
Hadez, a Framework for the
Specification and Verification of

Hypermedia Applications

by

Daniel Morales Germán

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Doctor in Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2000

c©Daniel Morales Germán 2000

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In recent years, several methodologies for the development of hypermedia ap-
plications have been proposed. These methodologies are, primarily, guidelines
to be followed during the design process. They also indicate what deliverables
should be created at each of their stages. These products are usually informally
specified—in the sense that they do not have formal syntax nor formally defined
semantics—and they are not required to pass validity tests.

Hadez formally specifies the design of a hypermedia application, supports
the verification of properties of the specification, and promotes the reuse of
design.

Hadez is an object-oriented specification language with formal syntax and
semantics. Hadez is based on the formal specification languages Z and Z++,
with extensions unique to hypermedia. It uses set theory and first order pred-
icate logic. It divides the specification of a hypermedia application into three
main parts: its conceptual schema, which describes the domain-specific data
and its relationships; its structural schema, which describes how this data is
combined and gathered into more complex entities, called composites; and the
perspective schema, which uses Abstract Design Perspectives (artifacts unique to
Hadez) to indicate how these composites are mapped to hyperpages, and how
the user interacts with them.

Hadez provides a formal framework in which properties of a specification
can be specified and answered.

The specification of an application should not constrain its implementation
and, therefore, it is independent of the platform in which the application is
to be presented. As a consequence, the same design can be instantiated into
different applications, each for a different hypermedia platform.

Hadez can be further extended with design patterns. Patterns enable reuse
by capturing good solutions to well-known problems. Hadez characterizes pat-
terns and makes their use readily available to the designer.

Furthermore, Hadez is process independent, and is intended to be used with
any of the main hypermedia design methodologies: EROM, HDM, OOHDM
or RMM.

iii

A Mael,
Yo no lo śe de cierto...

iv

Acknowledgements

As a child, I dreamed of becoming a scientist. I have been very fortunate that
destiny gave me that opportunity. It is impossible in few paragraphs to acknowl-
edge and thank everyone who has had an influence on me and who helped me
achieved this degree. Some people, however, deserve to be mentioned.

I owe much to my parents, who provided me with a loving environment in
which, as I child and a teenager, I could thrive.

I thank Don Cowan, my supervisor, who during my stay at UW has been like
a second father to me. I thank him for his guidance and his support during
these years.

I thank my committee members—Paulo Alencar, Joanne Atlee, Paul Beam
and Franca Garzotto—for all their time and help in the evaluation and improve-
ment of this manuscript.

Again, I thank Paulo Alencar, whose advice was invaluable during the devel-
opment of this project.

My professors and teachers have a special place in my heart. They have been
the true architects of my professional career. Three of them stand above all: H.
C. Marcell incited my curiosity at an early stage and made me realize that my
future lay in the sciences. My undergraduate professor, boss, mentor, friend and
older brother, Noé Rodŕıguez, showed me that life is a rich experience that we
live only once. Phil Kearns has been my model of what a professor should be;
and he made me realize that I had what it takes to become a doctor.

This thesis is as much mine as it is of my lifetime friends: Clau, Letty, and
Óscar. They always shared my dream of one day seeing this document mate-
rialize. Many thanks to my UW friends: Alex, Claudia, Francisco, Guta, Joy,
Luis, Marcelino, Maureen and Torsten, who shared with me the joys and tears
of graduate school. I thank, once again, Joy for helping me in the early stages
of this document, and Claudia for her helpful comments on its final drafts.

I thank both IBM Canada and ICR/CITO for their financial support, and
the Department of Computer Science at the University of Waterloo for giving
me the opportunity of a lifetime.

Finally, I thank Donna Randall, whose love, patience, support, and encour-
agement help me go through the end.

v

And in this piece of yours... there is no need for you to go a-begging for aphorisms
from philosophers, precepts from Holy Scripture, fables from poets, speeches from or-
ators, or miracles from saints; but merely to take care that your style and diction
run musically, pleasantly, and plainly, with clear, proper, and well-placed words, set-
ting forth your purpose to the best of your power, and putting your ideas intelligibly,
without confusion or obscurity.

Y, en esta vuestra escritura... no hay para qué andéis mendigando sentencias de
filósofos, consejos de la Divina Escritura, fábulas de poetas, oraciones de retóricos,
milagros de santos, sino procurar que a la llana, con palabras significantes, hones-

tas y bien colocadas, salga vuestra oración y peŕıodo sonoro y festivo; pintando, en
todo lo que alcanzaréis y fuere posible, vuestra intención, dando a entender vuestros
conceptos sin intricarlos y escurecerlos.

Miguel de Cervantes Saaveedra
Don Quijote, 1605

vi

Contents

1 Introduction 1
1.1 Motivation 2

1.1.1 The Four Axes model 5

1.1.2 Hypermedia Design Patterns 7

1.2 Problem Statement 8

1.3 Proposed Solution 10

1.4 Contributions 12

1.5 Related Work 12

1.6 Thesis Overview 15

2 Hadez Hypermedia Model 17
2.1 A data model for hypermedia design 19

2.1.1 Conceptual Schema 19

2.1.2 Structural Schema 19

vii

2.1.3 Perspective Schema 19

2.2 Conceptual Schema 20

2.2.1 Schema’s Type Signature 20

2.2.2 Given types 21

2.2.3 Enumerated Types 21

2.2.4 Type constructors 21

2.2.5 Relations 22

2.3 Hyperbase 23

2.4 Structural Schema 30

2.5 Perspective Schema 31

2.5.1 Pagination 32

2.5.2 Selection 33

2.5.3 Linking 35

2.5.4 Region 36

2.5.5 Perspectives 36

2.6 Summary 41

3 A Specification Language for Hypermedia 43
3.1 An overview of Hadez 44

3.1.1 Conceptual Schema 44

3.1.2 Structural Schema 44

3.1.3 Perspective Schema 45

3.2 Hadez language 45

3.3 A conceptual model specification 46

3.3.1 Subtyping 46

3.3.2 Given type definitions 48

3.3.3 Type constructors 49

3.3.4 Instances 51

3.3.5 Relations definitions 52

3.4 Structural schema 54

3.4.1 Creating indices, guided tours and navigational contexts 56

3.4.2 Specializing composites 57

3.4.3 Generic composite schemas 60

3.4.4 Grammar 62

3.5 Perspective schema 63

viii

3.5.1 ADP schemas 67

3.5.2 A simple ADP schema 68

3.5.3 Messages 68

3.5.4 Blocks 69

3.6 Buttons 70

3.6.1 Pagination 70

3.7 Building complex ADPs 71

3.7.1 Aggregation 72

3.7.2 Inheritance 75

3.8 Structural and cross-reference linking 77

3.8.1 Grammar for ADP schemas 79

3.9 Composition of two or more ADPs 81

3.10 A more complex example of an ADP 82

3.11 Summary 87

4 Specifying a Virtual Museum 88
4.1 The National Gallery of Art web site 89

4.2 Collections 89

4.2.1 The classes 91

4.2.2 The relationships 93

4.2.3 Creating the composites 95

4.3 Describing the perspectives 97

4.3.1 The artifact’s perspectives 98

4.3.2 The tour’s perspective 101

4.3.3 Perspectives for schools and the collection 102

4.3.4 The artists’ perspectives 106

4.3.5 The galleries of the real museum 109

4.3.6 The main page 110

4.4 Extending the specification 112

4.5 Summary 113

5 Verifying the Specification 114
5.1 Introduction 114

5.2 What properties does the specification fulfill? 115

5.2.1 Is the application realizable? 115

ix

5.2.2 Is the specification type consistent? 116

5.2.3 How does the specification behave? 116

5.3 Modeling the specification 117

5.3.1 Modeling a perspective 118

5.3.2 Modeling the behavior of an entire application 119

5.4 Formalizing perspectives 120

5.5 Parallel composition of perspectives 123

5.6 The characteristic I/O automaton of a hypertext application 126

5.7 HTL* 128

5.7.1 Restating properties in HTL* 129

5.8 Semantics of HTL* 131

5.9 Verifying a property 132

5.9.1 Manual verification 132

5.10 Automatic verification 133

5.11 Summary 133

6 Design Patterns in Hadez 134
6.1 Organizing and classifying patterns into a pattern system 135

6.2 Integrating design patterns into Hadez 137

6.3 Characterizing design patterns 139

6.4 An example 140

6.5 A system of patterns for Hadez 143

6.6 Summary 144

7 Conclusions 145
7.1 Summary 145

7.2 Contributions 146

7.3 Future work 148

A Summary of Z Syntax 150

B Overview of I/O Automata 154
B.1 Composition 155

C Published Hypermedia Design Patterns 157

Bibliography 162

x

List of Figures

1.1 A A guided tour of “associate professors”. 9

2.1 An example of a structural graph of a hyperbase. 26

2.2 Simplified Hyperbase of the Museum. 27

2.3 The details of the relation PaintedBy. 27

2.4 The type signature of the composites in Museum. 28

2.5 The different composites of the Museum. 28

2.6 Visual representation of the composites. 29

2.7 Structural Schema of Museum. 31

2.8 The same composite H is presented in three different ways. 32

2.9 A pagination for the structural graph in figure 2.1. 34

2.10 Different attributes of the composite H are selected. 35

2.11 A viewport is broken into regions. 36

2.12 Messages signature of perspective Painting. 39

xi

2.13 Transitions of Painting. 39

2.14 An Abstract Design Perspective specification schema. 41

3.1 Grammar for composites. 62

3.2 Graphical representation of an ADV for a painting. 64

3.3 User interaction for the ADV Painting. 65

3.4 An Abstract Design Perspective specification schema. 67

3.5 A simple ADP. 68

3.6 An ADP depicting the use of messages. 69

3.7 This ADP exemplifies the use of blocks. 70

3.8 An ADP with a button that generates an internal message. 71

3.9 This ADP demonstrates the use of structural links. 72

3.10 An example of aggregation. 74

3.11 ADP2b is composed into a more complex ADP 74

3.12 A more complex region. 75

3.13 A collection of ADPs that model a more complex ADP. 76

3.14 An ADP which inherits its characteristics from another. 77

3.15 An ADP that redefines a block. 77

3.16 An ADP with non-structural links. 79

3.17 Syntax of ADP Schemas. 80

3.18 Using composition to define new ADPs. 81

3.19 NGA web site. 83

3.20 Dividing the ADP into regions. 84

3.21 The ADP responsible for showing the current room. 85

3.22 The Tour ADP. 86

4.1 Entity-relationship diagram for the Web museum 90

4.2 OOHDM diagram depicting the navigational properties of the virtual
museum. 90

4.3 ArtifactPhotoADP is intended to display a large photo and basic infor-
mation about an artifact. 98

4.4 ADP for Artifacts. 99

4.5 ADP for Artifacts, continued. 100

4.6 The ADP responsible for showing the current room. 101

4.7 The ADP for a Tour. 103

xii

4.8 SchoolADP is responsible for displaying a group of tours. 104

4.9 ListOfSchoolsADP lists the name of schools and links to their corre-
sponding ADP. 104

4.10 CollectionADP shows all the groups of tours in the collection. 105

4.11 ADP that shows the name of artifacts, in alphabetical order. 106

4.12 ADP for Artist. 107

4.13 All the artists, in alphabetical order. 107

4.14 Groups of artists in alphabetical order. 108

4.15 The ADP ExtArtsInOrderADP extends the ADP ArtifactsInOrderADP. 109

4.16 ADP for each one of the galleries. 110

4.17 ADPFloor shows all the galleries in a given floor. 110

4.18 ADPFloors shows all the floors in the museum. 111

4.19 The main page of the museum. 111

4.20 PhotographPhotoADP extends the functionality of ArtifactPhotoADP. 113

xiii

List of Tables

2.1 Different types of relations used in Hadez. 23

xiv

We lack guidelines and tools to design
and create hypermedia applications which
involve frequently changing information.
Without such design guidelines and tools, the
ever-growing network of interlinked applica-
tions [such as the World-Wide Web] is becom-
ing increasingly spaghetti-like and hard to
maintain.

Bieber and Isakowitz [BI95]

C H A P T E R 1
Introduction
J.L. Borges wrote in The Garden of the Forking Paths (published in 1941) about
stories that would be like a labyrinth: at each crossing point the reader could
choose one of multiple options, the choice of the readers would determine their
future reading experience while the writer’s job would be to create diverse fu-
tures, which proliferate and fork. A writer would be like a labyrinth designer
[Bor98].

Few years later, in 1945, Vannevar Bush dreamed of a machine that could
store books, periodicals, personal correspondence, or any kind of printed re-
cords; then organize them and make them easily available to the user. The most
remarkable feature of the Memex—as he chose to call it—was the ability to “tie

1

1. INTRODUCTION • 2

two items together... At any time, when one of these items is in view, the other
can be instantly recalled merely by tapping a button below the corresponding
code space.” [Bus45]. Bush predicted that “wholly new forms of encyclope-
dias will appear, ready made with a mesh of associative trails running through
them, ready to be dropped into the Memex and there amplified.” Long be-
fore T. Nelson coined the term hypertext [Nel65], Borges and Bush imagined
a system that would allow the reader to find its own way through information
systems by deciding which link to follow, and, at the same time, they realized
the complexities of authoring these systems.

The design of hypertext and hypermedia1 applications is a difficult task,
particularly the design of large, data-intensive, evolving systems. The task of
the designers is not to interlink everything; instead, they should interconnect
the parts of the system in a way that convey the overall meaning of the appli-
cation in a natural way [GPS93]. This problem is compounded by the growing
size of applications. Small applications could be handcrafted, but large appli-
cations require frameworks, tools, techniques, methods and metrics that guar-
antee their high quality; for large applications, it is necessary to adopt a more
formal approach [GLR95].

1.1 Motivation

The exponential growth of the World-Wide Web has transformed the design
and development of hypermedia systems into common tasks. The Web has be-
come, by far, the most common hypermedia platform. Web applications range
from simple personal home sites—composed of a few pages—to corporate web
sites that are composed of millions of pages. The design and development of
these hypermedia applications has been recognized as a difficult process, spe-
cially for large applications [BV97]. Many of these applications are created as a
view of a database. The database is queried and the results are converted into
hypermedia nodes that are crosslinked.

One of the most important attempts to cope with the complexity of the de-
sign of these applications is the adaptation of software engineering techniques

1In this dissertation we use both terms interchangeably.

1. INTRODUCTION • 3

to hypermedia design. One of these efforts is the creation of design methodolo-
gies (such as Isakowitz et al.’s Relational Management Methodology—RMM—
[ISB95], Schwabe and Rossi’s Object-Oriented Hypermedia Design Model—
OOHDM—[SR95], Lange’s Enhanced Object-Relationship Model—EORM—
[Lan94], and Garzotto et al.’s Hypermedia Design Model—HDM—[GMP95a]).

These methodologies are guidelines to be followed during the design pro-
cess. They also specify the characteristics of the deliverables, which are created
at each of their stages. These products usually are not formally specified—in the
sense that they do not have formal syntax nor formally defined semantics—and
they are not required to pass validity tests.

It is important that such methodologies use well-defined formal descriptions
for their deliverables in order to facilitate the creation of support tools and
the verification of properties of the design (such as whether the specification
is syntactically and semantically correct, is complete or is type consistent, for
example). Formal methods have been used in the past to specify the time con-
straints of dynamic hypermedia applications ([CDOS96, SSGC98, PTdOM98]),
and they have been used to specify specific characteristics of the hypermedia
platform [dH97]. They have not been used to specify the deliverables of the
hypermedia methodologies for discrete hypermedia applications. Discrete hy-
permedia applications are those which do not have dynamic or time-based com-
ponents.

Specifications have different purposes [vHL89]:

• They serve as documentation.

• They serve as a mechanism for generating questions.

• They can be used as a contract between the designer and the customer.

• Good specifications facilitate implementation and maintenance.

Specifications can be informal and formal. Informal specifications—in par-
ticular those written in a natural language—present deficiencies that make them
unsuitable for rigorous development of applications [Mey85]. Formal specifica-
tions, on the other hand, use a mathematical notation to describe, precisely and
unambiguously, the properties which an information system must have without
unduly constraining the way in which those properties are achieved [Spi92a].

1. INTRODUCTION • 4

Questions regarding the characteristics of the final application can be answered
with confidence by analyzing the design instead of analyzing the final applica-
tion; furthermore, formal specifications are unambiguous, contrary to diagram-
matic or textual specifications.

In [DP94], Dospisil and Polgar described the main requirements of a spec-
ification language for hypermedia design: 1) it should be a cognitive model
rather than a design or implementation model; 2) it should be possible to use
simple mechanical methods to verify formal descriptions; 3) it should be possi-
ble for an inexperienced user to participate in the specification of the system;
4) the notation should not be closed; and, 5) it should be understandable even
in very large systems.

A formal specification language “provides the means of precisely defining
notions like consistency and completeness, and more relevantly, specification,
implementation and correctness. It provides the means of proving that a speci-
fication is realizable, proving that a system has been implemented correctly, and
proving properties of a system without necessarily running it to determine its
behavior.” [Win90]

A formal specification language (FSL) for hypermedia design would allow a
developer to specify a hypermedia application unambiguously and to verify cer-
tain properties about it. Such a language will assist the designer to find errors
in the design which otherwise can only be found during the implementation or
testing of the application. Maintenance is also improved. In the first place, the
specification serves as documentation, and second, the ability to verify the spec-
ification will allow the maintainer to realize the impact of changes in the design
before actually implementing them. When following a formal method, the spec-
ification of a system is the most important part of its design and development
[Hal90].

In the scope of this research, we restrict the definition of a hypertext ap-
plication to a collection of nodes with text as its “basic component”, with the
addition of images and other static visual components. The nodes are refer-
enced amongst themselves by links and anchors that are embedded into the
text, or surrounding any of the other components (in this case they have a visual
representation, such as images); and the links can be typed and bi-directional.
This type of hypertext is known as discrete or static hypertext [Pra97]. Even
though it does not include dynamic media (such as sound or video clips), this

1. INTRODUCTION • 5

type of hypertext is still sufficient for the majority of the hypertext applications
in common hypertext architectures such as the World-Wide Web and interactive
CD-ROMs, and less sophisticated platforms such as PDF, Windows HELP, and
Emacs Info.

1.1.1 The Four Axes model

An application is typically composed of four different types of information:

• Content. The main goal of the application is to present this data, hence it
is the core of the application.

• Structure. Depending on the objective of the application, the content
must be organized in a manner that makes sense. This structure is usually
hierarchical in nature. For instance, a museum is composed of virtual
tours and each of the virtual tours is composed of paintings.

• Navigation. The structure of the application must be broken into hyper-
pages, and these pages are crosslinked. In the case of the museum, all
the tours of the museum can be presented in a single, large page or they
can be presented in multiple pages. The navigation determines how the
structure of the application is broken into individual hyperpages.

• Presentation. Once an application is broken into individual hyperpages,
each of these is composed of one or more data attributes. The presenta-
tion determines, first, which attributes are presented and which are hid-
den from the reader; and second, how these attributes are organized into
the page, and third how they are typeset. For instance, assume that a hy-
perpage is composed of data a, b and c, it might be desirable to only show
a and b; furthermore, a might be shown with large type and in red color,
while b might be shown in normal type and black color. The presentation
of a hyperpage might also involve interaction with the user, to determine
the presentation of a particular hyperpage.

Changes in some of these axes can affect others, but in general, we can
consider each of them—content, structure, navigation and presentation—as or-
thogonal to each other. We call this division the Four Axes model. The sep-

1. INTRODUCTION • 6

aration of the design and implementation in terms of these axes has several
advantages:

• It is consistent with the principle of separation of concerns [Aks96].

• The content can be presented in multiple hypermedia applications. For
example, the content for a hypermedia encyclopedia might be presented
in a large version, and small version, a children’s version, a CD-ROM, a
web site, etc.

• The same content can be presented in many different structures, depend-
ing on the goal of the application. For example, it is possible to group
articles in the encyclopedia by author, by theme, by year in which they
were written, etc.

• Navigation, too, can take different forms. For example, a very simple type
of navigation is the table of contents and index, typically found in Adobe’s
PDF files. Navigation is tightly coupled with the run-time platform in
which the application is going to run. By separating the navigation from
the content and structure we guarantee that the same application can be
implemented for different run-time platforms.

• In terms of presentation, different readers might have different presen-
tation requirements; for example: children seem to favor highly sophisti-
cated presentation; personal digital assistants, on the other hand, require
simplified typesetting, while visually impaired people require text-only
applications and find it almost impossible to traverse graphics-oriented
hypermedia applications. Similarly, different presentation might achieve
different goals; for instance, an application that only shows titles can give
a very fast overview, while an application that shows titles and paragraphs
can give a complete perspective of the same information.

Many models of hypermedia promote the separation of the information of
an application into two or more axes. Nonetheless, in practice, many applica-
tions do not separate these concerns and many of the current problems in the
design, implementation, and maintenance of hypermedia applications arise be-
cause the applications are not divided according to the four-axes model. For
instance, it is typical that the implementation of web sites is done directly in

1. INTRODUCTION • 7

HTML. HTML files contain, at the same time, content (the content of the el-
ements of the HTML files), structure (HTML elements such as TITLE, P, H1),
the navigation (the anchor and links elements A), and its presentation (such as
FONT elements). It is difficult, therefore, to isolate each of the axes in order
to reuse part of application for a different objective, or to maintain the appli-
cation. For instance, to change the navigation of the application and break it
into different nodes requires, first, to reorganize the content into different files,
and second, to replace links in every affected file with the addresses of the new
files. XML attempts to solve some of these problems by separating content and
structure (in XML) from presentation (in XSL) and navigation (in XSL, and
XLink).

1.1.2 Hypermedia Design Patterns

Many hypermedia design problems are ubiquitous and designers are likely to
face them eventually. Common sense dictates that designers who face a new
problem should not invent solutions from scratch; rather, they should take ad-
vantage of the knowledge acquired previously by others. A design pattern “de-
scribes a problem which occurs over and over again and then describes a so-
lution to that problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice” [AIS77]. A design pattern
attempts to collect experience from the expert to pass on to others in the field,
avoiding reinvention.

Patterns are not unique to the hypermedia world. They were first used in
architecture [Ale79] and recently used in software engineering design [GHJV,
CS95, VCK96]. The first hypermedia design patterns were presented by Rossi
[RSG97]; since then many more have been published. They range from generic
“golden rules” [NN98] to specialized patterns for collaborative design [SS99].

Patterns are valuable hypermedia design artifacts for the following reasons
[RSG97, Sch95, GPBV99]:

• Patterns improve communication within and amongst designers and de-
velopers.

• Patterns explicitly capture knowledge that experienced designers already
understand implicitly.

1. INTRODUCTION • 8

• Patterns facilitate training of new designers.

• Patterns increase the quality of design.

• Patterns reduce the cost of design and implementation.

1.2 Problem Statement

The rapid growth of the World-Wide Web, and the corresponding growth in
complexity of hypermedia applications has exposed the following needs:

• Applications are becoming bigger and more sophisticated. As a conse-
quence it is more likely that they are not developed by a single individual.
Communication between the different parts of the team becomes crucial.

• In many cases, the design and the implementation might be done by dif-
ferent teams. Design documents are the only means of communication
between designer and implementor.

• Once the design documents have been created, it is desirable to verify that
this design satisfies the requirements of the user before the application is
implemented.

• The final user might contract a developer to create the application. A
clear specification of the application can be the basis for a contract be-
tween both parties [Hol91].

• Maintenance is expected to be part of the lifetime of an application. The
existence of design documents reduces the cost of maintenance.

In typical hypermedia developments these needs have not been completely
satisfied [MD99, GGRS00]. The communication between developers is usually
verbal and depends on the communication skills of the involved parties. The
applications are described with a combination of very informal diagrams and
textual descriptions that usually leave many details of the application unspeci-
fied; this type of description frequently leads to confusion and misunderstand-
ing amongst the parties involved.

1. INTRODUCTION • 9

The graphical notations provided by methodologies such as OOHDM or
RMM can be helpful to improve the communication between parties in a de-
sign. These problems are lessened, but not totally solved, mainly because these
notations do not have very precise and well-defined syntax and semantics. As
a consequence, different people might interpret the specifications in different
ways.

For example, figure 1.1 depicts an RMM diagram taken from [ISB95]. This
diagram shows an index of professors that satisfy the predicate rank=”associate”.
An index is a type of tour in which a node contains a listing of all the compo-
nents of the tour with hyperlinks to their respective nodes.

Faculty(rank="associate")
Faculty

Figure 1.1: A guided tour of “associate professors” as depicted using the RMM
notation.

