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Abstract

Although markets are emerging for commercial off-the-shelf components (such as

Sun JavaBeans), there are many barriers to widespread component adoption. This

is due to the inherent ‘black-box’ nature of software components: developers have no

knowledge or control of the component’s internal characteristics. Without source or

design details, developers only have the component’s interface, documentation and

test results to answer important questions about reliability, proper use, behavior

and performance. The current best practice of specifying a component’s capabilities

by providing only the syntax and informal documentation is insufficient to assemble

mission or safety-critical systems successfully.

To address these problems we have developed a framework for creating and an-

alyzing the concise specifications of components and their related interfaces. The

framework extends a formal model for software architecture descriptions to support

the specification of a range of terms. With formal component specifications devel-

opers can use the framework to analyze the properties of individual components or

of entire systems. Unlike other approaches, the formal basis and implementation

of our framework enhance understanding and automates much of the component

analysis process.
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Chapter 1

Introduction

1.1 Motivation

The goal of component-based software engineering (CBSE) is to enable the assem-

bly of software systems from existing, independent, components. CBSE is a natural

progression in the evolution of software engineering as the use of prefabricated com-

ponents is fundamental to any mature engineering discipline [Szy97]. For example,

automobiles are complex machines, but many models share common components

such as engines, suspension and brakes. It is expected that CBSE will finally make

widespread software reuse practical and, as observed in other engineering fields,

result in reduced costs, and a faster time-to-market for software systems.

Despite the current successes of software components, most notably Visual Basic

[Mau00], there are many barriers to the widespread adoption of software compo-

nents. In the market, most components are shipped in a binary form that leads

to a ‘black-box’ effect – a system developer has no knowledge of the component’s

internals. Without access to the sources, component users have to rely on documen-

1



CHAPTER 1. INTRODUCTION 2

tation to answer questions about important information including the component’s

behavior and resource requirements. Unfortunately, component documentation of-

ten does not contain enough detail to overcome the ‘black-box’ effect. Many cite

this as the main reason CBSE and software component markets have yet to be

widely embraced, especially in the area of mission-critical systems.

To address these problems, we have developed a framework for providing de-

tailed, concise specifications of components. Based upon formal specifications, the

framework provides both structural and behavioral reasoning capabilities.

1.2 Component-based Software Engineering

In [Szy97], Szyperksi proposes that CBSE provides the middle ground between cus-

tom software development and commercial off-the-shelf (COTS) software. Custom

built software is often very expensive, as development and maintenance require sig-

nificant resources. However, such systems can be modified and extended to meet the

requirements exactly. On the other hand, COTS software is substantially less ex-

pensive, but also may not match user requirements, creating problems. By allowing

system developers to compose systems from COTS components, CBSE provides the

advantages of both types of software. COTS components can be obtained for less

cost than equivalent custom development but can be custom assembled to match

the requirements.

1.2.1 Benefits

There are many potential benefits of CBSE. These benefits draw from those that

have been realized by component use in other fields of engineering.
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• Higher quality and reliability. Because it is expected that COTS compo-
nents will have already been sufficiently tested , there will be less potential for

error in the assembled system leading to increased quality. As well, reusing

the same component across applications leads to increased consistency, lead-

ing to benefits for both users and developers [Wil01].

• Increased adaptability. Component-based systems are easily adapted be-
cause of the modular nature of components. Components can not only be

reused, but components can be replaced with minimal impact on the sys-

tem. This allows for easier upgrades and enhancements. As well, many

component standards allow components developed in different languages and

environments to interact together, increasing the number of possible imple-

mentations.

• Access to expertise. Component vendors often have specialized domain
knowledge that is encapsulated within their products. This can significantly

reduce analysis and design time while providing a technically superior so-

lution. As well, vendors may ensure conformance to industry and domain

standards [Wil01].

• Reduced risk. The resources and risk required to develop and maintain a
component is delegated to the component vendor [Wil01].

• Reduced effort and increased focus. If most system requirements can be
met through existing components, less effort is required. This frees up skills

and allows developers to focus on the specific domain issues [O’R99].
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1.3 Software Components

The field of CBSE is emerging quickly, but it is not yet well understood. There

are varying opinions and disagreement about what constitutes a software compo-

nent [KB98], although most research and application focuses on COTS components

defined in [Szy97] as:

‘...binary units of independent production, acquisition and deploy-

ment that interact to form a functioning system.’

Characterizing a component as a “binary unit” implies that it is in an executable

form, and that the implementation is hidden from the client. Binary components

reduce complexity for clients by hiding implementation details and allow vendors

to provide alternate implementations and maintain trade secrets. Independence

is essential if multiple vendors and clients are to be allowed, which is key to the

success of CBSE [Han98].

1.3.1 Standards

To assist in the development of components and increase interoperability, most

COTS components are constructed to conform to a component standard. Com-

ponent standards, in varying degrees, provide the ‘wiring’ that allows components

to interact with one another. Although there are many standards, the field is

dominated by three commercial entries.

• Microsoft’s Component Object Model (COM). The COM is a binary

standard for components. As a binary standard, no restrictions are placed

on the implementation language. The interface is the only required entity of
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a COM component. Distributed COM (DCOM) and COM+ are variants of

COM that provide support for distributed systems and transactions [Mic01].

• Sun’s JavaBeans. JavaBeans are an extension to the Java platform. A
bean is a set of classes combined with resources. Beans are designed with

tool support in mind and can expose design and runtime interfaces. The

bean model provides support for methods, events and properties. Enterprise

JavaBeans (EJB) are variant of JavaBeans that are server-based and support

persistent components and transactions [Sun01].

• OMG’s Common Object Request Broker Architecture (CORBA).
The Object Management Group (OMG) is a consortium of companies at-

tempting to standardize interoperable enterprise applications. CORBA is

an infrastructure that allows applications to work over networks without re-

strictions on language, platform or protocol. To create a CORBA object,

a specification is written in an interface definition language (IDL) which is

compiled creating code that allows clients to access the interface. During exe-

cution this stub code invokes the object request broker (ORB) which handles

communication to the CORBA object. OMG has also defined CORBASer-

vices, a specification for providing directories, transaction support and other

services similar to those offered by JavaBeans and COM [OMG01].

1.3.2 Barriers to Component Adoption

As mentioned above in Section 1.1, CBSE has yet to mature to the level of other

areas of engineering and software component specifications are rarely detailed or

complete. The current best practice for specifying a component’s capabilities is

with an interface definition language (IDL) provided by component standards along
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module stopwatch {
interface Stopwatch {
void start(); // Start the stopwatch
void stop(); // Stop the stopwatch
readonly attribute double elapsedTime;

// Attribute to store the elapsed time between
// the last start-stop pair. This statement
// generates no variable,
// only a pair of set/get
// statements for this variable.
};

};

Figure 1.1: CORBA IDL description for a stop watch component [Ram98]

with informal documentation. Figure 1.1 shows a simple CORBA IDL description.

Current IDLs are restricted to expressing only the syntactic aspects of a compo-

nent’s interface: types, operation names, parameters, return values and exceptions.

This is a major obstacle that is preventing the widespread adoption of software

components. Developers need more information to assemble component-based ap-

plications successfully. Without improving the current best practice, component

usage will be restricted by the following issues:

• Extra Effort. Without a clear and concise description of the component’s
interface, effort is wasted in understanding and applying the component each

time it is used. If too much effort is required, it may outweigh the benefits of

component use.

• Trust. A major barrier to component use is a lack of trust. Poorly specified
components do not provide developers with sufficient information to judge if

the component can be used in a given context. Because unexpected compo-

nent behavior and interactions are unacceptable for mission-critical systems,
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developers may not be convinced to use a component, for example if it does

not specify how it deals with certain types of invalid data or what external

calls it makes or what resources it consumes [BJPW99].

• Undocumented Features. Some components are difficult to integrate. In-
tegration problems are most often because of incomplete specifications. In

order to use a component, system developers will test the component exten-

sively to reveal unspecified properties. Troubles arise if the discovered prop-

erties no longer hold for a different or future version of the component. In

practice, it is difficult to avoid dependencies [Szy97] on unspecified properties.

• Misuse. System developers complain that a lack of specification details cause
them to make wrong assumptions about components. This is one of the major

causes of trouble during integration and maintenance. [DAC00]. Component

vendors often fail to specify their assumptions when developing the compo-

nents.

A commonly cited example of the dangers of inadequate specification and

wrong assumptions is the costly Ariane-5 disaster [JM97]. The launcher

crashed after forty seconds due to a floating-point error in a module reused

from the Ariane-4 rocket. Although the module never failed during Ariane-4

missions, it crashed because Ariane-5 had a different trajectory. This was

never tested, as the head contractor assumed it would operate based on the

previous missions and the vendor’s qualifications [Gar98].

• Performance. Currently, important component properties including storage
and memory requirements, as well as response times are rarely specified in

the documentation. This can lead to potential disaster as completed systems

may be oversized and perform poorly [GAO95].
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• Location and Selection. Component catalogs that allow developers to

browse through various vendors’ offerings are growing in popularity. Many

firms are creating on-line marketplaces for components. Most of the available

components provide services for user interfaces, security, communications and

data manipulation [Wil01]. Unfortunately, these emerging catalogs have yet

to add value to component specifications providing only a summary of the

available documentation. As well, there are very few components of substan-

tial complexity [Szy97, Wil00b]. Although this is a first step, there are still

many challenges facing system developers who are attempting to acquire a

component.

Often, it is difficult to find components that meet the requirements or compo-

nents that could be easily adapted. [DAC00]. In [Wil00a], Wilkes concluded

that a method for comparing components is also needed. These issues remain

pressing problems for many reasons.

Current component specification approaches contain only the information re-

quired to use the component. As well, this information is typically stored in

the proprietary format of a specific development environment or repository

[Wil00b]. Without any further specification, there is very little indication of

how a component behaves [GGM98]. Lamela in [Lam00] suggests that a lack

of standards for describing component requirements and components them-

selves is preventing the growth of components, but Szyperksi [Szy97] states

that there is currently no clear method for specifying components.

The emerging component catalogs only offer simple search mechanisms, ei-

ther based on a keyword search of components’ available documentation or by

domain category selection. Incomplete and inconsistent specifications make

it difficult to find appropriate components because searches may exclude rele-
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vant components that use differing terminology in their specification. As well,

components that don’t meet the requirements may be included in the results.

Differing terminology also complicates comparison and adaptation processes.

Without detailed information about the component, it is extremely difficult

to evaluate the component short of integrating it with the system [Voa98].

• Organization and Management. In addition to the technical barriers to
component use outlined previously, there are many other important issues

that need to be addressed. These issues are not directly addressed within this

thesis, but are outlined to provide a full picture of the challenges of CBSE.

Most important are the risks associated with using software developed by

a third party and, in most cases, without access to the source. Although

[Tal98] focuses on the defense industry and its problems with COTS compo-

nents, many of the same arguments apply to less critical systems in business

[Wil01]. Issues such as reliability, assessment methods and vendor stability

need to be addressed. Because reliability is so important, the cost of assessing

COTS components outweighs any benefits, and with the longevity of many

military applications, (e.g., 15 to 30 years for an airplane) vendor stability is

important.

From a development perspective, there are psychological barriers. System

developers, like everyone else, often fear the new and things they cannot con-

trol [Lam00]. As well, many developers succumb to the the not-invented-here

syndrome but fail to understand the cost of in-house development compared

to COTS components.
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1.4 Proposed Solution

To address some of problems and to enhance the appeal of component-based de-

velopment, we propose to extend component interfaces to specify additional prop-

erties. A component’s extended specification can be viewed as a contract between

the client using the component, and the implementation of the component provid-

ing the services. The terms of the contract provide parameters against which the

client’s use and component’s service can be validated. This ability addresses many

of the problems described above, giving system developers benchmarks, assurances,

and compositional analysis abilities before implementation and integration.

We have developed a framework that provides a basis for specifying and analyz-

ing component contracts. Our approach attempts to unite the salient specification

terms and features of existing work in the area of extended component interfaces

and contracts. Because this is an emerging area, most approaches do not ade-

quately address the needs of component users. Our framework attempts to provide

a foundation to address these shortcomings. Specifically our approach:

• is generic, and can be adapted to various component standards and paradigms.

• attempts to address and include the widest range of specification terms that
would be of interest to component users.

• is formally defined; removing ambiguity and increasing the potential for tool-
support.

• provides a base implementation that can be used to construct and analyze
contracts.
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1.5 Thesis Outline

This chapter has introduced CBSE, its potential benefits and current limitations.

We propose a framework that supports the specification and analysis of component

contracts.

Chapter 2 introduces the origins of contracts within object-oriented program-

ming and surveys a number of existing proposals for extending the interface of

software components. The chapter concludes with an analysis and comparison of

the surveyed approaches.

Chapters 3,4, and 5 describe the requirements, design and implementation of the

framework respectively. The requirements are drawn from the recommendations,

experience and techniques surveyed in Chapter 2. The framework is based upon

another, formally defined, framework for the validation of software architectures.

The elements and extensions to the original framework are covered in Chapter 4.

Details of the implementation in XSB Prolog/XMC model checking environment

as well as example uses are provided in Chapter 5.

Finally, our conclusions and recommendations for further work are presented in

Chapter 6.



Chapter 2

Component Contracts

2.1 Introduction

This chapter introduces the origins of extended interface specifications and con-

tracts within the area of software engineering with a focus on Meyer’s popular

“Design-by-Contract” [Mey92]. To determine the requirements for our framework,

an extensive survey of approaches is presented in this chapter. From this survey,

we have identified the common and important specification terms and features to

be included in the framework.

2.1.1 Extended Specifications

From Section 1.3.2, it is clear that strengthening a component’s interface speci-

fication could potentially alleviate many of the existing obstacles to component

usage. We believe a complete and concise specification of the component’s inter-

face is essential to provide developers with the knowledge they need to construct

component-based systems successfully.

12
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Expected results, behavior, qualities

Interface

(Contract)Client Implementation

Allowable client usage

Figure 2.1: A Component Interface as a Contract

Because CBSE has so many expected advantages and applications, research in

the area is ongoing in different fields. Within software engineering, software compo-

nent technology is being developed in the fields such as software architecture, formal

methods, object-oriented and agent-oriented systems, reuse and requirements spec-

ification. Industry attempts are much less ambitious and focus on standardizing

small sets of non-functional requirements. progress is hampered by the competing

standards offered by various organizations.

A detailed interface specification can be used as a basis for a contract. As

mentioned in Section 1.4, we can use the terms of the interface, or contract as pa-

rameters against which the client and implementation can be verified and validated.

In Figure 2.1, the contract terms describe the allowable usages of the component by

the client, and the expected results and behavior of the implementation. These con-

tracts can address many of the issues discussed previously by providing component

users with assurances, guarantees and analysis abilities.

The following sections introduce the background and roots of contracts in object-

oriented systems, which face many of the same issues as component-based systems

at a finer level. Following the introduction, a survey of proposals and approaches

for component contract specification and implementation is provided.

