focus on static repositioning decisions in dockless bike-sharing systems,

however, in contrast with the previous studies, we do not optimize the routing decisions.

Instead, we focus on determining the optimal repositioning decisions which include the

origin and destination of the repositioning as well as its time. To incorporate the time

aspect, we consider a multi-period planning horizon, where the repositioning decisions are

to be given for each period. We do assume that the user intervention at the time of

repositioning is negligible as in the other static studies. On the other hand, we consider

a dynamic planning horizon but assume that the demand information does not change

throughout the planning horizon as opposed to the literature on dynamic repositioning

studies.

In this study, we also present a detailed analysis of the impact of repositioning on key

performance indicators in dockless bike-sharing systems. To the best of our knowledge,

this research is the first that analyzes the outcomes of optimal repositioning processes in

sharing systems for operating companies.
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Chapter 3

Problem Setting and Mathematical

Formulation

The decision-maker in our problem setting is the operator of a dockless bike-sharing system.

Given the demand, the decision-maker needs to determine the best repositioning strategy

that would result in maximizing their profit during the planning horizon.

To model this problem, the service area needs to be divided into several geographical

zones. Similarly, the planning horizon must be divided into several time periods (e.g., hours

in a day) to determine the time of the repositioning actions. There is a given demand for

the number of vehicles (bikes) required to travel from one zone to another within each

period. The demand between each zone pair in each period is assumed to be known. To

be able to meet a period’s demand from a zone to another, there should be at least one

available vehicle in the origin zone at the beginning of that period. Instead of keeping

inventory in each location at the beginning of each period, the availability can be ensured

by repositioning the vehicles during the planning horizon.
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We propose a network flow model to find the optimal repositioning strategy in the

given service area during the planning horizon. The objective of the proposed model is to

maximize the total profit for the sharing system. The aim of the model is to decide on

which demand to meet and how to best reposition the vehicles to meet this demand.

There is a known revenue from satisfying a unit demand from one zone to another.

The bike-sharing companies usually charge their customers based on the time spend on

the vehicles during a trip. To estimate the revenue we assume that the customers use

the vehicles of the bike-sharing system only for direct transportation where they use the

shortest paths to arrive at their destination without any intermediary stops. The revenue

can then be estimated by multiplying the network distance from the centroid of the origin

zone to the destination zone by a coefficient that accounts for the total revenue per distance.

There is a cost incurred for repositioning the vehicles. In practice, the repositioning

of bikes is done through vans or trucks that can carry multiple bikes at a time. Hence,

the cost of repositioning is assumed to be dependent on the distance between the zones

and the average fuel consumption per distance, but it is not dependent on the number of

vehicles to be repositioned. Moreover, there is a fixed cost of using or deploying a vehicle

to the system. This fixed cost is assumed to be dependent on the purchasing cost of the

vehicles and prorated for the duration of the planning horizon.

We assume that the vans or trucks that are used to reposition the vehicles have sufficient

capacity and all of the vehicles in the system are distributed from a hypothetical depot to

the service zones at the beginning of the planning horizon to account for the distribution

of the vehicles to the system after overnight charging.

The following notation is used for the parameters that are required to model the prob-

lem:

10



S Set of zones (0 denotes the depot).

T Set of periods (0 denotes the beginning of the planning horizon).

dijt Demand from zone i ∈ S to zone j ∈ S in time period t ∈ T .

pij Revenue of satisfying a demand from zone i ∈ S to zone j ∈ S.

cij Cost of repositioning from zone i ∈ S to j ∈ S.

f Fixed cost of deploying a vehicle.

We define the following decision variables for the mathematical formulation:

xijt = Number of vehicles assigned to the demand from zone i ∈ S to zone j ∈ S

in time period t ∈ T .

yijt = Number of vehicles repositioned from zone i ∈ S to zone j ∈ S

in time period t ∈ T .

zijt =

1, If any repositioning is done from zone i ∈ S to zone j ∈ S in period t ∈ T ,

0, otherwise.