The diagram clearly states that the components of the index tour are those
in the set of Faculty which satisfy the predicate rank=”associate”. RMM, does not
describe, however, in detail the characteristics of each of its entities. The dia-
grams in the example in [ISB95] do not state that each element in Faculty has
an attribute called rank and that one of the potential values of this attributes
is associate. This information is implicit in the diagram. This diagram conveys
information useful for a designer, and at the same time, it leaves many charac-
teristics of the tour unspecified. For example:

• Faculty can be interpreted as a major academic unit of a university, or as a
faculty member. The complete specification does not clearly define what
faculty is. A designer will assume from hints in the diagrams—such as the
predicate rank=”associate”, in this case—that faculty refers to a professor.

• What attributes of each professor are shown in the index node; and in
particular, which attribute is going to be used as an anchor for the link
between the index and each of the professor’s nodes? Is it the first name
and last name of the professors, their email address, etc?

• In what order are the professors listed? Ascending? Descending? Which

1. INTRODUCTION • 10

attribute of each professor is used to sort them?

RMM does not have artifacts that can be used to answer the previous ques-
tions. OOHDM, on the other hand, even though more descriptive and rich
in its expressiveness, also relies on semi-formal diagrams for the specification
of the design. In both RMM and OOHDM, the specifications could lead to
different interpretations by different people.

Another drawback of these semi-formal notations is the lack of a verification
framework. There are no provisions to verify any property of the specification.

Formal models and methods that have been created with the purpose of the
specification and verification of properties of hypermedia applications—such
as [CDOS96, SFC98, WR98]—are too restrictive to be used to describe large
hypermedia applications. Furthermore, these methods are not integrated into
design methods, making it difficult to apply them.

The design of large hypermedia applications requires a notation for its spec-
ification that is unambiguous, precise and that does not constrain the imple-
mentation. This notation should be incorporated into the design process, in a
manner than can be used in accordance with the current design methodologies.
Finally, it should provide a formal framework in which it is possible to answer
questions about the specification.

1.3 Proposed Solution

As a solution to the afore mentioned problems, we propose a formal specifica-
tion language for hypermedia design called Hadez. Hadez is object oriented
and is based on a data model that divides the specification of an application in
three main parts:

• Conceptual schema. The conceptual schema specifies the characteristics
of the underlying data used in the hypermedia application. It consists of
two parts: a declaration of types and a declaration of relations amongst
these types. The types are specified as given types, enumerated types, and
type constructors (cross products, functions and classes). The relations
create references between the different types and are later exploited in
the creation of the structural and the perspective schema.

1. INTRODUCTION • 11

• Structural schema. The structural schema describes how the content of
the application is combined into composites. These composites are not
true content. They are, in database terminology, views on the conceptual
schema. The Structural Schema is described with a sequence of concep-
tual schemas. The union of the conceptual schema and the structural
schema results in the hyperbase schema.

• Perspective schema. A perspective allows a reader to perceive a compos-
ite. Different perspectives can exist for the same composite. As a result,
the same composite can be perceived in different ways. A perspective be-
haves as an observer of a composite. A perspective has a state, and its state
describes how the observed composite should be shown to the reader. Fur-
thermore, a reader, by interacting with the perspective, can alter its state
and, therefore, alter the way the perspective shows the composite.

The separation of a hypermedia into these three schemas is consistent with
the four axes model and allows the designer to concentrate on different con-
cerns at different times. The conceptual schema corresponds to the content
axis, the structural schema to the structure axis, and the perspective schema
plays the role of both, the navigation and presentation axes.

Hadez is based on the formal specification languages Z [Spi92a, BN92] and
Z++ [Lan92], and is further extended with constructs oriented towards the
specification of hypermedia.

Hadez has a formal syntax. This guarantees that a specification can be
parsed in order to verify whether it is written according to the syntax rules
of Hadez. A specification that passes this test is said to be syntactically correct.

A syntactically correct specification should then be verified to be complete.
A specification is complete if it is syntactically correct and all the identifiers
used in the specification are defined in the specification. Finally, if a specifica-
tion is complete, it can by verified to be type-consistent. A specification is type
consistent if none of its constructs violates the Hadez typing rules.

Reflecting its data model, a Hadez specification is composed of three parts,
corresponding to each of the three schemas: conceptual, structural and per-
spective. Hadez provides a framework in which some questions about the ap-
plication can be clearly stated and verified. And finally, Hadez incorporates the
notion of hypermedia design patterns.

1. INTRODUCTION • 12

1.4 Contributions

This dissertation proposes Hadez, a formal specification language for the de-
sign of hypermedia applications, a data model in which Hadez specifications
can be created, and a framework in which these specifications can be verified.

The primary contributions of this thesis can be summarized as follows:

• The formalization of a data model for hypermedia design.

• The definition of a hypermedia interface artifact, called Perspective, which
serves as an interface between a hypermedia node and the user. The state
of the perspective determines what attributes of the node the reader can
see, and the potential actions that the reader can take.

• The syntax and semantics of Hadez, a formal specification language for
hypermedia.

• A framework that supports the verification of a Hadez specification in
order to answer questions about the specification.

• A framework, based on Hadez, for the formalization of hypermedia de-
sign patterns.

1.5 Related Work

Tompa proposed a model that separated content from structure, called the hy-
pergraph data model. He established a clear separation between content and
structure and allowed links to originate and end in a set of nodes. Finally, he
proposed how the user could personalize her particular perception of a hyper-
text by creating views [Tom89].

The Trellis system [SF89] is a model for hypertext that is based on Petri nets.
Nodes are composed of windows, content and buttons. The model provides the
ability to create different views over the same content nodes. In [SFC98], Stotts
and Furuta described a framework on which they could verify properties of hy-
pertext applications based on the Trellis model. They defined a temporal logic

1. INTRODUCTION • 13

for hypertext called HTL*. HTL* is based on CTL* [CES86], and it adds quan-
tifiers over potential browsing paths. Their work explains how questions about a
given application can be translated into HTL* predicates. These predicates can
then be verified with a model checker. Their system is used to specify and verify
small, graph-oriented systems and does not seem to scale to large hypermedia
systems, such as web sites.

In [SLHS93], Schnase et al. presented a model based on a semantic view
of an object-oriented database. Casanova et al. introduced the notion of con-
text nodes in their nested context model [CTL+91, SRC95]. In this model, the
browsing path that a reader follows affects the perception that reader has of a
given hypertext document. Courtiat et. al explored the use of LOTOS for the
specification and verification of time-dependent multimedia systems based on
the nested context model [CdOdCC94, CO96, CDOS96, SSGC98]. They based
their method on the nested-context model and applied reachability analysis
to their specifications. Their main goal was to find inconsistencies in temporal
constraints within the specification. These systems were demonstrated with very
small applications and they do not seem to be easily applied to large hyperme-
dia applications.

Garg proposed in [Gar88] a model for hypertext-based on first-order logic,
but he did not include any semantics for navigation. His examples were simple
graph and node type hypertext systems. In [dP95, dH97], Inverno et al. used
Z to formalize the characteristics of a generic hypermedia model. Their main
goal was to provide an unambiguous description of the semantics of a hyper-
media system that could be used as a reference to compare actual hypermedia
platforms. The Dortmund family of hypermedia models attempts to describe a
variety of formal models for hypermedia [TD96]. Like many of its contempo-
raries, it incorporates the notion of content, node, and view. It describes these
formal models using VDM. Labyrinth [DAP97] is a formal model for hyperme-
dia; its main goal is to describe formally the characteristics of an application.
The main contribution of this model is the inclusion of user permissions on the
hyperbase and the ability to restrict content to groups of users. Each of these
models contributed to the data model of Hadez.

Wang and Rada [WR98] used a graph-based model to specify the characteris-
tics of hypermedia applications. Based on this model they created a framework
in which to find structural inconsistencies in the specification. Their system,

1. INTRODUCTION • 14

again, was based on the notion of graph and node and did not support well
large hypermedia applications built around databases.

Different methodologies appeared for the design of hypermedia systems,
modeled after their software engineering counterparts. The Hypertext Design
Model (HDM) [GPS91, GPS93] is a methodology oriented towards the develop-
ment of large hypermedia applications. It emphasized the notion of perspective
and it identified different types of links: structural, application and perspective
links. A hypertext design consists of a schema definition and a set of instance
definitions. The schema definition specifies a set of entity and link types; while
the instance definitions specify the actual instances in the hyperbase. Several
Hadez concepts, such as the notion of perspective, and type of instances and
links and can be traced to HDM.

The Relationship Management Methodology (RMM) [ISB95] is similar to
the entity-relationship model found in software engineering, but adapted to hy-
permedia. Entities and relations are present; entities can be divided in slices
(where a slice is a subset of information about a given entity), which then can be
presented to the user. Relations can be traversed by unconditional links or con-
ditional links, where the link includes a predicate used to “find” the information
sought. RMM defines a data model, called the Relationship Management Data
Model (RMDM). This model uses a graphical notation, similar to the Entity-
Relationship diagrams of software engineering, to describe a given hypertext
design.

A successor of HDM, the Object-Oriented Hypermedia Design Methodol-
ogy (OOHDM) uses an object-oriented approach to hypermedia design [SR94,
SRB95b, RSLC95, SRB95a, Ros96]. OOHDM builds hypertext applications as
navigational views of a hyperbase. Conceptual parts of a hypertext system are
objects in an object-oriented database which are manipulated and composed to
create different views, which become, eventually, hypertext nodes. The method-
ology uses Abstract Data Views (ADVs) [CL95] to attempt to formalize the de-
sign of the application. ADVs divide a hypermedia application into objects
and their views. Objects are not viewable by the reader. Views provide, to the
reader, a visual representation of their corresponding object (or objects). An
ADV, within the hypermedia domain, is used to describe how each object is
to be presented to the reader and how an application reacts to the events trig-
gered by the reader; it describes the static and dynamic properties of an applica-

1. INTRODUCTION • 15

tion. OOHDM divides the design of an application in conceptual, navigational
and abstract interface designs. Hadez separation of concerns is modeled after
OOHDM. ADVs are direct ancestors of Hadez perspectives.

Araneus [AMM97, MAM+98a, MAM+98b] is a methodology for the de-
sign and implementation of data-intensive web sites. It is based on an entity-
relationship model and divides the design of an application into its Hypertext
Conceptual Design, which describes the data of the application) and its Hyper-
text Logical Design (which describes how the conceptual design is mapped to
pages). The main goal of the Araneus Project is to provide an environment in
which Web sites can be created following the Araneus design methodology and
then implemented using a language called Penelope (based on ODMG[Cat96]).
Contrary to Hadez, Araneus focuses on the implementation of the application.
Hadez specifications, however, can be implemented using Araneus, making
both systems complementary to each other.

The first hypermedia design patterns were presented by Rossi [RSG97];
since then many more have been published. They range from generic “golden
rules” [NN98] to specialized patterns for collaborative design [SS99]. We present
a review of hypermedia design patterns in [GC00]. There are several cur-
rent attempts to integrate design patterns into design methodologies. Rossi
et al. have been working on creating a system of patterns that can be in-
corporated into OOHDM [GRS97, LRS98a, Sch99, LRS98b]. At the same
time, Garzotto and Paolini have been enhancing HDM with design patterns
[PG99, GPBV99, GD99]. Discenza presented a graphical notation to describe
the use of design patterns in hypermedia design [Dis99]; her approach is based
on HDM and it is used to describe the Web Museum. of the National Gallery of
Art in Washington, D.C., U.S.A.

1.6 Thesis Overview

In this thesis we present a formal specification language for hypermedia called
Hadez. Chapter 2 presents a data model upon which Hadez is built. This model
provides a strong separation amongst content, structure and presentation of a
hypermedia application. This chapter introduces the concepts and nomencla-
ture used in the rest of this document.

1. INTRODUCTION • 16

Chapter 3 describes the syntax and semantics of Hadez. In accordance with
its data model, the specification is divided in three main parts: a conceptual
schema—which describes the characteristics of the underlying data of the ap-
plication; a structural schema—which describes how this data is structured; and
the perspective schema—which describes how the user should perceive and in-
teract with the application.

Chapter 4 is an example of a specification using Hadez. It describes the
current web site of the National Gallery of Art, which is a complex hypermedia
application and provides a good example of the features and expressiveness of
Hadez.

Chapter 5 describes a framework for the verification of properties of a Hadez
specification. Using the specification found in chapter 4, it argues how ques-
tions about the specification can be formalized and then verified.

Chapter 6 explains how Hadez can be further extended with the notion of
design patterns.

Finally, in chapter 7 we summarize our work and discuss future research
directions.

I am never content until I have constructed a
model of the subject I am studying. If I suc-
ceed in making one, I understand; otherwise
I do not.

Lord Kelvin
Baltimore Lectures on Molecular Dynamics

and the Wave Theory of Light, 1904

C H A P T E R 2
Hadez Hypermedia Model
A data model is an abstract formalism that attempts to describe, mathemati-
cally, the properties of the information composing a given system. There is an
implicit agreement that hypermedia applications can be modeled as graphs, in
which the nodes are connected through links. This is the view that the reader
has. A reader can view any hyperpage (node) and jump to other hyperpages by
following hyperlinks. This model, albeit accurate from the point of view of the
reader, is not the most appropriate from the point of view of the designer. A
node is usually composed of information from different sources, all collated into
a node. In effect, a node is a view that is created on top of the basic information
that composes the systems.

17

2. HADEZ HYPERMEDIA MODEL • 18

The Hadez assumes that there is an underlying data repository, and that
nodes are views created on top of it. These views can be presented in multiple
ways to the reader and the reader can interact with the application.

In this manuscript, we will use the following notation. We will initially define
it informally and later come back and define it precisely.

A hyperdocument is made of a collection of hyperpages. A hyperpage is the
minimum unit of information that can be displayed to a reader at a given time.
In an analogy to the World-Wide Web (WWW), a hyperdocument is a collection
of HTML files; and hyperpages are equivalent to HTML pages. Each hyper-
page is a perspective (or view) of a composite. A hyperpage, hence, is a visual
representation of a composite. A composite is a collection of content objects and
other composites. These content objects are the basic building blocks used to
create the hypertext. We will refer to the collection of these objects and their
composites as the hyperbase of the application.

Objects are at the core of the model. Composites are aggregates that com-
bine them into higher level entities. These composites are then mapped into
viewable entities (hyperpages) according to the characteristics of the run-time
system in which they are browsed.

A hyperdocument, therefore, becomes one of multiple potential views of a
hyperbase. The hyperbase contains a collection of content objects, relations
and composite constructors. Composite constructors are specifications of how
a composite should be created out of content objects and other composites.
A composite can then be observed by a perspective in order to be presented
to the reader as a hyperpage. The collection of these hyperpages creates a
hyperdocument.

Hadez introduces the notion of type. In Hadez every content object has
a type. Composite constructors specify the types of their component objects.
Each composite itself has a type. Relations should specify the type of the objects
they correlate. Links between hyperpages are typed. Perspectives have types.
This guarantees that a specification of the application can be verified for type
inconsistencies.

Because Hadez is a specification language, it is not concerned with how the
hypermedia application is going to be implemented. It expects to be able to de-
scribe the characteristics of a hyperbase and its corresponding hyperdocuments,
without constraining how it should be implemented.

2. HADEZ HYPERMEDIA MODEL • 19

2.1 A data model for hypermedia design

A hypermedia application is described with three different schemas: a concep-
tual schema, a structural schema and a perspective schema.

2.1.1 Conceptual Schema

The conceptual schema specifies the characteristics of the underlying data used
in the hypermedia application. It consists of two parts: a declaration of types
and a declaration of relations amongst these types. The types are specified as
given types, enumerated types, and type constructors (cross products, functions
and classes). The relations create references between instances of the different
types and are later exploited in the creation of the structural and the perspective
schema.

2.1.2 Structural Schema

The structural schema describes how the content of the application is combined
into composites. These composites are not true content. They are, in database
terminology, views on the conceptual schema. The Structural Schema is de-
scribed with a sequence of conceptual schemas. The union of the conceptual
schema and the structural schema result in the hyperbase schema.

2.1.3 Perspective Schema

A perspective allows a reader to perceive a composite. There can be different
perspectives for the same composite. As a result the same composite can be per-
ceived in different ways. A perspective behaves as an observer of a composite.
A perspective has a state, and its state describes how the observed composite
should be shown to the reader. Furthermore, a reader, by interacting with the
perspective, can alter its state, and therefore, alter the way the perspective shows
the composite. A perspective is specified with an Abstract Design Perspective
(ADP) schema. A set of ADP schemas for a given hypermedia application A are
known as the perspective schema of A.

2. HADEZ HYPERMEDIA MODEL • 20

2.2 Conceptual Schema

The conceptual schema of a hypermedia application is defined as:

2.1 Definition (Conceptual Schema) The Conceptual Schema of a hypermedia ap-
plication A is defined as a tuple: Schemac(A) = 〈GT, TC, OI, R〉 where GT is a set
of given types, TC is a set of type constructors, OI is a set of object instances, s.t.
∀ o ∈ OI ∃ t ∈ GT ∪ TC • o : t, and R is a set of relations s.t. ∀ r : t1 × ... × tn ∈
R, t1...tn ∈ GT ∪ TC ∧ 〈a1, ..., an〉 ∈ r ⇔ a1...an ∈ OI.

The conceptual schema of an application is the description of its types (ei-
ther given—given types—or clearly specified—type constructors), a set of in-
stance objects of those types and a set of relations between instance objects. In
order to simplify our notation, we use GT(A), TC(A), OI(A) and R(A) to refer
to the sets of given types, type constructors, object instances, and relations, re-
spectively, of the conceptual schema of A.

2.2.1 Schema’s Type Signature

Hadez is based on the concept of type consistency. Therefore every element of
the application must have a precise type and the constructions of new elements
must conform to type rules which cannot be violated. The type specification of
an application is known as its schema’s type signature:

2.2 Definition (Schema Type Signature) For a conceptual schema Schemac(A) =
〈GT, TC, OI, R〉 for a hypermedia application A, the schema’s type signature TypeSig(A)
is defined as TypeSig(A) = PT ∪ GT(A) ∪ TC(A) where PT is a set of predefined types.

The type model of Hadez is based on Z++. A type defines a set (potentially
empty, finite, or countably infinite) of values which a variable of such a type
takes. We refer to the set defined by the type t as its domain, and we denote it
as domain(t). Hadez has various predefined types: the set of natural numbers N,
the set of positive integers Z; and the set of reals R.

The set TC(A) is described using three different variants of type constructors:
functions, cross products and classes.

2. HADEZ HYPERMEDIA MODEL • 21

2.2.2 Given types

As in Z (and Z++), types can be given. In this case, the inherent details of a
type are not known, except that it is countable infinite. We can define the set of
given types T as:

2.3 Definition (Set of Given Types)

T = {ti | i : 1..n, n ≥ 0 and ti is a given type}

These types are provided by the specifier and are considered atomic, hence
indivisible.

2.2.3 Enumerated Types

Enumerated types define collections of values that a variable can take. Each
one of these values is considered atomic. Enumerated types define non-empty,
finite sets, in which, as its name implies, each of the elements of the type is
enumerated. Each one of its elements is identified by a unique name.

2.4 Definition (Enumerated Type) An enumerated type t is:

t = {idi | i : 1..n, n > 0}

where idi is a distinct identifier of the i-th element in the enumerated type.

2.2.4 Type constructors

More complex types can be defined through type constructors. A type construc-
tor is an artifact used to create new types from combinations of other types.
There are three type constructors in Hadez: functions, cross products and classes.

2.5 Definition (Properly defined Type) A type constructor is properly defined if all
the types it uses are properly defined. All atomic types are properly defined.

In Hadez each type must be properly defined. As a consequence, whenever
a type is defined, all the types used in its definition must be already defined.
This restriction creates an acyclic directed graph in which the nodes are the
types and the arcs show the dependencies in the definitions of the types.

2. HADEZ HYPERMEDIA MODEL • 22

Cross Products

2.6 Definition (Cross Product Constructor) A type t = t1 × t2 describes the set of
values such that:

domain(t) = domain(t1)× domain(t2)

This can be further extended into a cross product of a finite number of types.
Hence it is possible to define the cross products of three or more sets.

Functions

2.7 Definition (Function constructor) A type t1 → t2 defines a mapping between
objects from set domain(t1) to the set domain(t2) such that for each element v1 ∈ domain(t1)
there is at most one element v2 ∈ domain(t2) such that v1 → v2 ∈ domain(t1 → t2).

The types t1 and t2 can be of any type, including a cross product; as a conse-
quence multiple parameters to a function are accepted.

Objects

Hadez is object-oriented. Objects offer important design features such as encap-
sulation, modularity, and extensibility. The underlying data in an application is
a collection of classes instances. A class is defined as:

2.8 Definition (Class) A class C is defined, recursively, as C = {P, li : ti, i ∈ 1..n},
where li is a field of type ti within C, and P is also a class.

Hadez defines a superclass Cs with no attributes from which all classes in-
herit. Only single inheritance is allowed. Note that there is no distinction be-
tween methods and attributes in the data model of Hadez. The reason is that
Hadez applications do not modify the underlying data; as a consequence, both
attributes can be treated as functions with no parameters that return a given
value.

2.2.5 Relations

Relations are the way in which different objects in the conceptual schema are
related amongst themselves. Hadez benefits from the ample range of variants

2. HADEZ HYPERMEDIA MODEL • 23

of relations in Z’s mathematical toolkit. A relation between two sets, A and B,
is a subset of the cross product of those sets. Furthermore, a function can be
considered as a special case of a relation.

Table 2.1 lists the types of relations and functions used in Hadez.

↔ Binary relation
→ Total function
�→ Partial functions

� Total injection
�� Partial injection
→→ Total surjection
�→→ Partial surjection

�→ Bijection

Table 2.1: Different types of relations used in Hadez.

All of them are formally defined in chapter 4.2 of [Spi92a]. Relations form
the basis for more complex data types. For example, a sequence of elements of
type t is a partial function from integers to t; a set of elements of type t is a total
function from t to {true, false}.

2.3 Hyperbase

2.9 Definition (Hyperbase) A hyperbase for an application A is defined as a tuple:

Hyperbase(A) = 〈Schemac(A), OI, CS〉

where OI is a set of object instances, CS is a set of composite schemas.

Formally, the set of object instances is defined as:

2.10 Definition (Set of Instances) The set of instances IS of an application A is:

IS(A) = {x | ∃ t ∈ TC(A) • x : t}

A composite is, informally, a set of object instances and other composites. It
allows the definition of higher-level entities from the object instances in OI. A

2. HADEZ HYPERMEDIA MODEL • 24

composite schema is a description of how to instantiate a composite from a set
of parameters.

From the point of view of the reader, an application is a collection of com-
posites. Each of these composites is a collection of other composites or object
instances. This aggregation creates higher-level objects from the low-level ob-
ject instances in the hyperbase.

In order to illustrate these definitions, assume a simple hypermedia mu-
seum that shows a collection of paintings. The hyperbase contains one type:
painting, and the set of instances is, say, 10 different painting objects. The ap-
plication might specify that only the oldest 5 paintings are to be presented, in
the order of their creation date. In this case, a composite is defined to be a
sequence of paintings that satisfies the following conditions: that it lists the 5
oldest paintings, and that they are ordered by their creation date. Note that
no new content has been created. The composites in effect serve as “content
wrappers” that simplify the specification of the application.

Composites do not actually reside in the hyperbase. Since they provide no
new content to the application, they are dynamically instantiated. The hyper-
base, instead, contains descriptors for each one of the composites that indicate
how each composite is to be instantiated. These descriptors are called com-
posite schemas in Hadez. We will refer to the set of composite schemas of an
application A as CS(A).

A composite schema, besides describing how to instantiate a composite, de-
scribes its type signature and the type signature of its components.

2.11 Definition (Composite) A Composite C in the application A is defined recur-
sively as a set C = {c1 : t1, ..., cn : tn} (potentially empty) where ci is a composite instance
of an object instance of type ti; such that ti ∈ OI(A) ∪ CS(A)

In other words, a composite in the application A is a set of composites or
object instances whose types are defined in the hyperbase of the application A.

2.12 Definition (Set of Composites) For an application A, its set of composites C(A)
is the set of all the composites instantiable from the hyperbase of A (Hyperbase(A)).

That is, C(A) is the set of any possible composite that can be instantiated by
an application A.

2. HADEZ HYPERMEDIA MODEL • 25

We can define the following relation amongst composites:

2.13 Definition (Containment ⊆, ⊂) Given two composites: C = {C1, ..., Cn}, and
Cj:

Cj ⊆ C ⇔



C = Cj or

∃ k ∈ 1..n s.t. Ck ⊆ Ci

Cj ⊂ C ⇔ Cj �= C ∧ Cj ⊆ C

Cj is contained in C if either Cj = C, or Cj is contained in one of the children
of C. Cj ⊆ Ci indicates that Cj is a member of Ci or of one of its children. In
order to avoid infinite recursion we need to force the following constraint:

2.14 Observation (No self-containment) A composite cannot contain itself:

∀Ci ∈ C, Ci �⊂ Ci

Corollary 2.15 (⊆ is a partial order relation on C)

The containment relation (⊂) can be represented with a hierarchical acyclic
graph in which the internal nodes are the composites, the leaves the instances
and the arcs mono-directional representations of the relation (see figure 2.1).We
will refer to this graph as the structural graph of a hyperbase and, by extension,
of an application. This graph is a visual representation of the partial order
described in corollary 2.15. Because one composite can be included in more
than zero or more composites, the graph is not a tree.