When considering an extended interface specification as a contract, it is impor-
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tant to avoid over-specification, including more detail than is required. This may

restrict both the applicability of a component and its possible implementations

[BS97].

2.2 Object-Oriented Contracts

Many of the issues that affect software components have arisen earlier in object-

oriented programming (OOP). This section introduces the two most significant

contributions in the area of OOP and contracts. The notion of contracts in software

development is attributed to Meyer [Mey92]. His original motivation in developing

contracts was to reduce the complexity and increase the reliability of OO systems.

Another contribution, the OO-contracts of Helm et al [HHG90] focus on specifying

the behavior and interactions between objects in a system.

2.2.1 Design by Contract

Meyer introduced the idea of “Design by Contract” (DbC) in [Mey92] to increase

the reliability and correctness of object-oriented (OO) software by introducing a

set of principles to deal with software errors systematically.

Central to DbC is the notion of a contract. When developing a system, one may

choose to program a solution to a problem, or “contract” it out to a subroutine or

class.

In life, a contract between two parties, a client and a supplier includes obliga-

tions each party must fulfill to receive the benefits of the agreement. For example,

the contract between a person, a client ordering fast food in a restaurant, the sup-

plier: the client is obliged to wait in line, prepay for his meal, seat and clean up
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Party: Client Supplier

Obligations: Must prepay, Prepare meal quickly

Self-serve

Benefits: Low-cost, No wait staff,

Fast service No unpaid bills

Figure 2.2: Contract details for fast food restaurant

after themselves to receive the benefit of a low-cost meal and little waiting time.

On the other hand, the restaurant is obliged to have the meal ready quickly to

receive the benefits of payment without dealing with wait staff and unpaid bills.

For clarity, this example contract is summarized in Figure 2.2. A contract clearly

specifies what a client must do in order to receive the benefit, and protects the

supplier by specifying the conditions for which it is responsible.

Applying contracts to a software context, clients (callers) are protected by speci-

fying what they must provide to receive a result from the supplier (callee). Suppliers

(callee) are protected because the contract specifies what input is acceptable and

is not liable for invalid input.

Because software is correct only relative to its specification, Meyer proposed

implementing parts of a system’s specification as correctness formulae (also known

as Hoare triples) which are expressions of the form:

{P}A{Q}

where, for any execution of A, P holds initially and terminates in a state where Q

holds. P and Q are referred to as the precondition and postconditions respectively.

A caller must meet the obligations of the pre-condition to receive the benefits
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provided by the callee. The callee, in-turn, upon receiving input meeting the pre-

condition must meet the requirements of the postcondition. From the restaurant

example:

{Customer prepays}{Meal prepared}{Wait time less than 5 minutes}

A simple example, consider the a function that maps a positive value between 1

and 100 to a range between 1 and 10:

{0 < x ≤ 100}y := map(x){0 < y ≤ 10}

The pre-condition requires that the value of x be between 1 and 100 to ensure

the postcondition of the map function returning a value between 1 and 10. DbC

underlies the design of Meyer’s Eiffel programming system [Mey91] and pre- and

postconditions are implemented as assertions. Violated assertions generate excep-

tions during run-time. Invariants are another type of assertion that are applied

to classes to restrict the set of allowable states that an object may have. Class

invariants must hold upon object creation as well as preceding and following the

invocation of a public method.

In Eiffel, assertions are specified as Boolean expressions. Functions can be used

to emulate quantifiers and provide other validation services. Meyer acknowledges

the weaknesses and drawbacks of this approach compared to a full formal specifi-

cation language, but argues that it is an acceptable tradeoff in terms of reliability

and simplicity for industrial software development [Mey92].

The main way Meyer’s contracts contribute to software reliability is by providing

a systematic method for implementing the terms of the software specifications lead-

ing to more potential errors being checked and detected. As well, DbC eliminates
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the need for defensive programming, a technique that encourages ad-hoc handling

of inputs to take care of all possible invalid terms. This leads to less complex and

more readable code, further reducing the chance of error in the code [Mey97]. A

detailed list of other advantages is presented in [MHKM95].

Contracts in object-oriented systems must hold in situations with inheritance

and polymorphism and this leads to the notion of “sub-contracting.” It is possible

for a subclass to have a different effect than its superclass which can lead to potential

troubles when a subclass is used in substitution. These situations can be addressed

by forcing the subclass to adhere to the prime contractor, its superclass. A subclass

is valid if the pre-condition is weakened, requiring less than its superclass does, and

its postcondition is strengthened, returning at most what the super class does. From

the previous example, map() could be replaced with:

{x > 0}y := map(x){4 > y > 9}

This maps all positive values, which is weaker than the original limit that restricted

values up to 100. The postcondition has been strengthened however, only mapping

to values 5 through 8.

Regardless of the limitations to the expressiveness of this approach discussed

below in Section 2.3.1, DbC has become very popular. It has been widely adapted

to other programming languages, most notably Java. A survey of Java implementa-

tions can be found in [FLF01]. As well, DbC has been adapted for use in software

specification notations, such as the Unified Modeling Language’s (UML) Object

Constraint Language (OCL) [WK99]. DbC has provided inspiration for much of

the research in the area of component contracts.
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ContractObserver
Subject supports [

value : Value
SetValue(val: Value) � ∆value{value = val}; Notify()
Notify() � 〈‖v : v ∈ V iews : v → Update() 〉
Attach(o: Observer) � {v ∈ Observers}
Detach(o: Observer) � {v �∈ Observers}
]

Observers: Set(Observer) where each Observer supports [
Update() � Action()
Action() � Subject → value {Observer reflects Subject.value}
]

invariant
Subject.Setvalue(val) � 〈∀v : v ∈ V iews : v reflects Subject.value〉

instantiation
〈v : v ∈ V iews : 〈 Subject → AttachView(v) 〉

end contract

Figure 2.3: Contract for Observer Pattern

2.2.2 Contracts

Another notion of object-oriented contracts was proposed by Helm et al [HHG90]

that provides more detailed terms than Meyer’s DbC. Helm et al noticed that the

behavior of an object cannot be inferred from its interface, leading to design and

reuse problems. Contracts formalize the behavioral relationship between objects

and definesa set of participants and their obligations.

Contractual obligations consist of type obligations requiring participants to sup-

port a certain interface and causal obligations which indicate an ordered sequence

of actions that must be performed. As well, contracts define invariants and pre-

conditions that participants must maintain.

Figure 2.3 is an example of a contract that specifies the requirements for a group

of objects, a subject and its observers acting as the observer design pattern. Besides
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the elements of DbC: pre-conditions, postconditions and invariants, contracts go

further, indicating the protocol each object must adhere to.

2.3 Component Contracts

This section contains a survey of the area of component contract specification.

Much of the work is based on the earlier work of object-oriented contracts and

draws from many fields of software research. This includes a large body of work and

we limit the survey to research directly concerned with the interface specification

of COTS components – the user cannot access the underlying implementation of

the component. The approaches surveyed next attempt to address the issues with

software components described in Section 1.3.2.

2.3.1 Greybox Components

In [BW97] Büchi and Weck introduce grey-box components. Current interface de-

scriptions can be considered black box specifications, only describing the behavior

of the component in terms of the pre- and postconditions of its operations. Unfor-

tunately, this approach cannot describe the complex interactions of components,

for example, when callback functions are involved. On the other hand, revealing

the full implementation of the component provides the user with too much detail.

Commercial components should reduce the complexity of a system by hiding de-

tails from the user and too many details may lead to overspecification, restricting

possible replacements or enhancements. This problem is also discussed in detail in

[BS97].

Büchi and Weck’s work is similar to the approach developed by Helm et al’s
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interface ITextModel {
private seqof char text;
private setof Observer observers;
...
Delete (int pos);

pre 0<=pos && pos<len(text)
post (all int i: 0<=i && i<pos:

text[i]==text@pre[i]) &&
(all int i: pos<=i && i<len(text):

text[i]==text@pre[i+1]) &&
len(text)==len(text@pre)-1
/* o.DeleteNotification(pos)
called for all o ∈ observers */

...
}

...
Delete(pos: N) {

pre: 0 ≤ pos < ‖text‖ {
text’ = text[0. . . pos-1] +

text[pos + 1. . . ‖text‖-1]
do(o in observers) {
o.deleteNotification(pos);

}
}
...

(a) (b)

Figure 2.4: Text model delete method. (a) shows pre-/postcondition specification

(b) grey-box specification

OO contracts [HHG90]. Unlike the OO contracts, Greybox components are more

flexible, differentiating between mandatory calls, which change state and enquiry

calls that do not. Because enquiry calls have no side effects, only mandatory calls

are required for contract compliance. Greybox components also support operational

pre-conditions. As well, for increased usability, the grey-box specification language

is designed as an extension of Java syntax thus appealing to many practitioners.

The following example demonstrates how the grey-box approach addresses the

limitations of standard black box specification. Consider a component that man-

ages text, and follows the observer design pattern by allowing interested observers

to be notified when the text is modified. Figure 2.4 (a) shows a pre/postcondition

of the delete method in Java, with common extensions. The pre-condition requires
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that the character to be deleted is within range; the postcondition requires that the

modified text sequence contain the same characters as the original excluding the

deleted character. But, pre- and postconditions cannot indicate when the character

is deleted. Is it deleted before the observers are notified? Or after? The grey-box

specification shown in Figure 2.4 (b), using additional constructs addresses and

indicates the character will be deleted before the observers are notified. The resem-

blance to the contracts of Helm et al is clear, except for the use of an imperative,

Java-like notation.

In [BW99], Büchi and Weck provide a formal definition of correctness of imple-

mentations with respect to the grey-box specification language.

2.3.2 Framework for Component Interface Specification

In [Han98] and [Han00], Han presents a comprehensive framework for specifying

component interfaces and their protocols. The framework addresses five aspects

of interface specification: signatures (syntax), configuration (structure), behavior

(semantics) interaction (protocols and constraints) and quality.

The signature of the interface defines the syntax of the attributes, operations

and events accessible to users of the component. Configuration aspects describe

the structure of the component in different contexts. Configurations are supported

by specifying ports reflecting the roles the the component provides and requires

within a composition. The behavioral aspect addresses the operational semantics

of the operations through pre- and postconditions. Interaction constraints define

the protocol of a component. The constraints guide the user of the component,

and must be observed to prevent errors or unpredictable behavior. The final aspect

characterizes the non-functional properties of the component. Quality characteris-
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COMPONENT CM {
...
CONFIGURATION ring {
...
PORT ms_management {
PROVIDE
report_signature(IN MS m_id, IN Sig sig);
report_alarm_attributes(IN MS m_id, IN Alarm alarm);
report_perf_attributes(IN MS m_id, IN Perf perf);
REQUIRE
BOOLEAN enabled;
request_signature;
set_alarm_attributes(IN Alarm alarm);
set_perf_attributes(IN Perf perf);
SUBJECT_TO
^request_signature -> report_signature;
(enabled) :>(report_alarm_attributes,

report_perf_attributes);
}

...
}

Figure 2.5: Example of Interface Specification Framework

tics include the component’s performance, reliability and security. Figure 2.5 shows

part of the interface specification for the central manager (CM) of a telecommuni-

cations system. When connected in a ring setting, the CM has many roles. The

figure provides the details of a simple managing services (MS) port. The CM pro-

vides three operations to the MS, and requires the MS to support one attribute

and three operations. Constraints indicate that request signature followed by

report signature are called upon connection. The second constraint requires

enabled to be set before the report operations may be called.

In [Han00], Han argues that this framework provides a practical solution to the



CHAPTER 2. COMPONENT CONTRACTS 23

interface specification problem because its notation is close to that of existing IDLs.

The “light-weight” constraint-based approach to describe component behavior al-

lows for incremental specification of the component.

2.3.3 CoCoNut

Reussner in [Reu01] presents a new model for describing component interfaces based

on an extension of finite state machines to describe the component’s protocol.

The model focuses on component composition issues including protocol adher-

ence, and component adaptation in different contexts, interface matching and com-

patibility. The CoCoNut interface model consists of a provides-interface and an

requires-interface.

The provides-interface models the services the component offers. This interface

includes the classical interface such as CORBA IDL, as well as valid call sequences.

Sequences are modeled with the provides-automaton. The automaton defines a

subset of all allowable sequences to the offered services. Figure 2.6(a) shows the

allowable call sequences to a VideoMail component.

The requires-interface models the possible call sequences the component makes

to external services. This is modeled in the function-requires automaton. Figure

2.6(b) shows the function-requires automaton for the play service of the VideoMail

component.

Inserting the function-requires automaton into the provides-automaton forms

the component-requires automaton. The complete VideoMail component-requires

automaton is shown in Figure 2.6(c). Assuming a similar automaton for the stop

service, the combined automatons form the component behavior. Based on the

languages recognized by the automatons, Reussner outlines an algorithm that can
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(c)

soundplayer::play
[ifavail]videoplayer::play

play stop

Provides Automaton Function-Requires AutomatonVideoMail VideoMail::Play

videoplayer::playplay
stop

soundplayer::play
[ifavail]

videoplayer::stop
[ifavail]
soundplayer::stop

Component-Requires Automaton

(b)(a)

Figure 2.6: Automatons representing: (a) the services provided by a VideoMail

component, (b) the required services for the VideoMail::play component and (c)

the combined automatons representing the behavior of the component.

be used to adapt the component provides interface, depending on availability of

services. Another algorithm can ascertain whether two components are equivalent,

or if one component can substitute for another. For composition purposes, the min-

imum required functionality can be described by an automaton. As well, unwanted

functionality, such as access to the file system which could cause a security problem

is also supported.

For the prototype system, Enterprise JavaBeans (EJBs) [Ber00] are the target

component standard. Developers do not explicitly create the automaton, but place

annotations in the source code which is then pre-compiled to create the automatons.

2.3.4 Requirement/Assurances Contracts

Rausch in [Rau00] presents a system for specifying components and their compo-

sition. The work focuses on validating the behavior of a system as its constituent

components evolve. The semantics of a component are usually described using a
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COMPONENT TextBox
REQUIRES INTERFACE Observer
WITH METHODS
update() : void

ASSURES INTERFACE TextModel
WITH LOCALS
observers : Set(Observer)
text : String
WITH METHODS
getText() : String -> return text
addText(t : String) : void ->
new text {text = text + t};
< obs: obs in Observers :

obs -> update() >

RA-CONTRACT HelpListContract
INSTANTIATION

l: ListBox
t: TextBox
t.TextModel.observers.add(hl)
l.ListModel.observable = ht

PREDICATE MAPPING:
REQUIRED l.Observable
ASSURED BY t.TextModel

RA-CONTRACT HelpTextContract
...
PREDICATE MAPPING:

REQUIRED t.Observer
ASSURED BY l.ListModel

Figure 2.7: Example Requirements/Assurances Contract

number of documents: design documents such as class diagrams, IDL specification,

interaction documents such as UML sequence diagrams and implementation docu-

ments. This separation of component information can lead to difficulties updating

the information and impact assessment when a component changes because the

dependencies are not explicit.