The problem is formulated as follows:

max
∑
i∈S

∑
j∈S

∑
t∈T

pijxijt −
∑
i∈S

∑
j∈S

∑
t∈T

cijzijt −
∑
j∈S

fy0j1 (3.1)
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s.t. xijt ≤ dijt i, j ∈ S, t ∈ T (3.2)∑
j∈S

xijt +
∑
j∈S

yijt =
∑
s∈S

xsi(t−1) +
∑
s∈S

ysi(t−1) i ∈ S, t ∈ T (3.3)

yijt ≤ Mzijt i, j ∈ S, t ∈ T (3.4)

xijt, yijt ≥ 0 i, j ∈ S, t ∈ T (3.5)

zijt ∈ {0, 1} i, j ∈ S, t ∈ T (3.6)

The objective function (3.1) maximizes the total profit of the bike-sharing system. The

total profit is calculated by subtracting the repositioning and fixed costs of vehicles from

the total revenue which is gained from satisfying the customer trips. The first term in the

objective function calculates the total revenue obtained from satisfying the demand, the

second term calculates the cost of repositioning, and the last term calculates the total cost

of deploying vehicles in the system at the beginning of the planning horizon.

Constraint (3.2) links the demand data with the decision variables xijt. This constraint

ensures that the number of vehicles assigned to trips between the zones can not exceed the

potential demand. Constraint (3.3) is the flow balance constraint that matches the flow

between periods and zones. For each period and zone, the left-hand side of this constraint

calculates the total number of vehicles available at that zone to either satisfy the demand

of that period or reposition and equals it to the total number of vehicles that arrived at

that zone from the previous period either through satisfying the previous period’s demand

or by relocation. This constraint allows a vehicle to stay idle in a zone during the planning

horizon through the use of yiit variables which may or may not have an associated cost in

the objective function depending on the decision maker’s preferences.

If there is at least one vehicle that needs to be repositioned from zone i to zone j at

period t, Constraint (3.4) ensures that the corresponding binary variable z takes on the
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value of 1. Here, M denotes a large-enough number, for example, the number of vehicles

in the system. The cost of repositioning is calculated in the objective function through the

use of the binary z variables, where the cost denotes the dedication of one high-capacity

vehicle to consolidate the relocation of all vehicles from zone i to zone j at period t. Lastly,

Constraint (3.5) and (3.6) are the domain constraints of the model.

If the total number of vehicles in the system is desired to be limited, Constraint (3.7)

below can be added to the model. This constraint sets the total number of vehicles to

deploy at the beginning of the planning horizon to a predetermined parameter, denoted by

V .

∑
j∈S

y0j1 ≤ V (3.7)

For any reason, if the decision-maker wants to avoid relocation, the repositioning de-

cision variables y in the model can be set to zero. By setting these variables to zero, one

can analyze the effects of repositioning in the system. We conduct such analyses that are

detailed in the next section.
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Chapter 4

Computational Analyses

This section presents the computational experiments with the proposed mathematical

model developed to optimize the repositioning decisions for bike-sharing systems. The

model was run on a computer that has AMD Ryzen 5 5600X CPU, with 4.6 GHz and

16.00 GB of RAM, running Windows 11 operating system. CPLEX 20.1 was used as a

mixed-integer linear programming solver.

The proposed mathematical model is analyzed under real-world bike-sharing data col-

lected from three major cities: New York, Toronto, and Vancouver. The next section

details information on these three data sets.

4.1 Data Sets

The annual ride data of station-based bike-sharing systems in New York, Toronto, and

Vancouver are collected from the websites of the operating companies which are Citi Bike

(2022), Bike Share Toronto (2022), and Mobi Bikes (2022), respectively. All of these
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data sets are open source and contain each trip’s origin, destination, date, and duration. A

screenshot from each of these data sets is presented in Appendix A. As a way of comparison,

Table 4.1 below lists the number of stations and the annual number of trips in the bike-

sharing systems of each of these cities during the year 2021. As can be observed from this

table, the New York bike-sharing system is the largest and the most established among the

three cities, whereas Vancouver is the smallest.