We now proceed to illustrate these definitions with the following example.
Assume we need to create a hyperbase for a tiny digital museum. For the sake
of simplicity assume that we have two distinct types: painting and artist. Each
painting has attributes such as image, date of creation, description, technique,
etc. For each artist we have a short biography, birth date, nationality, etc. The
artists and the painters are related by the relation PaintedBy : painting↔ artist.

2. HADEZ HYPERMEDIA MODEL • 26

i7

C3 i8

C4 i9

C0 C1 C5 i12

i6 C10

C2 i13

i11

Figure 2.1: An example of a structural graph of a hyperbase. The shaded nodes
denote composites

2. HADEZ HYPERMEDIA MODEL • 27

The hyperbase is going to be composed of the following object instances:
the paintings Naval Battle by Kandinsky; Caf́e Terrace, and Sunflowers by Van Gogh;
and Metamorphosis III by Escher.

We want to provide three different views: a painting view, which displays the
painting’s attributes and some of its author’s attributes; an artist view, which
displays the author’s attributes plus a listing of all the painting names; and
a main view, which provides direct access to all the paintings, and to all the
artists.

GT(Museum) ={artist, painting}
OI(Museum) ={“Van Gogh”, “Escher”, “Kandinsky” : artist,

“Cafe Terrace”, “Metamorphosis III”,

“Naval Battle”, “Sun Flowers” : painting}
R(Museum) ={PaintedBy : painting ↔ artist}

CS(Museum) ={ArtistComposite, PaintingComposite, MainComposite}

Figure 2.2: Simplified Hyperbase of the Museum.

PaintedBy ={“Cafe Terrace” �→ ”Van Gogh”,

“Sun Flowers” �→ “Van Gogh”,

“Naval Battle” �→ “Kandinsky”,

“Metamorphosis III” �→ “Escher”}

Figure 2.3: The details of the relation PaintedBy.

Figure 2.2 shows an abbreviated description of the hyperbase for the digital
museum. Figure 2.3 details the elements of the relation PaintedBy.

The type signatures of the composite schemas are defined in figure 2.4. An
ArtistComposite is composed of an artist and a set of paintings (as they are related
by PaintedBy. The PaintingComposite on the other hand, contains a painting and
its creator, an object of type artist.

2. HADEZ HYPERMEDIA MODEL • 28

ArtistComposite �{A : artist, Paintings : P painting}
PaintingComposite �{A : artist, P : painting}

MainComposite �{ArtistsComp : P ArtistComposite,

PaintingsComp : P PaintingComposite}

Figure 2.4: The type signature of the composites in Museum.

MainComposite contains two different components: ArtistsComp which is a set
of all the ArtistComposite in the hyperbase, and PaintingsComp, which is a set with
all the PaintingComposite in the hyperbase. The resulting composites are shown
in figure 2.5.

PaintingComposite1 ={“Cafe Terrace”, “Van Gogh”}
PaintingComposite2 ={“Sun Flowers”, “Van Gogh”},
PaintingComposite3 ={“Naval Battle”, “Kandinsky},
PaintingComposite4 ={“Metamorphosis III”, “Escher”},

ArtistComposite1 ={“Van Gogh”, “Sun Flowers”, “Cafe Terrace”},
ArtistComposite2 ={“Kandinsky”, “Naval Battle”},
ArtistComposite3 ={“Escher”, “Metamorphosis III”},

MainView ={{ArtistComposite1, ..., ArtistComposite3},
{PaintingComposite1, .., PaintingComposite4}}

Figure 2.5: The different composites created from the Conceptual Schema of
Museum.

Figure 2.6 shows the composite graph corresponding to the Museum appli-
cation.

2. HADEZ HYPERMEDIA MODEL • 29

PaintingComposite1 CafeTerrace

PaintingComposite2 SunFlowers

ArtistComposite1 VanGogh

MainView ArtistComposite2 Kandinsky

PaintingComposite3 NavalBattle

ArtistComposite3 Escher

PaintingComposite4 Meta...III

Figure 2.6: Visual representation of the composites.

2. HADEZ HYPERMEDIA MODEL • 30

2.4 Structural Schema

In a real application it is not feasible to enumerate each of the composites the
way that was done in the previous section for the Museum application. As we
have described before, a composite is instantiated using a composite schema.

2.16 Definition (Composite Schema) A Composite Schema Cs of an application A
is defined as Cs = 〈{p1 : t1, ..., pn : tn}, {cn + 1 : tn+1, ..., cn+m : tn+m}, 〈P1, ..., Pn〉〉
where pi : ti is an instantiation parameter of type ti, ci is free variable corresponding
to a component of type ti, 〈P1, ..., Pn〉 is a sequence of predicates on the parameters pi

bounding each ci to another composite c ∈ C(A) or to an object instance oi ∈ OI(A).

A composite schema defines a composite type. The composite schemas in-
dicate how to create a composite given a set of instantiation parameters. Each
of the types t1, ..., tn+m is either part of TC(A) or a composite type.

The set of composites schemas is known as the structural schema of an ap-
plication.

2.17 Definition (Structural Schema) The structural schema of an application A, de-
noted by Schemas(A), is a set of composite schemas created for the application A.

When we described the conceptual schema of the Museum application, we
listed the type signatures of the composites, and enumerated all the different
composites that could be created from the Museum’s hyperbase. Figure 2.7
shows the structural schema for the Museum application. PaintingCompositeSchema
has one parameter: a painting p, and one component: the artist a who created
it. Note how the relation PaintedBy is used to bind the value of the p based on
the value of a. ArtistCompositeSchema is similar to PaintingCompositeSchema but it
takes as a parameter an artist a and it has as a component a set of paintings. The
schema MainComposite is a bit different; it does not require any parameters and it
has composites as its components. The predicate Ac = ArtistCompositeSchema(a)
is always true and it binds the value of Ac to a composite which is instantiated
with the composite schema ArtistCompositeSchema that takes a as its instantiation
parameter. The use of the composite schema’s name within a predicate is known
as a composite constructor. In MainCompositeSchema one ArtistCompositeSchema is

2. HADEZ HYPERMEDIA MODEL • 31

PaintingCompositeSchema =〈{p : painting}, {a : artist},
〈a �→ p ∈ PaintedBy〉〉

ArtistCompositeSchema =〈{a : artist}, {P : P painting},
〈∀ p : P • a �→ p ∈ PaintedBy〉〉

MainCompositeSchema =〈〈〉, {Paintings : P type(PaintingCompositeSchema),

Artists : P type(ArtistCompositeSchema)},
〈∀ a ∈ domain(artist) ∃Ac ∈ Artists •

Ac = ArtistCompositeSchema(a),

∀ p ∈ domain(painting) ∃Pc ∈ Paintings •
Pc = PaintingCompositeSchema(p)〉

〉

Figure 2.7: Structural Schema of Museum.

instantiated for each element in the domain of the type artist; similarly, for each
element in the domain of the type painting, a PaintingCompositeSchema is instan-
tiated.

2.5 Perspective Schema

As we described in section 2.3, a hyperbase is not a navigable hypermedia. The
hyperbase only describes the application’s data and how it can be interrelated
through composites into higher level entities. We define a hypermedia as a
navigable view on the hyperbase. There are three aspects involved in creating a
hypermedia from a given hyperbase:

1. Pagination. We must describe how the composites of the hyperbase are
translated into hyperpages.

2. Selection. For a given hyperpage the hypermedia might present only a
subset of the attributes of each of its composites.

3. Linking. A link has two components: a source and a destination. The
source of a link has one attribute: its label (the text that appears in the an-

2. HADEZ HYPERMEDIA MODEL • 32

chor of the link). The destination link has two attributes: the destination
hyperpage and a label within this hyperpage (potentially empty). Both
source and destination values depend upon the value of the composite.
Hadez indicates what links are created, what their source labels are, and
what their destination hyperpages (and labels) are.

2.5.1 Pagination

The pagination of a composite is the specification of how the composite is to
be converted into one or more hyperpages. For instance, a composite can be
mapped into one or more hyperpages.

a

H b

c

(a)

H

a

b

c

(b)

a

H b

c

(c)

H

a

b

c

(d)

Figure 2.8: The same composite H is presented in three different ways. (a)
shows its structural graph paginated in three different ways: into a single page,
into two pages, into four pages. The dashed lines depict hyperlinks.

In order to illustrate the concept of pagination, consider a very simple com-
posite H composed of a, b and c. The structural graph of this composite is
depicted in figure 2.8 (a). The same composite can be paginated in different
ways: in 2.8 (b) the composite and its components are presented in the same
hypernode; in 2.8 (c) each component is separated in its own hyperpage and H
serves an access point for each; finally, in 2.8 (d), H, a, and b are all presented
in one hypernode, while c is presented in a different one. In these figures, the
hash lines depict hyperlinks in the direction of its arrow. Note that the inclusion
relationship between different composites results in structural hyperlinks.

The separation of pagination from the hyperbase allows a very flexible sys-
tem in which the same composite can be presented in several ways, depending

2. HADEZ HYPERMEDIA MODEL • 33

on the characteristics of the final hypermedia :

1. The characteristics of the run time system. In some rudimentary hyper-
media systems—such as Acrobat reader—the final application has a linear
nature. A composite might be displayed in single, very long hyperpage.
If the system is highly interactive, such as multimedia CD-ROMs, it might
be desirable that no hyperpage is longer than certain size, hence each
composite will be broken into multiple hyperpages.

2. The intended use. Some hypermedia applications present two views of
the same information, one for regular browsing, and the other intended
for printing. In the former the composite is broken into several pages,
while in the latter it is mapped into only one. A typical example is help
systems, that should be printed in paper and also presented on the WWW.

3. The location where the composite is included. Sometimes the same com-
posite is shown in two different places, and presented in each case in dif-
ferent ways; the pagination might be different in each case, depending on
which path the reader has followed to reach the current node.

4. Its intended audience. For people with very slow links it might be desir-
able to break the composite into small chunks of information, so they are
downloaded as fast as possible.

By separating the creation of pages from the specification of the structure
of the application, it is possible to create different navigable views of the same
hyperbase.

Figure 2.9 shows the structural graph in figure 2.1 (page 26) that is pagi-
nated. In this example, composite C10 can be reached in two different ways:
from C2 and from C5. The hypermedia paginates C10 in two different ways
depending on which path is used to reach the page.

2.5.2 Selection

A composite (or an object) is usally composed of several components or at-
tributes. A given hypermedia might not necessarily present all of them. Which
attributes of the composite are shown to the reader might depend upon:

2. HADEZ HYPERMEDIA MODEL • 34

Structural Graph

i7

C3

i8

C4

i9

C0

C1

C5

i12

i6

C10

C2

i13

i11

Hyperm
edia

i7

C3

i8

C4

i9

C0

C1

C5

i12

C6

C10

C

i13

i11

C10

i12

i13

Figure 2.9: A pagination for the structural graph in figure 2.1. C10 is paginated
in two different ways depending on the path followed to reach it.

2. HADEZ HYPERMEDIA MODEL • 35

1. Design decisions. The designer determines which are the attributes of the
composite to be shown in a given hyperpage.

2. Reader interaction. The run-time system might be able to receive instruc-
tions from the reader indicating which attributes should be shown or hid-
den.

a

H b

c

(a)

H

a

b

c

(b)

H

a

(c)

H

a

c

(d)

Figure 2.10: Different attributes of the composite H are selected in three differ-
ent hyperpages.

Figure 2.10 graphically depicts the effect of selection on one composite. In
2.10 (b) all its components are selected, in 2.10 (c) only a is selected, while in
2.10 (d) only b is left out.

2.5.3 Linking

For every link in the hypermedia, it is necessary to specify its source label and
its destination. Both are dependent on the content of the current composite.
For example, assume that PaintingCompositei from the Museum application is pre-
sented in one page, which lists details of the painting (such as its name), and
provides a link to a different hyperpage that shows the details of the author. A
good choice for the links label is the name of the author of the painting. The
destination of the anchor will be the page where the composite ArtistCompositej

(which corresponds to the creator of the painting) is presented.
These three aspects—pagination, selection and linking—are modeled using

regions and Abstract Design Perspectives.

2. HADEZ HYPERMEDIA MODEL • 36

2.5.4 Region

When a hypermedia application is displayed to the reader, it usually occupies a
fixed area of the screen. We will refer to this area as the viewport of the run-time
system. In general, a viewport displays information from the hyperbase and in-
teracts with the reader. The reader is able to scroll through the information
displayed, follow hyperlinks or change the state of the viewport. The viewport,
however, can be considered a group of small regions which collaborate together.
Each region, in itself, can be composed of smaller regions. A viewport, there-
fore, is a region that does not share the viewport with any other one. Regions
are used as place-holders for the hyperbase content.

Figure 2.11: A viewport is broken into regions. Each region is responsible for
displaying a composite.

2.5.5 Perspectives

A perspective is responsible for mapping a composite into a region. A perspec-
tive indicates which attributes of the composite are selected to be shown to the
reader. It also describes the links to be displayed within the current region.

A perspective is an observer of a composite in the hyperbase (the perspec-
tive’s observed composite), and is an interface between the reader and its ob-
served composite. It has its own state and it cannot alter its observed com-
posites. For each of its potential states it specifies which attributes from the
composite it should display. It can be composed of several other composites

2. HADEZ HYPERMEDIA MODEL • 37

which remain hidden from the outside, preserving the principle of encapsula-
tion. A perspective acts independently of other perspectives and communicates
with them only through messages. Messages are divided in three types: exter-
nal, internal and output. An input message can be generated by the reader or
by another perspective in another region. Internal messages are generated by
the perspective and they should be handled internally by the perspective itself
or its component perspectives. Output messages are handled by other perspec-
tives in other regions or by the run-time system. The main characteristics of
perspectives can be summarized as follows:

• A perspective has a collection of local attributes that define a set of states.
This set of states can be infinite.

• A perspective can change its state only through input messages. Input
messages are generated by the reader, by the run-time system or by other
regions within the current viewport. A change in a perspective from one
state to another is known as a transition.

• A transition can trigger an output message which is intended for perspec-
tives in other regions.

• The perspective specifies, for each state, what parts of the observed com-
posite are shown to the reader. The set of attributes shown to a reader in
a given state is known as the current selection of the perspective. A transi-
tion of the perspective, hence, might determine a change in the current
selection. The perspective, therefore, has the ability to present different
information to a reader at different times.

• A perspective can be composed by a finite number of perspectives. The
communication between the different component perspectives is done
through internal messages.

A perspective is defined as1:

2.18 Definition (Perspective) A perspective P is a tuple P = 〈S, s0, sh, C, M, Ψ, V〉
where S is a set of states; s0 is the starting state for the perspective s.t. s0 ∈ S; C is

1Section 5.4 (on page 120) is dedicated to the formalization of perspectives.

2. HADEZ HYPERMEDIA MODEL • 38

a composite being observed by the region; M is a set of messages that the region either
handles or generates; Ψ is a relation of the form Ψ ⊆ S ×M × S; and V is a relation
of the form V ⊆ S×A(C), in which (si, cj) ∈ V iff component cj of C is visible at state
si. There exists one state sh ∈ S s.t. such that C is not visible; we refer to this state as the
hidden state of the perspective.

This section provides a brief overview of their properties. The perspective’s
state has two main purposes. On one hand it determines how it renders its
observed composite C. The perspective’s rendering of C can be modified by
changing the state of the perspective. On the other hand, a perspective’s state
determines which messages m ∈ M it can handle.

M is partitioned into three disjoint sets: input, output and internal. We refer
to each one of these sets as input(M), output(M) and internal(M), respectively.

Examples of input messages that a perspective can receive are:

• Display anchor. A perspective can define a finite set of destination link la-
bels (hyperlink destinations). These links define subareas within the cur-
rent perspective. A display anchor message indicates to the perspective that
the reader has followed a link whose destination is within the perspective.

• Reader generated messages. A perspective defines a list of messages that
the reader can send to it. They alter the current state of the perspective
and, optionally, generate an output message to another perspective in
another perspective. An example of these messages is the selection of
the source anchor of a link. Hadez uses the notion of buttons. A button
is a label in the current perspective that, when selected by the reader,
generates an specified message.

• Perspective-to-perspective messages. A perspective can receive messages
generated by other perspectives within the current viewport.

On the other hand, the output messages are categorized as follows:

• Link selection. A link within the perspective has been selected by the
reader and the perspective should be replaced by the destination per-
spective. These messages are handled by the run-time system.

2. HADEZ HYPERMEDIA MODEL • 39

• Perspective-to-perspective messages. These messages, as their input coun-
terparts, are meant to be handled by another perspective in the current
viewport.

There must always exist a transition (si, m, sj) ∈ Ψ for each si, sj ∈ S and
m ∈ M. This guarantees that the perspective can always handle any message it
receives.

To clarify these concepts, we will proceed to describe a perspective for the
Museum application. The perspective will be responsible for observing a com-
posite PaintingCompositen as defined in figure 2.3. The perspective will show the
following attributes: the painting’s name, a picture of it, and the name of its
painter; it will receive two messages “Show description” and “Hide description”
which will force the perspective to show or hide the description of the paint-
ing; the name of the painter links to another perspective which observes the
corresponding ArtistComposite.

The painter’s perspective messages that the perspective can generate or
handle are listed in figure 2.12.

input message: SELECT LINK AUTHOR, SHOW DESCRIPTION,
HIDE DESCRIPTION

output messages: GOTO AUTHOR COMPOSITE
internal actions: none

Figure 2.12: Messages signature of perspective Painting.

The transitions of the perspective are described in figure 2.13.

PRECONDITIONS:
show(Painting.name)
show(Painting.picture)
show(Painting.a.Name)

SELECT LINK AUTHOR:
SEND MESSAGE

GOTO AUTHOR COMPOSITE ArtistComposite(Painting.a)
SHOW DESCRIPTION:

show(description)
HIDE DESCRIPTION:

hide(description)

Figure 2.13: Transitions of Painting.

2. HADEZ HYPERMEDIA MODEL • 40

The “visibility” of each attribute of the observed composite can be changed
with the predefined predicates show and hide. The state of the perspective is
determined by which attributes have their “visibility” on.

The PRECONDITIONS section specifies the start state of the perspective.
The SELECT LINK AUTHOR indicates that, whenever that messages is received,
an output message, GOTO AUTHOR COMPOSITE is sent to the run-time sys-
tem. This message takes a parameter: the destination perspective and its corre-
sponding observed composite Painting.a. This means that the current perspec-
tive is to be replaced by a perspective that observes the composite ArtistComposite
instantiated with the attribute a (the author of the painting) of the current com-
posite.

Building complex Perspectives

Perspectives can be combined to specify more complex regions. There are three
ways in which perspectives can be combined:

• Inheritance. A perspective can extend the functionality of another per-
spective.

• Aggregation. A perspective has other perspectives as its components. The
component perspectives describe subregions within the current region of
the perspective. A region like the one depicted in figure 2.11 can be mod-
eled by a group of aggregated perspectives.

• Composition. A perspective can be created by composing two or more
perspectives. Neither perspective is inside the other.

Abstract Design Perspective Schema

In Hadez the perspective is specified with an Abstract Design Perspective schema
(ADP schema, or ADP for short). Figure 2.14 shows the general form of an ADP.
The details of ADPs and their relationship to perspectives will be described in
chapter 3.

Perspective Schema

A perspective schema can be defined as:

2. HADEZ HYPERMEDIA MODEL • 41

ADP Name [: Ancestor] Observes Composite:Type
Declaration: attrname1 : type1, ..., attrnamen : typen,...,
Block block1: block specification
Block block2: block specification

...
Preconditions: predicates
Invariants: predicates
Message event1: post − condition predicate
Message event2: post − condition predicate

...
End Name

Figure 2.14: An Abstract Design Perspective specification schema.

2.19 Definition (Perspective Schema) A perspective schema of an hypermedia ap-
plication A, denoted by Schemap(A), is defined as a tuple Schemap(A) = 〈P, P0〉 where
P is a set of perspectives on composites of Schemac(A) and P0 is a non-empty set of start
perspectives.

The perspective schema defines a set of the perspectives. Each of these
perspectives defines a region. The set P0 defines a group of perspectives that
are “entry points” to the hypermedia application; for each of these perspectives,
its corresponding region is the entire viewport. An entry point page is intended
to become the first page visited by a reader.

2.6 Summary

The data model of Hadez has three components:

• Conceptual schema. The conceptual schema specifies the characteristics
of the underlying data used in the hypermedia application. It consists of
two parts: a declaration of types and a declaration of relations amongst
these types. The types are specified as given types, enumerated types, and
type constructors (cross products, functions and classes). The relations
create references between the different types and are later exploited in
the creation of the structural and the perspective schema.

2. HADEZ HYPERMEDIA MODEL • 42

• Structural schema. The structural schema describes how the content of
the application is combined into composites. These composites are not
true content. They are, in database terminology, views on the conceptual
schema. The Structural Schema is described with a sequence of concep-
tual schemas. The union of the conceptual schema and the structural
schema results in the hyperbase schema.

• Perspective schema. A perspective allows a reader to perceive a composite.
There can be different perspectives for the same composite. As a result,
the same composite can be perceived in different ways. A perspective
behaves as an observer of a composite. A perspective has a state, and its
state describes how the observed composite should be shown to the reader.
Furthermore, a reader, by interacting with the perspective, can alter its
state and, therefore, alter the way the perspective shows the composite. A
perspective is specified with an Abstract Design Perspective (ADP) schema.
A set of ADP schemas for a given hypermedia application A are known as
the perspective schema of A.

The separation of a hypermedia application into these three schemas allows
the designer to concentrate on different concerns at different times. It also
isolates the description of the application domain data from the way it is orga-
nized and presented to the reader. It is also possible to design applications that
use the same underlying data, but results in an entirely different hypermedia
application, in which the information is presented in a different way.

The strict separation of concerns of the Hadez data model supports reuse,
portability, run-time system independence and low maintenance and serves as
the basis for the Hadez specification language described in the next chapter.

[The grand book of the universe] is written in
the language of mathematics, and its charac-
ters are triangles, circles and other geometric
figures, without which it is humanly impossi-
ble to understand a single word of it; without
these, one wanders in a dark labyrinth.

Galileo Galilei
The Assayer (Il saggiatore), 1623

C H A P T E R 3
A Specification Language for
Hypermedia
Formal specifications use a mathematical notation to describe, in a precise and
unambiguous way, the properties which an information system must have with-
out unduly constraining the way in which those properties are achieved [Spi92a].
Furthermore, questions regarding the characteristics of the final application can
be answered with confidence without resorting to analyzing the final entangled
application; and formal specifications are unambiguous, contrary to informal,
textual specifications of an application.

Hadez is a specification language for hypertext design. Hadez is object-

43

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 44

oriented and it is based on the Hadez data model (described in chapter 2).
Hadez is based on the formal specification languages Z [Spi92a, BN92] and
Z++ [Lan92], and further extended with constructs oriented towards the spec-
ification of hypermedia.

3.1 An overview of Hadez

Following the model described in chapter 2, Hadez is divided into three parts:
conceptual schema, structural schema, and perspective schema.

3.1.1 Conceptual Schema

The conceptual schema of Hadez is a collection of given types, type construc-
tors, classes definitions, relations and instances. This part of Hadez is very
similar to a Z structural specification (as opposed to a behavioral one). Hadez
allows the declaration of classes that can be defined using single inheritance.

3.1.2 Structural Schema

The structural schema is a collection of Hadez composite schemas. A composite
schema describes how to create a composite from other composites or from data
from the conceptual schema. As described in section 2.4 (on page 30), a com-
posite schema is composed of three main parts: its parameters section, which
specifies what composites or data are required to instantiate the composite; a
sequence of free variables; and a set of predicates that bind those free variables
to instances in the hyperbase or to other composites.

A composite schema in Hadez looks like a Z schema, with two main differ-
ences: in Hadez the name of the composite is preceded by the Greek letter Ξ;
and, composites can inherit their characteristics from other composites. This
inheritance is simply a syntactic facility that allows reuse of the characteristics of
other composites.

Another feature of Hadez is ability to define generic composite schemas. A
generic composite schema’s main difference from a typical composite schema
is its use of generic types. A generic type is used like a given type (that is, its
details are unknown), and it must be instantiated before it can be used (using a

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 45

generic type instantiation). The main objective of generic composite schemas
is, like templates in C++, to avoid repetitive constructs and promote reuse of
the specification.

3.1.3 Perspective Schema

The perspective schema is composed of a sequence of abstract perspective sche-
mas (ADP). An ADP serves three main purposes: 1) it specifies how the compos-
ite should be broken into pages; 2) it indicates which attributes of the composite
should be presented to the reader, and how they are organized within the hyper-
node; and 3) it specifies what attributes of the composite should be hyperlinked
to other composites.