To address this problem Rausch introduces requirements/assurances contracts.

Each component is described individually indicating what it requires from its en-

vironment, and what the component assures it will provide, given its requirements

are met. The left side of Figure 2.7 shows the specification of a TextBox compo-

nent that requires observers with an update method. Given observers, the TextBox

assures it will provide two methods, and that when text is added, observers will

be notified. Contracts are formed between components and include component in-

stances, their connections and an explicit mapping between required and assured

interfaces. The right side Figure 2.7 shows two contracts formed between a TextBox
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and an observing ListBox that gets updated when the text changes.

To ensure contract conformance, the system designer has to “prove” the correct-

ness of the syntax and behavior of each member of the contract. Rausch proposes

to start with the conjunction of all predicates assured in the contract and ensure it

ends with all required predicates.

If a component changes, the contract can be re-checked to ensure all the required

predicates can be reached. Requirements/assurances contracts provide a way to

ensure designers are aware of the consequences of component changes.

2.3.5 Contract Aware Components

In [BJPW99], Beugnard et al propose a four-level contract for components to in-

crease trust. In mission-critical systems, it is important to judge whether a com-

ponent can be used correctly in a given context. A component contract provides

the parameters against which the component can be validated.

The first level, basic contracts, encompass current IDLs and provide the syn-

tactic elements necessary to operate with a component standard. To define the

requirements and effects of the operation precisely, behavioral contracts are de-

fined using Meyer’s design by contract [Mey92]. The next level, synchronization

contracts, define the component in distributed and concurrent contexts. Synchro-

nization contracts are defined by instances of strategies, such as mutual exclusion.

Quality-of-service contracts form the fourth level and address features of the com-

ponent beyond their behavior such as response time and result quality.

The contracts of Beugnard et al are more than detailed interface specifications,

but are entities themselves and are based on the framework for contracts in dis-

tributed systems [LPJ98]. In a system where components are bound dynamically,
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contracts are revealed through a query to the component. Depending on the con-

text, or the required services, a component may present many different contracts

to the component. As well, certain terms of the contract may be negotiable. For

example, a client may request an increase in the precision of a result. A client may

only use the services of a component after a contract has been selected.

The exact form of a contract is not discussed but the authors suggest UML for-

malisms encoded in XML. To enforce the contracts, a run-time monitoring system,

is implemented as an extension to the underlying component middleware.

2.3.6 Contract-based Design

In [Gie00], Geise introduces contract-based design to address the the problem with

synchronization in component-based systems. Callback routines break the strict

layering where outgoing calls can only be made to a lower-level entity. In the

simple case, self-recursion can occur where a component invokes a call that, in-

turn invokes its calling component leading to deadlock. In a concurrent system, a

component that is currently blocked, may prevent other components from delivering

their callbacks, once again leading to deadlock.

To address this problem, Geise proposes to specify components using Object Co-

ordination Nets (OCoNs) [GGW99], a variant of Petri Nets [BRR87], for specifying

the behavior and synchronization aspects of object-oriented systems. According to

Geise, contracts should not only include a description of protocols and coordinating

sequences but a functional specification that details the pre- and postconditions,

and non-functional properties. Contract-based design is structured as an extension

to UML. A contract is the combination of a standard interface that describes the

signatures and a protocol net to describe the interactions. Figure 2.8 shows con-
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check(Data)

<<synchronization>>
Through

p[empty]

put

p[full]

get

u[empty]

put

u[full]

get

InOut

Through

InOutCheck

depend

InOut p

u

get():(Data)
put(Data)

InOut
<<contract>>

<<contract>>
Check(shared)

Figure 2.8: Example contract from [Gie00]

tracts defined as a UML <<contract>> stereotype. Components have both provide

interfaces (denoted p), which are the services the component provides and uses in-

terfaces (denoted u), indicating the services the component requires. An exclusive

contract (denoted by a single circle) means each contract is served by a distinct

instance of the component. A shared contract (denoted by a a double circle) means

the contract is shared among many components.

Simple contracts are contracts that exist with no restrictions. Otherwise their

operations are further restricted with the introduction of the <<synchronization>>

stereotype by introducing synchronizations with other contracts of the same com-

ponent. In Figure 2.8, the Through synchronization specifies how the operations

of the provides contract are mapped to the uses contract of the same type. The

dashed area indicates the scope of the synchronization.

Implicit dependencies relationships can be shown when an explicit synchroniza-

tion contract is inappropriate. These are indicated with a dashed arrow. During

composition, deadlock can be detected when a cycle is found among the contracts

and their synchronizations.
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interface CAR {

attribute CAR-MODEL model;

attribute set<CAR-OPTIONS> options;

attribute OWNER ownedBy;

attribute seq<TRANSFER> history;

attribute MANUFACT madeBy;

deliver(in CAR object, in MANUFACT src,

in DEALER dest, in DATE time);

sell(in CAR object, in OWNER src,

in OWNER dest, in DATE time);

}

CAR � (and
(the model CAR-MODEL) (at-least 1 model)
(all options CAR-OPTIONS)
(at-most 100 CAR-OPTIONS)
(the serialNo INTEGER) (at-least 1 serialNo)
.
.
.

CAR � (the deliver DELIVER)
;; object co-located with the source
CAR � (same-as deliver.object.location

deliver.src.location)
;; preconditions
;; car maker delivers it to the dealer
CAR � (same-as madeBy deliver.src)
;; owner can only sell car
CAR � (same-as madeBy deliver.src)
;; destinatation of sell is new owner
;; postconditions
CAR � (same-as ownedby sell.dst)

Figure 2.9: Example CORBA CAR Management service from [BD99]

2.3.7 Description Logic

In [BD99], Borgida and Devanbu propose description logics (DLs) as a formal basis

for describing components. Borgida and Devanbu argue that current IDLs do not

adequately fufill their role in representing the basic domain constructs and proper

use of the component. To address the ambiguity and limited tool support of current

interface descriptions, a formal approach is described that provides data invariants,

pre- and postconditions and behavior descriptions that can be statically checked.

Although many formalisms such as the UML OCL exist for describing the el-

ements of Borgidas and Devanbu’s approach, their expressiveness prevents them

from being decidable. DLs have their roots in the AI field of knowledge represen-

tation and reasoning. DLs are a decidable subset of first-order predicate logic and

can be quite efficient.

The basic ontology of DLs are centered around objects, concepts and attributes,

similar to the object paradigm of many component standards. On the left side
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of Figure 2.9, a simple description of a car management service in the CORBA

IDL is shown. On the right an equivalent encoding is provided in the EXPRESS

description logic.

The reasoning capabilities of DLs can be used to determine if the client matches

with the user’s needs. Consistency checking ensures that pre- and postconditions

are consistent with the invariants. Although DLs are limited, they provide a basis

for checking operational and data specifications.

2.3.8 CORBA Interfaces with π-Calculus

In [CFTV00], Canal et al describe the application of the π-calulus [Mil99] to specify

the expected order of calls to a CORBA Object.

The π-calculus is a process calculus, designed to describe dynamic concurrent

systems and is used by Canal et al to model the interesting behavior of CORBA

objects. The syntax of π-calculus is extended to bring it closer to an object-based

notation and increase readability. The protocol information is stored separate from

the current IDL definition to ensure compatibility with existing CORBA implemen-

tations and allow for different protocols to be associated with the same interface.

The formal basis of the π-calculus provides a number of advantages when stat-

ically checking the protocol conformance during design time. Properties such as

deadlock-freedom within a system can be verified by modelling an application that

uses the CORBA objects in π-calculus and then proving the property.

Based on the work presented in [CPT99], Canal et al demonstrate how the

substitutability of an object can be verified. An object can be replaced only if

the replacement maintains the same behavior with any existing clients. Object

compatibility ensures that two connected objects interact properly.
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To facilitate run-time checking and to ensure that implementations conform to

their specifications, the use of interceptors, a CORBA facility is employed that

allows programmers to insert code before or after an operation is executed. This

can be used to create a run-time trace and ensure messages are compatible with

the protocol behavior.

2.3.9 Component Contract Templates

In [DAC99a], Dong et al propose a template for software component specification.

The information provided through a template provides assistance addressing many

of the issues discussed in Section 1.3.2. The template goes further than many

approaches which are limited to functional descriptions such as grey-box [BW97]

to include many other properties.

The functional interface of a component should include the standard signa-

ture information as well as supporting documentation including class diagrams,

state transition diagrams, data flow diagrams and collaboration diagrams. Com-

ponent assumptions should not only include constraints such as the preconditions,

but architectural design assumptions. Behavior should be specified using temporal

properties.

Non-functional properties are also a key component of the template. These

properties include performance, reliability and concurrency. Component templates

should state the environmental requirements such as supported operating systems

and languages and component standards.

Component vendors should include information about their products to assist

users in making decisions. This information includes details about related products,

collaborating components and examples.
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Currently, the focus of the templates are the content, and their ability to address

the needs of users. From a vendor’s perspective, any new versions of the component

should maintain the specification of the original component’s template. If any

changes are made, they should be highlighted. The information provides users

clear guidelines for selecting and integrating the component.

2.3.10 Additional Work

In addition to the approaches already described , other proposals, findings are

described next. Industrial approaches are not considered because they are still

lacking any extensions to address the issues covered in Section 1.3.2 [Gil01].

Knowledge-Based Systems

In recent years, there has been work directed towards the development of methods

for reusing the problem-solving methods (PSMs) of knowledge-based systems.

The Unified Problem-solving Method Description Language (UPML) was de-

veloped as a way to document PSMs to enable their reuse in the semi-automatic

configuration of problem solving systems [GMF99].

A base ontology is defined to describe the PSMs. This ontology includes el-

ements (sorts), a set of predicates based on the elements and a set of axioms to

describe the relationship between the predicates.

A PSM, based upon the terminology defined in the base ontologies may in-

clude auxiliary definitions. A competence definition specifies the input and output

parameters, the pre- and postconditions and any required subtasks. As well, an

operational definition outlines the high-level operation of the PSM and where the
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subtasks are used. Subtasks are defined in terms of their input and output param-

eters, a precondition and final goal.

Using the LOOM knowledge representation system [Bri93] which is based on

the decidable subset description logic, a PSM can be automatically checked us-

ing a matching rule to see if it conforms to a task specification through concept

subsumption.

Workshop on Object Interoperability

Recently, the Workshop on Object Interoperability (WOI) [VHT99, VHT00] cov-

ered many of the issues presented here. During the workshop, the participants

identified four levels of information required from an object interface definition:

signatures, protocol and behavior, functional and conceptual semantics and quality

properties.

It was also recognized that effective specifications should be precise and based

upon an underlying formal model. However, to increase practitioner acceptance,

formality should be hidden as much as possible through the use of tools.

2.4 Comparison and Analysis

Amongst the various approaches for extending the specifications of software com-

ponents a number of common elements emerge. In this section, we analyze the

surveyed approaches for contract terms, specification structures and capabilities to

address the issues outlined in Section 1.3.2. Based on the proposed approaches, we

have identified a number of different aspects that should be considered for inclusion

within a component contract.
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2.4.1 Framework Requirements

One of the major problems with existing component documentation, discussed in

Section 1.3.2 is ambiguous and incomplete natural language specification. Although

not all of the surveyed approaches have well-defined semantics, all recommend more

formal specifications to create concise specifications and reduce the possibility of

misinterpretation or inconsistencies. Incomplete specifications are addressed by

requiring that certain information be provided about the component.

To increase acceptance by developers, Büchi and Weck [BW97] recommend that

formal specifications be ‘hidden’ from users. Their approach is to provide Java-like

syntax and semantics for their specification language. Tool support can also increase

acceptance among users by automating tasks and providing alternate abstractions.

2.4.2 Contract Terms

The most important aspect of a component contrac, is the information it provides

to the user. Based on the survey of current proposals, the following areas have been

identified for inclusion within a component contract:

Signature

As a basis, all approaches extend current IDLs and provide signature information.

The contents of a component’s signature vary depending on the standard to which

it conforms to. Current IDLs only specify the services provided by a component,

but components often rely on other components and services and many approaches

(e.g. [Reu01]) include the signatures of a component’s required services.
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Operational semantics

Operational semantics include specification of the pre- and postconditions on op-

erations and invariants that restrict the values of results and attributes. These are

usually specified using the assertion language defined by Meyer for DbC [Mey92] or

UML OCL [WK99]. Because these notations in general are undecidable and can-

not be statically checked, most approaches do not include them or provide them

only as structured comments for users’ benefit or for run-time checking. The ap-

proach taken [BD99] is to restrict the language to a decidable subset, which can be

statically checked at the cost of expressiveness.

Protocol and Behavior

A component’s protocol and behavior are the two most commonly addressed areas

in the surveyed approaches. The protocol of a component represents the allowable

orderings of signature invocation to the component. The behavior of a component

describes the results of a single invocation or sequence of invocations. A compo-

nent’s behavior may result in a change in value, an outgoing call or other action.

A variety of techniques are used to specify the protocol and behavior of a com-

ponent. In [Han00], temporal logic statements are used, CoCoNut is based upon

an extended finite state machine [Reu01], the grey-box approach uses statement

specifications [BW99], Geise’s approach [Gie00] is based on Petri Nets and the

π-calculus process algebra is used in [CFTV00]. Preconditions can also be used

to indicate the proper ordering of invocation on a component [VHT99], but have

serious limitations [BW97].
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Non-functional Properties

Despite the recommendation that non-functional properties should be included

within a component contract [Han98, BJPW99, DAC99a, Reu01], there is currently

very little research directed towards the non-functional requirements and software

components. This is due to the difficulty recognizing and quantifying non-functional

properties [VHT99].

In [BD00], Beus-Dukic outlines three areas of non-functional requirements for

COTS components. Architecture requirements address a component’s ability to be

integrated into a system. Non-functional requirements associated with architecture

include performance characteristics, reliability, security, reusability and portability.

Domain requirements describe properties related to the component’s environment.

These include standards compliance, hardware requirements, related components,

and design assumptions. Organizational requirements focus on the aspects of the

vendor and customer. These include the vendor’s credentials and market stability,

standards conformance, upgrade policy, popularity, software development practices

and support record.

Dong [DAC99a] lists many of the same properties described by Beus-Dukic.

Beugnard [BJPW99] provides latency, throughput and precision as examples of

non-functional properties of a component.

The difficulty specifying of non-functional properties is clear. The testing and

procedures required to quantify and describe, for example, reliability can be expen-

sive and something vendors may not even want to share. Voas [Voa01] proposes

independent third-party laboratories to certify components. There are also difficul-

ties in quantifying the performance of a component. Szyperski [Szy97] suggests that

the big-O complexity of a component be specified to indicate its time and space
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costs. Sitaraman [Sit01] outlines a number of shortcomings of this solution. In

[WSHK01], given the latency of individual components, Wallnau et al were unable

to predict the latency of a composition because of differing component dependen-

cies. The ISO 9126 software quality standard is aimed at addressing these issues,

but still requires investigation [SDF00].

