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Abstract

Bike-sharing systems provide sustainable and convenient mobility services for short-
distance transportation in urban areas. The dockless or free-floating bike-sharing systems
allow users to leave vehicles at any location in the service zones which leads to an imbalance
of inventory between different areas across a city. Hence, vehicles in such dockless bike-
sharing systems need to be repositioned throughout the day to be able to capture and
serve more demand. In this study, we analyze the impact of optimal repositioning on
the efficiency of dockless bike-sharing systems under several performance measures. We
first develop a multi-period network flow model to find the optimal repositioning decisions
which consist of the origin, destination, and the time of the repositioning that maximize
the total profit of the bike-sharing system. The proposed model is then implemented on
the real-world bike-sharing data of New York, Toronto, and Vancouver. After finding
the optimal repositioning actions, we analyze the effect of repositioning on the fulfilled
demand, the number of required vehicles, and the utilization rates of the vehicles. Through
computational experiments, we show that repositioning significantly increases the efficiency
of bike-sharing systems under these performance measures. In particular, our analyses show
that up to 41% more demand can be satisfied with repositioning. Moreover, it is possible
to reduce the required fleet size up to 61% and increase the average utilization rate of the
vehicles up to 21% by employing repositioning. We also demonstrate that the effect of

optimal repositioning is robust against the uncertainty of demand.
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Chapter 1

Introduction

As the motor vehicle population ascends in cities, people are struggling with short-distance
transportation at desired times due to traffic congestion. As a substitute for public trans-
portation, the bike- and scooter-sharing systems, providing short-term rentals of these
vehicles, have emerged in the last years. Although the first bike-sharing system was imple-
mented in 1965 in the Netherlands (Kabak et al., 2018), the new generation systems are
revolutionizing the transportation in last decades through the use of Global Positioning

Systems (GPS) and electric vehicles (Chen et al., 2020).

The demand for bike-sharing systems steadily increases in time (DeMaio, 2009). Li
et al. (2019) expect this increasing trend to continue since transportation with bikes and
scooters has numerous advantages such as not being stuck in traffic. Moreover, the authors
assert that people tend to use sharing systems rather than private bikes and scooters due

to the possibility of theft, which is also a boosting factor in the ascending demand.

The bike-sharing systems are classified into two groups; station-based and dockless bike-

sharing systems (Lazarus et al., 2020). Station-based bike-share systems allow people to



rent and pick up bikes only from a pre-built bike station and drop them off at another
station. The dockless bike-sharing systems, which are also known as free-floating bike-
sharing systems, on the other hand, allow people to drop off the vehicle at any point in
the city. The pick-up locations of the vehicles, which actually correspond to the drop-off
locations of the previous trips, are generally provided to customers by a mobile application

or website. Figure 1.1 illustrates these two types of bike-sharing systems.

(a) Station-based (Styr&Stall, 2022) (b) Dockless (Lime, 2022)

Figure 1.1: Bike-sharing systems

The dockless bike-sharing systems trended in recent years as they provide flexible and
sustainable transportation (Younes et al., 2020). Xu et al. (2019) underlines the cost-
effectiveness of the dockless sharing systems and therefore indicates that this new genera-

tion of dockless sharing systems is likely to outperform the station-based systems.

The dockless bike-sharing systems allow customers to leave the rented vehicles at any
location they want; accordingly, the customers do not have to end their trips at a station.
These sharing systems use GPS that attains the location and time information on each
vehicle from the satellites. The GPS is incorporated into mobile applications in which

customers can see the available vehicles and their current locations on a map. After signing



up in the mobile application, customers can rent the vehicles by arriving at the vehicles’
existing locations. At the end of their trip, which refers to the travel from an origin to a
destination location, the customers are allowed to leave the bikes at any location. GPS
system detects the location where the customer is dropping off the vehicle and prepares the
bill. Although there are alternative systems that may allow customers to pay flat monthly
fees, the bill is usually calculated based on the duration of the trip. The mobile application
requests the payment information of customers while the customers are signing up and the

fee is then automatically charged.

In dockless bike-sharing systems that utilize electric vehicles, the operating companies
tend to implement an overnight charging process. In this strategy, all vehicles in the
system are collected at the end of a day for recharge and redistributed to service zones at
the beginning of each day (Chen et al., 2018). Recharging is usually done during off-peak
hours, such as before 7 am (Bird, 2022). Alternatively, the empty batteries of the vehicles
can be swapped during the day.

In bike-sharing systems, as the customers do not have to return the vehicles to the origin
location, it is possible to have an imbalance of inventories between stations in station-based
systems, and on streets for dockless systems. This imbalance results in unfulfilled demand
during the day because potential customers may not find any vehicles in some desired
locations. Accordingly, to be able to satisfy more demand and increase their revenue, the
companies that operate these systems might need to change the locations of their vehicles
throughout the day, which is referred to as repositioning or rebalancing. In particular, one of
the operating companies named “Lime”, deploy a team which is composed of approximately
250 employees in San Francisco who are responsible for the rebalancing actions throughout
the day as well as being responsible for overnight charging (Vox, 2018). The vehicles can

also be recharged or their batteries can be swapped during the repositioning actions (Osorio



et al., 2021).

In this study, we develop a mixed-integer programming model to create an optimal
repositioning strategy that maximizes the total profit of the bike-sharing system. Given a
service area, planning horizon, and demand, the repositioning strategy consists of deter-
mining the origin, destination, and the time of the repositioning. In other words, the model
aims to determine the number of vehicles to be repositioned between locations and when
to do it on the planning horizon. After determining the optimal repositioning decisions,
our aim is to analyze these decisions on real-world data sets to measure the effect of repo-

sitioning on different performance indicators and also to derive insights from repositioning.

Our contributions in this study are fourfold: (i) development of a mathematical model
to optimize for the repositioning decisions throughout a multi-period planning horizon,
(7) implementation of the model on real-world data sets from three different cities, (i)
presenting a data-driven analysis of the optimal repositioning decisions and their effects on
several performance measures, and (iv) verifying the effects of repositioning with scenarios

under demand uncertainty.

This thesis is organized as follows. Chapter 2 presents an overview of the literature
related to the problem. In Chapter 3, we describe the repositioning problem in dockless
bike-sharing systems and propose a model to optimize these decisions. We evaluate the
performance of the proposed model using real-world data from three different cities in
Chapter 4. In the last chapter, Chapter 5, we present some concluding remarks and future

research directions.