A perspective is not a static entity. The user can change its state. An ADP
specifies how the perspective reacts to user requests. The state of an ADP de-
termines what parts of the composite the ADP should show at that particular
state.

ADPs can be composed into more sophisticated ones by using one of the
following constructs:

• Aggregation. One or more composites are embedded into another com-
posite.

• Inheritance. An ADP inherits its characteristics from another ADP.

• Parallel composition. One or more ADPs are composed into a more com-
plex ADP.

In the following sections we describe in detail the characteristics of Hadez
and each of these schemas.

3.2 Hadez language

A Hadez specification consists of a collection of statements that can be inter-
leaved with textual descriptions. The statements introduce the different com-
ponents of the application, while the informal text provides a comment on the
meaning of the statements. Hadez extends the syntax and semantics of Z in

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 46

order to accommodate the requirements of the specification of hypermedia ap-
plications.

The majority of the constructs of Hadez use predicates to specify properties
of the application. These predicates are written in Z—as defined in the Z pro-
posed ISO standard [BN92]. Furthermore, Hadez takes advantage of the rich
mathematical toolkit of Z. Hadez borrows from Z++ the notion of classes and
subtyping, as Z does not implement object-oriented features.

The conceptual schema of an application is defined mainly in Z and the
specification of objects is made in a simplified version of Z++. Hadez does not
require the full set of features of Z++ because its objects are simpler: multiple
inheritance is not permitted, the details of the methods of an object are not a
concern of the hypermedia specification, and overriding of methods is allowed
only under strict circumstances to guarantee type consistency.

The composite schemas are defined using an enhanced version of a Z schema.
The main distinction is that the schema can have a sequence of parameters.
These parameters are used to instantiate the composite.

Finally, the navigation schema is presented with a collection of Abstract De-
sign Perspective schemas (ADPs). ADPs are based on Abstract Design Views
(ADVs) [CL95] and resemble the form of object-oriented VDM schemas [Ier91].
ADPs predicates, however, are specified using Z.

3.3 A conceptual model specification

The conceptual schema consists of three types of declarations: given type def-
initions, object definitions and axiomatic definitions. We will first define the
notion of subtype in the scope of Hadez.

3.3.1 Subtyping

In order to introduce class constructors we first need to establish the notion of
type equivalence and subtyping in the scope of Hadez.

3.1 Definition (Type equivalence) Two types t1 and t2 are equivalent (denoted by
t1 ≡ t2) iff domain(t1) = domain(t2).

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 47

In other words, two types are equivalent if their domains are the same, i.e.
if they describe the same sets. This is known as structural equivalence of types
[AC96].

3.2 Definition (Type of a value) A value v is of type t, denoted by v : t, ⇔ v ∈
domain(t)

Then we can define subtyping as:

3.3 Definition (Subtype) A type ti is a subtype of tj (denoted by ti � tj) iff domain(ti) ⊆
domain(tj).

The following lemma states that, if ti is a subtype of tj, then a value of type ti
is also a value of type tj.

3.4 Lemma v : ti and ti � tj ⇒ v : tj.

Proof : Assume a : ti and ti � tj. Since domain(ti) ⊆ domain(tj), a has type tj. �
We now turn our attention to the type constructors and how the subtyping

relation applies to them.

3.5 Lemma t1 × t2 � ta × tb if t1 � ta and t2 � tb.

Proof : We prove it by way of contradiction. Assume that there exists a value
〈a, b〉 in t1 × t2 but not in ta × tb. In order for this to be true, either a or b (or
both) should not be elements of domain(ta) or domain(tb) respectively, which is a
contradiction. �

3.6 Lemma t1 → t2 � ta → tb if ta � t1 and t2 � tb.

Proof : Assume there exists a function f : t1 → t2. If t2 � tb, then f returns,
by definition, elements of type tb. On the other hand, f will be undefined for
any values outside the domain of t1. The function f will be able to handle only
parameters of type ta � t1. Therefore, if t2 � tb and ta � t1 then f : ta → tb. �

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 48

Subtyping of classes

In the scope of Hadez, only the type signatures of classes are considered. We
use the notation C.l to refer to the field l of the class C.

Because classes should be properly defined, the inheritance relation (that is,
the Cp ≺ Cc where Cp is an ancestor of Cc) creates a tree.

3.7 Definition (Type signature of a class) Given a class C = {P, li : ti, i ∈ 1..n},
its type signature, denoted by τ(C) is defined as

τ(C) =



{li : ti, i ∈ 1..n} if C has no parent

τ(P) ⊕ {li : ti, i ∈ 1..n} otherwise

In other words, the type signature of a class C is the type signature of its
defined fields plus the type signature of its parent without the fields which were
redefined in C.

3.8 Definition (Field override) A field l : tc in a class C can override a field l : tp in
class P, P ≺ C if tc � tp.

A field of an ancestor can be overridden only if the new type of the field is a
subtype of the definition of that field in the ancestor class.

3.9 Lemma (Class subtyping) A class C is a subtype of P, C � P if P ≺ C.

Proof : This result follows from definition 3.8. �
The notion of subtyping is important in Hadez. Its basic premise is that,

under certain circumstances, it is useful to use an instance of an object of class
C as one of P, given that P ≺ C. This feature is particularly useful to take
advantage of specialization: a specialized object can be used as an object of the
type of its ancestor.

3.3.2 Given type definitions

Given types are user defined types which are considered atomic by the speci-
fication. The details of these types are not known. Given types are defined as
their counterparts in Z. For example, the given types XML, IMAGE, DATE, and
TECHNIQUE are defined with the following statement:

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 49

[XML, IMAGE, DATE, TECHNIQUE]

Each identifier in Hadez should be unique and consists of any combination
of alphabetic characters, numbers and underscores, always starting with an al-
phabetic character.

The domain defined by each given type is incomparable with any other do-
main defined by another type.

3.3.3 Type constructors

Type constructors define new types from already-defined types.

Cross products and functions

Both cross products and functions are specified with Z abbreviation definitions.
The following declaration defines a BIRTHDATE a total function that map
from NAME to DATE:

BIRTHDATE == NAME → DATE

As it was mentioned before, every identifier used in the definition of another
identifier should be already defined. Therefore, it is expected that before this
declaration both NAME and DATE are already defined.

Strictly speaking, a function is a subtype of a cross product. However, a func-
tion has special characteristics (as defined in section 2.2.4): for each element in
their domain there is, at most, one element in their range.

Similarly, Z defines several types of cross products and functions, as defined
in table 2.1 (on page 23):

These functions are useful for the specification of hypermedia applications,
because they model relations, which will eventually become hyperlinks.

For instance, assume that we have a mapping between artists and paintings.
The following definitions are significantly different, from the conceptual point
of view:

PaintedByType1 == painting �→ artist
PaintedByType2 == painting �→ artist

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 50

The type PaintedByType1 specifies the set of partial functions in which, for
each painting, there might not necessarily exist an artist; on the other hand,
PaintedByType2 specifies the set of functions in which for each painting there
exists a different artist. In other words, if a function is defined as PaintedBy :
PaintedByType1, then not all paintings might have an artist (the function might
be undefined for some paintings); if it is defined as PaintedBy : PaintedByType2
then each painting in the collection is artisted by a different artist.

The use of these different types of functions will become more evident in the
definition of composites within the structural schema.

Class constructor

The definition of classes of Hadez is similar to Z++. Hadez, however, is not
concerned with the details of the implementation of the class. As a consequence,
there is no distinction between methods and attributes. Hadez is concerned
only with the data signature of a class.

Classes schemas are defined with an object schema:

ClassName[: parentclass]
attr1 : type1
...
attrn : typen

Where ClassName is the name of the class, parentclass is its parent and attri is
a field of type typei. A class schema is, therefore, only the description of the type
signature of the class.

In order to simplify type verification in Hadez, a class C is able to override
a field f : t of class P (P ≺ C) iff the type of f in P has exactly the same as type
as f as defined within C (subtyping will be allowed in other types of definitions,
such as composites and perspectives). Since the class descriptions in Hadez
are descriptions of their type signature, the inclusion in Hadez of the ability to
override a field is purely a conceptual feature: a class C that inherits from P and
only overrides fields from P (that is, it does not define new fields) has the same
type signature as its parent P.

Here we exemplify the declaration of classes, in the scope of the Museum
application discussed in chapter 2. We proceed to declare a class artifact with

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 51

two subclasses: sculpture and painting.

Artifact
Title : string
CreationDate : DATE
Value : integer
Technique : string
Images : P image

Painting : Artifact
Dimensions : real× real

Sculpture : Artifact
Weight : real

The first class, Artifact does not have any ancestor. Both Painting and Sculp-
ture are descendents of Artifact.

As it was described in section 2.2.4 (in page 22), only single inheritance is
supported and the descendent is considered a subtype of the ancestor. There-
fore, an instance x : Painting is also an instance of Artifact, i.e. x : Artifact.

3.3.4 Instances

An instance is an object which resides in a hyperbase and whose type is defined
in the conceptual schema. During the declaration of instances, the designer
specifies what are the different sets of instances of each different type, any con-
stants, and any relationships between them. These declarations are specified
using Z axiomatic definitions.

For instance, in the Museum application, we need to declare the following
sets: the set of artifacts in the museum, and the set of artists. Furthermore, we
define Anonymous as an element of Artists which is to be used in the specification,
as the author for those paintings whose author is unknown.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 52

Collection : P1 Artifact
Artists : P1 Artist
Anonymous : Artist

Anonymous ∈ Artists

Collection is a set of non-empty artifacts. Artists is a non-empty set of artists.
Anonymous is defined as an instance of type Artist, which is an element of the set
Artists. Because Painting and Sculpture are both subtypes of Artifact, Collection can
consist of a mixture of objects of type Painting, Sculpture or Artifact.

3.3.5 Relations definitions

In [YB00], Yoo and Biever identified that “a vital aspect of hypermedia design
is identifying relationships and implementing them as links” and that “many
relationships are poorly identified or ignored in current hypermedia design
methodologies”. RMM stresses this fact by acknowledging that “hypermedia is
a vehicle for managing relationships among information objects” [ISB95].

Methodologies such as Yoo’s Relationship Navigation Analysis (RNA) [YB00]
can identify the different relations that can be exploited in a hypermedia appli-
cation. These relations can then be explicitly described in Hadez as instances
of cross products and functions.

Relations are instances in the hyperbase. They are either functions or re-
lations on object instances in the hyperbase and they are described—as object
instances—with axiomatic definitions. The axiomatic definitions consist of two
parts: its type signature and a sequence of predicates that bind (and potentially
restrict) the values of the domain and range of the relation. For example, the
relation CreatedBy binds artifacts and artists:

CreatedBy : Artifact �→ Artist

dom CreatedBy = Collection
ran CreatedBy = Artists

In this example, CreatedBy is a partial function. Its domain is the entire
collection, hence the function is defined for every artifact in the collection. Its
range is defined to be the set of Artists, therefore, there are no artists in Artists
that have not created an artifact in the collection. Finally, every painting has

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 53

only one creator (which might be Anonymous, which is an instance of type Artist).
The function CreatedBy is fundamental in the specification of the design of

the museum. Both the type signature of the relation and the predicate section
of the relation, convey a lot of information about the characteristics of the final
application. By using a different type of function we can also alter the charac-
teristics of this relationship.

For example, the previous declaration states that there is only one author
for each artifact. We can easily change this declaration to indicate that there are
zero or more authors for one artifact:

CreatedBy : Artifact �→ P Artist

dom CreatedBy = Collection
ran CreatedBy = Artists

We can strengthen this even further by replacing P for P1, a set of at least
one element; hence an artifact should have at least one author.

In the following example, there is a one-to-one correspondence between
artifacts and artists; in other words, each artifact is made by a different artist
and for each artist there is one artifact in the database:

CreatedBy : Artifact �→ Artist

dom CreatedBy = Collection
ran CreatedBy = Artists

The predicate section can also state many facts of the hyperbase. For exam-
ple, the following declaration for CreatedBy indicates that there might be some
artists that do not have a painting in the hyperbase:

CreatedBy : Artifact �→ P Artist

dom CreatedBy = Collection
ran CreatedBy ⊆ P Artists

As a result of subtyping, CreatedBy is also defined for elements of type Paint-
ing and Sculpture.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 54

3.4 Structural schema

The structural schema of an application is described with a collection of com-
posite schemas. A composite schema specifies how a composite should be in-
stantiated from other composites or from object instances in the hyperbase.

The parts of the definition of a composite are:

• A unique name identifying it.

• An instantiation parameter list. It is a sequence of objects which are used
to instantiate the composite. This list can be empty.

• Ancestor. It specifies whether the composite is a descendent of another
composite.

• Attributes Declaration. A sequence of attributes local to the composite.
The atttributes can be either objects in the hyperbase, or other compos-
ites.

• Predicate section. It is a sequence of Z predicates that bind the value of
the local attributes to the parameter of the composite.

The composites are defined with a composite schema. The general form of
a composite schema is:

ΞCompositeName (parameters list) : ParentComposite
attr1 : type1
...
attrn : typen

predicate1
...
predicaten

The composite name is decorated with Ξ to clearly differentiate it from other
Hadez declarations. The parameter list is a sequence of labels, each with a
corresponding type; this list can be potentially empty. The composite might be
a child of another composite: ParentComposite. The attribute attri has type typei;

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 55

predicatei is a predicate on the attributes and parameters of the composite or on
any global objects. The following schema is an example of a simple composite:

ΞArtifactComposite(Art : Artifact)
Author : Artist

CreatedBy(Art, Author)

The ArtifactComposite takes one parameter (Art of type Artifact). It declares
one attribute, its author, which is bound to the creator of the artifact by the
only predicate in the predicate section. This artifact illustrates the most impor-
tant feature of composites: they are higher level entities which are created by
exploiting the declared relations between instances in the hyperbase.

The parameter list is optional. This is illustrated by the following composite,
which creates a composite of all the artifacts in a collection:

ΞAllArtifacts
WholeCollection : P ArtifactComposite

∀P ∈ Collection ∃Art ∈ WholeCollection •
ΞArt(P)

The predicate section of this composite uses a construction unique to Hadez
and requires further explanation. A composite instantiation is the creation of a
composite from a list of parameters. The statement ΞC(parms list) for a variable
C of a composite type t, is equivalent to creating a composite of type t with
parameters parms list and then assign the returned composite to the variable
C.

In the previous composite, the following predicate creates a composite for
each element P in Collection:

∀P ∈ Collection ∃Art ∈ WholeCollection •
ΞArt(P)

The same statement can be written in a more succinct way by defining a set
iteration operator:

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 56

[X]
Ξ ◦ : composite(X)× P X → P composite(X)

∀C : composite(X); S : P X •
ΞC ◦ S = {x : composite(X) | (∃ y : S • x = ΞC(y))}

In other words, the set iteration operator apples a composite constructor to
each of the elements of the parameter set and returns the set of composites. We
can then rewrite the previous predicate as:

WholeCollection = ΞArtifactComposite ◦ Collection

In this case, a composite constructor (ArtifactComposite) is iterated over each
element in Collection; each composite constructor takes one element in Collec-
tion. The resulting (WholeCollection) is a set of artifact composites with the same
number of elements as Collection.

3.4.1 Creating indices, guided tours and navigational contexts

Each of the three main hypermedia design methodologies (HDM, RMM and
OOHDM) recognizes the importance of creating groups of “entities” which can
be navigated as a group. RMM and HDM use the term “guided tour”, while
OOHDM uses the “navigational context”. In both cases, they refer to groups
of similar objects, defined either by enumeration (listing each one of its mem-
bers) or by a predicate (list all the objects that fulfill the following property).
The methodologies further define design abstractions that allow the reader to
navigate these groups of entities.

Hadez takes the position that both guided tours and navigational contexts
are special cases of composites. In these cases, the composites are sets, se-
quences, or bags of other composites which are to be shown to the reader as a
group. We illustrate this idea with the following composite:

ΞArtistComposite(ArtistName : string)
Person : Artist
Works : P ArtifactComposite

Person.Name = ArtistName
Works = ΞArtifactComposite ◦ CreatedBy(| {Person} |)

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 57

ArtistComposite is instantiated with the name of the artists (Name) and creates
a composite with the corresponding artist and her works. The first predicate
of the composite binds the value of the parameter Name with an object of type
Artists whose attribute Name is the same. Note that there is an assumption (not
stated in the specification) that all the names of the artists are unique. This
composite can be used to define a guided tour (a navigational context) of all the
artifacts of a given painter.

It it also possible to define composites in which their elements share one
common feature. In the following schema, the composite TourTechnique is in-
tended to be a group of artifacts that are created using the same technique:

ΞTourTechnique(Technique : TECHNIQUE)
Artifacts : P ArtifactComposite

∀ a ∈ Collection •
a.Technique = Technique ∃Art : Artifacts •

ΞArtifactComposite(a)

We could then instantiate the tour of surrealist paintings (assume that sur-
realism is a constant of type TECHNIQUE that corresponds to the surrealism
technique) with the following declaration:

ΞSurrealismTour
Tour : TourTechnique

ΞTour(surrealism)

SurrealismTour could then be presented as a guided tour in a variety of ways:
a sequence of hyperpages each showing one of the artifacts; or by creating a
table of contents hyperpages that links to each one of the different paintings.
The perspective schema will specify how the composite is presented to the user.

3.4.2 Specializing composites

As it was described above, a composite schema can inherit its characteristics
from another one. The semantics of inheritance require further explanation. A
composite C can be inherited from composite P if C is type compatible with P.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 58

3.10 Definition (Type Compatible Composite) A composite Cc with parameters list
(pc

1 : tc1, ..., cc
i : tci) is said to be type compatible with composite Cp with parameters list

(pp
1 : tp1, ..., cp

j : tpj) iff i ≥ j and ∀ k ∈ 1...j pc
k = pp

k and tck � tpk.

In other words, a composite C is type compatible with composite P if C has at
least the same parameter names in the same order as in P, and for each common
parameter, the type of the parameter of C is a subtype of the parameter of P.

3.11 Axiom A composite C can inherit from a composite P if C is type compatible with
P.

This restriction is necessary in order to guarantee the type verification of the
composite: As long as a parameter of the child is a subtype of the corresponding
parameter in the parent, the predicates of the parent are still defined in the
child.

Assume the following two composites Parent, and Child, which inherits from
Parent. By definition, Child is type compatible with Parent.

ΞParent(pp
1...p

p
i)

attr1 : type1
...
attrm : typen

predicate1
...
predicatek

ΞChild(pc
1...p

c
j) : Parent

attrm+1 : typem+1

...
attrm+n : typem+n

predicatek+1

...
predicatek+l

Child is equivalent to the composite Equivalent:

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 59

ΞEquivalent(pc
1...p

c
j)

attr1 : type1
...
attrm : typen
attrm+1 : typem+1

...
attrm+n : typem+n

predicate1
...
predicatek
predicatek+1

...
predicatek+l

By inheriting from a composite, the new composite inherits all its attributes
and predicates. Inheritance is a syntactical construct which is intended to mod-
ularize the specification of composites.

The simplest child of a composite will not define new attributes or predi-
cates and is used only to strength the type signature of the parameters of the
composite. The following composite, PaintingComposite, is a specialization of Ar-
tifactComposite which can be instantiated only with a parameter of type Painting.

ΞPaintingComposite(Art : Painting) : ArtifactComposite

In the following example we strengthen the predicate section of the previous
composite by forcing that the author cannot be Anonymous.

ΞPaintingCompositeNotAnon(Art : Painting) : PaintingComposite

Author �= Anonymous

It is also possible to add attributes in the child composite. The following
composite enhances ArtistComposite by adding a counter of the number of paint-
ings by that artist.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 60

ΞArtistCompositeExtended : ArtistComposite
NumberOfWorks : int

NumberOfWorks = #CreatedBy(| {Person} |)

3.4.3 Generic composite schemas

Some times, several composites share almost the same declaration, except that
they apply to different types. In such cases, it is desirable to define a composite
without specifying the type to which the composite applies. This concept is
similar to the declaration of abstract data types—such as stacks and lists—in
which the properties of the ADTs are defined precisely in terms of a generic
type.

In Hadez, a generic composite schema is a composite schema that uses
generic types. A generic type is just a label for a type. When the generic
composite schema is instantiated into a composite schema, this type should
be specified. The form of a generic composite schema is:

ΞGenericCompositeName[generic types list](parm list)
attr1 : type1
...
attrm : typen

predicate1
...
predicatek

And a generic composite is instantiated with a generic composite instantia-
tion:

Composite == GenericCompositeName[sequence of types]

This generic schema declaration would be equivalent to the following decla-
ration, in which any reference to a generic type is replaced by the corresponding
type, according to the genetic composite instantiation statement.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 61

ΞCompositeName[generic types list](parm list)
attr1 : type1
...
attrm : typen

predicate1
...
predicatek

The following generic composite Tour takes a generic type parameter X. The
generic composite has two parameters: a set of elements, and a function that
compares two elements. The objective of the generic composite is to create
tours of sequences of elements ordered according to the parameter function
LessThan.

ΞTour[X](Elements : P X, LessThan : X × X → boolean)
Sequence : seq X

ran Sequence = Elements
∀ i ∈ 2..#Sequence •

LessThan(Sequence(i− 1), Sequence(i))

We can then instantiate a composite schema by specifying the type that
the generic type parameter takes. In the following declaration, ArtistCompos-
ite replaces X in the generic composite to create a new composite schema Or-
deredArtistTour:

OrderedArtistTour == Tour[ArtistComposite]

This composite schema is equivalent to:

ΞOrderedArtistTour(Elements : P ArtistComposite,
LessThan : ArtistComposite× ArtistComposite → boolean)

Sequence : seq ArtistComposite

ran Sequence = Elements
∀ i ∈ 2..#Sequence •

LessThan(Sequence(i− 1), Sequence(i))

We can also define an ordered tour of Paintings:

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 62

OrderedPaintingsTour == Tour[PaintingComposite]

The main goal of generic composite definitions is to promote reuse.

3.4.4 Grammar

Figure 3.1 shows an abbreviated description of the grammar of Hadez corre-
sponding to the definition of composites.

Composite ::= CSchema
| CGenSchema
| CGenSchemaIns

CSchema ::=

ΞCName [(ParmList)][: CName]
DeclList

[
AxiomPart]

CGenSchema ::=

ΞCName [GenParms] [(ParmList)]
DeclList

[
AxiomPart]

CGenSchemaIns ::= CName==CName[GenParmsIns]

DeclPart ::= BasicDecl . . . BasicDecl

BasicDecl ::= Name: (,Name:)∗ : TypeName

AxiomPart ::= (Predicate)+

ParmList ::= BasicDecl (, BasicDecl)∗
GenParmList ::= GenType (,GenType)∗
GenParmIns ::= TypeName (,TypeName)∗

Figure 3.1: Grammar for composites.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 63

3.5 Perspective schema

The specification of a hyperbase indicates the characteristics of the domain spe-
cific data of an application and its composite schemas. Composites, however,
are not displayed directly to the reader. The reader perceives and interacts with
composites through perspectives.

In HDM, the term perspective is used to refer to different ways in which the
same composites can be presented to the reader and states that the specifica-
tion of the perspectives is outside the scope of the methodology [GPS93]. In
OOHDM, the concept of perspective is served by Abstract Design Views (ADV).
ADVs are software engineering design artifacts intended to separate the user-
interface from application objects. They were first defined in software engi-
neering [CILS93, CL95] and later adapted to OOHDM [RSLC95, Ros96]. In
OOHDM, “an ADV describes, in an abstract, implementation independent way,
a number of relationships including the media objects perceived by the user of
the hypermedia application, the mode of interaction with these objects, and the
interface transformations that occur while navigating through the hypermedia”
[RSLC95]. ADVs, contrary to HDM’s perspectives, not only specify how the ob-
ject is presented to the reader; they also specify how the interaction between the
user and the observed object should proceed.

The software engineering ADVs are specified using schemas in a notation
based on the formal specification language VDM [CILS93]. OOHDM, however,
uses a graphical notation to describe ADVs based on JASMINUM [CC94]. Fig-
ure 3.2 is an example of an ADV description in OOHDM. The diagram shows
two ADVs: Art Gallery and Painting, one defined to contain the other. The ADVs
indicate which fields of the composites are shown and their location in the view-
port. The description of the reader interaction is specified in an ADVChart.
Figure 3.3 shows the ADVChart for the ADV Painting. It indicates what the ADV
should do in response to the reader’s actions.

As HDM and OOHDM do, Hadez separates the specification of application
domain objects from how they are perceived by the reader. The same object can
be presented in a variety of forms, each particularly suited for the objective of
the application or for a particular type of reader. In order to accomplish this
task, Hadez uses the notion of Abstract Design Perspective or ADP.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 64

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���
���������������
����
����
����
����

���
���
���

���
���
���

����������

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

������

���
���
���
���

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

��
��
��
��

���� ��
��
��
��
��
��
��
��
��
��
��
��

Gallery

ADV Gallery

ADV Painting

name:string
author:string
creationDate: Date

Anchored Text Image

See Also Contents

Next

AnchoredImage

Help Options GoBack

Figure 3.2: Graphical representation of an ADV for a painting. Figure
from [RSLC95].