Although there are many difficulties specifying the non-functional properties and

requirements of components they are essential to users during the selection and

evaluation of components. Often, the non-functional properties set components

with similar functionality apart. When constructing a secure server system, all

components that do not adhere to the selected security model can be eliminated.

Meta-information

One aspect of a component’s specification that is overlooked by many approaches

is the specification of meta-information to describe the elements of the component

contract [VHT00].

Similar to the approach taken by the UPML [GMF99] and other agent-based

approaches, ontologies are provided to describe the aspects of a specific domain.

An ontology is a common language and is used to describe concepts within a do-

main [O’L00]. Ontologies have already been defined for a number of domains from

healthcare to manufacturing [Ont01]. Describing the component in terms of defined

domain ontologies removes potential ambiguities about their use. This eases the

process of component selection, providing the user with a way to query a component

description based on the ontologies it supports [TN99].
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Roles and Dependencies

The focus of current IDLs is on specifying the provided services of a component.

But, often components require access to other components or services to operate

successfully [Szy97]. This has also been recognized and supported in a number of

the approaches.

In both [Han98] and [CFTV00], the functionality of a component is divided into

roles, each of which encapsulates a specific piece of functionality. This is analogous

to the JavaBeans or COM standard, where a component may implement multiple

interfaces.

EJBs also provide points of interaction through either the home or remote inter-

face. The home interface of a component provides management functionality such

as instance creation and deletion. The remote interface provides the component

services.

2.4.3 Capabilities

In addition to contract terms, various approaches describe different ways that con-

tracts can be used. At a minimum, every approach attempts to provide more

concise, complete usage documentation for developers, but can also be used to de-

termine how the component will behave when integrated with the rest of the system

before integration, execution and testing.

Compatibility

One important capability is to ensure that two interacting components are inter-

operable. At the signature level this is already supported by existing IDLs through
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type checking. Ensuring that the protocol and behavior of a component is com-

patible with other components is more challenging [VHT99]. Another important

ability is to check whether one component can be substituted for another while

maintaining the system requirements.

The Greybox [BW99] specification is based on the Refinement Calculus [BvW98]

and provides a formal basis for determining if one component refines another. Sim-

ilar to Meyer’s DbC [Mey92], a component refines another if it provides ‘more’ to

the client, while stratifying the substitution property. Geises’ contract-based design

[Gie00] also supports the refinement of components.

In [CFTV00] the components protocol is specified using the π-calculus. To

check if one component can be substituted for another, bisimulation of the two

component specifications produce identical behavior. Because a component may

provide more, but have the same behavior as another component, a less restrictive

form of protocol substitution was proposed in [CFTV00].

The CoCoNut model [Reu01], which is based on extended finite state machines,

provides a number of component substitutability tests for components. The equal-

ity test determines if two components have the exact same protocol and behavior.

Substitutability is a weaker test that checks if one component refines another. A

similarity test is also proposed that provides a measure of how similar two compo-

nents are.

The DL approach employed in [BD99] can be used to ensure compatibility be-

tween limited pre- and postconditions. By defining PSMs in terms of domain on-

tologies, Gaspari et al [GMF99] can construct reasoning tasks semi-automatically.



CHAPTER 2. COMPONENT CONTRACTS 40

Compositional Reasoning

Component contracts are also used as a basis for reasoning about compositions of

components. Often, developers are interested in determining before integration if

the component instances interacting together will satisfy the system requirements.

Most approaches are interested in verifying the temporal properties of systems.

Progress properties require that some event occurs at some time in the system

whereas safety properties require that a specified event never occurs.

During contract-based design [Gie00], there is no explicit difference between

components and their instances. Systems, or combinations of components can

be connected with events or procedure calls. Since protocols are described using

Petri Net, a well-defined formal method, it is possible to apply and check temporal

properties such as deadlock avoidance. Canal et al take a similar approach using

the π-calculus [CFTV00]. An application process can be created by instantiation

component processes and a simulator can be used to verify safety properties.

The purpose of the contracts defined by Rausch [Rau00] is to ensure that as

components evolve over time, system requirements still hold. Component spec-

ifications are composed together to form contracts. Contracts model a possible

composition of components and include instances, connections, and predicates that

reify the connection between the client and provider. This is followed by a proof,

based on the protocol, indicating all client behavior is supported by the provider.

In addition to protocol conformance and temporal properties, non-functional

properties of compositions can also be checked. [VHT99].
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Contract Enforcement

Most research has been focused on the development of techniques that can stati-

cally verify the composition of component contracts. Unfortunately, since it is not

feasible to verify component implementations formally against their specification,

at run-time the specified behavior is not necessarily guaranteed.

Meyer’s DbC addresses this problem by inserting assertions into the code. Any

error conditions that arise cause the assertion to fail and generate an exception.

Canal et al [CFTV00] for the case of CORBA recommend the use of interceptors

to insert any checking or additional required information.

Although run-time checks have been proposed in a number of sources [Szy97,

VHT99, BJPW99] it has not been the focus of current research. Log file analysis

[AZ00] is a potentially useful technique that could be applied in this area. A log file

of all events generated by a system, gathered from testing data or during run-time,

can be matched against state-machines that define the behavior of a component or

group of components. This could easily be adapted from any of the state based

contract specifications such as [Gie00, CFTV00].

2.4.4 Limitations

There are currently no well developed systems for specifying and reasoning about

software components. All of the approaches surveyed are proposals, theoretical

frameworks or in early stages of development.

Many of the proposals lack formal semantics (e.g. [Rau00, Han98]), limiting

the usefulness of specification outside of a documentation tool. Others, that have

a formal basis, are not coherent and do not yet provide any notion of a framework



CHAPTER 2. COMPONENT CONTRACTS 42

that could be useful to developers. As well, most of the approaches only address

one aspect of component contracts.

2.5 Summary

This chapter provided an overview of the existing proposals for extending existing

component interfaces. Comparing the different approaches reveals a number of

common terms that belong within a component contract as well as functionality

that should be provided with a framework to specify components. Despite the

advances, current proposals still have a number of limitations.



Chapter 3

Framework Requirements

3.1 Introduction

This chapter describes the elements and the requirements of a framework for spec-

ifying analyzing component interface specifications or contracts. The framework

scope is shown in Figure 3.1. There are two goals: provide a basis for specify-

ing component contracts and provide methods for analyzing various aspects of the

contracts.

Our notion of components is based on the model presented in [CD00]. This

model is supported by well-known component standards including Microsoft’s COM

[Mic01], Sun’s Javabeans [Sun01] and OMG’s CORBA standard. Based on this

model, we present the required structural elements of an interface specification.

Based on the recommendations and approaches of existing work surveyed in

Chapter 2, the requirement and terms of a contract as well as the framework’s

analysis abilities are discussed in detail.

43
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Figure 3.1: Framework scope: specification and analysis

3.1.1 Software Components

The term ‘software component’ is used in the same sense as defined in Chapter 2.

In creating our framework, we follow the Cheeseman and Daniels [CD00] model.

Assuming components are developed according to a component standard such as

those mentioned in Section 1.3.1, their model breaks a software component into the

following forms:

Interface An interface defines the interaction points and constraints to which a

component to adhere to, and with which a client to interacts. Interfaces form

Usage contracts that represent what a component should provide, and what

a client can expect.

Component specification A component specification differs from an interface

because it specifies the entire scope of a component. A component may sup-

port many interfaces and require the support of other interfaces. A component
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Figure 3.2: Component forms from [CD00]

specification defines the relationships between the various interfaces. Specifi-

cations form Realization contracts and must be adhered to by the developers

of the component.

Component implementation A component’s implementation consists of a com-

piled version of the source code that can be deployed. For a component to

be deployable it must adhere to a component standard and be able to be

instantiated independently.

Component object A component object is an instance of a component.

Figure 3.2 shows the relationship between the forms. An interface may be identi-

fied by many components and, as mentioned above, a single component can support

many interfaces. A component specification may also have multiple differing im-

plementations. These implementations can be instantiated as unique component

objects.

It is important to remember the necessity of both interface and component

specifications. Describing a component by the interfaces it supports often does not

provide enough information to developers. Interface based descriptions are useful

in ensuring that components can interact together correctly, and adhere to defined
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constraints, but are insufficient for full compositional reasoning. When composing

a group of components to build a system, a specification of how each component

relates to each of its supported interfaces is required.

3.2 Contract Specification

Based on the component model introduced above, a contract should contain a

description of the supported interfaces and a component specification describing

the relationship between the supported interfaces.

Interfaces

Similar to other approaches [Han98, CFTV00], a component plays different roles,

and provides different functionality depending on its context. The framework fol-

lows the JavaBeans and COM component standards by supporting these roles

through multiple interfaces. An interface defines a related set of interaction points

with the component such as methods, events, properties and exceptions.

Interfaces are not necessarily specific to a given component. For example, a

JavaBean component may implement many Java interfaces to support multiple ser-

vices. The OMG has formed domain task forces (DTFs) with the goal of standardiz-

ing the interfaces to services within specific domains. For example, the healthcare

DTF [SIG01] has defined interfaces for clinical image access services and other

industry services. Within the framework there are two types of interfaces. An in-

terface defines the functionality for a single role and is denoted as a circle in Figure

3.3(a). Composite interfaces are the ‘component specifications’ and are formed as

the set of interfaces and composite interfaces supported by a component. Figure
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b) Composite (Component) Interfacea) Interface

Figure 3.3: Interface Notation

Figure 3.4: Composite Interface Notation

3.3(b) show composite interfaces denoted as a rectangle, with circles indicating the

interface they support. Figure 3.4 shows the relationship between the interface

types. Component support for the composite interfaces of other components is

analogous to inheritance or aggregation. Composite interfaces are represented as a

shaded interface circle.

Components not only provide services through interfaces, they may require ac-

cess to other components that support certain interfaces. For example, in a Jav-

aBeans implementation, required interfaces are those which are referenced within

the bean.

3.2.1 Style

A very important aspect of contract specification is the style of the specifications.

Based on existing work, the framework elements and description should be formally
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defined to remove possible ambiguities and allow for tool support [BS97].

To encourage adoption and ease migration to component contracts, specification

of specific terms should be optional. Often, component providers are not able to

provide because of cost or other reasons complete specifications [GA99].

Another recommendation was that the description be readable to appeal to the

average developer.

3.2.2 Terms

There are four types of terms that have been identified from the literature review

for inclusion within a contract specification: signature, protocol and behavior, non-

functional and meta. These types are based on terms that have been identified

as useful by existing approaches. They are discussed next. Figure 3.5 shows the

terms of an interface specification. The signature of the interface and a protocol

describing the sequence of interactions is described in terms of a component and

relevant domain ontologies.

Figure 3.6 shows the terms of a composite interface specification. The specifi-

cation includes the supported interfaces of the component, as well as any interfaces

it requires to operate. Specification terms include behavior and non-functional
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Figure 3.6: Composite Interface Terms

properties.

Signature

Each interface should contain, at a minimum, a signature describing access points.

These are required to communicate with the component. This is the only type

of term supported by existing IDLs. These terms include the names and types of

methods, events, parameters, attributes and exceptions.

Protocol and Behavior

The protocol of a component represents the allowable sequence of interactions with

the elements of an interface. Behavior refers to the response and actions a compo-

nent performs when it is invoked by a client.

Within the framework, each interface may provide a description of, or con-

straints on the order that interface elements are invoked. A composite interface,

representing the component’s specification, describes the behavior of the component

and represents the relationship between its supported interfaces.
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Non-functional properties

The non-functional properties and qualities of a component are often left unspec-

ified, but have been identified as an important requirement for widespread com-

ponent adoption [Szy97]. Unfortunately, there is currently a lack of standards for

most properties [BD00].

To support the specification of non-functional properties, the framework allows

property types to be defined. Instances of the types are attached to a composite

interface and have a value assigned to them. For each type, a function can be used

to determine if the value is valid.

The value of potential properties can vary. A natural language comment may

provide information about the vendor. The platform a component supports, may

be one item from a standard enumerated set, it may be a number, indicating the

base memory required in kilobytes or it may be a function, that produces a value

based on its parameters.

Meta-information

To support interoperability and enhance the understanding of a component, meta-

information can be supplied to describe the elements of the contract. Ontologies

provide a standard for describing entities within a domain with constraints and

relationships.

A component can be specified in terms of a defined ontology for the component

standard that it supports. Domain specific ontologies can be used to describe the

methods, parameters and non-functional properties of components.

Using a standardized conceptual model for a domain allows clients eases the
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evaluation a component compared to others, or within the context of a system,

because the concepts are similar.

3.3 Analysis

Although contracts are useful for understanding the operation of software compo-

nents, machine-assisted analysis of these specifications would increase their appeal

and usefulness to clients. To support analaysis, a formal specification is required.

In the literature, potential uses for contracts beyond documentation have been

proposed and are compared and summarized in Section 2.4.3. Based on existing

proposals, the analysis capabilities of the framework are described below.

Property Verification

The basis of the framework’s analysis capabilities is the satisfaction of a client’s

questions about component properties. A client can check whether an individual

component exists that supports a property. A client could also check if a property

holds for a composition of components.

Consistency

The framework should ensure that all contract specifications are consistent with

respect to the framework’s constraints, the supported component standard and

any domain ontologies that are referenced.

The framework should also verify that the framework and component standard

connection rules are valid for compositions.
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Substitutability

The ability to substitute different component implementations with little or no

system modification is one of the potential advantages of component-based systems.

The ability to compare contracts to verify if one can replace another is a useful

feature of the framework. The essential requirement of a substitution is that the

external behavior of the component is transparent to its clients.

Substitutability is clearly defined with the following rules, based on the defini-

tions used in previous work and discussed in Section 2.4.3. In general, a component

can be replaced with another if the replacement:

1. provides at least the same services as the existing component.

2. requires no more services than the existing component.

3. has the same protocol as the current component.

For a substitution, signatures and protocols must match. The requirements for

individual non-functional requirements are not well-defined. For example, a client

may or may not require a replacement to operate at least as fast as the current

component.

Compositions

Existing component standards and techniques lack mechanisms for specifying the

architectures of systems and focus on connection standards, interfaces and services

[CFTV00]. Using component contracts, a client can use the framework to construct

and analyze the composition of a system from components. The composition can
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be compared to a specification of the system to check if requirements have been

satisfied.

The composition of systems can change over time, and the ability to specify

the dynamic creations, connections and deletions of component instances within a

system can help developers uncover errors in the system before implementation.

3.3.1 Enforcement

Because it is not practical to verify a component and its client implementation

against the contract, run-time monitoring may be required in certain settings.

Monitoring support can be implemented within the component middleware

[BJPW99] or dynamically generated and inserted in the ‘glue code’ between con-

nections as in the JavaBeans standard [Sun01].