Table 4.1: Comparison of the data sets.

City Number of Stations Number of Annual Trips in 2021

New York 1522 29,247,005

Toronto 615 3,612,588

Vancouver 197 736,914

Although the focus is on the dockless bike-sharing systems in this thesis, the perfor-

mance of the model is tested on station-based sharing system data. The main reason is

the availability of the data only for station-based systems. Currently, none of these cities

have operating dockless sharing systems. In particular, the launch of dockless bike-sharing

systems is delayed in New York because of the pandemic (NYC 311, 2022).

To scale the problem size to be able to implement and solve the optimization model,

we clustered stations in each city into 100 zones. In particular, we implemented a k-means

clustering algorithm, where k = 100 (Hartigan and Wong, 1979). In our preliminary

analysis, we observed that having a higher number of zones makes it difficult to solve the

optimization model whereas by using fewer zones we might be unnecessarily agrregating the

data. The k-means clustering algorithm is coded in Python and provided in Appendix B.

After implementing the k-means clustering algorithm, the shortest network distances be-
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tween the centroids of the clusters are calculated by using GraphHopper Routing API

(GraphHopper, 2022). The demand data for our experimentation is generated by consid-

ering the demand between these clustered zones and it is assumed that distances between

the centroids of the zones is a reasonable estimate for the travel distances of the demand

from one zone to another. Figure 4.1, Figure 4.2, and Figure 4.3 depict the coordinates

of the stations and centroids of the 100 clusters in New York, Toronto, and Vancouver,

respectively. The blue points represent the locations of the existing stations, whereas the

red points show the centroids of the clusters.
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Figure 4.1: New York data - 1522 stations (blue), 100 zone centres (red).
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Figure 4.2: Toronto data - 615 stations (blue), 100 zone centers (red).

Figure 4.3: Vancouver data - 197 stations (blue), 100 zone centers(red)
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For our computational experiments, we consider the planning horizon as a day since

recharging of the vehicles is usually done overnight. From the data sets, we calculated the

average trip durations in the year 2021 as 18 minutes 2 seconds for New York, 17 minutes

15 seconds for Toronto, and 22 minutes 3 seconds for Vancouver. Moreover, 98% of all

trips were less than an hour in all data sets. Accordingly, we assumed that the demand for

each trip length is for a period of less than one hour and that every trip starts and ends

in the same period. Consequently, the day is divided into an hour-long 24 equal periods,

where each hour corresponds to a period. In particular, the first period starts at 00:00 AM

and ends at 00:59 AM, the second period starts at 01:00 AM and ends at 01:59 AM, and

so on and so forth until the last period, which starts at 11:00 PM and ends at 11:59 PM.

We do not consider the demand from one period to another, however, note that this

depends on the start time of each period. If the periods start, say, 5 minutes past the

hour, the demand set might be different. We conducted a sensitivity analysis with our

data sets to observe the effect of changes in the starting time of the periods in a day on

demand. In particular, we generated different demand data by changing the start times

of the 1-hour periods for 60 possibilities, corresponding to each minute of the hour, for

each day in the month of August 2021 with New York City data. We then calculated the

standard deviation of the total demand as 0.003 among all of these options. Since the

demand data does not change significantly when we change the start time of the 1-hour

periods, we continued our analysis by starting the periods at full hours.

In dockless sharing systems, the operating companies tend to implement an overnight

charging process for electric vehicles. In this strategy, all vehicles in the system are collected

at the end of a day for recharge and redistributed to service zones from charging centers

at the beginning of the day. Accordingly, it is assumed that all of the vehicles in the

existing bike-sharing systems in New York, Toronto, and Vancouver are distributed to the
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service zones at the beginning of each day. The cost of distributing the vehicles from a

depot (node 0) to service zones is assumed to be negligible as this cost is incurred by the

overnight chargers who are already compensated.