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 65

Painting Display Off

Display On

Image

Normal

Zoomed

AnchoredText

AnchoredImage

Display On

Display Off

See Also

Contents

Next

1

2
3

4
5

6

8

9

Transitions

Event: Display

Pre-Cond:
Post-Cond: perceptionContext =perceptionContext + Painting

Event: MouseClicked

Pre-Cond: focus (Image)

Post-Cond: self.DisplayZoomed

1:

2:

Event: MouseClicked

Pre-Cond: focus (Image)

Post-Cond: self.DisplayNormal

3:

Event: ShowAnchors

Pre-Cond:

Post-Cond: perceptionContext = perceptionContext + AnchoredImage

4:

Event: MouseClicked

Pre-Cond: not (focus (AnchoredImage))

Post-Cond: perceptionContext = perceptionContext - AnchoredImage

Event:: MouseClicked

Pre-Cond: focus (Next)

Post-Cond: owner.anchorSelected (Next); perceptionContext = perceptionContext -

Painting

Event:: MouseClicked

Pre-Cond: focus (Contents)

Post-Cond: owner.anchorSelected (Contents); perceptionContext = perceptionContext -

Painting

Event: MouseClicked

Pre-Cond: focus (SeeAlso)

Post-Cond: ShowAnchors

Event: MouseClicked

Pre-Cond: focus (Anchors (i))

Post-Cond: owner.anchorSelected (Anchors (i)) ; perceptionContext = perceptionContext

- Painting

6:

7:

8:

9:10

Event: MouseClicked

Pre-Cond: focus (Anchors(i))

Post-Cond: owner.anchorSelected (Anchors (i)); perceptionContext = perceptionContext -

Painting

5:

10:

11

Figure 3.3: User interaction for the ADV Painting. Figure from [RSLC95].

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 66

Like an ADV, an ADP describes how a reader should perceive a given object
and how the interaction with the user alters this perception. It specifies also
what becomes an anchor of a hyperlink and what it means to select such an
anchor. An ADP is based on ADVs and can be considered their descendent.
ADPs further improve ADVs by providing specific features that are particularly
suited for hypermedia design.

An ADP observes a composite and one composite can be observed by one or
more ADPs at the same time.

In Hadez, an ADP models a perspective. Like a perspective, the main char-
acteristics of ADPs are:

• An ADP has a collection of local attributes that define a set of states. This
set of states can be infinite.

• An ADP can change its state only through input messages. Input messages
are generated by the reader, by the run-time system or by other regions
within the current viewport. A change from one state of the region to
another is known as a transition.

• A transition can trigger an output message that is intended for ADPs in
other regions.

• The ADP specifies, for each state, what parts of the observed composite
are shown to the reader. The set of attributes shown to a reader in a given
state is known as the current selection of the ADP. A transition of the ADP
might determine a change in the current selection. The ADP, therefore,
has the ability to present different information to a reader at different
times.

• An ADP can consist of a finite number of ADPs. The communication be-
tween the different component ADPs is done through internal messages.

The viewport of a runtime system is divided into regions, as described in
section 2.5.4. Each of these regions is modeled with one ADP. The result is
that the viewport corresponds to an ADP, potentially consisting of one or more
ADPs.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 67

The main goals of ADPs are to be able to specify the complex interaction
between the hyperbase and the reader and to promote the reuse of this specifi-
cation.

3.5.1 ADP schemas

ADP Name [: Ancestor] Observes Composite:Type
Declaration: attrname1 : type1, ..., attrnamen : typen,...,
Block block1: block specification
Block block2: block specification

...
Preconditions: predicates
Invariants: predicates
Message event1: post − condition predicate
Message event2: post − condition predicate

...
End Name

Figure 3.4: An Abstract Design Perspective specification schema.

Figure 3.4 shows the general form of an ADP schema. Each ADP has a
unique name (Name). The ADP can, optionally, inherit its characteristics from
another ADP (Ancestor). An ADP observes always a composite named Composite
with type Type. The state of the ADP is determined by the value of the local
variables defined in its declaration section. The predicates in the preconditions
section are constrains that bind—an therefore initialize—the values of its local
variables. The current state of the perspective states indicates which attributes
(of its observed composite) the perspective shows at a given time. It is important
to mention that the perspective can only show to the reader attributes of the
composite. It cannot show the values of its internal variables.

The preconditions of the perspective determine the initial state of the ADP.
The invariants section is a sequence of predicates that should be true at any
state of the ADP. Blocks define regions within the current ADP which can be
considered independent from other blocks within the current ADP. In its sim-
pler form, a block is a group of attributes of the observed composite. Finally,
every ADP is able to handle a given set of messages, which are originated outside
the ADP or internally. In the following sections, we will introduce ADPs through

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 68

examples. The characteristics and properties of perspective will be formalized
in section 5.4 (on page 120).

3.5.2 A simple ADP schema

A very simple ADP is depicted in figure 3.5. This ADP observes a composite
of type CompositeType and always displays its attributes attr1, attr2 and attr3. The
result of the predicate show(attr) for any attribute attr is always true and its side
effect is to make attr visible. Its counterpart, hide(attr), is always true, and has
the opposite effect than show, and makes attr invisible.

ADP ADP1 Observes Composite : Type
Invariants:

show(Composite.attr1)
show(Composite.attr2)
show(Composite.attr3)

End ADP1

Figure 3.5: A simple ADP which always displays three attributes of a composite.

3.5.3 Messages

The preceding ADP can be enhanced to respond to a message toggle attr which
will toggle the visibility of attr1, attr2, and attr3. It is assumed that toggle attr is
going to be generated by another ADP and, therefore, it is an external message.
The enhanced ADP is depicted in Figure 3.6. ADP2 has a local variable Visible
which is used to keep track of whether the attributes are visible or not. The
preconditions force the three attributes to be displayed at the starting state. In the
message section for toggle attr, depending on the value of Visible the attributes
are then shown or hidden. A variable name followed by an denotes the value
of the variable after the message section. A message section cannot modify the
value of the attributes of the composite it observes, only the value of its internal
variables.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 69

ADP ADP2 Observes Composite : Type
Declarations:

Visible: boolean
toggle att: input message

Preconditions:
show(Composite.attr1)
show(Composite.attr2)
show(Composite.attr3)
Visible = TRUE

Message toggle att:
Visible ⇒

hide(Composite.attr1)
hide(Composite.attr2)
hide(Composite.attr3)

¬Visible ⇒
show(Composite.attr1)
show(Composite.attr2)
show(Composite.attr3)

Visible′ = ¬Visible

End ADP2

Figure 3.6: An ADP depicting the use of messages.

3.5.4 Blocks

The most conspicuous characteristic of ADP2 is the repetition of the predicates
to show the three attributes. In order to avoid unnecessary repetition, ADPs
use the concept of blocks. A block is an independent region of the current
composite. A block can consist of:

• A finite set of attributes of the current composite.

• An ADP that observes a composite which is part of the current composite.

The second form of a block will be described later in this chapter. In the first
form, a block becomes an abbreviation to refer to a group of attributes. The
action of showing the block results in showing all the components of the block,
and hiding the block has the opposite result. As a consequence, the visibility of
a group of attributes can be toggled with just one predicate. By default, a block
is visible at its starting state. Figure 3.7 shows ADP2b, which defines a block,
consist of three attributes and which has the same functionality as ADP2.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 70

ADP ADP2b Observes Composite : Type
Declarations:

Visible: boolean
toggle att: input message

Block block1:
Composite.attr1
Composite.attr2
Composite.attr3

Preconditions:
Visible = TRUE

Message toggle att:
Visible ⇒ hide(block1)
¬Visible ⇒ show(block1)
Visible′ = ¬Visible

End ADP2b

Figure 3.7: This ADP exemplifies the use of blocks.

3.6 Buttons

Buttons are a user interface mechanism which allow the reader to generate in-
put messages to the current ADP. A button has two attributes: its label, which
usually is an attribute of the observed composite; and the message that it gen-
erates. A button, like a hyperlink, can be selected by the reader; when a button
is selected, its corresponding message is sent to the current ADP. The main ob-
jective of the buttons is to allow the reader to change the current state of the
ADPs currently displayed. As a result, the ADPs might display, in the new state,
different attributes of their currently observed composites.

Figure 3.8 shows an ADP which extends the functionality of ADP2b (declared
in figure 3.7) with a button that, when selected, sends the message toggle att to
the current ADP. In this example the label of the button is attr4; that is, the data
shown to the reader to be selected, similar to an anchor of a hyperlink.

3.6.1 Pagination

As it was described in section 2.5.1, a composite can be broken into more than
one perspective, where each perspective is presented in different hyperpages.
In order to specify pagination, it is necessary to indicate:

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 71

ADP ADP3 Observes Composite : Type
Declarations:

Visible: boolean
toggle att: internal message

Block block1:
Composite.attr1
Composite.attr2
Composite.attr3

Block block2:
Composite.attr4 button toggle att

Preconditions:
Visible = TRUE

Message toggle att:
Visible ⇒ hide(block1)
¬Visible ⇒ show(block1)
Visible′ = ¬Visible

End ADP3

Figure 3.8: An ADP with a button that generates an internal message.

• What attributes of the observed composite of the current perspective are
to be presented in other perspectives.

• How is the current perspective going to link to the other perspectives.

ADP4, in figure 3.9 exemplifies this feature. The attributes attr3 and attr4
are presented in a different hyperpage. They are presented with two different
ADPs: OtherADP1, OtherADP2, respectively. A link requires an anchor (the data
that is displayed to the reader in the starting point of the hyperlink). In this
particular example, the anchors are the attribute x of Composite.attr2 and the
attribute y of Composite.attr3, respectively. These links represent structural links.
In this particular example, OtherADP1 and OtherADP2 denote other hyperpages
within the application.

3.7 Building complex ADPs

ADPs can be combined into more complex ADPs. There are three ways in which
ADPs can be combined:

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 72

ADP ADP4 Observes Composite : Type
Block block1:

anchor Composite.attr3.x linkto OtherADP1(Composite.attr3)
anchor Composite.attr4.y linkto OtherADP2(Composite.attr4)

End ADP4

Figure 3.9: This ADP demonstrates the use of structural links and splits the
composite in multiple ADPs.

• Aggregation. One or more blocks in an ADP are described with other
ADPs. These ADPs are considered part of the current ADP.

• Inheritance. One ADP is extended into a more specialized one by way of
inheritance.

• Parallel composition. An ADP is the result of composing two or more
ADPs.

3.7.1 Aggregation

One of the most important characteristics of a region is that it can be composed
by other regions and the behavior of the component regions determine the be-
havior of the region that compose them. Hadez takes advantage of this feature:
ADPs can be aggregated and become “components” of another ADP.

This is done by declaring an ADP a block of the current ADP. These blocks,
as any other, can be instructed to be hidden or shown. The difference between
an ADP block and a regular block is, first, that the ADP block can have an
“extended” state as defined by the attributes of its ADP; second, an ADP block
can handle input messages sent by other ADP blocks or by the current ADP;
and third, it can generate messages intended for other ADPs.

Aggregation has the following characteristics:

• The current ADP does not have access to the internals of its aggregated
ADPs. The current ADP can communicate only with its aggregated ADPs
by sending them messages; and vice-versa, the aggregated ADPs can com-
municate only with the aggregating ADP or other aggregated ADPs by
using messages.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 73

• The only operations allowed by an ADP on its aggregated ADPs are “show”
and “hide”. In other words, the current ADP has the ability to operate on
the ADP block only as if it was a block. When the aggregated ADP is
“shown”, what the ADP actually displays is determined by the aggregated
ADP’s own state, like any other ADP.

• The composite that each aggregated ADP observes is an attribute of the
composite that the aggregating ADP observes. One important feature of
aggregated ADPs is that they can observe different composites at different
times, with the following restrictions:

– An aggregated ADP can observe only composites of a given type.

– An ADP is said to be attached to a given composite when the ADP is
ordered to observe such composite. Composites can be statically or
dynamically attached to an ADP. A composite is said to be statically
attached to an ADP if the ADP is ordered to observe the aforemen-
tioned composite as a preconditions in the aggregating ADP. Other-
wise it is said to be dynamically attached. Under static aggregation
the aggregated ADP only observes one composite at all times; while
under dynamic aggregation the ADP can observe different compos-
ites at different times.

– The aggregating ADP is responsible for attaching composites to the
aggregated ADPs.

– An ADP should always observe a composite.

• The output messages of the aggregated ADPs are always seen by the cur-
rent ADP. The other ADPs do not, however, see the output messages of
other ADPs. The only way to send a message from one aggregated ADP
to another is by creating a message handler in the aggregating ADP that
triggers a second message to the destination ADP block when the source
ADP generates the first message.

• Any output messages of the aggregated ADPs which are not handled by
the aggregating ADP become part of the output messages of the latter.

• The input messages of the aggregated ADPs become part of the input
messages that the aggregating ADP can handle.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 74

ADP ADP5 Observes CompositeType : Type
Block block1:

ADP ADPi Observes Composite.attr1
Block block2:

ADP ADPj
Message mess1:

attach attr2 to block2
End ADP5

Figure 3.10: An example of aggregation.

We illustrate the use of aggregation with ADP5, defined in figure 3.10. ADP5

has two blocks. The block block1 corresponds to ADPi, which statically observes
attr1. In the case of block2, ADPj is attached to attr2 inside the message section
mess1.

Figure 3.11 defines ADP6; this ADP has the same functionality as ADP3 (de-
fined in figure 3.8 on page 70). The message that corresponds to the button
defined in block2 sends toggle att to the block block1.

ADP ADP6 Observes Composite : Type
Block block1:

ADP ADP2b Observes Composite
Block block2:

Composite.attr4 button block1.toggle att

End ADP6

Figure 3.11: ADP2b is composed into a more complex ADP5, which has the same
functionality as ADP3.

Aggregation can be used to model complex regions, by dividing its specifi-
cation in less complex ADPs that, when combined, reflect the desired region.
Figure 3.12 shows a region that is composed of three regions, one of which is
composed of two regions. In order to illustrate how composites can be aggre-
gated, we will model this region by using one ADP for each region.

The resulting ADP schemas are shown in figure 3.13. This shows how ADPs
can be embedded at multiple levels and how, when they are presented to the
reader, they occupy a single region in the viewport of the run-time system.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 75

ADP A

ADP D

ADP F

ADP E

ADP C

ADP B

Figure 3.12: A more complex region.

3.7.2 Inheritance

Inheritance is a mechanism to extend an existing ADP with new features. A
composite ADPc (which observes a composite Cc of type tc) can be a child of
ADPp (which observes a composite Cp of type tp if tc � tp).

The properties of a child ADP are:

• The restriction tc � tp is necessary in order to guarantee that every predi-
cate in the parent is also valid in the child ADP.

• All the declarations of the parent are available to the child.

• The preconditions (and the invariants) of the child are the conjunction of
the preconditions (and the invariants) of the parent and the preconditions
(and the invariants) as defined by the child.

A child ADP can override a message handler and a block definition. This
feature provides basic polymorphism to ADPs. For instance, let’s assume that
the parent has a block with one attribute attr1. A child can redefine the block by
including attr2 instead. When a predicate in the parent (inherited by the child)
shows this block, the block defined in the child is the one actually shown. The
same applies for message handlers: a message can be sent by a predicate in the
parent and handled by the message handler as redefined by the child.

Figure 3.14 shows an example of inheritance. ADP7 is a child of ADP2b (de-
fined in figure 3.7 in page 70). In this case, no part of the parent is redefined;

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 76

ADP ADP B Observes Compositeb : Typeb
Invariants:

...
End ADP B

ADP ADP C Observes Compositec : Typec
Invariants:

...
End ADP C

ADP ADP E Observes Compositee : Typee
Invariants:

...
End ADP E

ADP ADP F Observes Compositef : Typef
BLock block 1:

...
End ADP F

ADP ADP D Observes Composited : Typed
BLock block 1:

ADP ADP E Observes Composited.attr1
BLock block 2:

ADP ADP F Observes Composited.attr2
End ADP D

ADP ADP A Observes Composite : Type
BLock block 1:

ADP ADP B Observes Composite.attr1
BLock block 2:

ADP ADP C Observes Composite.attr2
BLock block 3:

ADP ADP D Observes Composite.attr3
End ADP A

Figure 3.13: A collection of ADPs that model the region depicted in figure 3.12.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 77

hence, the resulting ADP inherits all the declarations of its parent. The message
generated by its button in block2 is handled by block1 defined in the parent ADP.

ADP ADP7 : ADP2b Observes Composite : Type
Block block2:

Composite.attr4 button toggle attr
Preconditions:

show(block2)

End ADP7

Figure 3.14: An ADP which inherits its characteristics from another.

The schema in figure 3.15 shows the definition of a polymorphic ADP. ADP8

inherits from ADP7 which itself inherits from ADP2b. ADP8 redefines block1 (orig-
inally defined in ADP2b). When the button in block2 (defined in ADP7) is pressed,
it generates a message toggle attr which triggers the ADP to hide or show the
block block1. This block, however, is redefined in ADP8: instead of showing
three attributes attr1, attr2, and attr3 it displays attr4.

ADP ADP8 : ADP7 Observes Composite : Type
Block block1:

Composite.attr4
End ADP8

Figure 3.15: An ADP that redefines a block.

3.8 Structural and cross-reference linking

In Hadez there are two types of links: structural and cross-reference. Struc-
tural links are determined by the characteristics of the structural graph of the
hyperbase of the application. Structural links are used to link the different hy-
perpages into which a composite is broken.

Cross-reference links, however, are links that do not necessarily follow the
structural graph of the hyperbase. A cross-reference link can point from an

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 78

arbitrary ADP to another ADP. A major constraint of the structural graph is that
it cannot include cycles. Cross-reference linking does not have that restriction.

One of the most important features of Hadez is its independence from the
run-time system in which the application is going to be presented. This poses a
special challenge when defining links:

• The specification does not know the addressing system of the run-time
system. In fact, it does not even know on which run-time system the ap-
plication will be displayed. This is important, as it does not constrain the
specification of the design to characteristics unique to a given run-time
system.

• The link destination should, therefore, provide enough information to the
run-time system by which it will be possible to identify the destination of
the link.

Structural and cross-reference linking in Hadez are implemented by speci-
fying a given ADP and the composite that it observes as the destination of the
link. The run-time system is responsible for finding the correct address in which
that ADP presents the corresponding composite. As discussed in chapter 2, the
same composite can be presented to the reader in more than one hyperpage in
the hypermedia application, potentially using the same ADP. In that case, the
run-time system non-deterministically chooses one of them .

ADP3b, depicted in figure 3.16, shows the use of a cross-reference link to
an ADPx that observes a composite Composite2. Note how the precondition of
the ADP binds the value of one attribute of the object to a specific composite
(Composite2).

The main difference between structural and cross-reference linking is how
the destination composite is computed. In structural linking, the destination
composite is an attribute of the current composite; in this case, the designer
has chosen to split the current composite into two or more hyperpages; these
links correspond to some arcs in the structural graph of the application. In
cross-reference linking the destination composite is not part of the current com-
posite, and it should be computed from the value of the current composite, for
example, by finding a composite that satisfies a given relation to the current
composite.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 79

ADP ADP3b Observes Composite : Type
Declarations:

Composite2 : type2
Block block1:

anchor attr1 linkto ADPx(Composite2)
Preconditions:

Composite2.name = attr1
End ADP3b

Figure 3.16: An ADP with non-structural links.

The run-time system is responsible for knowing what it the address of a
given hyperpage and how the perspectives of a given application are mapped
into these pages. Cross-linking poses the risk of having links to hyperpages that
might not be instantiated in the final application. It is the responsibility of the
run-time system to remove those anchors that point to locations not available
in the current application. This feature has the following advantages:

• The designer does not need to know either the addressing scheme or the
final address of the destination of the link.

• The designer does not need to know whether the destination composite—
to which the ADP links—is going to be present in the final application.
The designer specifies the link and, if it is available, the run-time system
activates the anchor, otherwise, it is not presented to the reader. This
feature allows flexible instantiation of a subset of the application, in which
any links outside this subset are automatically removed, avoiding lack of
referential integrity in the final application.

Finally, it is not required that an ADP is already defined before its identifier
can be used in a linkto statement. It is necessary, however, that the ADP is
defined somewhere in the scope of the specification.

3.8.1 Grammar for ADP schemas

Figure 3.17 shows the part of the grammar of Hadez related to the declaration
of ADPs.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 80

ADPSchema ::= ADP ADPName (:Ancestor)? Observes CompName : Comp-
Type

ADPBody
End ADPName

ADPBody ::= Decl? BlockDecl* Invar? Precond? MessHandler*

Decl ::= type decl | MessageDecl

MessageDecl ::= message name : (input | output | internal) message

BlockDecl ::= Block: (AttrGroup | ADPBlock)

AttrGroup ::= (attribute id | ButtonDecl)+

ButtonDecl ::= button id → message id

ADPBlock ::= ADP adp name

Invar ::= Invariants: ADPPredicate+

Precond ::= Preconditions: ADPPredicate+

MessHandler ::= Message message name : ADPPredicate

ADPPredicate ::= (predicate | ADPAttach | ForEach | SendMess)

SendMess ::= send message name

ForEach ::= foreach variable id:type in ADPPredicate+

ADPAttach ::= attach attribute id to block id

Figure 3.17: Syntax of ADP Schemas.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 81

3.9 Composition of two or more ADPs

ADP ADP9 Observes Composite : Type
Declarations:

Visible: boolean
toggle att: input message

Block block1:
Composite.attr1
Composite.attr2
Composite.attr3

Preconditions:
Visible = TRUE

Message toggle att:
Visible ⇒ hide(block1)
¬Visible ⇒ show(block1)
Visible′ = ¬Visible

End ADP9

ADP ADP10 Observes Composite : Type
Declarations:

toggle att: output message
Block block1:

Composite.attr4 button toggle att

End ADP10

ADP11 � ADP9‖ADP10

Figure 3.18: Using composition to define new ADPs.

Figure 3.18 demonstrates the use of composition. Two ADPs are defined,
ADP9 and ADP10. ADP9 is capable of handing one input message toggle attr;
ADP10 generates one output message. The resulting ADP has the same funtion-
ality as ADP6 (defined in figure 3.11 on page 74) and ADP3 (defined in figure 3.8
on page 70).

Composition allows the designer to reuse ADPs without knowing the inter-
nals of the composite. The designer needs only to know its interface, that is,
the composite type it observes, and the set of input and output messages that it
can receive and generate. The semantics of composition are described in detail
in 5.5 (on page 123).

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 82

3.10 A more complex example of an ADP

In order to show the power of ADPs to specify sophisticated hypermedia ap-
plication interfaces we proceed to develop the specification of the virtual tours
of the Washington’s National Gallery of Art (NGA). Garzotto et al. refered to
the Web version of the NGA as “one of the best organized and most enjoyable
museum sites” [GMP98].

We will concentrate on the museum’s virtual tours. The museum uses a
virtual tour to present subsets of its collection to the reader. Figure 3.19 shows
a snapshop of one of these tours. In the upper half, the page shows a sample
of 6 consecutive works in the tour (a room). The reader can choose to move
forward or backwards within the tour (by selecting the “next” and “previous”
room button). The bottom half shows a list of all the works in the tour, with
hyperlinks for each one of them.

Each tour is composed of a sequence of similar works of art (artifacts). The
tour can be modeled with a single ADP NGATourADP, that observes a composite
Tour of type TourComposite.

We define two given types: ICON, which corresponds to the little icon of an
image of a painting, and STRING.

[ICON, STRING]

The only attributes of Artifact used in this ADP are its icon and its title.

artifact
Icon : ICON
Title : STRING
...

TourComposite will be composed of a sequence of artifacts and names. Both
of these attributes are instantiation parameters of the composite.

ΞTourComposite(Elements : seq artifact, Name : STRING)
...

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 83

Figure 3.19: NGA web site.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 84

NGATourADP will be divided in four regions, each modeled with a block
definition. Figure 3.20 shows the sections of the perspective that will correspond
to each block.

Buttons

Title

CurrentRoom

AllWorks

Figure 3.20: Dividing the ADP into regions.

One of the blocks, CurrentRoom is going to be modeled with another ADP
ShowRoomADP.

ShowRoomADP observes a sequence of artifacts. The precondition states that
the size of this sequence should not exceed 6 elements. For each one of the
elements of the sequence, it creates a hyperlink from its icon to an ADP called
ShowArtifactADP which is responsible for displaying the respective artifact.

The generic function subsequence takes as a parameter a sequence, a start-
ing element, and a number of elements and extracts the corresponding subse-
quence from its parameter.