Chapter 2

Literature Review

The repositioning, also known as rebalancing, strategies in bike-sharing systems have been
drawing attention in recent years with the increase in interest in sharing systems. The
repositioning strategies in bike-sharing systems are grouped into two main categories:
operator-based repositioning and user-based repositioning (Jin and Tong, 2020). In an
operator-based repositioning strategy, the repositioning processes are conducted by the
company which operates the bike-sharing system, whereas, in a user-based repositioning
strategy, the company offers incentives to their customers to reposition the vehicles to the
desired location. The research on user-based repositioning strategies mainly focuses on dy-
namic pricing and bidding strategies to convince the customers to reposition the vehicles
throughout the planning horizon. The research on operator-based repositioning strategies,
on the other hand, focuses on optimizing the vehicle routes that are used by the operating

companies to reposition the vehicles by owner-operated trucks or vans.

Among the user-based repositioning research, Cheng et al. (2021) proposes a dynamic

bidding-model-based incentive mechanism to encourage the customers to participate in the



rebalancing process. In particular, they offer the customers a price incentive if they agree
to take the vehicles to the areas that lack inventory. Similarly, Neijmeijer et al. (2020)
introduce a dynamic pricing model for user-based rebalancing in dockless bike-sharing
systems. In this model, the authors test their algorithm in a real-world case and find out
that the incentives are able to overcome the supply-demand asymmetry in bike-sharing
systems. Reiss and Bogenberger (2017) build up a hybrid approach by combining the user-
based rebalancing strategies with operator-based rebalancing strategies. Accordingly, they
define an urgency index for each rebalancing action in the system. This urgency index is
calculated based on the magnitude of the imbalance in the inventories. If the urgency index
is above a threshold level, Reiss and Bogenberger (2017) propose to use operator-based
rebalancing actions, otherwise, they suggest using price incentives to attract customers to

perform rebalancing.

The operator-based repositioning strategies are further categorized into two sub-strategies:
static repositioning and dynamic repositioning (Médard de Chardon et al., 2016). In static
repositioning, the user intervention in the bike-sharing system throughout the planning
horizon is negligible. In dynamic repositioning, on the other hand, the system is still in
use while the vehicles are being repositioned. Another difference between the static and
dynamic repositioning strategies is that in static repositioning, the demand data is revealed
at the beginning of the planning horizon, whereas in dynamic repositioning, the demand

information changes throughout the planning horizon.

Contardo et al. (2012) present a mathematical formulation for dynamic rebalancing
problems in bike-sharing systems. To be able to solve large-scale instances they implement
Dantzig-Wolfe and Benders decomposition methods. As a result, they find the lower and
upper bounds to this problem: however, they are not able to reduce the gap between these

lower and upper bounds. Chiariotti et al. (2018) analyze the bike-sharing data of New York



and estimate the inventory levels of the stations dynamically. Based on their forecast, they
determine the time of the rebalancing actions and afterward implement a heuristic to create
the rebalancing routes. Similarly, Cipriano et al. (2021) implement frequent pattern mining
on the Barcelona bike-sharing system and propose a dynamic rebalancing method based
on this pattern mining. Using the data, they analyze the critical stations that are likely
to cause customer dissatisfaction due to inventory shortages. Afterward, they dynamically

plan the rebalancing actions to overcome the possible shortages.

The research related to static repositioning strategies in bike-sharing systems approach
the problem from a vehicle routing perspective. For example, Erdogan et al. (2014) identi-
fies the problem as a variant of the One Commodity Pickup and Delivery Traveling Sales-
man Problem (1-PDTSP) which is introduced by Hernandez-Pérez and Salazar-Gonzalez
(2007). In the 1-PDTSP, there is a given list of customers and a single vehicle. This
single vehicle picks up certain amount of commodities from some customers and delivers
these commodities to another customers. Erdogan et al. (2014) finds the minimum cost
route of the single capacitated vehicle which redistributes the bicycles to stations while
considering demand constraints. Erdogan et al. (2014) proposes exact solution algorithms
for this problem and tests the proposed algorithms with the instances that are proposed
by Herndndez-Pérez and Salazar-Gonzalez (2007). The maximum number of the nodes

(customers) in these test instances is 50.

To evaluate different static repositioning strategies, Dell’Amico et al. (2014) tests four
mixed-integer linear programming models on the data obtained for the city of Reggio
Emilia, Italy. The first two models are based on the well-known Multiple Traveling Sales-
man Problem (m-TSP), presented in Bektas (2006). The third approach is similar to 1-
PDTSP studied in Erdogan et al. (2014). The last model is inspired by the two-commodity

flow model proposed by Baldacci et al. (2004). All four models aim to determine the repo-



sitioning routes with minimum total transportation cost. Dell’Amico et al. (2014) imple-
ments a branch-and-cut algorithm to solve the models and tests the performance of the
algorithm on real-world data from different cities. The number of nodes in these instances

varies between 13 and 116.

Pal and Zhang (2017) presents a novel mixed-integer model to find the optimum repo-
sitioning routes. This model is similar to 1-PDTSP but allows for multiple visits to a node
with the same vehicle as well as the use of multiple vehicles. Bruck et al. (2019) formulates
the problem similar to Pal and Zhang (2017) but extends the concept by considering the
forbidden temporary operations. The forbidden operations are the cases that prevent some

of the vehicles in the fleet to be transported.

In this study, we focus on static repositioning decisions in dockless bike-sharing systems,
however, in contrast with the previous studies, we do not optimize the routing decisions.
Instead, we focus on determining the optimal repositioning decisions which include the
origin and destination of the repositioning as well as its time. To incorporate the time
aspect, we consider a multi-period planning horizon, where the repositioning decisions are
to be given for each period. We do assume that the user intervention at the time of
repositioning is negligible as in the other static studies. On the other hand, we consider
a dynamic planning horizon but assume that the demand information does not change
throughout the planning horizon as opposed to the literature on dynamic repositioning

studies.

In this study, we also present a detailed analysis of the impact of repositioning on key
performance indicators in dockless bike-sharing systems. To the best of our knowledge,
this research is the first that analyzes the outcomes of optimal repositioning processes in

sharing systems for operating companies.



Chapter 3

Problem Setting and Mathematical

Formulation

The decision-maker in our problem setting is the operator of a dockless bike-sharing system.
Given the demand, the decision-maker needs to determine the best repositioning strategy

that would result in maximizing their profit during the planning horizon.

To model this problem, the service area needs to be divided into several geographical
zones. Similarly, the planning horizon must be divided into several time periods (e.g., hours
in a day) to determine the time of the repositioning actions. There is a given demand for
the number of vehicles (bikes) required to travel from one zone to another within each
period. The demand between each zone pair in each period is assumed to be known. To
be able to meet a period’s demand from a zone to another, there should be at least one
available vehicle in the origin zone at the beginning of that period. Instead of keeping
inventory in each location at the beginning of each period, the availability can be ensured

by repositioning the vehicles during the planning horizon.



We propose a network flow model to find the optimal repositioning strategy in the
given service area during the planning horizon. The objective of the proposed model is to
maximize the total profit for the sharing system. The aim of the model is to decide on

which demand to meet and how to best reposition the vehicles to meet this demand.