To ensure that the signature, protocol and behavior specifications of the con-

tract are adhered to by both the implementation and the client, the monitor has

the ability to check before and after each inter-component interaction. Full mon-

itoring support of the non-functional properties of a system may require constant

or periodic checking, regardless of interactions.

Support

To enhance usability and analysis as well as contract specification, the framework

provides library of property templates that can be instantiated and extended by

developers.

Property templates can be used to ensure that contracts and compositions are

valid with respect to the component standards they support. Domain specific prop-
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erty templates are provided by ontologies and can be used to analyze the signatures

and non-functional characteristics of components. More general, property templates

such as deadlock can be used to ensure that interactions with a component do not

result in an error.

3.4 Summary

This chapter outlines the requirements of the framework. Contract terms and anal-

ysis capabilities have been drawn from the experience and recommendations of

existing work to address the problems introduced in Section 1.3.2. A formal, struc-

tured specification will remove ambiguity and the possibility of misunderstandings.

As well, it will reduce the amount of effort required to understand the component.

Moreover, formal specifications are amenable to tool support, further assisting com-

ponent users. For example, when attempting to locate components, contracts with

formal specifications allow for more precise searching than standard text and key-

word searches.



Chapter 4

Framework Design

This framework is based on another framework for software architecture validation

developed by Lichtner [Lic00]. We chose this framework as a foundation for our

work because CBSE and the field of software architecture are closely related. The

high-level details of software architecture match well with the coherent function-

ality encapsulated by a component. All the abstractions introduced in Lichtner’s

software architecture framework (SAF) are applicable in the context of software

component composition. This chapter describes the elements of the SAF and dis-

cusses the relationship between software architecture and components.

4.1 Software Architecture

The field of software architecture has emerged in response to the increasing com-

plexity of software systems. Often when designing or describing complex software

systems, informal “box-and-arrow” diagrams are used to describe the system at

a high level. Formal and semi-formal notations classified as architectural descrip-

55
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tion languages (ADLs) have been developed to assist system designers in reasoning

about initial and high-level designs. Using a formalized notation, designers can use

formal methods, tools or other techniques to perform analysis of high level designs

to assess the potential costs of development or modification.

4.1.1 Lichtner’s Software Architecture Framework

In [Lic00], Lichtner presents a formal framework for describing the architectural

designs of software systems suitable for mechanical reasoning. His framework at-

tempts to overcome many limitations of existing architectural notations including

the inability to express certain elements or additional design information as well

inadequate reasoning and validation capabilities.

Despite the growing emphasis on architectural designs, Lichtner noticed that

there has been little effort directed at formalizing the underlying semantics of ADL

models or architectural meta-models [LAC98]. Lichtner develops his framework

by uniting the salient features of a range of existing architectural notations. To

support specific notation features, or new advances, the notation allows for the

definition of additional design information.

4.1.2 Model

In [Lic00], Lichtner describes the model for his SAF. The categories of Lichtner’s

SAF are defined by an entity and relationships that constrain the entity. The

design-time model includes the categories that can be used within the system. The

run-time model covers the instances of the design-time categories that have been

configured to create a working system. The categories are summarized next. With
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each category, relationships and predicates are provided as a basis for ensuring

architectural descriptions are valid.

Design-time model

Elements are the basic entities that make up the architectural description. Elements

may be components acting as computational or storage elements or connectors

acting as ‘glue’ between interacting components. Ports are element connection

points that define a service. Architectural types add meaning to the defined elements

and ports by associating elements with the ports they support and by restricting

connections between different port types.

Interfaces represent the interaction points through which an element communi-

cates with the rest of the system. For a given element type, an interface is defined

as a subset of ports supported by that type. To support behavioral modeling,

events that each port can both observe and initiate are specified. All components

and connectors are declared within a library and interact through an interface, and

provide a sequence of operations that represent the behavior of the component.

Run-time model

Within a run-time model there are instances of components and connectors. As

well, for each instance, their interface ports are also instantiated (instantiated

ports).

Configurations are the central concept, containing the set of component and

connector instances and connections. An architecture represents a complete de-

scription of the system and contains a collection of configurations. Configurations
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within an architecture can also represent composite elements, and be used as ele-

ments within other configurations.

In addition to the categories, the architectural description contains construc-

tion operations to modify the state of a specific model. To ensure consistency,

relationships define the state before and after an operation is applied.

4.1.3 Validation

Lichtner’s Software Architecture Framework (SAF) also addresses the weak rea-

soning abilities of most notations. Most support parser-driven checks that ensure

syntactic correctness and enforced constraints on typed entities. For verification

of more advanced properties such as behavior, Lichtner provides room for various

specification mechanisms.

For implementation purposes, Lichtner specifies the behavior of components and

connectors using Hoare’s CSP [Hoa85]. To distinguish between initiated and ob-

served events, pass extra data, and identify sources, an event structure is provided.

During run-time, systems may change their topology by creating new instances

or adding new connections. These dynamic systems are supported through a CSP

process that describes the order of the construction events.

For verifying the structure and behavior of the system, Lichtner implements

his SAF within the PVS theorem proving system. [ORS92]. Verification requires

encoding the desired property into the same higher-order logic as the categories,

and showing that the properties follow from the description [LAC99]. The flexibility

of this approach allows a wide range of structural and behavioral properties to be

verified.



CHAPTER 4. FRAMEWORK DESIGN 59

Structural Properties

Structural properties are related to static elements of the system, and can cover

both design-time and run-time categories. Examples of structural properties given

in [LAC99, Lic00] include:

Completeness constraints: “All instance ports involved in at least one connec-

tion.”

Style contraints: “All instances are of type Pipe or Filter.”

Topology: “Pipes are only connected to filters.”

Behavioral Properties

Behavioral properties describe the allowable states of a system are during execution,

or in response to an event. Progress properties indicate that something should

happen. Safety properties indicate that something should never happen. Examples

of behavioral properties from [Lic00]:

• “Any event that was observed by A, was initiated by B.”

• “An event A should not be initiated unless event B was observed.”

4.2 Application to Component Contracts

The formal framework developed by Lichtner is well suited the description of

component-based systems. Software components are often close representations to
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the architectural components provided with many ADLs. By specifying the prop-

erties of the individual components and their composition in terms of the formal

framework, we can reveal potential integration problems before the system is built.

If applied to an existing system, integration problems may be revealed before chang-

ing a component in the system or adding new components. The ability to check for

integration problems before implementation or deployment of a component-based

system would address many of the issues raised in Chapter 2.

Although software architecture and CBSE have much in common, there are

differences between the two areas. Where software architecture is focused on the

high-level, conceptual design of a system, CBSE is based on designing systems from

existing implementation pieces. ADLs have traditionally had weak support for

important component notions such as independence, evolution and encapsulation

[Han98, CFTV00]. To address these problems Lichtner’s framework is extended to

support the requirements of the contract framework.

4.2.1 Reference Model

To clarify the roles that software architecture plays, Wallnau et al [WSHK01] have

developed a reference model for integrating software architecture and component

technology. Figure 4.1 shows the elements of Lichtner’s SAF in relation to the four

levels of the reference model.

The bottom level, the assembly, is the actual implementation of the components

and the ‘glue code’ to form the system. The next level describes the specification

of the assembly and contains the description of the instances and connections of

the components. Further up, types are defined. Both component and connector

element types are included on this level. The top level defines the meta-types.
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typetype port

interface element

architecture configuration instance instance
port

assembly

specification

types

meta-types

Implementation

Figure 4.1: Elements of Lichtner’s SAF in terms of the reference model

These definitions must be adhered to by all elements in the type level. Meta-types

describe the details of the component standards. The framework provides support

at all levels of the reference model.

4.3 Adapting the SAF

To meet the requirements for contracts and their analysis capabilities for the frame-

work, the SAF of Lichtner is modified and extended. The changes reflect the dif-

ferences between software architecture and CBSE. Software architecture and ADLs

do not provide adequate support for encapsulation and incidence because they are

focused on analyzing systems as a whole. As well, extensions to SAF are required

to support the range of terms that may be included in a contract. To provide sup-

port for framework users, a collection of implementation base types and property

templates should also be provided.
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4.3.1 Model

Interfaces

A basic interface in our framework is analogous to a port in the SAF: combining

related fuctionality. In [OH98] various strategies for assigning component methods

and attributes are discussed. Because an interface may be specified independent of

a specific component, additional information is provided with an interface. Besides

the events the the ports can initiate and observe, a protocol description is also

provided. As well, an interface may have non-functional properties attached.

Components and Composite Interfaces

In our framework, the SAF interface is considered a composite interface since it can

contain multiple ports. A component is also another composite interface as it can

contain multiple ports as well as multiple SAF interfaces. The notion of a compo-

nent is extended to support roles, or multiple interfaces as described in Section 3.2.

A component can now have more than one interface, forming a composite interface.

In addition to regular interfaces, composite interfaces may also reference other

composite interfaces. This allows support for simple inheritance, polymorphism

and aggregation.

4.3.2 Terms

Non-functional Properties

Non-functional properties can be attached to interfaces or components. Because

the specification requirements for non-functional properties can vary greatly. To
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support this, we introduce a property type. A property type is specified with at

least one function that checks a value to see if it is a valid type of that property.

Meta-information

Any entity that is defined within the framework can be ‘tagged’ with a reference

to a definition or concept from an ontology.

4.3.3 Analysis

In addition to the selection and analysis capabilities provided by the SAF, the

framework has additional capabilities.

Consistency

When defining types, contracts and compositions, the framework should ensure

that new information is consistent and valid with respect to the base definition

provideds in [Lic00], additional rules defined for the extended framework, existing

types and existing entities.

Substitutability

Additional operations are required to support checking of component equality and

substitutability. To determine if two components are equivalent, they should possess

the same signature, same behavior and same properties.

For substitution, the framework follows the rules defined in Section 3.3.
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4.4 Summary

In this chapter, we have described a framework for analyzing architectural de-

scription that is extended to support the specification and analysis of component

contracts.



Chapter 5

Framework Implementation

5.1 Introduction

In this chapter, we present a detailed description of a system that supports the

verification of structural and behavioral composition of software components.

In contrast to Lichtner’s implementation which employs theorem proving tech-

niques, we use a combination of first-order predicate logic and model checking

to verify properties. This combination allows for fast, automatic and simplified

verification of system properties making our system accessible to most software

developers.

This chapter introduces the theoretical background and pragmatics of the logic

programming system XSB and model checker, XMC on which our implementation

is based. In Section 5.4 the implementation and elements of our system are intro-

duced. The final section presents examples of component specifications and their

composition properties.

65
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5.2 Theoretical Background

The implementation of SAF detailed in [Lic00] is based on the theorem-prover: Pro-

totype Verification System (PVS) [ORS92]. Theorem proving techniques involve

expressing the system and its desired properties as formulas in some mathematical

logic. From the set of axioms and inference rules that define the logic, property

proofs are constructed. Because PVS supports higher-order logic (HOL) it is very

expressive and structural and, behavioral information can be easily specified. Be-

havioral specifications are encoded in Hoare’s communicating sequential processes

(CSP) [Hoa85]. As Lichtner acknowledges, the expansiveness of HOL comes at

the cost of fully automated reasoning and user guidance is required to verify and

construct proofs of most properties.

Because of the sophistication required to use a theorem-proving tool, Lichtner’s

approach may be too complex for use in normal software development. The frame-

work is implemented using two complementary techniques: logic programming and

model checking that allow for fast, automatic results.

5.2.1 Logic Programming

Logic programming is a programming style that is based on first-order logic. Prolog,

the most popular logic programming language is based on Horn clauses.

To create a program a programmer provides a set of facts and rules. Facts

can be considered specific instances of objects, whereas rules describe relationships

between objects. To ‘execute’ the program, a goal is provided. Through a process

called resolution, the Prolog runtime checks to see if the goal can be logically implied

directly from existing facts, or by implication through rules.
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There is a strong similarity between Prolog and relational database systems:

facts, rules and goals are analogous to rows, relations and queries respectively. This

makes Prolog well suited for maintaining the structural information of contracts.

5.2.2 Model Checking

Model checking has been used with success primarily in the areas of hardware and

protocol verification. The current trend is to apply model checking techniques to

the analysis of software system specifications [CW96].

The process of model checking is to determine whether a system specification

possesses a certain property. A finite model of the system is constructed and prop-

erties are checked by performing an exhaustive state space search. It is guaranteed

to terminate because model is finite. Properties are usually expressed as tempo-

ral logic formulas allowing verification about past, present and future states of the

system. [CDD+98].

Unlike theorem proving techniques, model checking is generally faster and au-

tomatic. As well, model checking can be used in analyzing partial specifications

providing useful information about a system before it is even fully designed. Ac-

cording to [CW96], the biggest strength of model checking is the ability to produce

counter-examples which can be extremely helpful in debugging design errors.

The major weakness of model checking is the state explosion problem. The

number of states in systems with many interacting components, or structures that

can assume many values is potentially very large. Developing techniques to handle

large state spaces is the main focus of research within the field and successes have

led to widespread use within industry.
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5.3 XSB Prolog/XMC

This section describes the XMC model checker developed at SUNY Stony Brook

[CDD+98] for verifying temporal properties of concurrent systems. It is imple-

mented with another SUNY Stony Brook project, the XSB tabled Prolog logic

programming system [XSB01]. System and property specifications are encoded in

the XL language.

5.3.1 XMC

Recent advances in logic programming technology allowed the development of XMC.

These advances are due to the development of tabled resolution which has been im-

plemented in the XSB logic programming system on which XMC is based. Tabled

resolution resolves many of the inherent weaknesses of Prolog by providing termi-

nation on finite models and avoiding redundant computations. [CDD+98].

Despite variations in the system specification languages and property specifi-

cation logics, the semantics are typically specified via structural recursion as fixed

points (discussed below in Section 5.3.3) of certain types of functionals. These

are similar to the semantics of logic programming systems. Hence model checking

problems can be easily encoded into terms of a logic program. XMC was written

in under two hundred lines of tabled XSB Prolog code consisting essentially of the

declarative semantics of the specification language and property logic. Benchmark-

ing results in [RRR+97] indicate XMC performs extremely well when compared to

other prominent model checkers such as SPIN [SPI01] and the Concurrency Factory

[CLSS96] which are coded in C/C++.

In addition to efficient performance, it is relatively easy to integrate other ap-
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plications or extend aspects of the model checker because it is written in Prolog

and compiled on the fly. Users are able to navigate the proof tree to view counter

examples or evidence of success of property proof.

XMC has been successfully used in the verification of different protocols and

algorithms [Lab00]. It has also been applied to software systems to verify the

composition of design components [Don00].

The XMC specification language, XL consists of two parts. First, there is

a process modelling language,a highly expressive extension of the value-passing

Calculus of Communicating Systems (CCS) [Mil89]. As well there is a property

specification language based on the modal µ-calculus [Koz83].

5.3.2 Process Modeling

CCS is a process calculus similar to CSP for describing systems consisting of con-

current, communicating components. XMC’s CCS syntax is shown in Figure 5.1.