[X]
subsequence : seq1 X × int× int→ seq X

...

We now proceed to define the ADP NGATourADP. Because “restart”, “next”

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 85

ADP ShowRoomADP Observes Works : seq artifact
Preconditions:

#Works ≤ 6
Invariants:

∀ i : 1..#Works •
anchor Works(i).icon linkto ShowArtifactADP(Works(i))

End ShowRoomADP

Figure 3.21: The ADP responsible for showing the current room.

and “previous” change only the set of artifacts highlighted in the CurrentRoom
block, they are specified as buttons that instruct the ADP to change the contents
of the CurrentRoom. All three buttons will generate internal messages which
are meant to be handled by the ADP.

The first block, Title displays only the name of the tour. The second block,
Buttons is composed of the three buttons of the ADP and attaches the corre-
sponding message to each one of them. The third block, CurrentRoom, is de-
scribed as an aggregated ADP: ShowRoomADP. ShowRoomADP will be dynami-
cally attached to a subsequence (of length 6) of Tour.Elements

The forth and final block, AllWorks displays the titles of all the works and
links to their corresponding ShowPaintingADP.

The preconditions of the ADP state that the tour should have at least one
element. It initializes CurrentOffset with 1. This variable will be used as the index
to the element of the artifacts sequence that should be displayed in the current
room. In the preconditions, the attach statement dynamically attaches the first
6 elements of the sequence to ShowRoomADP.

The three message handlers are very similar. They alter the value of Cur-
rentOffset in response to their corresponding message. Note that use CurrentOff-
set’: a variable name followed by ’ corresponds to the value of the variable after
the sequence of predicates. In this particular case, CurrentOffset’, corresponds
to the value of CurrentOffset after the message handler. For this particular ADP,
most of the predicates in each message handler make sure that the “current
room” displays a valid subsequence of artifacts.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 86

ADP NGATourADP Observes Tour : TourComposite
Declarations:

CurrentOffset : N

show next room : internalmessage
show previous room : internalmessage
restart tour : internalmessage

Block Title:
Tour.Name

Block Buttons:
button start tour → restart tour
button next room → show next room
button previous room → show prev room

Block CurrentRoom:
ADP ShowRoomADP

Block AllWorks:
∀ i : 1..#Tour.Elements •

anchor Tour.Elements(i).title linkto
ShowPaintingADP(Tour.Elements(i))

Preconditions:
#Tour.Elements ≥ 1
CurrentOffset = 1
attach subsequence(Tour.Elements, 1, 6) to CurrentRoom
hide(previous room)

Message next room:
#Tour.Elements ≥ CurrentOffset + 6 ⇒

CurrentOffset′ = CurrentOffset + 6
show(previous room)
#Tour.Elements < CurrentOffset + 12 ⇒ hide(next room)
attach subsequence(Tour.Elements, CurrentOffset′ , 6) to CurrentRoom

Message prev room:
CurrentOffset > 6 ⇒

CurrentOffset′ = CurrentOffset − 6
show(next room)
CurrentOffset ≤ 7 ⇒ hide(previous room)
attach subsequence(Tour.Elements, CurrentOffset, 6) to CurrentRoom

Message restart tour:
CurrentOffset = 1
attach subsequence(Tour.Elements, 1, 6) to CurrentRoom
hide(previous room)

End NGATourADP

Figure 3.22: The Tour ADP.

3. A SPECIFICATION LANGUAGE FOR HYPERMEDIA • 87

3.11 Summary

This chapter describes Hadez, the specification language for hypermedia. Hadez
is an object-oriented specification language for hypermedia. It is based on Z
and is modeled around the Hadez data model described in chapter 2. Hadez
has a formal syntax, which guarantees that a specification can be parsed in or-
der to verify whether it is written according to the syntax rules of Hadez. A
specification that passes this test is said to be syntactically correct.

A syntactically correct specification should then be verified to be complete.
A specification is complete if it is syntactically correct and all the identifiers used
in the specification are properly defined. Finally, if a specification is complete,
it can by verified to be type consistent. A specification is type consistent if all its
constructs do not violate the Hadez typing rules.

Hadez is composed of three main parts: a conceptual schema, a structural
schema, and a perspective schema. The conceptual schema is composed of a
description of types and instances on those types. The structural schema is a
group of composite schemas. A composite schema is a description of how to
instantiate higher level composites from instances in the hyperbase (conceptual
schema).

The perspective schema is a collection of Abstract Design Perspectives (ADPs).
An ADP describes how a reader should perceive a given object and how the in-
teraction with the user alters this perception. An ADP specifies what parts of
a composite are shown to the reader, how the composite is broken into hyper-
pages, and how the interaction with the user changes the reader’s perception
of the composite. ADPs can be combined into more complex ones by using
aggregation, inheritance and composition.

C H A P T E R 4
Specifying a Virtual Museum
Museums make very good subjects for the demonstration of design methods
and tools. Garzotto and Paolini illustrated HDM using the Microsoft Art Gallery
[GMP95b]; Rossi and Schwabe demonstrated OOHDM with a Web museum for
the works of Candido Portinary [SRB95b]. Museums are composed of well de-
fined entities (artists, artifacts) which are interrelated by simple relationships.
Nonetheless, despite their logical simplicity, these entities can be presented in a
wide variety of ways, making them a good example. In this chapter, we demon-
strate the use of Hadez by writing a specification for the Web museum of the
National Gallery of Art.

88

4. SPECIFYING A VIRTUAL MUSEUM • 89

4.1 The National Gallery of Art web site

The Web museum of the National Gallery of Art Web Museum, in Washington
(NGA-WM—www.nga.gov) is one of the best web sites of its type [GMP98]. The
NGA-WM main purpose is to display the permanent and temporary collections
of the museum. This museum is considered a well-designed hypermedia appli-
cation.

The main sections of the museum are: General Information, The Collection,
Exhibitions, Online Tours, and the Gallery Shop. In order to keep the size of this
specification manageable we are going to specify only the collection and the
online tours sections of the museum.

The main entities of the NGA-WM are artifacts, of five different types: paint-
ings, sculptures, decorative arts, works on paper and architecture. The museum
also includes information about artists. The core of the museum is a collection
of virtual tours. These tours show sets of artifacts. The site includes four differ-
ent types of tours: collection tours, in-depth study tours, architecture tours, and virtual
exhibit tours. In order to keep the size of this specification manageable, we are
not going to include architectural artifacts or tours as part of it. Figure 4.1 is an
entity-relationship diagram showing the main classes of the museum and their
relationships.

Figure 4.2 shows an OOHDM diagram showing the main navigational con-
texts created in this application. For instance, from the main page it is possible
to access a list of all the schools (a school is a group of artists under a common
influence), ordered by type; or a list of all the artists, ordered by name. The
artifacts are accessible from either a tour, an artist or a gallery.

4.2 Collections

The museum’s collection is composed of art pieces (artifacts). Art pieces can be
categorized into four different classifications: paintings, decorative art, sculp-
tures and work on paper. These types are represented by the enumerated type
ARTIFACT TYPE.

ARTIFACT TYPE = (painting, decorativeart, sculpture, workonpaper)

4. SPECIFYING A VIRTUAL MUSEUM • 90

Tour

School

SchoolMembers

1:1

1:n

Artifact Artist1:nCreatedBy

Gallery

ShowInGallery

0:1

1:n

0:n

(AuthorOf)

0:n 1:nTourMembers

Figure 4.1: Entity-relationship diagram showing the different classes in the mu-
seum application and their relationships. The museum is composed of a large
group of artifacts, created by artists; the artifacts are shown in tours (virtual
tours in the web site) or in galleries (which correspond to the galleries in the
real-world museum). The tours are organized in schools (a school is a group of
artists under a common influence).

The Collection

The Floors

By Type By Name

By Tour

By Author

By Gallery
By Gallery

By Name

By Floor

SchoolsHome Page

Galleries

Artists

Tours

Artifacts

The Artists

Figure 4.2: OOHDM diagram depicting the navigational properties of the vir-
tual museum.

4. SPECIFYING A VIRTUAL MUSEUM • 91

Several given types will be required by the specification, namely, TEXT, used
to represent large blobs of text; DATE for, as its name implies, date; IMAGE
which represents a digital photograph; ACCESSION TYPE which represents a
unique identifier for an artifact within the museum; STRING is used to repre-
sent sequences of characters; and FLOOR TYPE which represents the different
floors of the two buildings of the museum.

TEXT, DATE, IMAGE, ACCESSION TYPE, STRING, FLOOR TYPE

4.2.1 The classes

The main class of the application is artifact. This class is composed of a series of
fields that need to be displayed by the application.

Artifact
Name : STRING
AccessionNumber : ACCESSION TYPE
TypeOfArtifact : ARTIFACT TYPE
CreationDate : DATE
PhysicalDescription : STRING
Owner : STRING
Photograph : IMAGE
Icon : IMAGE
Description : TEXT
Bibliography : TEXT
ExhibitionHistory : TEXT
Provenance : TEXT
ConservationNotes : TEXT
Copyright : TEXT
Inscription : TEXT

Artists are an important part of the application. Every artifact shows facts
about its corresponding artist; furthermore, the museum shows a listing of all
artists that have artifacts in the collection. Similar artifacts that do not have
a known artist are assigned a “particular anonymous artist”. For example, the
artist British 20th Century gathers all artifacts from anonymous artists in Britain,
created during the 20th Century in Britain. These anonymous artists are treated
as any other type of artist, in which BirthYear and DeathYear are empty.

4. SPECIFYING A VIRTUAL MUSEUM • 92

Artist
Name : STRING
BirthYear : STRING
DeathYear : STRING
Nationality : STRING
Biography : TEXT

Artifacts are always shown as part of a tour. Apparently, the museum only
creates tours of artifacts of the same type.

Tour
Name : STRING
Overview : TEXT
TypeofTour : ARTIFACT TYPE

Tours are collected into groups of similar tours, called “schools”. For exam-
ple, the tours “Manet and His Influence”, “Camille Pissarro, Vincent van Gogh, Paul
Cézanne”, “Paul Gauguin”, “Claude Monet” and “Edgar Degas” all are part of the
school “French Painting of the 19th Century”. All tours in a School should have the
same type.

School
Name : STRING
Description : TEXT
TypeOfArtifacts : ARTIFACT TYPE

The NGA-WM also displays information about the current, past and future
exhibitions on display at the physical museum. These exhibits do not usually
have an equivalent Web exhibition; instead, the NGA-WM displays only a textual
description of the corresponding exhibitions.

Exhibition
Name : STRING
StartingDate : DATE
EndingDate : DATE
Description : TEXT

4. SPECIFYING A VIRTUAL MUSEUM • 93

The museum presents maps of the physical building, allowing the reader to
view what is in each of its galleries.

Gallery
Name : STRING
Floor : FLOOR TYPE
FloorPlan : IMAGE

The museum shows special virtual exhibitions on a specialized topic. These
exhibitions are different to tours, and they appear to be designed each one at a
time. For the sake of space, this specification will not include these exhibitions.

Finally, we define some instances of the previously declared types:

Collection : P Artifact [The entire collection of artifacts]
AllArtists : P Artists [All the artists displayed in the collection]
AllTours : P Tour [All the electronic tours of the NGA-WM]
TourOfTheWeek : Tour [A weekly tour, selected from AllTours]
AllSchools : P School [All the schools]
AllGalleries : P Gallery [The set of all galleries]
nAllFloors : P FLOOR TYPE [The set of all floors]

4.2.2 The relationships

One of the most important relationships is CreatedBy, which relates artists with
artifacts. Every artifact in the collection has at least one creator, and similarly,
each artist might create one or more artifacts. The domain of the relationship
is the collection, and its range is the set of artists represented in the museum.

CreatedBy : Artifact↔ Artist

dom CreatedBy = Collection
ran CreatedBy = AllArtists

AuthorOf is the inverse of CreatedBy and will be useful to find the artifacts
created by a particular artist.

AuthorOf : Artist ↔ Artifact

AuthorOf = CreatedBy ∼

4. SPECIFYING A VIRTUAL MUSEUM • 94

Tours are composed of a non-empty sequence of artifacts. All the artifacts
must be of the same type and they must match the type of the tour. The function
TourMembers maps a given tour to its corresponding sequence of artifacts.

TourMembers : Tour → seq1 Artifact

∀T : Tour •
TourMembers(T) •

∀ i : 1..#TourMembers(T) •
TourMembers(T)(i).TypeOfArtifact = T.TypeOfArtifact

In a similar way, SchoolMembers is a function that maps a given School to its
component set of Tour. Because the component tours do not have to be ordered,
the functions return a non-empty set of Tour.

SchoolMembers : School → P1 Tour

∀TG : School; TSeq : P1 Tour •
SchoolMembers(TG) = Tseq ⇒

∀ i : 1..#Tseq • Tseq(i).TypeOfTour = TG.TypeOfArtifacts

Location is a function that maps artifacts to the gallery in which they are
located (in the physical galleries of the museum).

Location : Artifact �→ Gallery

dom ShownInGallery ⊆ AllArtifacts
ran ShownInGallery = AllGalleries

ShownInGallery is a function that returns the artifacts being displayed in a
given gallery. Because these are the physical galleries, its predicate section states
that no artifact can be shown in two different galleries.

ShownInGallery : Gallery �� P1 Artifact

ShownInGallery = Location ∼

GalleriesInFloor returns the set of galleries that exist on a given floor. It is
defined as a injective function and therefore it is not necessary to specify that
each gallery can only appear in one floor.

4. SPECIFYING A VIRTUAL MUSEUM • 95

GalleriesInFloor : Floor � P1 Gallery

ran GalleriesInFloor = AllGalleries
∀F1, F2 : Floor •

F1 �= F2 ⇒ GalleriesInFloor(F1) ∩GalleriesInFloor(F1) = ∅

4.2.3 Creating the composites

We start by defining ArtistComposite, which relates artists to their creations:

ΞArtistComposite(A : Artist)
Artifacts : P Artifact

Artifacts = AuthorOf (| {A} |)

One of the most important composites corresponds to an artifact. Artifact-
Composite gathers a given artifact, and its non-empty set of artists.

ΞArtifactComposite(Art : Artifact)
Authors : P1 ArtistComposite

Authors = ΞArtistComposite ◦ CreatedBy(| {Art} |)

A TourComposite gathers all the artifacts that are part of that tour (a non-
empty sequence of artifacts).

ΞTourComposite(T : tour)
Elements : seq1 ArtifactComposite

Elements = ΞArtifactComposite ◦ TourMembers(T)

Similarly, SchoolComposite gathers a set of the tours.

ΞSchoolComposite(S : School)
ToursComp : P1 TourComposite

ToursComp = ΞTourComposite ◦ SchoolMembers(S)

The composite AllToursComposite gathers all the Tours into a single compos-
ite.

4. SPECIFYING A VIRTUAL MUSEUM • 96

ΞAllToursComposite
Tours : P TourComposite

Tours = ΞTourComposite ◦ AllTours

Similarly, the composite AllSchoolsComposite gathers all the Schools into a sin-
gle composite.

ΞAllSchoolsComposite
Schools : P SchoolComposite

Schools = ΞSchoolComposite ◦ AllSchools

The IndexOfArtists is a set of all the artists which have at least one creation in
the collection.

ΞIndexOfArtists
ArtistsComposites : P ArtistComposite

∃ArtistsWithWorks : P1 Artist •
∀A : Artist • AuthorOf (| {A} |) �= ∅ ⇒ A ∈ ArtistsWithWorks
ArtistsComposites = ΞArtistComposite ◦ ArtistsWithWorks

GalleryComposite corresponds to a gallery that displays a set of artifacts:

ΞGalleryComposite(G : Gallery)
DisplayedArtifacts : P ArtifactComposite
DisplayedAuthors : P ArtistComposite

DisplayedArtifacts = ΞArtifactComposite ◦ ShownInGallery(G)
DisplayedAuthors = {Author : ArtistComposite |

(∃A : ArtifactComposite • A ∈ DisplayedArtifacts∧ Author ∈ A.Art.Authors)}

FloorComposite will include all the galleries in a given floor:

ΞFloorComposite(Floor : FLOOR TYPE)
Galleries : P1 GalleryComposite

Galleries = ΞGalleryComposite ◦ GalleriesInFloor(Floor)

4. SPECIFYING A VIRTUAL MUSEUM • 97

And finally, AllFloorsComposite gathers all the floors in the museum.

ΞAllFloorsComposite
Floors : P1 FloorComposite

Floors = ΞFloorComposite ◦ AllFloors

The CollectionComposite is composed of the tour of the week plus a set of all
the tours in the virtual museum.

ΞCollectionComposite
WeekTourComposite : TourComposite
AllSchools : AllSchoolsComposite

WeekTourComposite = ΞTourComposite(TourOfTheWeek)

The MainPageComposite consists of: an artifact, selected at random from the
collection (as a result, the image in the main page of the museum changes
randomly); the entire collection of schools; the floors of the building; and index
of artists.

ΞMainPageComposite
RandomArtifact : ArtifactComposite
TheCollection : CollectionComposite
TheFloors : AllFloorsComposite
TheArtists : IndexOfArtists

∃Random ∈ Collection •
RandomArtifact = ΞArtifactComposite(Random)

4.3 Describing the perspectives

The presentation of composites is done with abstract design perspectives (ADPs).
We first declare two perspectives, which will be defined later. By declaring them
here, an ADP can refer to one of these ADPs, allowing circular references. For
example, an ArtifactADP needs to link to ArtifactPhotoADP

ArtifactADP : ADP(ArtifactComposite)
ArtistADP : ADP(ArtistComposite)

4. SPECIFYING A VIRTUAL MUSEUM • 98

4.3.1 The artifact’s perspectives

Artifacts are shown in two different ADPs: ArtifactPhotoADP, which shows a large
photo, intended to fill most of the screen, along with the basic information
about the artifact; and ArtifactADP, a detailed page that displays all the infor-
mation known about the artifact.

Figure 4.3 shows ArtifactPhotoADP. It displays a photograph of the painting
followed by some of the attributes of the artifact, including the name of each of
its authors.

ADP ArtifactPhotoADP Observes A : ArtifactComposite
Invariants:

A.Art.Photograph
Block GeneralInfo:

foreach Auth : Author in A.Authors do
Auth.Name

A.Art.Name
A.Art.Owner
A.Art.CreationDate
A.Art.AccessionNUmber
anchor “Information” linkto ArtifactADP(A)

End ArtifactPhotoADP

Figure 4.3: ArtifactPhotoADP is intended to display a large photo and basic
information about an artifact.

Figure 4.4 corresponds to the main view of an artifact. In the declarations
and preconditions of the ADP, the variable Tours is defined. Tours will contain
the set of tours in which the artifact is displayed. In the block ToursOfWhichI-
tIsPart, the ADP will display the name of each one of those tours in which this
artifact is presented. The icon in the artifact links to the ArtifactPhotoADP which
observes the same ArtifactComposite. In the block AuthorsInfo, the ADP displays
information related to each one of the authors of the painting, including a link
to their corresponding ArtistADP.

The NGA-WM uses buttons to hide and show information from a given page.
For instance, the ADP shows only one of the following attributes at a given time:
artifacts description, bibliography, exhibition history, conservation notes, and
provenance; button—each corresponding to each attribute—selects which one
should be the only one displayed.

4. SPECIFYING A VIRTUAL MUSEUM • 99

ADP ArtifactADP Observes A : ArtifactComposite
Declarations:

Tours : P Tour
show desc : internal message
show bibl : internal message
show prov : internal message
show hist : internal message
show cons : internal message

Preconditions:
Tours = {t : Tour | A.Art ∈ ran(TourMembers(t))}

Block GeneralInfo:
anchor A.Art.Icon linkto ArtifactPhotoADP(A) A.Art.Name
A.Art.PhysicalDescription
A.Art.Owner
A.Art.CreationDate
anchor “Full screen image” linkto ArtifactPhotoADP(A)

Block AuthorsInfo:
foreach Auth : Artist in A.Authors do

anchor Auth.Name linkto ArtistADP(Auth)
Auth.BirthYear
Auth.DeathYear

Block ToursOfWhichItIsPart:
foreach t : Tour in Tours do

t.Name
Block Description:

A.Art.Description
Block Bibliography:

A.Art.Bibliography
Block ExhibitionHistory:

A.Art.ExhibitionHistory
Block ConservationNotes:

A.Art.ConservationNotes
Block Provenance:

A.Art.Provenance
Block Buttons:

button desc → show desc
button bibl → show bibl
button prov → show prov
button hist → show hist
button cons → show cons

Continued in next page...

Figure 4.4: ADP for Artifacts.

4. SPECIFYING A VIRTUAL MUSEUM • 100

...continued from previous page
Preconditions:

hide(Bibliography)
hide(ExhibitionHistory)
hide(ConservationNotes)
hide(Provenance)

Message show desc:
show(Description)
hide(Bibliography)
hide(ExhibitionHistory)
hide(ConservationNotes)
hide(Provenance)

Message show bib:
hide(Description)
show(Bibliography)
hide(ExhibitionHistory)
hide(ConservationNotes)
hide(Provenance)

Message show hist:
hide(Description)
hide(Bibliography)
show(ExhibitionHistory)
hide(ConservationNotes)
hide(Provenance)

Message show cons:
hide(Description)
hide(Bibliography)
hide(ExhibitionHistory)
show(ConservationNotes)
hide(Provenance)

Message show prov:
hide(Description)
hide(Bibliography)
hide(ExhibitionHistory)
hide(ConservationNotes)
show(Provenance)

End ArtifactADP

Figure 4.5: ADP for Artifacts, continued.

4. SPECIFYING A VIRTUAL MUSEUM • 101

4.3.2 The tour’s perspective

We now turn our attention to the description of tours. As it was previously
described, a Tour is composed of a non-empty sequence of Artifact. A tour is
presented to the reader in blocks of six artifacts at a time, called a “room”. If
the tour has more than six artifacts, then it is divided in more than one room. In
a Tour, the upper part of the screen will be devoted to a room, and this is going
to be modeled with the ADP ShowRoomADP, which is defined in figure 4.6. This
ADP will show an icon of each one of the artifacts linking to their corresponding
ADP.

ADP ShowRoomADP Observes Works : seq1 ArtifactComposite
Preconditions:

#Works ≤ 6
TheWorks:

foreach A : ArtifactComposite in Works do
anchor A.icon linkto ArtifactADP(A)

End ShowRoomADP

Figure 4.6: The ADP responsible for showing the current room.

The TourADP, depicted in figure 4.7, is responsible for showing a Tour. It
embeds a ShowRoomADP in the block CurrentRoom and, by using the reserved
word attach, dynamically changes the subsequence that the current room dis-
plays. The variable CurrentOffset determines the index to the first element of the
room (a room is always of size 6) and the function subsequence (defined below)
is used to extract, from a sequence, a certain number of elements starting at a
given offset.

[X]
subsequence : seq1 X × N× N → seq X

∀ Seq : seq1 X; i, n : N •
subsequence(Seq, i, n) = Seq � {j : N • j ≥ i ∧ j ≤ i + n− 1}

The buttons start tour, next room, and previous room are used to change the
value of CurrentOffset. When the reader presses the button next room, CurrentOff-
set is incremented by 6 (the size of a room); a new subsequence of artifacts,

4. SPECIFYING A VIRTUAL MUSEUM • 102

starting in the new value of CurrentOffset is attached to the ADP ShowRoomADP.
The ADP also shows the entire list of names of artifacts and links to their

corresponding ADP.

4.3.3 Perspectives for schools and the collection

In the ADP for a school, there is a random icon from one of the artifacts in one
of the tours in the school; this icon links to its corresponding ArtifactADP. In the
next block, there is a description of the school. Finally, it lists each of the name
of the tours in the school with a link to their corresponding TourADP. Figure 4.8
shows this ADP.

The list of all schools is classified by the type of artifacts that the school
displays. As a consequence, it is necessary to select—within a specific school—
those groups of artifacts that are of a particular type. The function SchoolOfType
takes two parameters: a set of SchoolComposite and a variable of ARTIFACT TYPE
and returns only those elements of the set of the specified type.

SchoolsOfType : P SchoolComposite× ARTIFACT TYPE
→ P SchoolComposite

∀ SCSet : P SchoolComposite; Ty : ARTIFACT TYPE •
SchoolsOfType(SCSet, Ty) =

{Sch : SchoolComposite | Sch ∈ SCSet ∧ Sch.S.TypeOfArtifacts = Ty}

Each type of school is presented by the ADP ListOfSchoolsADP which observes
a set of SchoolComposite, all of them of the same type. It first shows the type of
the artifacts and then proceeds to list the name of each school, linking to the
corresponding ADP.

ListOfSchoolsADP is meant to be included into the ADP CollectionADP. Collec-
tionADP, defined in figure 4.3.3, will list all the different types of artifacts and
for each, select those schools that include artifacts of that type, and display them
using the ADP ListOfSchoolsADP. The ADP also shows the name of the “Tour of
the Week”, which links to its corresponding TourADP.