There is a known revenue from satisfying a unit demand from one zone to another.
The bike-sharing companies usually charge their customers based on the time spend on
the vehicles during a trip. To estimate the revenue we assume that the customers use
the vehicles of the bike-sharing system only for direct transportation where they use the
shortest paths to arrive at their destination without any intermediary stops. The revenue
can then be estimated by multiplying the network distance from the centroid of the origin

zone to the destination zone by a coefficient that accounts for the total revenue per distance.

There is a cost incurred for repositioning the vehicles. In practice, the repositioning
of bikes is done through vans or trucks that can carry multiple bikes at a time. Hence,
the cost of repositioning is assumed to be dependent on the distance between the zones
and the average fuel consumption per distance, but it is not dependent on the number of
vehicles to be repositioned. Moreover, there is a fixed cost of using or deploying a vehicle
to the system. This fixed cost is assumed to be dependent on the purchasing cost of the

vehicles and prorated for the duration of the planning horizon.

We assume that the vans or trucks that are used to reposition the vehicles have sufficient
capacity and all of the vehicles in the system are distributed from a hypothetical depot to
the service zones at the beginning of the planning horizon to account for the distribution

of the vehicles to the system after overnight charging.

The following notation is used for the parameters that are required to model the prob-

lem:

10



S Set of zones (0 denotes the depot).
T Set of periods (0 denotes the beginning of the planning horizon).

dije Demand from zone ¢ € S to zone j € S in time period t € T.

Dij Revenue of satisfying a demand from zone ¢ € S to zone j € S.
Cij Cost of repositioning from zone i € S to j € S.
f Fixed cost of deploying a vehicle.

We define the following decision variables for the mathematical formulation:

xi;t = Number of vehicles assigned to the demand from zone ¢ € S to zone j € §
in time period t € T'.
yij+ = Number of vehicles repositioned from zone 7 € S to zone j € S

in time period t € T.

1, If any repositioning is done from zone i € S to zone j € S in period t € T,
Zijt =
0, otherwise.

The problem is formulated as follows:

max Zzzpz’jxijt - ZZZCijzijt - ZfZJOjl (3-1)

1€S jES teT 1€S jES teT jeS

11



s.t. Tijt S dijt Z,] € S,t eTl (32)

Z Tije + Z Yijt = szi(t—l) + Zysz’(t—l) ieSteT (3.3)

jes jes s€s s€S

Yije < Mz i,jeESteT (3.4)
Tijt, Yije > 0 i,jeESteT (3.5)
zijir € {0,1} i,jesSteT (3.6)

The objective function (3.1) maximizes the total profit of the bike-sharing system. The
total profit is calculated by subtracting the repositioning and fixed costs of vehicles from
the total revenue which is gained from satisfying the customer trips. The first term in the
objective function calculates the total revenue obtained from satisfying the demand, the
second term calculates the cost of repositioning, and the last term calculates the total cost

of deploying vehicles in the system at the beginning of the planning horizon.

Constraint (3.2) links the demand data with the decision variables x;;;. This constraint
ensures that the number of vehicles assigned to trips between the zones can not exceed the
potential demand. Constraint (3.3) is the flow balance constraint that matches the flow
between periods and zones. For each period and zone, the left-hand side of this constraint
calculates the total number of vehicles available at that zone to either satisfy the demand
of that period or reposition and equals it to the total number of vehicles that arrived at
that zone from the previous period either through satisfying the previous period’s demand
or by relocation. This constraint allows a vehicle to stay idle in a zone during the planning
horizon through the use of y;;; variables which may or may not have an associated cost in

the objective function depending on the decision maker’s preferences.

If there is at least one vehicle that needs to be repositioned from zone 7 to zone j at

period ¢, Constraint (3.4) ensures that the corresponding binary variable z takes on the

12



value of 1. Here, M denotes a large-enough number, for example, the number of vehicles
in the system. The cost of repositioning is calculated in the objective function through the
use of the binary z variables, where the cost denotes the dedication of one high-capacity
vehicle to consolidate the relocation of all vehicles from zone ¢ to zone j at period ¢. Lastly,

Constraint (3.5) and (3.6) are the domain constraints of the model.

If the total number of vehicles in the system is desired to be limited, Constraint (3.7)
below can be added to the model. This constraint sets the total number of vehicles to

deploy at the beginning of the planning horizon to a predetermined parameter, denoted by

V.

Z Yoj1 <V (3.7)

jes
For any reason, if the decision-maker wants to avoid relocation, the repositioning de-
cision variables y in the model can be set to zero. By setting these variables to zero, one
can analyze the effects of repositioning in the system. We conduct such analyses that are

detailed in the next section.
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Chapter 4

Computational Analyses

This section presents the computational experiments with the proposed mathematical
model developed to optimize the repositioning decisions for bike-sharing systems. The
model was run on a computer that has AMD Ryzen 5 5600X CPU, with 4.6 GHz and
16.00 GB of RAM, running Windows 11 operating system. CPLEX 20.1 was used as a

mixed-integer linear programming solver.

The proposed mathematical model is analyzed under real-world bike-sharing data col-
lected from three major cities: New York, Toronto, and Vancouver. The next section

details information on these three data sets.

4.1 Data Sets

The annual ride data of station-based bike-sharing systems in New York, Toronto, and
Vancouver are collected from the websites of the operating companies which are Citi Bike

(2022), Bike Share Toronto (2022), and Mobi Bikes (2022), respectively. All of these

14



data sets are open source and contain each trip’s origin, destination, date, and duration. A
screenshot from each of these data sets is presented in Appendix A. As a way of comparison,
Table 4.1 below lists the number of stations and the annual number of trips in the bike-
sharing systems of each of these cities during the year 2021. As can be observed from this
table, the New York bike-sharing system is the largest and the most established among the

three cities, whereas Vancouver is the smallest.

Table 4.1: Comparison of the data sets.

City Number of Stations Number of Annual Trips in 2021

New York 1522 29,247,005
Toronto 615 3,612,588
Vancouver 197 736,914

Although the focus is on the dockless bike-sharing systems in this thesis, the perfor-
mance of the model is tested on station-based sharing system data. The main reason is
the availability of the data only for station-based systems. Currently, none of these cities
have operating dockless sharing systems. In particular, the launch of dockless bike-sharing

systems is delayed in New York because of the pandemic (NYC 311, 2022).

To scale the problem size to be able to implement and solve the optimization model,
we clustered stations in each city into 100 zones. In particular, we implemented a k-means
clustering algorithm, where & = 100 (Hartigan and Wong, 1979). In our preliminary
analysis, we observed that having a higher number of zones makes it difficult to solve the
optimization model whereas by using fewer zones we might be unnecessarily agrregating the
data. The k-means clustering algorithm is coded in Python and provided in Appendix B.