CCS was designed to be flexible with a minimal set of operators [Fid94]. Because

of experience using the model checker, the grammar and syntax XMC accepted by

has changed since the earlier versions used in [CDD+98] and the most accurate ver-

sion can be found in Figure 5.1. Prolog terms and predicates are used to represent

values and computations respectively. XL takes from the value-passing CCS the

notions of sequential composition (o or ;), parallel composition (|), and choice (#).

Although XL supports CCS-style restriction and relabeling to manage communi-

cation and derive instances from generic processes, XL’s support for parameterized

processes makes them unnecessary. Recursion is the only way to define an interac-

tive process. Synchronized communication (in,out) supports value-passing which

means processes can not only signal one another, but pass data values. Actions are
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Pdef --> ( Pname ::= Pexp .)*

Pname --> Prolog Term

Pexp --> Pexp o Pexp Prefix

| Pexp ; Pexp Prefix

| Pexp # Pexp Choice

| Pexp ’|’ Pexp Parallel Composition

| Pexp @ PortMap Relabelling

| Pexp \ PortList Restriction

| Pname Recursion

| in(Port, Term) Communication (input)

| out(Port, Term) Communication (output)

| Action Communication (non-sync)

| Comp Computation

(Prolog expression)

| if(Comp,Pexp,Pexp) Conditional

| zero Empty process

(O in CCS)

| nil Empty computation

PortMap -->

[PortTerm/PortTerm (, PortTerm/PortTerm)*]

PortList -->

{PortTerm (, PortTerm)* }

Port(Term) --> Prolog Term

Action --> Prolog Atom

Comp --> Prolog Predicate

Figure 5.1: XL Syntax Chart from [Don00]

globally observable and are used to indicate events that are relevant to properties.

Computations are just Prolog computations, for example: A is B + C.

Prolog code can be in-lined with specifications allowing the powerful capability

of arbitrarily detailed specifications, possibly to the level of implementation. User

defined data types can be created from primitive types or from previous user defined

types.

Similar to CCS, the basic object in XL is a process. Processes are defined using

the ::= operator and may contain parameters. A process consists of a sequence of

the simple expressions defined above. A process can be invoked with parameters

consistent with the defined types of the process parameters. A detailed description

of the syntax and semantics of XL can be found in the XMC Users’s Manual

[Lab00]. An example XL specification of the Alternating Bit Protocol [Tan96] in

which acknowledgements alternate between one and zero shown in Figure 5.2.

For system processes specified using a process algebra such as CCS, we can

construct a representative labeled transition system (LTS). CCS specifications are

encoded over a labeled transition system and are specified in Prolog using a trans/3
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%%% The Alternating Bit Protocol

medium(Get, Put) ::=

in(Get,Data);

{ out(Put,Data)

action(drop)

};

medium(Get, Put).

sender(AckIn, DataOut, Seq) ::=

%% Seq is the sequence number of

%% the next frame to be sent

out(DataOut,Seq);

{

AckIn ? AckSeq;

if AckSeq == Seq

%% successful ack, next message

then {

NSeq is 1-Seq;

sendnew(AckIn, DataOut, NSeq)

}

%% unexpected ack, resend message

else sender(AckIn, DataOut, Seq)

#

%% upon timeout, resend message

sender(AckIn, DataOut, Seq)

}.

sendnew(AckIn, DataOut, Seq) ::=

action(sendnew);

sender(AckIn, DataOut, Seq).

receiver(DataIn, AckOut, Seq) ::=

%% Seq is the expected next

%% sequence number

in(DataIn,RecSeq);

if RecSeq == Seq

then {

NSeq is 1-Seq;

action(recv);

out(AckOut,RecSeq);

receiver(DataIn, AckOut, NSeq)

}

else {

%% unexpected seq, resend ack

AckOut ! RecSeq;

receiver(DataIn, AckOut, Seq)

}.

abp ::=

sendnew(R2S_out, S2R_in, 0)

% sender -> receiver

| medium(S2R_in, S2R_out)

% receiver -> sender

| medium(R2S_in, R2S_out)

| receiver(S2R_out, R2S_in, 0).

Figure 5.2: Alternating Bit Protocol. Source from [Lab00]
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clause, where trans(S1(A),in(A,data),S2) represents a transition from state S1

with a port A to state S2 on an action that inputs the value data. Details and

transition rules can be found in [CDD+98].

5.3.3 Property Specification

The current release of XMC supports properties specified in the alternation-free

fragment of the modal µ-calculus. The semantics of the modal µ-calculus can is

described over sets of states of LTSs.

Properties are written using fixed point equations in the form of µ, the least

fixed point operator and ν, the greatest fixed point operator. These operators

reflect the computation involved: least fixed points start from the minimal element

and then iteratively expand whereas greatest fixed points start from the maximal

element and iteratively reduce it.

The modal µ-calculus also supports the logical connectives disjunction (∨) and
conjunction (∧) and the basic propositions true and false. The diamond modality,

〈a〉φ is used to indicate that it is possible for an action a to occur and transition to

a state where formula φ holds. The dual, [a]φ indicates that that formula φ holds

in all reachable states (within one step) by an action a transition.

Using the fixed point operators, formulas are recursively defined allowing the

definition of common temporal operators. For example:

νZ.φ ∧ [−]Z

(‘−’ represents any action) states that formula φ is true along every path. This is

equivalent to the Computational Tree Logic (CTL) [CE81] operator ∀Gφ, always

φ.
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D --> Z += F. (least fixed point)
| Z -= F. (greatest fixed point)

F --> Z | tt | ff | F \/ F | F /\ F | <A> F | [A] F | (F)

A --> action | {actions} | [-] A

Figure 5.3: Property specification syntax

µY.φ ∨ 〈−〉Y

This formula is equivalent to the CTL property ∃Fφ, it is possible that φ will

eventually hold.

In general, µ refers to liveness properties, which require “something” to happen

in contrast to ν which implies “always”, or safety properties which require that

certain conditions never occur [BS01].

Alternation depth refers to the level of non-trivial nesting of fixed points within a

formula where adjacent fixed points are of a different type. XMC only supports the

alternation-free fragment of the modalmu-calculus which means it only supports an

alternation depth of 1 [CDD+98]. Although this limits the complexity of properties

that can be expressed, formulas with alternation depth greater than 2 are difficult

to understand [Bra99].

The syntax of XL’s property specification is shown in Figure 5.3. In XL, the

standard logical connectives (\/ and /\) as well as the logical constants (tt and ff)

are available for constructing formulas. A can represent an action, a set of actions

({...}), or the complement (-) of an action or set of actions (the complement of

no actions is all actions). The two modalities, <A> F indicates that it is possible

for formula F to hold after the action A whereas [A] F indicates that necessarily

after the action A, the formula F holds.



CHAPTER 5. FRAMEWORK IMPLEMENTATION 74

Properties are specified using fixed point equations, where the operator += de-

notes a least fixed point equation and the -= operator denotes a greatest fixed point

equation.

Example

To demonstrate the use of XL’s property specification language, here is an example

related to the ABP source in Figure 5.2.

deadlock += [-]ff <-> deadlock

This formula asks if deadlock is possible. Specifically it asks, “Is it true that, after

an action ([-]), the system cannot progress (ff)? Or is it eventually possible on

some execution path (<-> deadlock) for this to happen?”

5.4 System Description

This section covers the implementation of Lichtner’s adapted model in Prolog and

the XMC model checker. Figure 5.4 shows an overview of the system. The system

requires as input the following:

Framework and Library Defines the basic facts and operations required to spec-

ify and analyze a design in the framework. As well, a library provides prede-

fined types and property templates.

User defined types and properties Defines the basic element types, port types

and any additional properties for a specific architectural paradigm that the

user requires.
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Behavior properties:
operations, library

types, properties

Framework-

User defined 

Interface and/or
Component Spec.

Interface and/or
Component Spec.

.

.

.

XMC
Model Checker

Behavior
 Model

PROLOG
XSB 

Queries
Properties,

Composition

Query results
Other properties,
Errors,

Counter-example
or 
Verified

Figure 5.4: System Overview

Interfaces Individual interfaces can be specified. A component specification can

be provided to form a contract.

Composition The design composition includes instances of elements, and how

they interact to form a system.

Properties and Queries The last input consists of the properties to be verified as

well as any other queries. Behavioral properties are specified in XL’s version of

the modal µ-calculus or by using and combining the properties provided with

the system. Queries in Prolog can reveal details about structural properties

of the design.

After processing and checking the design for structural consistency relative to

the LSAF, the system generates a complete behavioral model based on the struc-

tural and operation information provided. This model is compiled by the XMC

model checker. After compilation, temporal properties can be verified and the

query results can be obtained. Additional properties and queries may also be re-

solved via Prolog.
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5.4.1 Structural Model

The design composition consists of a number of elements. There are five areas that

form the structural model, with types representing the lowest level building up to

architectures which represent the composition of an entire system. Components,

representing computations and data stores and connectors, representing interaction

mediators are the fundamental building-blocks of the design. These two elements

are analogous to classes in object-oriented programming languages and are similar

within our architectural framework. The Prolog implementation represents the

structural information internally as dynamically asserted facts. A specification is

constructed using operations that ensure consistency of the design and the asserted

facts. Although a specification is constructed using operations, the facts and other

predefined rules, all documented in Appendix A, can be used to form queries about

the structure of the design. They are summarized below and the implementation

can be found in Appendix A. Specific details can be found in [Lic00].

To demonstrate the various aspects of the specification, examples of the encod-

ing of the example system from [Lic00] are used. The example system is a simple

remote procedure call (RPC) memory system. A client issues read and write to a

remote memory system. This requires a clerk to package the request to the RPC

component.

Basic Types

Type specifications for the design are analogous to types in programming languages.

They define the basic architectural types include the elements and their ports. A

mapping specifies what port types are supported by each element type as well as

valid interactions between ports.
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These types are specific to the design paradigm. For a low-level design, a pro-

cedure could be defined as an element type. A procedure would have two ports, a

caller to invoke other procedures and a return port for return values to its caller.

The procedure type is the basis of Lichtner’s example in [Lic00] and an equiva-

lent encoding in our system.

% ADL Types

:- define_element_types([procedure]). :-

define_port_types([caller,definer]). :-

define_export_map([(procedure,caller),(procedure,definer)]). :-

define_port_map([(caller,definer),(definer,caller)]).

This example defines a procedure that exports two ports, and establishes the valid

interactions between procedures. A more complex environment, such as Java, may

establish the class as an element type. A class would export ports for method calls

and returns and sending and receiving events.

Interfaces

Interfaces are element specifications and represent the interaction points of the

element to the rest of the system. For an element type, an interface defines ports

that are consistent with those exported by the type. For each port, a set of events

are specified: those that the port can initiate, and those that the port can observe

are specified.

The interface definition for a clerk element within the example system is shown

next.

:- define_interface(clerk_interface, procedure, [

(clerk_caller, caller, [remotecall],[normal, rpcfailure]),

(clerk_definer, definer,[normal, memfailure],[read,write])

]).
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In the RPC memory system, the clerk accepts the request from the client, and

passes it to the RPC system. The clerk procedure expects to be called and observe

a read or write event and will return normal or memfailure. When called it issues

a remotecall and expects a return normal or rpcfailure.

Libraries

Libraries contain the sets of components and interfaces that have been declared.

Components that have been added to the library are specified by an interface and

a sequence of operations representing their behavior. The operation sequence is

encoded in XL. Because XL allows Prolog code to be in-lined, the specifications

may be quite abstract, representing only high-level actions or detailed to the level

of full implementation. As with interfaces components are not required to have a

behavioral specification at the cost of limiting verification to structural aspects of

the design .

:- add_component(lib, clerk, clerk_interface).

:- add_behavior(lib, clerk,

’% clerk_translate

in(Clerk_definer, event(Request, Origin, Data)) o

out(Clerk_caller, event(remotecall, Instance, [Request])) o

{ { in(Clerk_caller, event(rpcfailure, Instance, Data2)) o

out(Clerk_definer, event(memfailure, Origin, Data2))

}

#

{ in(Clerk_caller, event(normal, Instance, Data2)) o

out(Clerk_definer, event(normal, Origin, Data2))

}

}.’).

This example shows the definition of the clerk component specified by the clerk

interface. The behavioral model is explained in detail below in Section 5.4.2 but
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the operation of the clerk can be described: when the clerk is called with a request,

it issues a remotecall and if the call returns rpcfailure it returns memfailure,

otherwise it returns normal.

Configurations

Configurations represent a design, a set of instantiated components and connections

between their ports. Connections are between instantiated ports of the component

instances.

The topology of the RPC memory system is shown next:

% Create Configuration

:- initial_configuration(config,lib).

:- instantiate_component(config,rpc1,rpc).

:- instantiate_component(config,clerk1,clerk).

:- instantiate_component(config,client1,client).

:- instantiate_component(config,mem1,mem).

:- connect(config, client1,client_caller, clerk1,clerk_definer).

:- connect(config, clerk1,clerk_caller, rpc1,rpc_definer).

:- connect(config, rpc1,rpc_caller, mem1,mem_definer).

Four components, rpc1, clerk1, client1, mem1 are instantiated from their re-

spective components. There are three connections between the components. The

client will call the clerk; the clerk will call the RPC procedure which in turn, issues

a call to the memory.

Architecture

An architecture encapsulates a design and allows for more complex designs where

an entire configuration is packaged as a single element.
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5.4.2 Behavioral Model

The behavioral model is based on the configuration information provided in the

design. Only components that are instantiated are considered when constructing

the behavioral model. Each component is represented by a process which is defined

with parameters for a specific instance name, and its instantiated port identifiers.

This section describes how the behavioral model is constructed from the initial

structural information. Using the clerk example:

clerk(Instance, Clerk_caller, Clerk_definer) ::=

The rest of definition consists of the operation sequence associated with the element

specified in XL.

In XMC, each port in the model is assigned a unique identifier, also called

a channel. In the system, instantiated port identifiers are constructed using a

combination of its component instance name and the port name. So, the clerk

component is instantiated as

clerk(clerk1, Clerk1_clerk_caller, Clerk1_clerk_definer)

Events

The event model for the system is quite similar to the event definition used in

[Lic00]. Components expect to either receive events via XL’s in operation, or send

events using the out operation. An event has the form:

event(Action, Origin, Data)

An Action is the type of event; for a port, the set valid actions are those a port

can initiate and observe. The Origin represents where the event came from, or is



CHAPTER 5. FRAMEWORK IMPLEMENTATION 81

directed to. Any parameters for the event can be placed in the Data parameter.

For example, after being called the clerk procedure sends an event with action

remotecall. The origin is the current instance of the clerk and parameter is the

action with which the clerk was invoked.