4. SPECIFYING A VIRTUAL MUSEUM • 103

ADP TourADP Observes Tour : TourComposite
Declarations:

CurrentOffset : N

show next room : internalmessage
show previous room : internalmessage
restart tour : internalmessage

Block Title:
Tour.Name

Block Buttons:
button start tour → restart tour
button next room → show next room
button previous room → show prev room

Block CurrentRoom:
ADP ShowRoomADP

Block AllWorks:
foreach A : ArtifactComposite in Tour.Elements do

anchor A.Art.Name linkto ArtifactADP(A)
Preconditions:

#Tour.Elements ≥ 1
CurrentOffset = 1
attach subsequence(Tour.Elements, 1, 6) to CurrentRoom
hide(previous room)

Message next room:
#Tour.Elements ≥ CurrentOffset + 6 ⇒

CurrentOffset′ = CurrentOffset + 6
show(previous room)
#Tour.Elements < CurrentOffset′ + 6 ⇒ hide(next room)
attach subsequence(Tour.Elements, CurrentOffset′ , 6) to CurrentRoom

Message prev room:
CurrentOffset > 6 ⇒

CurrentOffset′ = CurrentOffset − 6
show(next room)
CurrentOffset′ ≤ 1 ⇒ hide(previous room)
attach subsequence(Tour.Elements, CurrentOffset′ , 6) to CurrentRoom

Message restart tour:
CurrentOffset = 1
attach subsequence(Tour.Elements, 1, 6) to CurrentRoom
hide(previous room)

End TourADP

Figure 4.7: The ADP for a Tour.

4. SPECIFYING A VIRTUAL MUSEUM • 104

ADP SchoolADP Observes Sch : SchoolComposite
Declarations:

RandomArtifact : ArtifactComposite
Preconditions:

∃T : TourComposite •
T ∈ Sch.ToursComposites
RandomArtifact ∈ ran T.Elements

Block Image:
anchor RandomArtifact.Art.Icon linkto ArtifactADP(RandomArtifact)

Block Description:
Sch.S.Description

Block Tours:
foreach T : TourComposite in T ∈ Sch.S.ToursComp do

anchor T.T.Name linkto TourADP(T)

End SchoolADP

Figure 4.8: SchoolADP is responsible for displaying a group of tours.

ADP ListOfSchoolsADP Observes Sch : P SchoolComposite
Block ArtifactType:

Sch.S.TypeOfArtifacts
Block GroupOfTours:

foreach S : SchoolComposite in SchoolsComps do
anchor Sch.S.Name linkto SchoolADP(S)

End ListOfSchoolsADP

Figure 4.9: ListOfSchoolsADP lists the name of schools and links to their corre-
sponding ADP.

4. SPECIFYING A VIRTUAL MUSEUM • 105

RandomArtifacts : P Tour �→ P ArtifactComposite

∀TS : P Tour •
RandomArtifact(TS) =

{A : ArtifactComposite | (∃T : Tour • T ∈ TS ∧ A.Art ∈ T.Elements}
4 = #RandomArtifact(TS)

An interesting feature of CollectionADP is that it shows the icons of 4 random
artifacts in the collection, linking to their corresponding ArtifactADP. These ran-
dom artifacts are chosen using the function RandomArtifacts, which chooses 4
random artifacts from a set of Tour.

ADP CollectionADP Observes Coll : AllCollectionComposite
Block RandomArtifacts:

foreach A : ArtifactComposite in RandomArtifacts(Coll.AllTours) do
anchor A.Art.Icon linksto ArtifactComposite(A)

Block TourOfTheWeek:
anchor Coll.WeekTourComposite.T.Name linkto

TourADP(Coll.WeekTourComposite)
Block Collection:

foreach T : ARTIFACT TYPE do
T
ADPListOfSchoolsADP(SchoolsOfType(Coll.AllSchools, T))

End CollectionADP

Figure 4.10: CollectionADP shows all the groups of tours in the collection.

4. SPECIFYING A VIRTUAL MUSEUM • 106

4.3.4 The artists’ perspectives

The NGA-WM shows a page for each artist who is an author of an artifact in
the museum. This pages displays the information known about the artist, and
a list of all the artifacts created by her, grouped by type. In a manner similar to
the way we defined the ADP for schools, we proceed to define an ADP, ArtifactsI-
nOrder, that will observe a given set of type ArtifactComposite and show them in
alphabetical order. Its local variable OrderedArtifacts corresponds to an injective
sequence (a sequence with no repeated elements) created from the parameter
Arts. The ADP assumes that the type STRING is comparable, that is:

< : STRING× STRING

[a < b if a goes before b when alphabetically ordered]

ADP ArtifactsInOrderADP Observes Arts : P ArtifactComposite
Declarations:

OrderedArtifacts : iseq ArtifactComposite
Preconditions:

ran(OrderedArtifacts) = Arts
∀ i : 1..#OrderedArtifacts − 1 •

OrderedArtifacts(i).Name < OrderedArtifacts(i + 1).Name
Block GroupOfArtifacts:

foreach A : ArtifactComposite in OrderedArtifacts do
anchor A.Name linkto ArtifactADP(A)

End ArtifactsInOrderADP

Figure 4.11: ADP that shows the name of artifacts, in alphabetical order.

ArtifactsInOrderADP displays, for each artifact composite in the sequence, its
name and it links it to its corresponding ArtifactADP.

The ADP ArtistADP is responsible for showing an ArtistComposite. The func-
tion ArtifactsOfArtistOfType selects the subset of all the artifacts that match a given
ARTIFACT TYPE. The block ArtifactsOfArtist embeds one ArtifactsInOrderADP for
each subset of artifacts of a given type.

4. SPECIFYING A VIRTUAL MUSEUM • 107

ArtifactsOfArtistOfType : ArtistComposite× ARTIFACT TYPE
→ P ArtifactComposite

∀Author : Artist; Ty : ARTIFACT TYPE •
ArtifactsOfArtistOfType(Author, Ty) =

{A : ArtifactComposite | A.Art.TypeOfArtifact = Ty
∧ Author ∈ A.Authors}

ADP ArtistADP Observes Artist : ArtistComposite
Block General Info:

Artist.A.Name
Artist.A.Nationality
Artist.A.BirthYear
Artist.A.DeathYear

Block ArtifactsOfArtist:
foreach T : ARTIFACT TYPE do

T
ADPArtifactsInOrderADP(ArtifactsOfArtistOfType(Artist.Artifacts, T))

End ArtistADP

Figure 4.12: ADP for Artist.

The NGA-WM groups all authors that start with the same letter in a page.
GroupArtistsADP, shown in figure 4.13, will be the responsible for showing this
information. This ADP shows for each author, her name, which links to her
corresponding ArtistADP. The artists are ordered alphabetically.

ADP GroupArtistsADP Observes Artists : P ArtistComposite
Declarations:

ArtistsSeq : iseq ArtistComposite
Preconditions:

ran(ArtistsSeq) = Artists
∀ i : 1..#ArtistsSeq − 1 •

ArtistsSeq(i).Name <= ArtistsSeq(i + 1).Name
Block AllArtists:

foreach A : Artist in ArtistSeq do
anchor A.Name linkto ArtistADP(A)

End GroupArtistsADP

Figure 4.13: All the artists, in alphabetical order.

4. SPECIFYING A VIRTUAL MUSEUM • 108

Hadez does not have any primitives to handle characters, and, in fact, it does
not even define a character type. As a consequence we define an enumerated
type for the letters of the alphabet:

CHAR = (a, b, c, d, e, f , g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z)

We need now to be able to select all artists whose name starts with the given
character. We define StartWith as a relation, in which a tuple (s, c) is a member
of the relation if the string s starts with the character c.

StartWith : STRING ↔ CHAR

[If a tuple (s, c) ∈ StartWith then the string s starts with the letter c]

Now we can define a function that selects, from a set of authors, those au-
thors which start with a given character.

AuthorsStartingWith : P ArtistComposite× CHAR �→ P ArtistComposite

∀ SA : P ArtistComposite; c : CHAR
AuthorsStartingWith(SA, c) =

{Auth : ArtistComposite | Auth ∈ SA ∧ StartWith(Auth.A.Name, c)}

We have everything necessary to describe the ADP that shows all letters of
the alphabet and links them to the corresponding set of authors. This ADP is
depicted in figure 4.14. Notice that the block Main specifies that each letter of
alphabet should be displayed, regardless of whether there are any artists under
it.

ADP AllArtistsADP Observes AllArtists : IndexOfArtists
Block Main:

foreach c : CHAR do
c
anchor c linkto

GroupArtistADP(AuthorsStartingWith(AllArtists.ArtistsComposites, A))

End AllArtistsADP

Figure 4.14: A list of all characters in the alphabet, linking to their correspond-
ing GroupArtistsADP

.

4. SPECIFYING A VIRTUAL MUSEUM • 109

4.3.5 The galleries of the real museum

Each of the galleries displays a list of works that they display, grouped by au-
thor. ExtArtsInOrderADP is an ADP that uses the ability for an ADP to inherit
properties from the ADP ArtifactsInOrder. ExtArtsInOrderADP redefines the block
GroupOfArtists to show not only the name of each of the artifacts, but also its
creation date, physical description and accession number.

ADP ExtArtsInOrderADP : ArtifactsInOrderADP Observes Arts : P ArtifactComposite
Block GroupOfArtifacts:

foreach A : ArtifactComposite in OrderedArtifacts do
anchor A.Art.Name linkto ArtifactADP(A)
A.Art.CreationDate
A.Art.PhysicalDescription
A.Art.AccessionNumber

End ExtArtsInOrderADP

Figure 4.15: The ADP ExtArtsInOrderADP extends the ADP ArtifactsInOrderADP.

Because the artifacts are grouped by their authors, it is necessary to create
a function that will return the artifacts for a given author. The function Arti-
factsFromAuthorInSet is used to find, in a given set of ArtifactComposite which ones
were created by a given Artist.

ArtifactsFromAuthorInSet : ArtistComposite× P1 ArtifactComposite
→ P1 ArtifactComposite

∀Arts : P ArtifactComposite; Auth : ArtistComposite
ArtifactsFromAuthorInSet(Auth, Arts) =

{A : ArtifactComposite | A ∈ Arts ∧ Auth ∈ A.Author}

The GalleryADP, defined in figure 4.16, shows all the artifacts in the gallery,
ordered by their author. It uses the ADP GalleryArtistADP to show each one of
the authors, with her corresponding artifacts. Her corresponding artifacts are
computed by using the function ArtifactsFromAuthorInSet.

In the NGA-WM, a floor is shown with an imagemap with a floor plan of the
corresponding floor. Hadez does not have primitives to support imagemaps1.

1Hadez does not support parameters in messages. If parameters are allowed, the imagemap can

4. SPECIFYING A VIRTUAL MUSEUM • 110

ADP GalleryADP Observes Gal:GalleryComposite
Block GalleryName:

Gal.G.FloorPlan
Gal.G.Name

Block TheArtists:
foreach Auth : ArtistComposite in Gal.DisplayedAuthors do

Auth.A.Name
ADP ExtArtsInOrderADP(ArtifactsFromAuthorInSet(

Auth, Gal.DisplayedArtifacts))

End GalleryADP

Figure 4.16: ADP for each one of the galleries.

As a consequence, in this specification, the ADP for a floor—FloorADP, depicted
in figure 4.17—enumerates the names of the different galleries in the corre-
sponding floor (instead of using the imagemap), linking to their corresponding
ADPs.

ADP FloorADP Observes Floor:FloorComposite
Block Name:

FloorComposite.Floor
Block TheGalleries:

foreach Gal : GalleryComposite in Floor.Galleries do
anchor Gal.G.Name linkto GalleryADP(Gal)

End FloorADP

Figure 4.17: ADPFloor shows all the galleries in a given floor.

The FloorsADP, in figure 4.18 shows the all floors. It embeds one FloorADP
for each one of the floors in the museum buildings.

4.3.6 The main page

Finally, we put everything together by providing access, from the “home page”,
to all the main sections of the museum. This ADP shows at the top a random

be implemented as a message handler that receives a message which includes the coordinates of the
selection. Parameters, however, increase the complexity of Hadez and make its verification more
complex. In chapter 6 we introduce a method to extend Hadez with design patterns; the pattern
HyperMap can be used to implement this feature in the NGA-WM.

4. SPECIFYING A VIRTUAL MUSEUM • 111

ADP FloorsADP Observes AllFloors:AllFloorsComposite
Block TheGalleries:

foreach F : FloorComposite in AllFloors.Floors do
ADP FloorADP(F)

End FloorsADP

Figure 4.18: ADPFloors shows all the floors in the museum.

image and links it to its corresponding ArtistADP. It also provides links to the
entire collection, to the floor maps, and to the index of artists.

ADP HomePageADP Observes Home : MainPageComposite
Block RandomImage:

anchor Home.RandomArtifact.Icon linkto
ArtifactADP(Home.RandomArtifact)

Block Collection:
anchor “The Collection” linkto

CollectionADP(Home.TheCollection)
Block Buildings:

anchor “What is on display at the Museum” linkto FloorsADP
Block Authors:

anchor “Index of Authors” linkto AllArtistsADP

End HomePageADP

Figure 4.19: The main page of the museum.

Due to space limitations, this specification describes only a subset of the
NGA-WM. The sections described herein attempt accurately reflect the current
version of the museum (as of Spring 2000). The sections of the Web museum
not specified here include the In Depth Tours and the Virtual Exhibitions which
are tours that are designed individually and share few common features (for
example, the tours “Thomas Moran, His Life and Works” and “Van Gogh’s Van
Goghs: Masterpieces from the Van Gogh Museum, Amsterdam”), the calendar
of events and the electronic store.

4. SPECIFYING A VIRTUAL MUSEUM • 112

4.4 Extending the specification

In order to illustrate the use of inheritance, we present in this section an exten-
sion of the museum specification that exploits the object oriented features of
Hadez.

Let us assume that the museum differentiates between different types of ob-
jects. For example, paintings and photographs, to name a few. The painting
adds two attributes, Technique and Material, while photographs have three more:
Film, ExposureData and PrintingData. We can declare these classes as subclasses
of Artifact:

Painting : Artifact
Technique : STRING
Material : STRING

Photograph : Artifact
Film : STRING
ExpositionData : TEXT
PrintingData : TEXT

Both Painting and Photograph can be used anywhere an Artifact is used (they
are descendents of it). Therefore, a tour can also include photographs, or paint-
ings; the tour, however will perceive them as artifacts and their extra attributes
will not be visible to it.

In order to exploit the extra attributes of the new class we need to extend
the ArtifactComposite and the Artifact related ADPs in order to handle the classes.

For example, to present Photograph it is necessary to extend ArtifactComposite
by declaring PhotographComposite as its child; in this particular case, the new
composite does not require any further attributes, and hence, its body is empty.

ΞPhotographComposite(Art : Photograph) : ArtifactComposite

We can then enhance the ADP ArtifactPhotoADP by adding a new block that
shows the photo related information.

4. SPECIFYING A VIRTUAL MUSEUM • 113

ADP PhotographPhotoADP:ArtifactPhotoADP Observes A : PhotographComposite
Block PhotoInfo:

A.Art.Film
A.Art.ExpositionData
A.Art.PrintingData

End PhotographPhotoADP:ArtifactPhotoADP

Figure 4.20: PhotographPhotoADP extends the functionality of ArtifactPhotoADP.

4.5 Summary

This specification describes precisely and unambiguously the National Gallery
Museum. This specification starts by describing the underlying classes of the
museum: artifacts, artists, tours, galleries, etc. and relations that correlate them,
such as: CreatedBy, that relates artifacts with artists; TourMembers, which relates
tours with its component artifacts; SchoolMembers, which relates schools with its
component tours; etc.

These classes and relations are used to create higher level entities such as Ar-
tifactComposite, which gathers an artifact and its authors; or TourComposite, which
combines a tour object with the its component set of ArtifactComposite.

Finally, the abstract design perspectives, or ADPs, describe how the compos-
ites are to be presented to the reader. They describe which attributes of the
composite are presented, and how they are linked to other APDs. For instance,
the specification describes how a tour is presented in “rooms”, each of 6 arti-
facts. The user is allowed to move forward and backwards through the rooms
in order to view the icons of the artifacts. Each of the icons links to the another
ADP that describes in detail the artifact. The user is also presented with a list of
all the names of the artifacts in the tour.

This specification can be analyzed and verified, which is the subject of the
next chapter.

The truth exists—only fictions are invented.

Georges Braque
Pensées sur l’Art, 1917-1955

C H A P T E R 5
Verifying the Specification

5.1 Introduction

Formal specification languages offer several advantages over informal specifi-
cation languages, such as:

• There is evidence that the use of a specification language with well defined
syntax and semantics forces the designer to be more careful in the descrip-
tion of a system, hence increases the quality of the design. As Bertrand
Meyer stated “formal notations naturally lead the specifier to raise some

114

5. VERIFYING THE SPECIFICATION • 115

questions that might have remained unasked, and thus unanswered, in an
informal approach” [Mey85].

• Some properties of the specification can be verified.

The basic idea behind verification is that the specification can be translated
into a set of logic statements that can be used to prove or disprove properties
about the specification. We are interested in answering questions about the
characteristics of the hypertext application described by the design, and more
particularly, characteristics of the potential browsing sessions that readers could
encounter.

An Hadez specification describes two main types of facts of an application:
its structural characteristics, and its behavior. The structural facts describe how
the composites and, in essence, what data is included in the application. The
behavior of the application relates to the way that the application reacts to the
reader input.

5.2 What properties does the specification fulfill?

One of the goals of a formal specification language is the ability to derive new
facts from the ones stated in the specification. These new facts are derived
through the application of inference rules. We say that we prove a property of
the specification if this property is derivable, by using a well defined set of in-
ference rules, from the original specification, and this property is not explicitly
stated in the specification.

There are different types of properties that we might be interested to prove
in a Hadez specification:

5.2.1 Is the application realizable?

An application is realizable if there exists at least one potential implementation
of it. In particular, in Hadez, there are several ways in which an application
might become non-realizable. A contradictory specification is non-realizable.
In Hadez, there are multiple places in which contradictions can be added to a
specification. For example, a perspective specification includes a set of invari-
ants that should always hold at any state of the application. We are interested

5. VERIFYING THE SPECIFICATION • 116

in verifying that, by reacting to user requests, the state of the perspective does
not violate its invariants. A contradiction might be present in the invariant sec-
tion of a perspective; for example, the invariant might specify that an attribute
A should be visible and invisible at the same time. In other cases, the contra-
diction only occurs under certain circumstances; for example, a perspective P
observes a artifact composite A and includes an invariant that says that the title
of A should always be visible; A transition in P that indicates that the title should
be hidden is a clear violation of this invariant. The existence of this transition
states that the specification has a contradiction if that transition can take place
during a browsing session. In this case we are interested in knowing whether
there are browsing sessions that can lead to contradictions. We might also be
interested to know if the structural schema is realizable. In this case we would
like to verify that every composite schema predicate section is satisfiable, that is,
there is a potential set of a values for its variables that makes the predicate true.

5.2.2 Is the specification type consistent?

Like the language Z, a specification in Hadez should be statically type consis-
tent. Type inconsistencies in the specification usually lead to errors.

5.2.3 How does the specification behave?

We are also interested in answering questions about how the application behaves
when interacting with a given user. These questions can be grouped in two main
categories:

• Perspective behavior. Once a given perspective is presented to the reader,
how does it react to the reader’s actions? In particular: a) what potential
states can be reached in a given perspective; and b) for each of those
states, what attributes of its observed composite, what buttons and which
anchors are shown to the reader.

• Application behavior. In this case, we are interested in facts that hold for
the behavior of the entire application. These facts can be either about its
navigation—how the reader can move from one perspective to another;
or invariants of the application—facts that are true during the entire life
of the application.

5. VERIFYING THE SPECIFICATION • 117

In order to illustrate how Hadez is useful for verifying properties of the
design, we pose some questions on the specification of the virtual museum (as
described in chapter 4). We will further discuss these questions and formally
specify them in the next sections.

Perspective Behavior

1. Does the ArtifactADP perspective always show the name of the artifact?
(defined in figure 4.4 on page 99).

2. Does the ArtifactADP perspective show at any time the Provenance of the
artifact?

3. Can the TourADP perspective show all the elements of its observed Tour-
Composite to the reader? (defined in figure 4.7 on page 103).

Application Behavior

4. Whenever an image of an artifact is displayed, is its title also displayed?

5. Is every artifact in the museum reachable from the root node of the mu-
seum?

6. Every time that an attribute of an artifact photo is shown to the reader,
is the perspective corresponding to the artifact immediately reachable by
following one hyperlink?

In order to answer these questions it is necessary, first, to create an analyz-
able model of the specification as described by Hadez; and second, rewrite each
question into a predicate that can be proved or disproved against the aforemen-
tioned description.

5.3 Modeling the specification

From the point of view of Hadez, a hypermedia application is a collection of
perspectives that observe a set of composites. The perspectives interact with
the reader and this interaction determines how the composites are presented.

5. VERIFYING THE SPECIFICATION • 118

From the point of view of the reader, the hypermedia is a collection of nodes
which are connected through hyperlinks. From the point of Hadez, however,
each node is a perspective, which in turn can be composed of one or more
perspectives. The reader interacts with the perspective, by either changing its
state (by pressing buttons) or by following hyperlinks, replacing the currently
displayed perspective with a new one.

In order to be able to analyze how perspectives interact with a reader, it is
necessary to provide a model that can represent their behavior. The model we
will use is I/O automata [LT87, LT88]. See appendix B for an overview of I/O
automata.

5.3.1 Modeling a perspective

Informally, an I/O automaton is a possibly infinite state automaton. Its reacts
to its environment by accepting input messages. An input message forces the
I/O automaton to change its state and generate an output message in response.
We are particularly interested in finding an equivalent I/O automaton for each
perspective; we refer to it as the characteristic I/O automaton of a perspective.
The state of the automaton is defined by the internal value of the attributes of
the perspective and by which attributes of its observed composite are visible.
The state of the perspective, as well as the state of the automaton, can only
change by reacting to messages. The perspective’s input and output messages
(follow hyperlink, pressed button, display anchor, etc.) correspond to input and
output messages of its corresponding I/O automaton. For an I/O automaton, an
alternating sequence of messages and states is known as an execution fragment.
An execution sequence that starts in a starting state is known as an execution of
the automaton.

The problem of analyzing how a perspective behaves under the reader re-
quests becomes a problem of analyzing the potential executions of its charac-
teristic I/O automaton. We can therefore ask questions about the behavior of
the perspective and translate them into predicates involving its characteristic
I/O automaton. For example, the question number 1 “Does the ArtifactADP per-
spective always show the name of the artifact?” can be translated to “for any
state in any execution of the characteristic I/O automaton of an ArtifactADP per-
spective, is the title of the artifact visible?”, or its negative counterpart “is it true

5. VERIFYING THE SPECIFICATION • 119

that there is no state in the execution of the characteristic I/O automaton of
an ArtifactADP perspective such that the title of the artifact is not visible?”. In
other words, the executions of the automaton are equivalent to the behavior of
the perspective and it is desirable to be able to find, for any question about the
the behavior of a perspective, an equivalent predicate on the execution of its
characteristic I/O automaton.

We use HTL* to specify the behavioral properties of a perspective and the
complete application. HTL* is a first order temporal logic developed by Stotts
et al. [SF98]. HTL* contains path quantifiers to express properties that hold
over any potential browsing session. We describe in this chapter how the se-
mantics of an atomic predicate of HTL* are adapted in order to be applied to
Hadez specifications.

Question 1, for example, can then be rewritten as
−→∀ ✷A.Art.Name, where

the variable A.Art.Name corresponds to the name of the artifact in the scope of
ArtifactADP (as defined in figure 4.4 on page 99). The predicate ✷A.Art.Name
means the attribute Name : of A.Art is visible at subsequent state of the of the
perspective ArtifactADP. The operator

−→∀ states that it should hold for any po-
tential browsing path.

5.3.2 Modeling the behavior of an entire application

When different perspectives form nodes of a hypermedia application, we are
interested in how the reader interacts with it and moves through it. The reader
starts at the root node of the application and, by following hyperlinks, can move
from one perspective to another. We are, therefore, interested in answering
questions regarding the way an application can be browsed.

In order to make more manageable the problem of analyzing the behavior
of an application, we impose one restriction in the run time system: there exists
only one active viewport at any given time. In other words, only one perspec-
tive is visible at any point in a browsing session. A navigable node, from the
point of view of the reader, is a perspective. When a reader selects a hyperlink
which destination is not the current perspective, the new perspective replaces
the current perspective in the viewport. This restricts the potential states of the
application. We will argue further below that this framework can be applied to
systems that allow more than one viewport.