After implementing the k-means clustering algorithm, the shortest network distances be-

15



tween the centroids of the clusters are calculated by using GraphHopper Routing API
(GraphHopper, 2022). The demand data for our experimentation is generated by consid-
ering the demand between these clustered zones and it is assumed that distances between
the centroids of the zones is a reasonable estimate for the travel distances of the demand
from one zone to another. Figure 4.1, Figure 4.2, and Figure 4.3 depict the coordinates
of the stations and centroids of the 100 clusters in New York, Toronto, and Vancouver,
respectively. The blue points represent the locations of the existing stations, whereas the

red points show the centroids of the clusters.
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Figure 4.2: Toronto data - 615 stations (blue), 100 zone centers (red).
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Figure 4.3: Vancouver data - 197 stations (blue), 100 zone centers(red)
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For our computational experiments, we consider the planning horizon as a day since
recharging of the vehicles is usually done overnight. From the data sets, we calculated the
average trip durations in the year 2021 as 18 minutes 2 seconds for New York, 17 minutes
15 seconds for Toronto, and 22 minutes 3 seconds for Vancouver. Moreover, 98% of all
trips were less than an hour in all data sets. Accordingly, we assumed that the demand for
each trip length is for a period of less than one hour and that every trip starts and ends
in the same period. Consequently, the day is divided into an hour-long 24 equal periods,
where each hour corresponds to a period. In particular, the first period starts at 00:00 AM
and ends at 00:59 AM, the second period starts at 01:00 AM and ends at 01:59 AM, and
so on and so forth until the last period, which starts at 11:00 PM and ends at 11:59 PM.

We do not consider the demand from one period to another, however, note that this
depends on the start time of each period. If the periods start, say, 5 minutes past the
hour, the demand set might be different. We conducted a sensitivity analysis with our
data sets to observe the effect of changes in the starting time of the periods in a day on
demand. In particular, we generated different demand data by changing the start times
of the 1-hour periods for 60 possibilities, corresponding to each minute of the hour, for
each day in the month of August 2021 with New York City data. We then calculated the
standard deviation of the total demand as 0.003 among all of these options. Since the
demand data does not change significantly when we change the start time of the 1-hour

periods, we continued our analysis by starting the periods at full hours.

In dockless sharing systems, the operating companies tend to implement an overnight
charging process for electric vehicles. In this strategy, all vehicles in the system are collected
at the end of a day for recharge and redistributed to service zones from charging centers
at the beginning of the day. Accordingly, it is assumed that all of the vehicles in the

existing bike-sharing systems in New York, Toronto, and Vancouver are distributed to the

19



service zones at the beginning of each day. The cost of distributing the vehicles from a
depot (node 0) to service zones is assumed to be negligible as this cost is incurred by the

overnight chargers who are already compensated.

Table 4.2 summarizes the values of the parameters used in our computational exper-
iments. For each city, the demand between the zones is obtained from the data that is
provided by the operator companies. To estimate the revenue that is gained from the
trips of the customers, Citi Bike Pricing (2022) is used, where the company is charging
approximately $11 per hour. The average speed of a bike is taken between 10-15 km /hr
in the urban areas (Jensen et al., 2010). As a result, the revenue (p;;) is estimated to
be $1 per km. The average fuel consumption is gathered from the official United States
Department of Energy’s website (U.S. Department of Energy, 2022). The fixed cost per
day (f), on the other hand, is calculated by dividing the average bike price by 365 days
where we assume that the life cycle of a bicycle is one year in bike-sharing systems. Based
on Bicycle Universe (2022), the average price of a road bike varies between $350-700. The
operator companies tend to use basic bikes so it is assumed that the price of a bike is close

to the lower bound of this range.

Table 4.2: Values of the parameters.

Parameter Value and Source
B 100
7| 24
dijt From Citi Bike (2022), Bike Share Toronto (2022), Mobi Bikes (2022)
Dij $1/km (Citi Bike Pricing, 2022)
Cij $0.1/km (U.S. Department of Energy, 2022)
f $1/day (Bicycle Universe, 2022)
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4.2 Results and Insights

We considered the data between February 2021 and February 2022 for a period of one year
and a month (13 months). Within this period, we solved the model with data from the
10*" and 20™ day of each month for each of the three cities to have random representative
days. All instances were solved to optimality by using CPLEX 20.1. The average run time
was 3 minutes 17 seconds per instance. All results are provided in the table presented in

Appendix C.

For each instance, the optimal solution obtained from the model provides us with the
total demand to be served and the total number of vehicles that need to be repositioned
between each pair of zones in each period that maximize the profit. After finding the
optimal repositioning actions, we analyze the effect of repositioning on the fulfilled demand,
number of required vehicles, and utilization rates of the vehicles which is illustrated in

Figure 4.4. The results of these analyses are presented in the respective subsections below.

‘ Effects |

Demand fulfillment Number of vehicles Utilization rate

Figure 4.4: Effects of repositioning
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4.2.1 Demand fulfillment

We first analyze the effect of repositioning on fulfilled demand. For this analysis, as a
first step, we solve the optimization model by forcing to meet all demands, i.e., we set
Constraint (3.2) to equality and solve our model. From these optimal solutions, we can
calculate the minimum number of vehicles required to meet all demand in the system. This
value is equal to ) yo;1, as this summation gives exactly the number of vehicles that need
to be dispatched]ierfthe system from the depot at the beginning of the planning horizon.
In the second step, we solve the optimization model by setting the repositioning decision
variables to zero and limiting the number of vehicles in the system to the value that we
found in the previous step by setting this value to the right-hand side of Constraint (3.7).
For each instance, we then calculate the amount of demand that can be satisfied using the
same number of vehicles, without any repositioning, to maximize profit. Note that since
we do not allow for repositioning in this second step, we can cover less demand with the

same number of available vehicles. Figure 4.5 presents the daily percentages of potential

lost demand with each of the data sets when repositioning is not allowed in the system.

22



LU e I O s B e B B s B B B B B B B s
—e— New York
—m— Toronto
40| | —— Vancouver

Percentage of lost demand (%)

10 -

10-02-2021 -
20-02-2021 -
10-03-2021
20-03-2021 -
10-04-2021 -
20-04-2021 -
10-05-2021
20-05-2021 -
10-06-2021 -
20-06-2021 -
10-07-2021
20-07-2021 -
10-10-2021 -
20-10-2021 [~
10-11-2021 -
20-11-2021 -
10-12-2021 -
20-12-2021 -
10-01-2022 -
20-01-2022 -
10-02-2022 -

10-08-2021
20-08-2021 -
10-09-2021 -
20-09-2021 -
20-02-2022

Figure 4.5: Effect of repositioning on the percentage of lost demand.