Communication

Based on the operation sequence, a component does not specifically refer to an in-

stance, or even a component with which it expects to communicate. These bindings

are established through the connections between instantiated ports defined within a

configuration. For each connection, an instance of the connect process, is created:

connect(I1,P1,Chan1,I2,P2,Chan2) ::=

{ in(Chan1, event(A,O,D))

o action(event(init,I1,P1,A,O,D))

o action(event(obs,I2,P2,A,O,D))

o out(Chan2, event(A,O,D))

o connect(I1,P1,Chan1,I2,P2,Chan2)

}

#

{ in(Chan2, event(A,O,D))

o action(event(init,I2,P9,A,O,D))

o action(event(obs,I1,P1,A,O,D))

o out(Chan1, event(A,O,D))

o connect(I1,P2,Chan1,I2,P2,Chan2)

}.

Like events, the communication process is similar to the original defined in [Lic00].

It acts to mediate communication between two ports. To connect two ports, the

process requires the names of both components’ instances, ports and channels. The

process does not add any functionality, but takes the provided information along

with the values of each event to generate actions. These actions are used when
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constructing system properties for verification and to allow properties to refer to the

occurrence (or non-occurrence) of events. A connection instance, for the example

RPC system between the client and the clerk:

connect(client1,client_caller,Client1_client_caller,}

clerk1,clerk_definer,Clerk1_clerk_definer)}

Within the context of procedure element types, discussed above in Section 5.4.1,

the client calls, or initially sends events to the clerk. The clerk in turn may send

or return events to the client.

Composition

Similar to the structural model, each instantiated element and connection are part

of a larger process. They are combined using parallel composition, which implies

they act independently. In the system, the larger process is given the name of the

configuration. If the configuration is a part of an architecture, and represents the

composite behavior of an element then the configuration process includes the same

parameters as an individual component.

The system takes advantage of XMC’s support for user-defined data types to

increase the chance of uncovering inconsistencies in the design. Instances and the

unique event actions of all of the components involved in a design are used to

construct two enumerated types. For events, actions and instances are restricted to

those in their respective types; data is passed as a Prolog list. Any violation will

generate a type error when the model is compiled by XMC. Using both data-types

and automated generation ensures that the behavioral model is logically correct.
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5.5 Design Verification and Queries

After the model has been successfully constructed in Prolog and compiled by the

model checker, we can verify system properties or query the design.

5.5.1 Structural

The Prolog representation of structural information is well suited for specifying

properties and queries. Below, a number of queries appear similar to those presented

in [LAC99] as well as others demonstrating the ability to construct complex queries

within Prolog easily. Currently as the rules defined are restricted to those relations

specified in the formal model. If other relations are consistently used for queries,

they can be defined and reused. As well, Prolog allows the definition of customized

operations to enable a query form closer to ‘natural language’.

• Stylistic Properties: all instances are either of type pipe or filter.

pipeFilterStyle(Config) :-

library(Config,Lib),

forall(instance(Config,_,Element),

specifiedby(Lib,Element,Instance),

(type_of(Lib,Instance,pipe);type_of(Lib,Instance,filter)) ).

• Topological Properties: Pipes are only connected to filters and vice-versa.
Given a description of an architecture constructed using operations, imple-

mentation will ensure that architectural type constraints arc upheld. This

requires manual guidance using PVS.

topology(Config) :-

library(Config,Lib),

forall(connections(Config,I1,P1,I2,P2),
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(inst2interface(Config,I1,Int1),

inst2interface(Config,I2,Int2),

((type_of(Lib,Int1,filter_output),

type_of(Lib,Int2,pipe_input));

(type_of(Lib,Int1,pipe_output),

type_of(Lib,Int2,filter_input)))) )

• Completeness Constraints: all ports of all instantiated elements are either
connected or bound to ports of an interface (there are no unattached ports in

the configuration).

portsAttached(Config) :-

forall(port(Config,Instance,Port),

(connection(Config,Instance,Port,_,_);

connection(Config,_,_,Instance,Port);

binding(_,Config,Instance,Port,_)) ).

• Total number of element templates in a configuration
totalElements(Config) :-

library(Config,Lib),

setof(Component, component(Lib,C), ComponentSet),

size(ComponentSet).

• Set of connector templates unused in the configuration
connectorsUsed(Config,ConnectorSet) :-

library(Config,Lib),

setof(Connector,(connector(Lib,Connector), not

instance(Config,_,Connector)),RonnectorSet).

• Set of outgoing and incoming connections of an instance within a configura-
tion.

outgoing(Config, Inst, ConnSet) :-

setof(Connection,

(connection(Config,Inst,_,_,_);connection(Config,_,_,Inst_))

,ConnSet).
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Behavioral

To verify behavioral properties, we need to express them in a modal µ-calculus

formula. The formulas are evaluated in terms of actions. As mentioned previously,

each time an event is sent across a pair of ports an action representing that event is

generated. Design specific actions can also be generated within the process model

of a component. The following properties are parameterized in terms of events but

could be modified to support the verification of arbitrary actions within the system.

Simple properties can be combined to produce more complex properties. Because

the model checker is implemented in Prolog, queries about the behavior can be

carried out by leaving some of the variables unbound. Instead of returning true or

false, a set representing all possible values of the variable will be returned.

• An event will never occur in the system. This is useful for ensuring that a
certain, potentially invalid action does not occur.

never(S,I,P,A,O,D) -=

[event(S,I,P,A,O,D)] ff /\ [-] never(S,I,P,A,O,D).

The parameters (S,I,P,A,O,D) correspond to whether the event is being initi-

ated or observed, the instance, port, action, origin and extra data respectively.

For example,

never(initiate,clerk1,clerk_caller,rpcfailure,clerk1,_)

states that component clerk1 never makes a call that initiates rpcfailure.

Using the ‘_’ indicates that any extra data parameters should be considered.

• It is possible for the event to occur in the system.

poss(S,I,P,A,O,D)

+= <event(S,I,P,A,O,D)> tt \/ <-> poss(S,I,P,A,O,D).
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• Eventually the event will occur in the system.

even(S,I,P,A,O,D)

+= <-> tt /\ [-event(S,I,P,A,O,D)] even(S,I,P,A,O,D).

• An event a does not occur unless event b occurs first.

notaunlessb(S,I,P,A,O,D,S1,I1,P1,A1,O1,D1) -=

<event(S1,I1,P1,A1,O1,D1)> tt

\/ ( [event(S,I,P,A,O,D)] ff

/\ [-] notaunlessb(S,I,P,A,O,D,S1,I1,P1,A1,O1,D1)).

• Eventually an event a will occur, eventually followed by an event b.

athenb(S,I,P,A,O,D,S1,I1,P1,A1,O1,D1) -=

[event(S,I,P,A,O,D)] even(S1,I1,P1,A1,O1,D1) /\

[-event(S,I,P,A,O,D)] athenb(S,I,P,A,O,D,S1,I1,P1,A1,O1,D1).

It is important to notice that XMC does not appear to resolve unbound variables

correctly in all cases. This can be fixed by creating a Prolog procedure which

first ensures they are reachable, then evaluates the property. Templates for basic

temporal properties can be recombined to form more complex properties. The

finite-state verification patterns of Dwyer et al [DAC99b] provide a good basis for

constructing these properties.

5.6 Extensions

This chapter has focused on the implementation of Lichtner’s SAF. The following

sections introduce the operations used to specify the extra terms and structure for

the component contract framework.
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5.6.1 Interfaces

A protocol can be attached to an interface to describe its proper usage to clients,

and expected behavior to implementations. Protocol specifications can be either

specified using the XL process specification language or as a set of temporal con-

straints. Temporal constraints are simply temporal properties of the component.

Han in [Han00], recommends this approach over a process specification because it

allows incremental specification, which is easier and reduces the chances of over-

specification. Because clients may only connect to a single port, protocol descrip-

tions are likewise restricted. The following code describes the protocol for the

clerk_definer port of the clerk_interface:

:- add_protocol(clerk_interface, clerk_definer,

’in(Clerk_definer), event(_, Origin, Data)) o

{ out(Clerk_definer, event(memfailure, Origin, Data2))

#

out(Clerk_definer, event(normal, Origin, Data2))

}’

The alternate approach, using temporal constraints, uses another construction op-

eration. A basic constraint that states: “all requests eventually return” is specified

as:

:- add_constraint(clerk_interface,

ifaevenb(event(obs,_,clerk_definer,_,Origin,_),

event(init,Origin,clerk_definer,_,_,_)).

The operation is based on an instantiation of the ifaevenb property template that

states that if the first event occurs, the other, in some finite time, must eventually

follow.



CHAPTER 5. FRAMEWORK IMPLEMENTATION 88

5.6.2 Components

All components must be specified by at least one interface, but for our framework,

a component may support multiple interfaces. Internally, for simplicity, there is a

single ‘global namespace’, meaning the possibility for name collisions exists. This

greatly simplifies the component specification because process specifications can

reference ports and events directly.

For a component to support multiple regular interfaces, it only has to be speci-

fied by a single SAF interface that includes the desired ports. Components can refer

to multiple interfaces with the following construction operation. For the following

consider that the clerk also had access to a database:

:- add_interface_component(clerk,dbaccess_interface).

Component behavior, specified with the add_behavior operation could then

reference ports within either the clerk_interface or the dbaccess_interface.

5.6.3 Substitution

To answer the question, “Can this component replace the original with no change in

behavior?” We have implemented and extended a bisimulation algorithm based on

XMC. Bisimulation is the process of comparing two proccesses to see if they have

the same transitions. To determine if two components are equivalent, bisimulation

checks can be performed on the components’ process specifications. Strict bisimu-

lation requires that all transitions be identical. This is not very useful, as it is not

likely to occur often across different versions of components. Weak bisimulation

only requires that external transitions are similar, a more useful test of component

equivalency.
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The two operations can be executed within the XSB environment:

:- bisimilar(lib,component1, component2).

:- weakbisimilar(lib, component1, component2).

Bisimilarity checks are carried out on the processes specified with the add_behavior

operation. Often though, component users are concerned with the behavior of the

entire component. Another variant of weak bismulation is provided that allows

only specific events to be included within the simulation. This is useful if one is

only interested in the changes of a single port or event. This operation can also

be used for verifying the protocol of an interface against a component specification

that refers to it.

Substitutability as described in Section 3.3 requires that the component provides

at least the same services as the original. In terms of the implementation, the

replacement must have at least the same ports that observe events as the original.

To check if no more services are required, the replacement must have no more than

the original’s ports to initiate events. As well, weak bisimulation against possible

events in the original should hold in the replacement.

5.7 Summary

In this chapter, we have shown the details of the translation of Lichtner’s framework

to the XSB Prolog environment and XMC model checker. Descriptions consist of

a set of Prolog facts that are asserted through framework construction operations.

There are many advantages to our approach. Using a model checker, as opposed

to a theorem prover allows us to achieve fast automatic results. Any failures will
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generate a counter-example. The Prolog basis also allows process specification to be

arbitrarily detailed with the use of in-line program code. The property specification

language, the µ-calculus, is computationally more expressive than other temporal

logics such as LTL and CTL.

Finally, we have extended the framework by providing additional construction

operations and analysis operations to meet the requirements of our framework.



Chapter 6

Conclusions and Future Work

6.1 Summary

Component-based software engineering has recently attracted significant attention.

CBSE has many potential advantages that have been realized in other engineering

disciplines that have adopted component-based construction techniques. Unfortu-

nately, there are many barriers to widespread use of software components because

of their black-box nature. As most commercial component vendors provide only

a binary version, users must rely on the documentation and testing to understand

the component. This can lead to problems as current documentation standards are

inadequate and inferring unspecified properties from the implementation may lead

to conflicts with future versions.

To address these problems we have designed and implemented a framework for

specifying and analyzing component contracts. Component contracts are detailed

specifications of a component’s interfaces. The framework provides a basis for

specifying terms of the contract as well as providing tools to assist in understanding.

Chapter 1 provided an introduction to CBSE and a discussion of the specific

91
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limitations. In Chapter 2, an extensive survey of similar, existing approaches was

presented. From the survey we drew the requirements of our framework. Chapter

3 covered the requirements of the framework based on the common and important

contract terms and analysis capabilities. To implement our framework, we adapted

and extended another framework for software architecture description. Chapter 4

discussed the software architecture, the relation to CBSE and the modifications that

were made. Chapter 5 provided details of the framework implementation including

our use of Prolog and model checking.

6.2 Conclusions

The thesis of this work is that a software architecture based framework provides

a basis for specifying and analyzing the contracts that are required for adequate

understanding of COTS components. During our work, we have contributed the

following:

• A survey of existing approaches that highlights the importance and challenges
of the problem. As well, we have attempted to address, and bring attention to

the widest range of possible terms of interest to component users by drawing

the common and important features from existing works.

• We have described how a framework for software architecture analysis can be
applied to component interface specification. Recent work by Wallnau et al

[WSHK01] supports our position.

• We have produced implementation of our framework using logic program-
ming and model checking. In addition to providing another implementation
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of Lichtner’s framework we have implemented additional modifications and

extensions to support our requirements.

• For the component implementor and user, the framework provides a formal
basis for specifying contracts. Formal specifications, besides removing ambi-

guities, have allowed us to provide sophisticated analysis abilities to further

aid understanding.

6.3 Recommendations and Future Work

The field of component interface specification and contracts has recently emerged,

and there are many opportunities for further research. We have identified many

ways in which our framework can be improved. In addition, a number of other

general research issues have arisen from this work.

From a design view, more concise definitions are required. We have identified

potential cases where invalid or unpredictable results may occur because the con-

sistency rules are not strong enough. A notable example is the potential for name

collision between interfaces within a composite interface. Currently, for simplicity

more complex definitions have not been created.

For the framework to be useful, a large supporting library containing pre-defined

component, port and interface types as well as potential non-functional properties

should be provided to the users to reduce effort.

A final requirement that was not addressed in this thesis is run-time monitoring.

Because it is not always feasible to verify an implementation against the contract, in

critical situations both the component and client’s operation need to be monitored

to ensure there are no violations of the contract. A common recommendation for
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monitoring behavior is to adapt the component middleware [CFTV00]. Ensuring

that a component conforms to its non-functional properties such as memory usage

and throughput is more difficult. The demand for monitoring capabilities appears

to be low since expected overhead is high [VHT00].

An important step omitted from this thesis is the application of this framework

to a reasonable case study. A case study would clearly demonstrate the usefulness

of the framework in a practical application.

To increase acceptance by developers, the framework should be further devel-

oped into a full tool with an interface atop the current Prolog interpreter or inte-

grated within an IDE. A user interface could provide more readable descriptions as

in [BW99].

6.3.1 Summary

Our framework provides a formal basis for specifying and analyzing component

contracts to overcome some of the existing problems with software components. To

address these issues we have identified the salient specification terms and analysis

capabilities required to support contracts. As well, we have developed an initial

implementation to demonstrate the application of the framework and provide a

foundation for further research.



Glossary

callback - A program may register a function (usually with a function pointer) to

be invoked at a certain point in the program. Used to reduce the coupling in

software: the behavior of program can be decided or changed at run-time.