Table 4.2 summarizes the values of the parameters used in our computational exper-

iments. For each city, the demand between the zones is obtained from the data that is

provided by the operator companies. To estimate the revenue that is gained from the

trips of the customers, Citi Bike Pricing (2022) is used, where the company is charging

approximately $11 per hour. The average speed of a bike is taken between 10-15 km/hr

in the urban areas (Jensen et al., 2010). As a result, the revenue (pij) is estimated to

be $1 per km. The average fuel consumption is gathered from the official United States

Department of Energy’s website (U.S. Department of Energy, 2022). The fixed cost per

day (f), on the other hand, is calculated by dividing the average bike price by 365 days

where we assume that the life cycle of a bicycle is one year in bike-sharing systems. Based

on Bicycle Universe (2022), the average price of a road bike varies between $350-700. The

operator companies tend to use basic bikes so it is assumed that the price of a bike is close

to the lower bound of this range.

Table 4.2: Values of the parameters.

Parameter Value and Source

|S| 100

|T | 24

dijt From Citi Bike (2022), Bike Share Toronto (2022), Mobi Bikes (2022)

pij $1/km (Citi Bike Pricing, 2022)

cij $0.1/km (U.S. Department of Energy, 2022)

f $1/day (Bicycle Universe, 2022)
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4.2 Results and Insights

We considered the data between February 2021 and February 2022 for a period of one year

and a month (13 months). Within this period, we solved the model with data from the

10th and 20th day of each month for each of the three cities to have random representative

days. All instances were solved to optimality by using CPLEX 20.1. The average run time

was 3 minutes 17 seconds per instance. All results are provided in the table presented in

Appendix C.

For each instance, the optimal solution obtained from the model provides us with the

total demand to be served and the total number of vehicles that need to be repositioned

between each pair of zones in each period that maximize the profit. After finding the

optimal repositioning actions, we analyze the effect of repositioning on the fulfilled demand,

number of required vehicles, and utilization rates of the vehicles which is illustrated in

Figure 4.4. The results of these analyses are presented in the respective subsections below.

Effects

Demand fulfillment Number of vehicles Utilization rate

Figure 4.4: Effects of repositioning
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4.2.1 Demand fulfillment

We first analyze the effect of repositioning on fulfilled demand. For this analysis, as a

first step, we solve the optimization model by forcing to meet all demands, i.e., we set

Constraint (3.2) to equality and solve our model. From these optimal solutions, we can

calculate the minimum number of vehicles required to meet all demand in the system. This

value is equal to
∑
j∈S

y0j1, as this summation gives exactly the number of vehicles that need

to be dispatched in the system from the depot at the beginning of the planning horizon.

In the second step, we solve the optimization model by setting the repositioning decision

variables to zero and limiting the number of vehicles in the system to the value that we

found in the previous step by setting this value to the right-hand side of Constraint (3.7).

For each instance, we then calculate the amount of demand that can be satisfied using the

same number of vehicles, without any repositioning, to maximize profit. Note that since

we do not allow for repositioning in this second step, we can cover less demand with the

same number of available vehicles. Figure 4.5 presents the daily percentages of potential

lost demand with each of the data sets when repositioning is not allowed in the system.
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Figure 4.5: Effect of repositioning on the percentage of lost demand.

Among these three cities, the highest impact of repositioning on the lost demand is

observed in Vancouver. If repositioning is not allowed in Vancouver, the system is able

to meet 24.73% less demand on average. The average percentages of lost demand in New

York and Toronto are 13.86% and 11.86%, respectively.

Among the days that are presented in Figure 4.5, the highest percentage of lost demand

is observed as 40.71% (January 20, 2022, Vancouver) and the lowest is 6.06% (September

20, 2021, Toronto).

4.2.2 Number of vehicles

We next investigate the number of vehicles needed to fulfill the entire demand with and

without repositioning. We solve the optimization model by setting the demand Con-
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straint (3.2) to equality and find the minimum number of vehicles required to meet all

demand in the system as detailed in Section 4.2.1. Subsequently, we set the repositioning

variables to zero and resolve the model to calculate the number of vehicles needed to fulfill

the entire demand when repositioning is not allowed in the system. The difference in the

numbers of vehicles to satisfy all demand with and without repositioning in New York,

Toronto, and Vancouver are shown, respectively, in Figure 4.6, Figure 4.7, and Figure 4.8.
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Figure 4.6: Number of vehicles to meet all demand in New York.