Among these three cities, the highest impact of repositioning on the lost demand is
observed in Vancouver. If repositioning is not allowed in Vancouver, the system is able
to meet 24.73% less demand on average. The average percentages of lost demand in New

York and Toronto are 13.86% and 11.86%, respectively.

Among the days that are presented in Figure 4.5, the highest percentage of lost demand
is observed as 40.71% (January 20, 2022, Vancouver) and the lowest is 6.06% (September
20, 2021, Toronto).

4.2.2 Number of vehicles

We next investigate the number of vehicles needed to fulfill the entire demand with and

without repositioning. We solve the optimization model by setting the demand Con-
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straint (3.2) to equality and find the minimum number of vehicles required to meet all
demand in the system as detailed in Section 4.2.1. Subsequently, we set the repositioning
variables to zero and resolve the model to calculate the number of vehicles needed to fulfill
the entire demand when repositioning is not allowed in the system. The difference in the
numbers of vehicles to satisfy all demand with and without repositioning in New York,

Toronto, and Vancouver are shown, respectively, in Figure 4.6, Figure 4.7, and Figure 4.8.
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Figure 4.6: Number of vehicles to meet all demand in New York.

In New York, it is possible to fulfill the same amount of demand with 638 fewer vehicles
per day on average with repositioning. The highest impact of repositioning is observed on
November 10, 2021 (Figure 4.6). To fulfill the same amount of demand on this day, the

bike-sharing system needs 1372 more vehicles when no repositioning is allowed.

24



37000 T T T T T T T T T T T T T T T T T T T T T T T T T

—m— with relocation
—»— without relocation
2,400 |- |
1}
5]
o
= 1,800 |- |
o
>
e
o
X
£ 1,200 |-
el
Z
600 |-

e e S ) I S M |

— o= o = o o o = o = o = o o = = = = = A AN
AN A A A A A AN AT A A AAATATATATATTAANANANNN
[e=eolololecloBcNoloBoBNololoRocNoRolo ool ololollol ol ol o)
Qo arer g gt ar gt el qrauear ararar g qrar qrar aquar ar
AN NN N 0O QO -0 0O O - 4 AN~ A5 AN
2232232923294 A4 DA AT
O O O O O O O O OO OO OO OO O O OO O O o o OO
— N~ N~ N~ N~ N~ N~ N~ N N~~~ N

Figure 4.7: Number of vehicles to meet all demand in Toronto.

The bike-sharing system in Toronto requires 317 fewer vehicles per day on average
to satisfy the whole demand if repositioning is allowed. On July 10, 2021, the effect of
repositioning on the number of required vehicles is observed to be the highest, where the

entire demand could be fulfilled by utilizing 645 fewer vehicles (Figure 4.7).
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Figure 4.8: Number of vehicles to meet all demand in Vancouver.

In Vancouver, when repositioning is allowed, the bike-sharing system is able to fulfill
the same amount of demand with 192 fewer vehicles per day on average. The difference in
the number of vehicles needed to fulfill the demand with and without repositioning varies
between 68 and 304. The smallest difference is observed on January 10, 2022, whereas the
highest is observed on August 10, 2022 (Figure 4.8).

As a result of the analyses using the data sets from three different cities, it can be
concluded that repositioning is able to reduce the fleet size significantly. The highest
impact is observed in Vancouver; as demonstrated in Figure 4.8, it is possible to cover the
same daily demand with approximately 50% fewer vehicles with repositioning. Although
the difference in the required number of vehicles to fulfill the demand is highest in New York,
it is observed that the percentage decrease in the required number of vehicles decreases

with the increase in demand.
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4.2.3 Utilization rate

In this section, we analyze the effect of repositioning on the utilization rates of the vehicles
used in the three bike-sharing systems. To be able to calculate the utilization percentages
of the vehicles, each vehicle that is assigned to a trip in a period is considered to be busy
or fully utilized throughout the whole period. The average utilization rate of the vehicles

is then calculated as follows:

D D0 D Tije
1€S jESteET

Utilization Rate = x 100 (4.1)

v

In this equation, A denotes the total number of periods, which is 24 in our setting, and v is
the total number of vehicles needed to fulfill the entire demand. The nominator calculates
the total demand that is covered by the vehicles in a day, which also represents the total
number of vehicle assignments to the trips. The denominator, on the other hand, is the

total available vehicle-periods (or vehicle-hours) in a day.

The average daily utilization rates of the vehicles are calculated for all of the daily
instances in each cities. After that, the repositioning actions are disabled and the instances
are solved again to find the utilization rates in case of no repositioning. The differences
between the utilization rates of the vehicles in each of the cities are depicted in Figure 4.9,

Figure 4.10, and Figure 4.11.
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Figure 4.9: Effect of repositioning on vehicle utilization rates in New York.
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Figure 4.10: Effect of repositioning on vehicle utilization rates in Toronto.
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Figure 4.11: Effect of repositioning on vehicle utilization rates in Vancouver.

In New York, the repositioning process

41.10% on average. The highest increase is

increase vehicle utilization from 36.31% to

on January 10, 2022 (Figure 4.9). On this

day the average utilization rate of the vehicles is increased from 29.96% to 40.79% with

repositioning.

The average daily utilization rates of the vehicles in Toronto are calculated as 34.12%

with repositioning and 23.57% without repositioning. Hence, repositioning increases the

average utilization rate by 10.55% in the instances presented in Figure 4.10. The highest

increase is observed on November 20, 2021, when the average utilization rate is increased

from 24.89% to 40.46%.

In Vancouver, the average daily vehicle

utilization rate is more than doubled with

repositioning. The average daily utilization rate is 27.01% with repositioning, whereas it is

13.13% without repositioning. The highest improvement is seen on August 20, 2021, when
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the utilization rate is increased from 15.08% to 36.71% (Figure 4.11). Although the bikes
in New York are utilized the most, the highest impact of repositioning on the utilization

rates is observed in Vancouver.

In addition to the daily utilization rate comparisons, the effect of repositioning is also
analyzed for all days throughout the month of August 2021, which is one of the busiest
months of the year. The proposed model is solved with the demand data for every day
of this month and average daily utilization rates are calculated for each of the cities. Fig-
ure 4.12 illustrates the average daily utilization rates in New York, Toronto, and Vancouver

with repositioning.
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Figure 4.12: Utilization rates in August 2021 with repositioning.

It can be observed from Figure 4.12 that New York and Toronto have similar trends
in the sense that the vehicles employed in the bike-sharing systems of these two cities are

utilized more during the weekends as compared to weekdays. On the other hand, although
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vehicles in Vancouver also tend to be utilized more during the weekends, the difference
between the utilization rates during weekdays and weekends is not as significant compared

with New York and Toronto.