CBSE - ComponentBased Software Engineering

COM - Component Object Model. A binary standard for defining object interfaces

developed by Microsoft.

CORBA - Common Object Request Broker Architecture. An OMG standard

for supporting objects across different systems, platforms and programming

languages.

COTS - Commerical off the shelf. COTS software is developed for market sale.

A user purchases the software as-is from the vendor. Usually available in a

binary form without the implementation source.

EJB - Enterprise JavaBeans. A server based component architecture based on

JavaBeans. EJB execute within a server that provides advanced services such

as transactions, security and persistence.

JavaBeans - A component standard based on the Java programming language.
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OCL - Object Constraint Language. A subset of UML for specifying constraints.

There are four types of constraints: pre- and postconditions, invariants and

guards.

OMG - Object Management Group. A consortium aimed a setting standards in

object-oriented programming notably CORBA and UML

UML - Unified Modeling Language. UML is s a modeling language used to specify,

visualize and document object-oriented systems.
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Appendix A

Prolog Implementation

This appendix describes the various Prolog clauses and procedures that define an

architectural design in terms of Lichtner’s software architecture framework. Section

A.1 explains the facts and rules that are used to describe the design. Operations are

procedures that add or change facts about the design and are explained in Section

A.2. In general, facts are not declared or asserted directly in a specification, but

through operations.

A.1 Facts and Rules

The following section describes the facts and rules used to describe the architec-

tural design. As mentioned above, the following facts are not generally declared or

asserted directly to create a design, but can be used as terms within a structural

query. A fact represents a unique piece of information, whereas rules are derived

from existing facts. Because the information provided by rules can always be de-

rived from facts they are not necessary to define the structure of the design, but

they are provided here to provide a close match with the original definitions of

108
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[Lic00] and enhance readability and understanding.

A.1.1 Basic Types

Element Type (fact): element_type(E). E is an element type.

Port Type (fact): port_type(P). P is a port type.

Export Map (fact): export_map(E,P). E is an element that exports port type P.

Import Map (fact): port_map(P1,P2). A connection can be formed between P1

and P2.

A.1.2 Interfaces

Interface (rule): interface(I) I is an interface.

Type (fact): type_of(I,E) I is an interface of element type E.

Port type (fact): port_type(I,P,PT) I is an interface that has a port P of port

type PT.

Interacts through (rule): interacts_through(I,P) I is an interface with a port

named P.

Initiates (fact): initiates(I,P,E) I is an interface with a port P that initiates

event E.

Observes (fact): observes(I,P,E) I is an interface with a port P that observes

event E.

Event (rule): event(I,E)E is an event observed or initiated by interface I.
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A.1.3 Libraries

Elements (rule): element(L,E). L is a library that contains element E.

Component (fact): component(L,C,I). L is a library that contains: C a compo-

nent specified by interface I. As well, (rule): component(L,C)

Connector (fact): connector(L,C,I). L is a library that contains: C a connector

specified by interface I. As well, (rule): connector(L,C)

Contains (fact): contains(L,I). L is a library that contains interface I.

Behaves Through (fact): behaves_through(L,E,BS). L is a library that con-

tains: BS is sequence of operations that represent the behavior of the element

E.

Specified by (rule): specified_by(L,E,I). where L is a library that contains:

E an element specified by interface I.

A.1.4 Configurations

Instance (fact): instance(C,I,E). C is a configuration that contains: I the in-

stance name of the instantiated element, E. Also, (rule): instance(C,I).,

(rule): inst2element(C,I,E).

Instantiated Port (fact): port(C,I,P) C is a configuration that contains: P, the

port of instance I.

Connection (fact): connection(C,I1,P1,I2,P2) C is a configuration that con-

tains: I1:P1, the instantiated port connected to the instantiated port I2,P2.
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Instance to Interface (rule): inst2interface(C,I,F) C is a configuration that

contains I an instance specified by interface F.

Instance to Component (rule): instance to component(C,I,E) C is a con-

figuration that contains an instance, I of component E.

Instance to Connector (rule): inst2connector(C,I,E) C is a configuration

that contains an instance, I of connector E.

A.1.5 Architecture

Composed of (fact): composed_of(A,C) A is an architecture that includes con-

figuration C.

Implements (fact): implements(A,C,E) A is an architecture that includes a con-

figuration C, that implements element E.

Binding (fact): binding(A,C,I,P,CP) A is an architecture including configura-

tion C. I,P form an instantiated port that is bound to CP, a port belonging to

the element configuration C implements.

A.2 Construction Operators

These operations are Prolog procedures that change the state of program by adding

or changes established facts. These are used to construct the design. Operations

also enforced the constraints given in [Lic00] to ensure structural consistency of

design.
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A.2.1 Basic Types

Define Element Types define_element_types([E1,E2,...]).Defines elements

E1, E2, ... of the list argument as element types.

Define Port Types define_port_types([P1,P2,....]). Defines elements P1,

P2, ... of the list argument as port types.

Define Export Map define_export_map([(E1,P1),(E2,P2),...]). For each

pair in the argument list, define element E exports port type P.

Define Port Map define_port_map([(P1,P2),(P3,P4),...]). For each set of

port types in the argument list, define a connection between the types as valid.

A.2.2 Interfaces

Define Interface define_interface(I,E,[(P1,PT1),(P2,PT2),...])Define an

interface I for element type E, and port(s) P with type PT.

A.2.3 Library

Add Component add_component(L,C,I) Add a component C specified by inter-

face I to library L.

Add Connector add_connector(L,C,I) Add a connector C specified by interface

I to library L.

Add Behavior add_behavior(L,E,BS) Add a sequence of operations, BS repre-

senting the behavior of element E to library L.
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A.2.4 Configurations

Initial Configuration initial_configuration(C,L) Create a configuration C

a configuration that references library L.

Instantiate Component instantiate_component(C,I,E) Create an instance I

of a component E within configuration C.

Instantiate Connector instantiate_connector(C,I,E) Create an instance I

of a connector E with configuration C.

Connect connect(C,I1,P1,I2,P2) Within configuration C connect port P1 of

instance I1 to the instantiated port, I2:P2.

A.2.5 Architecture

Add Configuration add_configuration(A,C) Add a configuration C to archi-

tecture A.

Implement Composite implement_composite(A,C,E)A is an architecture con-

taining C, a configuration that implements element E.

Bind bind(A,C,I,P,P2) A is an architecture and I,P an instantiated port that is

bound to the element port that the configuration C implements.

A.3 Behavior

For this implementation, behavior is specified in XL, the language of XMC [Lab00].

When constructing a behavioral model for an architectural design, the following

operations do not assert new facts, but convert structural information and provided
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operation sequences to XL and output to a terminal (i.e. the console or a file). Refer

to Chapter 5 for a detailed explanation of how the system functions.

Event Instances event_instance(C) Generate the set of instances involved in a

connection for configuration C.

Event Actions event_action(C) Generate the set of actions that are initiated

or observed by instances within configuration C.

Instance Behavior instance_behavior(C,I) Add instance I from configuration

C.

Connect Behavior connect_behavior(C,I1,P2,I2,P2) From configuration C,

connect instantiated port I1:P1 to instantiated port I2:P2.

Config Behavior config_behavior(C) Create a behavioral model for configura-

tion C.

Composite Behavior: Operation composite_behavior(A,C,I)Add configura-

tion C of architecture A that implements instance I.

Bind Behavior bind_behavior(A,C,CP,I,P)Adds binding between configuration

C of architecture A that implements CP to instantiate port IP.



Appendix B

RPC Memory

This appendix contains the initial encoding representing the design of the simple

RPC memory system presented in [Lic00] and the intermediate output, the behav-

ioral model in XL generated from the specification used by the model checker.

B.1 Design Specification

% RPC Memory ADL Description

% ADL Types

:- define_element_types([procedure]).

:- define_port_types([caller,definer]).

:- define_export_map([(procedure,caller),

(procedure,definer)]).

:- define_port_map([(caller,definer),

(definer,caller)]).

% Add Interfaces to Library

:- define_interface(client_interface,

procedure, [

(client_caller, caller,

[read, write],

[normal, memfailure])

]).

:- define_interface(clerk_interface,

procedure, [

(clerk_caller, caller,

[remotecall],

[normal, rpcfailure]),

(clerk_definer, definer,

[normal, memfailure],

[read,write])

]).

:- define_interface(rpc_interface,

procedure, [

(rpc_caller,caller,

[read, write],

[normal]),

(rpc_definer,definer,

[normal, rpcfailure],

[remotecall])

]).

115



APPENDIX B. RPC MEMORY 116

:- define_interface(mem_interface,

procedure, [

(mem_definer,definer,

[normal],

[read,write])

]).

% Add Component Templates to Library

:- add_component(lib, client, client_interface).

:- add_behavior(lib, client,

% client_read

{ out(Client_caller,

event(read, Instance, [null])) o

{ in(Client_caller,

event(normal, Instance, Data))

#

in(Client_caller,

event(memfailure, Origin, Data))

}

}

#

% client_write

{ out(Client_caller,

event(write, Instance, [null])) o

{ in(Client_caller,

event(normal, Instance, Data))

#

in(Client_caller,

event(memfailure, Instance, Data))

}

}.’).

:- add_component(lib, clerk, clerk_interface).

:- add_behavior(lib, clerk,

’% clerk_translate

in(Clerk_definer,

event(Request, Origin, Data)) o

out(Clerk_caller,

event(remotecall, Instance, [Request])) o

{

{ in(Clerk_caller,

event(rpcfailure, Instance, Data2)) o

out(Clerk_definer,

event(memfailure, Origin, Data2))

}

#

{ in(Clerk_caller,

event(normal, Instance, Data2)) o

out(Clerk_definer,

event(normal, Origin, Data2))

}

}.’).

:- add_component(lib, rpc, rpc_interface).

:- add_behavior(lib, rpc,

’% rpc_call

in(Rpc_definer,

event(remotecall, Origin, Data)) o

{

{ out(Rpc_caller,

event(rpcfailure, Origin, [null]))

}

#

{ pop(Data, Request, Rest);

out(Rpc_caller,

event(Request, Instance, Rest)) o

in(Rpc_caller,

event(Return, Instance, Data2)) o

{ out(Rpc_definer,

event(Return, Origin, Data2))

#

out(Rpc_definer,

event(rpcfailure, Origin, [null]))

}

}

}. {* pop([X | T],X,T). *} ’).

:- add_component(lib, mem, mem_interface).

:- add_behavior(lib, mem,

’% mem_read

{ in(Mem_definer,

event(read, Origin, Data)) o

out(Mem_definer,

event(normal, Origin, [null]))

}

#

% mem_write

{ in(Mem_definer,

event(write, Origin, Data)) o

out(Mem_definer,

event(normal, Origin, [null]))

}.’).

% Create Configuration

:- initial_configuration(config,lib).

:- instantiate_component(config,rpc1,rpc).

:- instantiate_component(config,clerk1,clerk).

:- instantiate_component(config,client1,client).

:- instantiate_component(config,mem1,mem).

:- connect(config, client1,client_caller,

clerk1,clerk_definer).

:- connect(config, clerk1,clerk_caller,
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rpc1,rpc_definer).

:- connect(config, rpc1,rpc_caller,

mem1,mem_definer).

% Architecture

:- add_configuration(rpc_memory,config).

B.2 Behavioral Model

{* :- datatype(event_action).

:- datatype(event_instance).

:- datatype(event_type).

event_type(event(Action,Origin,Data)) :-

typeof(Action, event_action),

typeof(Origin, event_instance),

typeof(Data, list(_)).

event_instance(rpc1).

event_instance(clerk1).

event_instance(client1).

event_instance(mem1).

event_action(memfailure).

event_action(normal).

event_action(read).

event_action(remotecall).

event_action(rpcfailure).

event_action(write).

*}

connect(I1,P1,Chan1,I2,P2,Chan2) ::=

{ in(Chan1, event(A,O,D))

o action(event(init,I1,P1,A,O,D))

o action(event(obs,I2,P2,A,O,D))

o out(Chan2, event(A,O,D))

o connect(I1,P1,Chan1,I2,P2,Chan2)

}

#

{ in(Chan2, event(A,O,D))

o action(event(init,I2,P2,A,O,D))

o action(event(obs,I1,P1,A,O,D))

o out(Chan1, event(A,O,D))

o connect(I1,P1,Chan1,I2,P2,Chan2)

}.

clerk(Instance, Clerk_caller, Clerk_definer) ::=

% clerk_translate

in(Clerk_definer,

event(Request, Origin, Data)) o

out(Clerk_caller,

event(remotecall, Instance, [Request])) o

{

{ in(Clerk_caller,

event(rpcfailure, Instance, Data2)) o

out(Clerk_definer,

event(memfailure, Origin, Data2))

}

#

{ in(Clerk_caller,

event(normal, Instance, Data2)) o

out(Clerk_definer,

event(normal, Origin, Data2))

}

}.

client(Instance, Client_caller) ::=

% client_read

{ out(Client_caller,

event(read, Instance, [null])) o

{ in(Client_caller,

event(normal, Instance, Data))

#

in(Client_caller,

event(memfailure, Origin, Data))

}

}

#

% client_write

{ out(Client_caller,

event(write, Instance, [null])) o

{ in(Client_caller,

event(normal, Instance, Data))

#

in(Client_caller,

event(memfailure, Instance, Data))

}

}.

mem(Instance, Mem_definer) ::=

’% mem_read
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{ in(Mem_definer,

event(read, Origin, Data)) o

out(Mem_definer,

event(normal, Origin, [null]))

}

#

% mem_write

{ in(Mem_definer,

event(write, Origin, Data)) o

out(Mem_definer,

event(normal, Origin, [null]))

}.’).

rpc(Instance, Rpc_caller, Rpc_definer) ::=

’% rpc_call

in(Rpc_definer,

event(remotecall, Origin, Data)) o

{

{ out(Rpc_caller,

event(rpcfailure, Origin, [null]))

}

#

{ pop(Data, Request, Rest);

out(Rpc_caller,

event(Request, Instance, Rest)) o

in(Rpc_caller,

event(Return, Instance, Data2)) o

{ out(Rpc_definer,

event(Return, Origin, Data2))

#

out(Rpc_definer,

event(rpcfailure, Origin, [null]))

}

}

}. {* pop([X | T],X,T). *} ’).

config ::=

rpc(rpc1, Rpc1_rpc_caller,

Rpc1_rpc_definer) |

clerk(clerk1, Clerk1_clerk_caller,

Clerk1_clerk_definer) |

client(client1, Client1_client_caller) |

mem(mem1, Mem1_mem_definer) |

connect(client1,client_caller,

Client1_client_caller,

clerk1,clerk_definer,

Clerk1_clerk_definer) |

connect(clerk1,clerk_caller,

Clerk1_clerk_caller,

rpc1,rpc_definer,

Rpc1_rpc_definer) |

connect(rpc1,rpc_caller,

Rpc1_rpc_caller,

mem1,mem_definer,

Mem1_mem_definer) .