In New York, it is possible to fulfill the same amount of demand with 638 fewer vehicles

per day on average with repositioning. The highest impact of repositioning is observed on

November 10, 2021 (Figure 4.6). To fulfill the same amount of demand on this day, the

bike-sharing system needs 1372 more vehicles when no repositioning is allowed.
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Figure 4.7: Number of vehicles to meet all demand in Toronto.

The bike-sharing system in Toronto requires 317 fewer vehicles per day on average

to satisfy the whole demand if repositioning is allowed. On July 10, 2021, the effect of

repositioning on the number of required vehicles is observed to be the highest, where the

entire demand could be fulfilled by utilizing 645 fewer vehicles (Figure 4.7).
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Figure 4.8: Number of vehicles to meet all demand in Vancouver.

In Vancouver, when repositioning is allowed, the bike-sharing system is able to fulfill

the same amount of demand with 192 fewer vehicles per day on average. The difference in

the number of vehicles needed to fulfill the demand with and without repositioning varies

between 68 and 304. The smallest difference is observed on January 10, 2022, whereas the

highest is observed on August 10, 2022 (Figure 4.8).

As a result of the analyses using the data sets from three different cities, it can be

concluded that repositioning is able to reduce the fleet size significantly. The highest

impact is observed in Vancouver; as demonstrated in Figure 4.8, it is possible to cover the

same daily demand with approximately 50% fewer vehicles with repositioning. Although

the difference in the required number of vehicles to fulfill the demand is highest in New York,

it is observed that the percentage decrease in the required number of vehicles decreases

with the increase in demand.
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4.2.3 Utilization rate

In this section, we analyze the effect of repositioning on the utilization rates of the vehicles

used in the three bike-sharing systems. To be able to calculate the utilization percentages

of the vehicles, each vehicle that is assigned to a trip in a period is considered to be busy

or fully utilized throughout the whole period. The average utilization rate of the vehicles

is then calculated as follows:

Utilization Rate =

∑
i∈S

∑
j∈S

∑
t∈T

xijt

hv
× 100 (4.1)

In this equation, h denotes the total number of periods, which is 24 in our setting, and v is

the total number of vehicles needed to fulfill the entire demand. The nominator calculates

the total demand that is covered by the vehicles in a day, which also represents the total

number of vehicle assignments to the trips. The denominator, on the other hand, is the

total available vehicle-periods (or vehicle-hours) in a day.

The average daily utilization rates of the vehicles are calculated for all of the daily

instances in each cities. After that, the repositioning actions are disabled and the instances

are solved again to find the utilization rates in case of no repositioning. The differences

between the utilization rates of the vehicles in each of the cities are depicted in Figure 4.9,

Figure 4.10, and Figure 4.11.
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Figure 4.9: Effect of repositioning on vehicle utilization rates in New York.
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Figure 4.10: Effect of repositioning on vehicle utilization rates in Toronto.
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Figure 4.11: Effect of repositioning on vehicle utilization rates in Vancouver.

In New York, the repositioning process increase vehicle utilization from 36.31% to

41.10% on average. The highest increase is on January 10, 2022 (Figure 4.9). On this

day the average utilization rate of the vehicles is increased from 29.96% to 40.79% with

repositioning.

The average daily utilization rates of the vehicles in Toronto are calculated as 34.12%

with repositioning and 23.57% without repositioning. Hence, repositioning increases the

average utilization rate by 10.55% in the instances presented in Figure 4.10. The highest

increase is observed on November 20, 2021, when the average utilization rate is increased

from 24.89% to 40.46%.