In addition to the average daily utilization rates, we also calculated the hourly utiliza-
tion rates of the vehicles. Since each period corresponds to an hour in our analysis, we
used the following equation to calculate the hourly utilization rates of the vehicles in the
system:

> 2 Tijt

i€S jeS

Hourly Utilization Rate = x 100 (4.2)

v

For the hourly utilization rate analysis, we selected the days that have the highest
demand among all the previously tested daily instances from February 2021 to February
2022. The days that have the highest demand are September 10, July 10, and August 10 for

New York, Toronto, and Vancouver, respectively. The results are depicted in Figure 4.13.

Observe from Figure 4.13 that the utilization rates in all cities peak during rush hour,
in particular between 4 PM and 8 PM, and the vehicles are barely utilized just before
sunrise. These less busy times of the day will be used by overnight chargers to collect
and redistribute the vehicles in the system for the following day’s demand or for regular

maintenance.
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Figure 4.13: Utilization rates on the busiest days in 2021 with repositioning.

4.2.4 Visualization of repositioning

In this section, we visually represent the repositioning actions on a map and analyze the

consequences of these actions on the busiest days of each of the cities in 2021.

In each of the figures (Figure 4.14, Figure 4.15, Figure 4.16), we represent the optimal
repositioning actions with lines. In particular, there is a line between the origin and
destination of carrier trucks that are conducting repositioning of the vehicles in each of
the three bike-sharing systems. For New York, in Figure 4.14, the color of the line is red if
the destination point is located relatively on the south of the origin (the longitude of the
destination is smaller than the longitude of the origin), and the color of the line is blue if the

destination is located relatively in the north of the origin (the longitude of the destination
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is larger than the longitude of the origin). For Toronto and Vancouver, in Figure 4.15 and
Figure 4.16, on the other hand, the color of the line is red if the destination is located on
the west of the origin (the latitude of the destination is smaller than the latitude of the
origin), and the color of the line is blue if the destination is located on the east of the origin

(the latitude of the destination is bigger than the latitude of the origin).

Figure 4.14: Visualization of relocations in New York on September 10, 2021.
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Figure 4.14 presents the optimal repositioning decisions in New York on September 10,
2021, which has the highest demand among all the tested daily instances. Throughout
this day, the vehicles in the system are repositioned 14 times. These repositioning actions
increased the average vehicle utilization rate from 40.37% to 42.94%. Along with the
increase in the utilization rates, the number of vehicles required to fulfill the demand on
September 10, 2021, decreased from 9783 to 9198 as a result of repositioning. In other
words, it is possible to fulfill the demand on this day with 585 fewer vehicles if these
optimal repositioning decisions are implemented. On the other hand, the system is able to

meet 15.75% less demand if no repositioning is allowed.

o

Figure 4.15: Visualization of relocations in Toronto on July 10, 2021.

As illustrated in Figure 4.15, there are 12 repositioning actions in Toronto on July 10,
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2021 which is the busiest day among the tested daily instances. The average vehicle utiliza-
tion on this day increased from 29.32% to 40.86% as a result of the proposed repositioning
actions. Moreover, as in New York, repositioning reduced the number of vehicles required
to serve the demand by 645 vehicles. If repositioning is not implemented, the system is

able to meet 11.73% less demand.
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Figure 4.16: Visualization of relocations in Vancouver on August 10, 2021.

There are only two repositioning actions in Vancouver on August 10, 2021, in the
optimal solution. Figure 4.16 illustrates the optimal repositioning actions on this day.
Although the vehicles are repositioned only two times, these repositioning actions increased
the average vehicle utilization rate from 17.11% to 32.28%. Another key contribution of
the repositioning processes on this day is the decrease in the required number of vehicles
in order to fulfill the demand. The total number of vehicles required to meet the entire

demand decreases from 647 to 343 if the optimal repositioning strategy is implemented.

35



On the other hand, without repositioning, the bike-sharing system can fulfill 20.55% less

demand with the same number of vehicles.

4.2.5 Demand uncertainty

In the previous sections, the effect of repositioning is analyzed by implementing the pro-
posed mathematical model using the real-world bike-sharing data of New York, Toronto,
and Vancouver on 26 different daily instances that correspond to the 10th and 20th days
of each month between February 2021 and 2022. In this section, we investigate the effect

of repositioning under uncertainty by generating random demand scenarios.

To generate these random demand scenarios, we first find the minimum and maximum
demand between each pair of zones in each period from the 26 daily instances. For each zone
pair and period, we then generate a random demand value from the interval between these
minimum and maximum values using a uniform distribution. We generate ten different
demand matrices in this manner, referred to as scenarios, and solve the model under each

of these random data scenarios.

Table 4.3 compares the effect of repositioning on real and random data based on the
three performance indicators defined in Section 4.2.1, Section 4.2.2, and Section 4.2.3. The
“Min” and “Max” columns presented under real data represent the minimum and maximum
effect of repositioning among the 26 daily instances that correspond to the values depicted
in Figure 4.6 — Figure 4.11. The same performance indicators are calculated with the

random demand scenarios and listed under the respective columns.
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Observe from Table 4.3 that all values obtained under all random scenarios fall within
the interval between the minimum and maximum values obtained using the real data for
each city. Accordingly, we expect repositioning to have a similar positive effect on each of

these performance measures under demand uncertainty:.
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Chapter 5

Conclusions

This research analyzes the effect of optimal repositioning on dockless bike-sharing systems.
As a first step, we formulate a multi-period mixed-integer linear model to find the optimal
repositioning actions in bike-sharing systems. This model maximizes the total profit by
finding the optimal number of vehicles to be repositioned between each location in the

service area and its time period.

The developed model is implemented using real-world bike-sharing data from New York,
Toronto, and Vancouver on 26 different daily instances that correspond to the 10th and
20th days of each month between February 2021 and 2022. The optimal repositioning
schedules are obtained by solving the proposed model with data from these days for each
city. Considering the obtained optimal repositioning actions, the effects of repositioning
are analyzed on the fulfilled demand, number of required vehicles, and utilization rates of

the vehicles in each city.

Our results show that a significant loss of demand can occur if repositioning is not al-

lowed in bike-sharing systems. The percentage of this potential demand loss varies between
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6% to 41% in our test instances. Moreover, our results demonstrate that repositioning can
considerably reduce the required fleet size. The average number of vehicles to fulfill the
same amount of demand with and without repositioning can be up to 63% fewer. Reposi-
tioning also has a substantial effect on the daily utilization rates of the vehicles employed
in bike-sharing systems. We observe that repositioning can increase the daily utilization

rates of the vehicles up to 21%.

Bike-sharing is a capital-intensive industry and operator companies need to bear sig-
nificant expenditures to start up a business (Tian et al., 2021). Our results demonstrate
that an effective repositioning strategy can decrease the capital investment requirements
as it allows operating companies to serve their customers with fewer vehicles. This can in
turn facilitate more companies to enter the sector and, subsequently, customers can benefit

from the competition in the market that will be reflected in prices.