In Vancouver, the average daily vehicle utilization rate is more than doubled with

repositioning. The average daily utilization rate is 27.01% with repositioning, whereas it is

13.13% without repositioning. The highest improvement is seen on August 20, 2021, when
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the utilization rate is increased from 15.08% to 36.71% (Figure 4.11). Although the bikes

in New York are utilized the most, the highest impact of repositioning on the utilization

rates is observed in Vancouver.

In addition to the daily utilization rate comparisons, the effect of repositioning is also

analyzed for all days throughout the month of August 2021, which is one of the busiest

months of the year. The proposed model is solved with the demand data for every day

of this month and average daily utilization rates are calculated for each of the cities. Fig-

ure 4.12 illustrates the average daily utilization rates in New York, Toronto, and Vancouver

with repositioning.
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Figure 4.12: Utilization rates in August 2021 with repositioning.

It can be observed from Figure 4.12 that New York and Toronto have similar trends

in the sense that the vehicles employed in the bike-sharing systems of these two cities are

utilized more during the weekends as compared to weekdays. On the other hand, although
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vehicles in Vancouver also tend to be utilized more during the weekends, the difference

between the utilization rates during weekdays and weekends is not as significant compared

with New York and Toronto.

In addition to the average daily utilization rates, we also calculated the hourly utiliza-

tion rates of the vehicles. Since each period corresponds to an hour in our analysis, we

used the following equation to calculate the hourly utilization rates of the vehicles in the

system:

Hourly Utilization Rate =

∑
i∈S

∑
j∈S

xijt

v
× 100 (4.2)

For the hourly utilization rate analysis, we selected the days that have the highest

demand among all the previously tested daily instances from February 2021 to February

2022. The days that have the highest demand are September 10, July 10, and August 10 for

New York, Toronto, and Vancouver, respectively. The results are depicted in Figure 4.13.

Observe from Figure 4.13 that the utilization rates in all cities peak during rush hour,

in particular between 4 PM and 8 PM, and the vehicles are barely utilized just before

sunrise. These less busy times of the day will be used by overnight chargers to collect

and redistribute the vehicles in the system for the following day’s demand or for regular

maintenance.
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Figure 4.13: Utilization rates on the busiest days in 2021 with repositioning.

4.2.4 Visualization of repositioning

In this section, we visually represent the repositioning actions on a map and analyze the

consequences of these actions on the busiest days of each of the cities in 2021.

In each of the figures (Figure 4.14, Figure 4.15, Figure 4.16), we represent the optimal

repositioning actions with lines. In particular, there is a line between the origin and

destination of carrier trucks that are conducting repositioning of the vehicles in each of

the three bike-sharing systems. For New York, in Figure 4.14, the color of the line is red if

the destination point is located relatively on the south of the origin (the longitude of the

destination is smaller than the longitude of the origin), and the color of the line is blue if the

destination is located relatively in the north of the origin (the longitude of the destination
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is larger than the longitude of the origin). For Toronto and Vancouver, in Figure 4.15 and

Figure 4.16, on the other hand, the color of the line is red if the destination is located on

the west of the origin (the latitude of the destination is smaller than the latitude of the

origin), and the color of the line is blue if the destination is located on the east of the origin

(the latitude of the destination is bigger than the latitude of the origin).

Figure 4.14: Visualization of relocations in New York on September 10, 2021.
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Figure 4.14 presents the optimal repositioning decisions in New York on September 10,

2021, which has the highest demand among all the tested daily instances. Throughout

this day, the vehicles in the system are repositioned 14 times. These repositioning actions

increased the average vehicle utilization rate from 40.37% to 42.94%. Along with the

increase in the utilization rates, the number of vehicles required to fulfill the demand on

September 10, 2021, decreased from 9783 to 9198 as a result of repositioning. In other

words, it is possible to fulfill the demand on this day with 585 fewer vehicles if these

optimal repositioning decisions are implemented. On the other hand, the system is able to

meet 15.75% less demand if no repositioning is allowed.

Figure 4.15: Visualization of relocations in Toronto on July 10, 2021.

As illustrated in Figure 4.15, there are 12 repositioning actions in Toronto on July 10,
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2021 which is the busiest day among the tested daily instances. The average vehicle utiliza-

tion on this day increased from 29.32% to 40.86% as a result of the proposed repositioning

actions. Moreover, as in New York, repositioning reduced the number of vehicles required

to serve the demand by 645 vehicles. If repositioning is not implemented, the system is

able to meet 11.73% less demand.

Figure 4.16: Visualization of relocations in Vancouver on August 10, 2021.

There are only two repositioning actions in Vancouver on August 10, 2021, in the

optimal solution. Figure 4.16 illustrates the optimal repositioning actions on this day.

Although the vehicles are repositioned only two times, these repositioning actions increased

the average vehicle utilization rate from 17.11% to 32.28%. Another key contribution of

the repositioning processes on this day is the decrease in the required number of vehicles

in order to fulfill the demand. The total number of vehicles required to meet the entire

demand decreases from 647 to 343 if the optimal repositioning strategy is implemented.
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On the other hand, without repositioning, the bike-sharing system can fulfill 20.55% less

demand with the same number of vehicles.

4.2.5 Demand uncertainty

In the previous sections, the effect of repositioning is analyzed by implementing the pro-

posed mathematical model using the real-world bike-sharing data of New York, Toronto,

and Vancouver on 26 different daily instances that correspond to the 10th and 20th days

of each month between February 2021 and 2022. In this section, we investigate the effect

of repositioning under uncertainty by generating random demand scenarios.

To generate these random demand scenarios, we first find the minimum and maximum

demand between each pair of zones in each period from the 26 daily instances. For each zone

pair and period, we then generate a random demand value from the interval between these

minimum and maximum values using a uniform distribution. We generate ten different

demand matrices in this manner, referred to as scenarios, and solve the model under each

of these random data scenarios.

Table 4.3 compares the effect of repositioning on real and random data based on the

three performance indicators defined in Section 4.2.1, Section 4.2.2, and Section 4.2.3. The

“Min” and “Max” columns presented under real data represent the minimum and maximum

effect of repositioning among the 26 daily instances that correspond to the values depicted

in Figure 4.6 – Figure 4.11. The same performance indicators are calculated with the

random demand scenarios and listed under the respective columns.
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Observe from Table 4.3 that all values obtained under all random scenarios fall within

the interval between the minimum and maximum values obtained using the real data for

each city. Accordingly, we expect repositioning to have a similar positive effect on each of

these performance measures under demand uncertainty.
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Chapter 5

Conclusions

This research analyzes the effect of optimal repositioning on dockless bike-sharing systems.

As a first step, we formulate a multi-period mixed-integer linear model to find the optimal

repositioning actions in bike-sharing systems. This model maximizes the total profit by

finding the optimal number of vehicles to be repositioned between each location in the

service area and its time period.

The developed model is implemented using real-world bike-sharing data from New York,

Toronto, and Vancouver on 26 different daily instances that correspond to the 10th and

20th days of each month between February 2021 and 2022. The optimal repositioning

schedules are obtained by solving the proposed model with data from these days for each

city. Considering the obtained optimal repositioning actions, the effects of repositioning

are analyzed on the fulfilled demand, number of required vehicles, and utilization rates of

the vehicles in each city.

Our results show that a significant loss of demand can occur if repositioning is not al-

lowed in bike-sharing systems. The percentage of this potential demand loss varies between
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6% to 41% in our test instances. Moreover, our results demonstrate that repositioning can

considerably reduce the required fleet size. The average number of vehicles to fulfill the

same amount of demand with and without repositioning can be up to 63% fewer. Reposi-

tioning also has a substantial effect on the daily utilization rates of the vehicles employed

in bike-sharing systems. We observe that repositioning can increase the daily utilization

rates of the vehicles up to 21%.