We assume in this research that the carrier trucks that are responsible for the repo-
sitioning of the vehicles have sufficient capacity. For future research, the capacities of
these carrier trucks can be incorporated into the mathematical model. To address this
modification, the binary variables in our model need to be replaced by integer decision
variables. As a consequence, the problem sizes will get bigger and there might be a need
for customized solution methodologies, such as decomposition algorithms, to be able to

solve realistic-sized instances.

Currently, the output of the proposed model can readily be used as an input for a
vehicle routing model to optimize the routes of the carrier trucks. Instead of a sequential
approach, another future research direction would be to simultaneously find the optimal
routes of these carrier trucks that would allow them to deliver multiple origin-destination
points and do more than one repositioning in a single period within a pick-up and delivery

type of a vehicle routing problem. Such an extension can provide a better evaluation of
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repositioning costs, whereas our analysis uses an upper bound for calculating these costs.
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Appendix A

Data Sets

1 ride_id started_at ended_at start_station_name start_station_id end_station_name end_station_id  start_lat start_Ing end_lat end_Ing

Pl F86889D05B67EBED  2021-08-24 15:59 2021-08-24 16:42 Broadway & E 21 5t 6098.1 Central Park North & Adam Clayton Powell Bivd 7617.07 407398884 -73.9895859 40.799484  -73.955613
Ell £13DA3E30CEFSDFC  2021-08-18 13:12 2021-08-18 13:21 E135t&2 Ave 5820.08 Henry St & Grand St 529404 407315394 -73.9853024 40.714211 -73.981095
Pl 56617490ABSAEGIC 2021-08-17 14:31 2021-08-17 14:35 E 955t &3 Ave 736513 E 84 5t & Park Ave 724304 407849032 -73.950503 40.7786269 -73.9577207
Bl cA008B271C7D6663 2021-08-1110:00 2021-08-11 10:31 Madison Ave & E 82 St 718813 E 84 5t & Park Ave 724304 407781314 -73.960694 40.7786269 -73.9577207
[l 2£170CE1FAFE179D  2021-08-12 19:28 2021-08-12 19:48 E745t&1Ave 6953.08 E 84 5t & Park Ave 724304 407689738 -73.9548227 40.7786269 -73.9577207
[l 09/4D1869E7817D2  2021-08-151:44  2021-08-15 1:56 Newtown Ave & 23 St 7026.08 355t & 21 Ave 717004 407713615 -73.9246145 40.776745 -73.906558
3D505A8BIBBEAA9B  2021-08-310:02 2021-08-310:24 Fulton St & Irving Pl 4263.12 Willoughby Ave & Tompkins Ave 4665.02 4068186 73959432 40.694254 -73.9462692
Ell 74020040E58D33D4  2021-08-29 18:44 2021-08-29 18:48 28 5t & 41 Ave 6462.19 38 Ave & 29 5t 6538.11 40751047 7393797 4075473  -73.93367
B 0CFO1DCADCSE746C 2021-08-09 18:31 2021-08-09 18:58 Reade St & Broadway 5247.1 Cadman Plaza E & Tillary St 4677.01 407145045 -74.0056279 40.6959768 -73.9901489
Bl 9F8A0D1BBEEAACDA 2021-08-0114:10 2021-08-01 14:31 West St & Chambers St 5329.03 E 20 St & Park Ave 605508 40.7175483 -74.0132207 40.7382743 -73.9875197
REY £S0BADOSOFAACABS 2021-08-25 18:22 2021-08-25 18:40 West St & Chambers St 5329.03 E 20 St & Park Ave 605508 407175483 -74.0132207 40.7382743 -73.9875197
REY| B8A51F4FB155C73C4  2021-08-04 16:00 2021-08-04 16:10 Cleveland Pl & Spring St 5492.05 E 20 St & Park Ave 605508 407221038 -73.997249 407382743 -73.9875197
RZN 17048C616EE83002 2021-08-05 19:01 2021-08-05 19:35 Cleveland PI & Spring St 5492.05 Willoughby Ave & Tompkins Ave 466502 407221038 -73.997249  40.694254 -73.9462692
Rl 04E2287CDODCOB9T  2021-08-058:00 2021-08-05 8:10 Pershing Square South 6432.08 E 20 5t & Park Ave 6055.08 40751581  -73.97791  40.7382743 -73.9875197
Bl 5A77B437FCCFACIS 2021-08-05 19:24 2021-08-05 20:05 Cleveland PI & Spring St 5492.05 Cadman Plaza E & Tillary St 4677.01 407221038 -73.997249  40.6959768 -73.9901489
[l F6C4B204DF82ADSD 2021-08-27 17:31 2021-08-27 17:39 W4St&7Aves 5880.02 E 20 St & Park Ave 605508 407340114 -74.0029388 40.7382743 -73.9875197
i) DB450381ADB381E7 20210827 9:03 2021-08-27 9:11 McKibbin St & Manhattan Ave 4996.08 Willoughby Ave & Tompkins Ave 466502 407051092 -73.9440728 40.694254 -73.9462692
RB) 4838C1A378042371 2021-08-12 18:52 2021-08-12 19:19 E 255t &2 Ave 6046.02 E 20 5t & Park Ave 6055.08 40739126 -73.9797378 40.7382743 -73.9875197
B 9AC41DCCBSBB3BDC 2021-08-15 17:34 2021-08-15 18:04 Forsyth St & Canal St 5270.07 Cadman Plaza E & Tillary St 4677.01 407158155 -73.9942237 40.6959768 -73.9901489
Bl 816431DD3EAFS5A2  2021-08-28 21:29 2021-08-28 21:44 Riverside Dr & W 153 St 8108.02 W 145 St & Amsterdam Ave 7997.08 40832164 73949702  40.825244  -73.947257
7500DC08A95A9546 2021-08-29 23:17 2021-08-29 23:38 4 Ave &E12 5t 5788.15 Graham Ave & Withers St 5403.04 40732647 -73.99011  40.7169811 -73.9448592

Figure A.1: A screen shot from the Citi Bike (2022) data set.
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1
2
3
4
5

® N o

Tripld  Trip Duration Start Station Id Start Time

11015571
11015572
11015573
11015574
11015575
11015576
11015577
11015579
11015580
11015581
11015582
11015583
11015584
11015585
11015586

195 7032 04/01/2021 00:01
938 7168 04/01/2021 00:01
1145 7012 04/01/2021 00:03
1061 7037 04/01/2021 00:04
460 7198 04/01/2021 00:07
643 7311 04/01/2021 00:08
1486 7075 04/01/2021 00:08
1078 7248 04/01/2021 00:11
829 7042 04/01/2021 00:18
492 7402 04/01/2021 00:19
3191 7468 04/01/2021 00:22
3161 7468 04/01/2021 00:22
335 7025 04/01/2021 00:28
677 7599 04/01/2021 00:29
191 7264 04/01/2021 00:30