Bike-sharing is a capital-intensive industry and operator companies need to bear sig-

nificant expenditures to start up a business (Tian et al., 2021). Our results demonstrate

that an effective repositioning strategy can decrease the capital investment requirements

as it allows operating companies to serve their customers with fewer vehicles. This can in

turn facilitate more companies to enter the sector and, subsequently, customers can benefit

from the competition in the market that will be reflected in prices.

We assume in this research that the carrier trucks that are responsible for the repo-

sitioning of the vehicles have sufficient capacity. For future research, the capacities of

these carrier trucks can be incorporated into the mathematical model. To address this

modification, the binary variables in our model need to be replaced by integer decision

variables. As a consequence, the problem sizes will get bigger and there might be a need

for customized solution methodologies, such as decomposition algorithms, to be able to

solve realistic-sized instances.

Currently, the output of the proposed model can readily be used as an input for a

vehicle routing model to optimize the routes of the carrier trucks. Instead of a sequential

approach, another future research direction would be to simultaneously find the optimal

routes of these carrier trucks that would allow them to deliver multiple origin-destination

points and do more than one repositioning in a single period within a pick-up and delivery

type of a vehicle routing problem. Such an extension can provide a better evaluation of
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repositioning costs, whereas our analysis uses an upper bound for calculating these costs.
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Appendix A

Data Sets

Figure A.1: A screen shot from the Citi Bike (2022) data set.
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Figure A.2: A screen shot from the Bike Share Toronto (2022) data set.

Figure A.3: A screen shot from the Mobi Bikes (2022) data set.
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Appendix B

Python Code for k-means Clustering

Algorithm

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import geopy

import folium

from sklearn import cluster

import scipy

import webbrowser

data = pd.read_excel(data file)

city = "cityname"

locator = geopy.geocoders.Nominatim(user_agent="MyCoder")

location = locator.geocode(city)

print(location)

location = [location.latitude, location.longitude]

print("[lang, long]:", location)

map_ = folium.Map(location=location, tiles="cartodbpositron",

zoom_start=12)
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x, y = "Long", "Lang"

data.apply(lambda row: folium.CircleMarker(location=[row[y],row[x]],

fill=True, color =

’red’, radius=0.001).add_to(map_), axis=1)

map_.save(’mymap.html’)

webbrowser.open_new_tab(’mymap.html’)

X = data[["Long","Lang"]]

max_k = 40

distortions = []

for i in range(1, max_k+1):

if len(X) >= i:

model = cluster.KMeans(n_clusters=i, init=’k-means++’,

max_iter=300,

n_init=10, random_state=0,tol=0.0005)

model.fit(X)

distortions.append(model.inertia_)

k = [i*100 for i in np.diff(distortions,2)].index(min(

[i*100 for i in np.diff(distortions,2)]))

fig, ax = plt.subplots()

ax.plot(range(1, len(distortions)+1), distortions)

ax.axvline(k, ls=’--’, color="red", label="k = "+str(k))

ax.set(title=’The Elbow Method’, xlabel=’Number of clusters’,

ylabel="Distortion")

ax.legend()

ax.grid(True)

plt.show()

k = 100

model = cluster.KMeans(n_clusters=k, init=’k-means++’)

X = data[["Long","Lang"]]

dtf_X = X.copy()

dtf_X["cluster"] = model.fit_predict(X)

## find real centroids

closest, distances = scipy.cluster.vq.vq(model.cluster_centers_,

dtf_X.drop("cluster", axis=1).values)

dtf_X["centroids"] = 0

for i in closest:

dtf_X["centroids"].iloc[i] = 1
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data[["cluster","centroids"]] = dtf_X[["cluster","centroids"]]

plt.show

fig, ax = plt.subplots()

sns.scatterplot(x="Long", y="Lang", data=data,

palette=sns.color_palette("bright",k),hue=’cluster’,

size="centroids", size_order=[1,0],

legend="brief", ax=ax).set_title(’Clustering 20’)

th_centroids = model.cluster_centers_

ax.scatter(th_centroids[:,0], th_centroids[:,1], s=50, c=’black’,

marker="x")

plt.show()

data.to_excel(result file)
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Appendix C

Solutions
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