Figure A.2: A screen

Start Station Name
Augusta Ave / Dundas St W
Queens Quay / Yonge St
Elizabeth St / Edward St (Bus Terminal)
Bathurst St / Dundas St W
Queen St W / Cowan Ave
Sherbourne St / Isabella St
Queens Quay W / Dan Leckie Way
Baldwin Ave / Spadina Ave - SMART
Sherbourne St / Wellesley St E
Wellington St W / Bathurst St
Front St / Simcoe St
Front St / Simcoe St
Ted Rogers Way / Bloor St E
Richmond St W / York St
Bloor St E / Huntley St - SMART

End Station Id End Time
7049 04/01/2021 00:04
7508 04/01/2021 00:17
7012 04/01/2021 00:23
7079 04/01/2021 00:22
7662 04/01/2021 00:15
7551 04/01/2021 00:18
7344 04/01/2021 00:33
7264 04/01/2021 00:29
7118 04/01/2021 00:32
7052 04/01/2021 00:27
7468 04/01/2021 01:15
7468 04/01/2021 01:15
7121 04/01/2021 00:33
7255 04/01/2021 00:40
7530 04/01/2021 00:33

End Station Name
Queen St W/ Portland St
Berkeley St / Dundas St E - SMART
Elizabeth St / Edward St (Bus Terminal)
McGill St / Church St
Beaty Ave / Queen St W
The Esplanade / Hahn PI
Cherry Beach
Bloor St E / Huntley St - SMART
King St W / Bay St (East Side)
Wellington St W / Bay St
Front St / Simcoe St
Front St / Simcoe St
Jarvis St / Dundas St E
Stewart St / Bathurst St - SMART
Sherbourne St N / Elm Ave

shot from the Bike Share Toronto (2022) data set.

Departure Return Departure station
2021-08-01 0:00 2021-08-01 0:00 0026 Beatty & Robson
2021-08-01 0:00 2021-08-01 0:00 0137 Beach & Seymour
2021-08-01 0:00 2021-08-01 0:00 0026 Beatty & Robson
2021-08-01 0:00 2021-08-01 0:00 0026 Beatty & Robson
2021-08-01 0:00 2021-08-01 0:00 0222 Adanac & McLean
2021-08-01 0:00 2021-08-01 0:00 0229 Keefer & Princess
2021-08-01 0:00 2021-08-01 0:00 0230 Alexander & Railway
2021-08-01 0:00 2021-08-01 0:00 0273 Victoria & 4th
2021-08-01 0:00 2021-08-01 0:00 0002 Burrard Station (Melville & Dunsmuir)
2021-08-01 0:00 2021-08-01 0:00 0258 13th & St George
2021-08-01 0:00 2021-08-01 1:00 0030 Abbott & Cordova
2021-08-01 0:00 2021-08-01 1:00 0208 Arbutus Greenway & Broadway

2021-08-01 0:00 2021-08-01 1:00

0148 Creekside Park North

2021-08-010:00 2021-08-01 1:00 0036 Bute & Robson

2021-08-01 0:00 2021-08-01 1:00

0148 Creekside Park North

Return station
0191 7th & Laurel
0028 Davie & Beach
0026 Beatty & Robson
0191 7th & Laurel
0215 Princess & Union
0053 Keefer & Abbott
0230 Alexander & Railway
0206 8th & Scotia
0266 St Catherines & 7th
0212 Union & Dunlevy
0105 Stanley Park - Totem Poles
0137 Beach & Seymour
0129 Richards & Robson
0138 Richards & Helmcken
0129 Richards & Robson

Bike Id
656
5272
3253
3233
1381
3450
5991
1498
3050
3848
4072
5596
6596
4236
6378

Covered distance (m) Duration (sec.)

2178
1984
0
2203
1413
1937
0
3365
4688
2846
4698
3083
2176
2031
2042

Figure A.3: A screen shot from the Mobi Bikes (2022) data set.
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549
57
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Appendix B

Python Code for k-means Clustering
Algorithm

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import geopy

import folium

from sklearn import cluster

import scipy

import webbrowser

data = pd.read_excel(data file)

city = "cityname"

locator = geopy.geocoders.Nominatim(user_agent="MyCoder")

location = locator.geocode(city)

print(location)

location = [location.latitude, location.longitudel

print (" [lang, long]l:", location)

map_ = folium.Map(location=location, tiles="cartodbpositron",
zoom_start=12)

ol



x, y = "Long", "Lang"
data.apply(lambda row: folium.CircleMarker(location=[row([y],row[x]],
fill=True, color =
’red’, radius=0.001).add_to(map_), axis=1)
map_.save (’mymap.html’)
webbrowser.open_new_tab(’mymap.html’)
X = data[["Long","Lang"]]
max_k = 40
distortions = []
for i in range(1l, max_k+1):
if len(X) >= i:
model = cluster.KMeans(n_clusters=i, init=’k-means++’,
max_iter=300,
n_init=10, random_state=0,tol=0.0005)
model.fit (X)
distortions.append(model.inertia_)

k = [i*100 for i in np.diff(distortions,2)].index(min(
[i*¥100 for i in np.diff(distortions,2)]))
fig, ax = plt.subplots()
ax.plot(range(1l, len(distortions)+1), distortions)
ax.axvline(k, 1ls=’--’, color="red", label="k = "+str(k))
ax.set(title="The Elbow Method’, xlabel=’Number of clusters’,
ylabel="Distortion")
ax.legend ()
ax.grid(True)
plt.show()
k = 100
model = cluster.KMeans(n_clusters=k, init=’k-means++’)
X = data[["Long","Lang"]]
dtf_X = X.copy(Q)
dtf_X["cluster"] = model.fit_predict(X)
## find real centroids
closest, distances = scipy.cluster.vq.vq(model.cluster_centers_,
dtf_X.drop("cluster", axis=1).values)
dtf_X["centroids"] = 0
for i in closest:
dtf_X["centroids"].iloc[i] =1

o2



datal[["cluster","centroids"]] = dtf_X[["cluster","centroids"]]

plt.show

fig, ax = plt.subplots()

sns.scatterplot(x="Long", y="Lang", data=data,
palette=sns.color_palette("bright",k) ,hue=’cluster’,

size="centroids", size_order=[1,0],

legend="brief", ax=ax).set_title(’Clustering 20°’)

th_centroids = model.cluster_centers_

ax.scatter(th_centroids[:,0], th_centroids[:,1], s=50, c=’black’,

marker="x"
plt.show()
data.to_excel (result file)
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Appendix C

Solutions
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