5. VERIFYING THE SPECIFICATION • 120

In order to model the behavior of the entire application, we create an I/O
automaton whose behavior corresponds to the behavior of the hypertext appli-
cation. It is then possible to evaluate HTL* on the potential execution of the
I/O automaton of the hypertext application.

For example, we can specify question 4 as: ∀A : Artifact • ✷A.Photo ⇒ A.Title;
which means that it is always true that for any artifact, if its photo is displayed
then its title should also be displayed at the same time.

5.4 Formalizing perspectives

We now proceed to formalize the execution of perspectives in order to be able
to specify and prove properties about their execution. We will start by defin-
ing some concepts: the set of attributes of a composite and the visibility of a
composite.

5.1 Definition (Set of Attributes of a Composite) The set of attributes of a compos-
ite C, denoted by A(C) is defined, recursively as the singleton A(C) = {C} if C is an
atomic composite, and as A(C) = {C} ∪ ⋃A(ci) for each composite ci which is an at-
tribute of C. For a hypermedia application A, C ∈ C(A), implies that A(C) ⊆ C(A);
that is, if a composite is part of an application, then all its attributes are also part of the
application.

The set of attributes of a composite will help us define the concept of visibil-
ity of a composite. Informally, a composite is visible if at least one element of
its set of attributes is visible, at a given state.

5.2 Definition (Visibility of a Composite) A Composite C is said to be visible at the
state s of the execution of a given perspective, denoted by ν(C,s), if it can be perceived by
the reader in the current perspective at the state s or there ∃ a ∈ A(C) s.t. ν(a, s).

As the reader interacts with a perspective, the latter might display a given
attribute at one time, but not at another, as it reacts to the external messages,
sent by other perspectives or by the reader. We will properly define the notion
of state of an perspective further bellow.

In section 2.5.5 (on page 36) we defined a perspective as follows:

5. VERIFYING THE SPECIFICATION • 121

5.3 Definition (Perspective) A perspective P is a tuple P = 〈S, s0, sh, C, M, Ψ, V〉
where S is a set of states; s0 is the starting state for the perspective s.t. s0 ∈ S; C is
a composite being observed by the region; M is a set of messages that the region either
handles or generates; Ψ is a relation of the form Ψ ⊆ S×M × S; and V is a relation of
the form V ⊆ S×A(C), in which (si, cj) ∈ V iff ν(si,j) (the component cj of C is visible at
state si). There exists one state sh ∈ S s.t. ¬ν(sh, C), we refer to this state as the hidden
state of the perspective.

A perspective is restricted to only be able to show attributes of the composite
that it observes. The local variables defined in the body of an ADP are used
to keep track of the state of the perspective and cannot be presented to the
reader. S defines a set of potential states of the perspective. For each of these
states, the perspective will make visible a given subset of the attributes of the
perspective (denoted by the relation V which specifies which attributes of the
composite are shown to the reader at a given state). The number of attributes
in a composite is assumed to be finite. The messages the perspective can accept
(M) in conjunction with the transitions relation (Ψ) determine how the state
of the perspective changes, and therefore how it shows or hides attributes of
the given composite. The perspective, when first shown to the reader, starts at
state s0, and the state sh corresponds to the state in which the perspective is not
currently shown to the reader.

M is partitioned into three disjoint sets: input, output and internal. We refer
to each one of these sets as input(M), output(M) and internal(M), respectively.
Input messages are classified in four main classes:

• Display anchor. The perspective should be shown, in its starting state.
This is the result of the reader choosing a hyperlink to the current per-
spective.

• Follow anchor. The reader has chosen a hyperlink from the current per-
spective.

• Button message. The reader has pressed a button that triggers its corre-
sponding message.

• Perspective to perspective. The perspective receives a message generated
from another perspective.

5. VERIFYING THE SPECIFICATION • 122

Output messages can be classified as follows:

• Display destination anchor. A reader has created a “follow anchor” mes-
sage (an input message) but the desired destination anchor is not in the
current perspective.

• Perspective-to-perspective. Like its input counterpart, this message is cre-
ate by a perspective and its recipient is another perspective.

Internal messages are sent and handled internally by the perspective. The
messages main objective is to alter the state of the perspective. In order to
guarantee that a perspective can always handle any messages it receives, there
should exist a transition (si, m, sj) ∈ Ψ for each si, sj ∈ S and m ∈ M.

We now procede to establish the relationship between perspectives and I/O
automata. Informally, the perspective state corresponds to the state of the I/O
automaton. The perspective’s messages correspond to the actions in the I/O
automaton. The perspectivpe’s messages are already partitioned into three sets:
input, output and internal. Each will correspond to one partition of the action
signature of the I/O automaton. The set of starting states of A is a singleton with
s0 as its element.

5.4 Definition (Characteristic I/O automaton of a perspective) Given a perspec-
tive P = 〈S, s0, C, M, Ψ, V〉, we can construct its characteristic I/O automaton CIO(P)
as CIO(P) = 〈actsig, S′, S′

0, Ψ′, φ〉 where:

• S′ = S

• actsig = M, and it is partitioned as follows:

input(CIO(P)) = input(M)

internal(CIO(P)) = internal(M)

output(CIO(P)) = output(M)

• S′
0 = {s0 }

• (si, m, sj) ∈ Ψ ⇔ si
m→ sj ∈ Ψ′

5. VERIFYING THE SPECIFICATION • 123

• φ = ∅

We can then define an execution of a perspective as follows:

5.5 Definition (Execution of a perspective) The set of executions of a perspective is
the set of executions of its characteristic I/O automaton.

And by extension, a behavior is:

5.6 Definition (Behavior of a perspective) The set of behaviors of a perspective is
the set of behaviors of its characteristic I/O automaton.

The concept of execution is useful for the verification of an perspective.
Take, for instance, the region A2 described by ADP2 (as defined in figure 3.6
on page 69). A designer might be interested to know whether the attribute
attr3 is being displayed by this region at any time. The answer can be found by
analyzing the characteristic I/O automaton of the perspective: If there exists an
execution of the CIO(A2) with a state in which attr3 is shown, then the attribute
is visible at some point; for ADP2 in particular, that state is S0—as show(attr3) is
part of the preconditions of the perspective.

Similarly, it is possible to find contradictions in a specification. For example,
let’s assume that an invariant is added to ADP2 that indicates that attr3 should
always be hidden; any execution of the CIO(A2) will show that this invariant
is violated, as attr3 appears shown in multiple states in any execution of the
CIO(A2).

5.5 Parallel composition of perspectives

Perspectives can be composed into more complex perspectives, as explained in
section 3.9 (on page 81). In parallel composition, two perspectives collaborate
with each other in order to model a more complex one.

When composing two or more perspectives in parallel, we use their char-
acteristic I/O automaton to describe the semantics of their composition. I/O
automata are particularly useful to describe this type of composition.

In order to compose two perspectives A and B (A‖B), they should satisfy
some conditions:

5. VERIFYING THE SPECIFICATION • 124

• A and B should observe the same composite. A‖B will, therefore, observe
that same composite.

• The characteristic I/O automaton of A should be strongly compatible with
the characteristic I/O automaton of B. We satisfy this condition by requir-
ing that each message generated by a perspective to be unique across the
specification. In order to guarantee that a follow anchor and a display des-
tination anchor messages are unique, they will be composed of the name
of its source and destination perspectives.

We proceed to define the composition of two perspectives:

5.7 Definition (Composition of two perspectives) The composition of two perspec-
tives A = 〈Sa, sa, C, Ma, Ψa, Va〉 and B = 〈Sb, sb, C, Mb, Ψb, Vb〉 is defined as:

A‖B = 〈Sa × Sb, 〈sa, sb〉, C, MA‖B, ΨA‖B, VA‖B〉

The messages (MA‖B) that the resulting perspective can handle are defined
as:

• input(MA‖B) = (input(Ma)∪input(Mb))−(output(Ma)∪output(Mb)). In other
words, those input messages that match an output message of the other
perspective are no longer visible to the exterior.

• output(MA‖B) = output(Ma) ∪ output(Mb). All output messages remain as
such. For example, a button message m might be matched to an input
message of the other perspective, forcing a transition in it, but it will still
be propagated as an output message of the composed perspective.

• internal(MA‖B) = internal(Ma)∪ internal(Mb). All internal messages remain
internal to their own perspectives, and therefore, to the composed per-
spective.

The transition function ΨA‖B is created as follows:

(〈sj[a], sj[b]〉, m, 〈sk[a], sk[b]〉) ∈ ΨA‖B ⇔
∀ i ∈ a, b • (sj[i], m, sk[i]) ∈ Ψi ∧ m ∈ Mi ⇒ sj[i] = sk[i]

In other words, a transition generated by message m in the result perspective
should correspond to a similar transition in both A and B created by the same

5. VERIFYING THE SPECIFICATION • 125

message; and if m is not part of the messages handled by any of the composing
perspectives, then such composite perspective should remain in the same state.

An attribute is visible in the current state of the result perspective if is visible
in that state by either A or B:

∀ a ∈ A(C), s = 〈sa, sb〉 ∈ Sa × Sb •
ν(a, s) ∈ VA‖B ⇔ ν(a, sa) ∈ Va ∨ ν(a, sb) ∈ Vb

5.8 Lemma (CIO of the composition of perspectives) The characteristic I/O au-
tomaton of A‖B is CIO(A‖B) = CIO(A)‖CIO(B).

Assume A = 〈Sa, sa, Ca, Ma, Ψa, Va〉 and B = 〈Sb, sb, Cb, Mb, Ψb, Vb〉. By def-
inition 5.7, A‖B = 〈Sa × Sb, 〈sa, sb〉, C, MA‖B, ΨA‖B, VA‖B〉. If A and B are to be
composed, both of their CIO are strongly compatible and both perspectives
observe the same composite (C). By definition 5.4:

CIO(A) = 〈Ma, Sa, {sa}, Ψa, ∅〉
CIO(B) = 〈Mb, Sb, {sb}, Ψb, ∅〉
CIO(A‖B) = 〈MA‖B, Sa × Sb, {〈sa, sb〉}, ΨA‖B, ∅〉

By definition B.3 (see page 156 in appendix B):

CIO(A)‖CIO(B) = 〈Ma‖Mb, Sa × Sb, {〈sa, sb〉}, Ψa‖Ψb, ∅〉

It can be verified that by construction MA‖B = Ma‖Mb and ΨA‖B = ΨA‖ΨB.
Hence CIO(A‖B) = CIO(A)‖CIO(B) �

Under parallel composition, both perspectives behave like a single one, both
sharing the current viewport and observing the same composite.

There is another type of composition of perspectives in Hadez: aggregation.
In aggregation, one or more perspectives are embedded inside another; the ag-
gregated perspectives observe the current composite or one of its attributes.
One particular feature of aggregation is that a given aggregated perspective
can observe different composites at different states of the aggregation perspec-
tive (by using attach). Let us assume that there is an aggregation perspective P
which can have as many as five different composites (C1, ..., C5) attached at dif-
ferent times during the execution of its aggregation perspective P0. We would

5. VERIFYING THE SPECIFICATION • 126

model P as the parallel composition of P observing C1, P observing C2, ..., and
P observing C5 plus a requirement that only one of the five perspectives would
be visible at any given time. An “‘attach C2” statement, for example, will gen-
erate a message that hides the currently displayed perspective and shows the
perspective that observes C2.

5.6 The characteristic I/O automaton of a hypertext

application

The characteristic I/O automaton of a perspective models its behavior, and the
behavior of the perspectives that compose it. An application, however, is a
collection of nodes and each one of these nodes corresponds to one perspec-
tive. When the reader follows a hyperlink, the currently visible perspective is
replaced by the corresponding perspective.

Similar to the way we model the behavior of each perspective by creating
its corresponding I/O automaton, we model the behavior of an application with
an I/O automaton, which is created by composing the different I/O automata of
the perspectives of the application into the characteristic I/O automaton of the
application.

Informally, the characteristic I/O automaton of an application is created by
composing the characteristic I/O automaton of the different perspectives that
compose each of the nodes of the application. The resulting characteristic I/O
automaton is the parallel composition of the characteristic I/O automata of the
composing perspectives, with some restrictions that reflect the way perspectives
are combined into an application. In first place, a follow link message from
any perspective makes the starting perspective go into its hidden state, while
the destination perspective goes into its starting state. As a result, every time
that a link is followed, the current perspective is replaced by the viewport for
the destination perspective, while the other perspectives remain in the same
state as before the link was followed. The second restriction is that only one
perspective is visible at any given time, that is, all but one perspective in the
application is in its hidden state. The third restriction is that a button from one
perspective cannot trigger a transition of another perspective; that is, buttons

5. VERIFYING THE SPECIFICATION • 127

actions have only “node” scope and cannot be received by another perspective
corresponding to another node.

5.9 Definition (Characteristic I/O Automaton of an application) Given a hyper-
text application composed of a set of perspectives A = {P0, P1, ..., Pn}, each correspond-
ing to a node in the application, PO is the root perspective of the application, the charac-
teristic I/O automaton of A, denoted by %A = 〈actsig, S, s0, Ψ, φ〉 is defined as:

actsig =actsig(‖j∈0..nPj)

∪ {m | ∀Pj, Pk • ∃ a “follow anchor” message m from Pj to Pk}
S =states(‖i∈0..nPi)

s0 =〈s0[0], sh[1], ..., sh[n]〉
Ψ =steps(‖i∈0..nAi)

∪ {(
s1, m,
s2) | ∃ i, j ∈ 0..n • s1[i] �= hidden state(Pi)

∧ s1[j] = hidden state(Pi) ∧ s2[i] = hidden state(Pi)

∧ s2[j] = start state(Pi) ∧ m is a “follow anchor message” from Pi to Pj}
φ =∅

Each
s ∈ S can be represented by a tuple
s = 〈s[1], s[2], ..., s[n]〉 where s[i] is the state in
which the i-th perspective Pi is in the overall state of the application. s0 is a state such as
the root perspective is in its starting state and all the other perspectives are in the hidden
state.

This definition states that the action signature of the characteristic I/O au-
tomaton of an application is the action signature of the composition of the char-
acteristic I/O automaton of each of the perspectives plus a set of “follow anchor”
messages from each perspective to each perspective in the application. This will
allow us to link any perspective to any other perspective. The starting state of
the automaton is such that the root perspective is in its starting state, but all
the other perspectives start hidden. The transitions in the characteristic I/O
automaton are such that by acting on a “follow anchor” message, the current
perspective goes into hidden state, and the destination perspective goes into its

5. VERIFYING THE SPECIFICATION • 128

starting state.
It is necessary to impose one restriction in the perspectives forming A:

∀Pj, Pk ∈ A • signature(Pj) ∩ signature(Pk) = ∅

This restriction makes it impossible for one message in the signature of a
given perspective to generate a transition in another perspective unless it is a
“follow anchor” message (all which are unique across perspectives, because each
message contains the source and destination perspective). Its purpose is to re-
strict the transitions across perspectives to be only those created by a “follow
anchor” message. The simplest way to satisfy this requirement, without restrict-
ing which perspectives we can compose, is to rename every message created by
a button with a unique identifier across A.

We can extend the concepts of behavior of an execution of an application
based upon the behavior of perspectives.

5.10 Definition (Execution of an application) The set of executions of a perspec-
tive is the set of executions of its characteristic I/O automaton.

And by extension, a behavior is:

5.11 Definition (Behavior of an application) The set of behaviors of a perspective
is the set of behaviors of its characteristic I/O automaton.

5.7 HTL*

HTL* [SFC98] is a first order temporal logic language based on CTL* . It
extends CTL* by providing quantifiers over any potential browsing path. In
Hadez, the atomic predicates of HTL* are three, each describing a property at
a given state of a perspective.

• A perspective P is visible: P. As a corollary, ¬P corresponds to the fact that
the perspective is not being displayed in the current state to the reader in
the current viewport.

• A perspective P is in its starting state: Ps

5. VERIFYING THE SPECIFICATION • 129

• An attribute i of a composite C observed by the perspective P is visible in
the current state: P.C.i.

The kernel of HTL* is defined as any first order logic formulae on the pred-
icates just described.

HTL* is defined inductively as:

• Every atomic formula p is a HTL* formula.

• If A is a HTL* formula, so are ¬A (not A), ©©©A (A holds at the next state
after the reference state), and ✷A (A holds at all states after the reference
state).

• If A and B are HTL* formulae, so is A ⇒ B (implication).

Other commonly used temporal logic operators can be defined in term of
these ones:

• ✸A (A holds at some state after the current state):

✸A ⇔ ¬✷¬A

• A until B (A will hold at the next state until the state in which B holds):
A until B ⇔ B atnext (A ⇒ B) ∧ ©©©✸B

Finally, HTL* defines two quantifiers over any potential execution path:

• −→∀ A (A holds for all forward paths)

• −→∃ A (there exists one forward path in which A holds)

5.7.1 Restating properties in HTL*

We can then use HTL* to state formally the questions that were posed in sec-
tion 5.3.1.

The first three questions can be interpreted in two different ways: on one
hand, as properties of a single perspective, independent of the rest of the ap-
plication. On the other hand, as properties of the entire application.

In the first case, there is an implicit assumption that the perspective starts in
its starting state, and is never hidden. In the second, the predicate holds while
the perspective is not hidden. We can state this formally as:

5. VERIFYING THE SPECIFICATION • 130

5.12 Definition A predicate p, that holds in a perspective P of type τ , is equivalent to
a statement of the form:

∀P : τ • P ⇒ p

where any attribute of P in p should be decorated as an attribute of P.

We can exemplify this definition by formalizing question 1 “Does the Artifac-
tADP perspective always show the name of the artifact?”. When interpreted in
the scope of the perspective only, we can state it as:

✷A.Art.Title

that is, the title of the observed composite A is always visible. The variable A (of
type ArtifactComposite) is defined in the scope of the perspective, and therefore,
it does not have to be declared in the predicate. In the scope of the application,
we can write it as:

∀P : ArtifactADP • −→∀ P ⇒ ✷P.A.Art.Title

Question 2 “Does the ArtifactADP perspective show at any time the Prove-
nance of the artifact?” is very similar to question 1 and can be stated, in the
scope of the perspective, as:

−→∀✸A.Art.Provenance

Question 3 “Can the TourADP perspective show all the elements of its ob-
served TourComposite to the reader?” can be specified as:

∀Artif : ArtifactComposite • −→∀ Artif ∈ TourComposite.Elements⇒✸Artif

within the scope of TourADP; in other words, any ArtifactComposite in the ele-
ments of the tour of the composite, is eventually shown in the current perspec-
tive.

Question 4 “Whenever an image of an artifact is displayed, is its title also
displayed?” can be written as:

∀A : Artifact • −→∀ ✷A.Photo ⇒ A.Title

5. VERIFYING THE SPECIFICATION • 131

Question 5 “Is every artifact in the museum reachable from the root node of
the museum?” corresponds to:

∀A : Artifact • −→∃✸A

other words, every artifact will eventually be visible.
Question 6 “ Every time that an attribute of an artifact photo is shown to the

reader, is the perspective corresponding to the artifact immediately reachable
by following one hyperlink?” can be specified as

∀A : Artifact ∃P : ArtifactPerspective • −→∃ P.A = A ∧ A.Photo©©©Ps

that is, for every artifact A, there exists an ArtifactPerspective that observes A such
that this perspective is visible in the next state. A perspective can only be in its
starting state if either the reader follows a hyperlink in which this perspective is
the destination or the perspective is part of the current perspective. In either
case, the result is the expected one.

5.8 Semantics of HTL*

The semantics of HTL* of can be explained in terms of a Kripke structure K
with an infinite sequence of mappings:

ηi : V → {t, f }

Where V is the set of composite identifiers, perspective identifiers or a per-
spective starting state identifiers. Each one of these corresponds to one of the
three atomic predicates of HTL* (as defined in section 5.7). For a composite C,
its Kripke structure at state ηi is defined it terms of its visibility at that state:

Ki(C) ⇔ ∃P, C, C′, C ∈ A(C′) • P observes C′ ∧ ν(C, s)

Where s is the current state of P at ηi. In other words, a composite is visible
at a given state if there exists a perspective that observes that C or a composite
C′ that includes C.

For a perspective P = 〈S, s0, sh, C, M, Ψ, V〉, which is at state s ∈ S at state ηi

5. VERIFYING THE SPECIFICATION • 132

of the application:

Ki(P) ⇔ s �= sh

The value of the P is true if the perspective is not hidden. And for the
starting state of P:

Ki(Ps)⇔ s = s0

Ps is true if P is its starting state.

5.9 Verifying a property

There are two ways in which a property can be verified: manually and automatically—
using a theorem prover.

5.9.1 Manual verification

In order to illustrate how properties can be verified, we will proceed to prove
the predicates corresponding to questions 1 and 2.

5.13 Lemma (✷A.Art.Name = t) for the perspective ArtifactADP (defined in fig-
ure 4.4 on page 99).p

A quick look a the specification of ArtifactADP shows that Art.Name is part of
the block GeneralInfo. The semantics of Hadez indicate that an attribute which
is part of a block is always visible as long as the block is visible. There is no
predicate that hides GeneralInfo in the message handler section of the predicate.
Hence Art.Name remains visible as long as the perspective is visible. �

5.14 Lemma (✸A.Art.Provenance) = t for ArtifactADP

This proof is a little more complex. The only place in which Art.Provenance
appears is in the block Provenance. This block is hidden at the starting state
of the application (by using the predicate hide(Provenance) in the preconditions.
Therefore, the predicate ✸A.Art.Provenance is equivalent to the predicate: “is
the block Provenance eventually shown?”. The block Provenance is shown inside

5. VERIFYING THE SPECIFICATION • 133

the message handler for show prov. Therefore, we need to find a state in which
a message show prov is generated. show prov can only be generated by the but-
ton prov which is part of the block Buttons. The block Buttons is always visible,
hence the button prov is always available to the reader. Since we assume that
the perspective is treated fairly, at some point the reader presses the button prov
which triggers the message show prov, which in turns shows the block Provenance,
which contains the attribute A.Art.Provenance. �

As the complexity of the predicate and the perspectives increases, it becomes
more and more difficult to provide proofs like these. Furthermore, the potential
for error in the proofs also increases.

5.10 Automatic verification

The formal framework presented in this chapter can be used to mechanize the
verification of properties. In particular, I/O automata have been modeled in
Isabelle/HOL [Pau94, NS95b, NS95a]. Z specifications have been translated
into HOL and then verified [BG94].

A Hadez specification can be translated into a HOL equivalent. HTL* pred-
icates would then be translated into HOL predicates that can be checked against
the specification. Mechanized verification is beyond the scope of this work.

5.11 Summary

In this chapter we have presented a formal framework in which it is possible
to specify and verify properties about a Hadez specification. This framework is
composed of two main parts: the modeling of perspectives with I/O automaton.
The behavior of a perspective is equivalent to the behavior of its corresponding
I/O automaton. The verification of a property of the perspective is equivalent
to the verification of an equivalent property of the I/O automaton. In second
part of the framework, we define HTL*, a temporal logic that is used to state
properties of perspectives. HTL* is used to specify formally some questions
about the specification of the NGA-WM specification in chapter 4.

Augmenting a method with patterns eases
its use by providing higher level constructs.
They improve the expressive power of the
method.

Rossi et al. [RSL99]

C H A P T E R 6
Design Patterns in Hadez
From the appearance of the first hypertext systems [Eng63, Nel65] authors have
design and created hypertext and—more recently—hypermedia applications.
Authors have also learned what works better under certain circumstances and
have gathered a collection of tricks of the trade that help them design more ef-
fective hypermedia applications. Authors try different approaches to solve a
given problem, evaluate what solutions work best and carry on this experience
in subsequent designs.

Many problems are ubiquitous and designers are likely to face them eventu-
ally. Common sense dictates that designers that face a newly encountered prob-
lem should not invent solutions from scratch; rather, they should take advantage

134

6. DESIGN PATTERNS IN HADEZ • 135

of the knowledge acquired previously by others. A design pattern “describes a
problem which occurs over and over again and then describes a solution to that
problem, in such a way that you can use this solution a million times over, with-
out ever doing it the same way twice” [AIS77]. A design pattern attempts to
collect experience from the expert to pass on to other experts or novices in the
field, hence avoiding reinvention by others.

Patterns are not unique to the hypermedia world. They were first used
in architecture [Ale79] and recently acquired in software engineering design
[GHJV, CS95, VCK96]. The first hypermedia design patterns were presented
by Rossi [RSG97]; since then many more have been published. They range from
generic “golden rules” [NN98] to specialized patterns for collaborative design
[SS99].

Appendix A lists all the design patterns published to date. It is based on the
list in [GC00] and further expanded to include newer patterns.

6.1 Organizing and classifying patterns into a pat-

tern system

As we argued in [GC00], there is no coherent system of patterns currently avail-
able. Most patterns have been presented independent of each other and they
do not create a cohesive group. In order for the patterns to be useful, and for
them to be integrated into the design process, it is necessary that these patterns
conform a pattern system.

Buschmann et al. [BMR+96] defined a pattern system in the scope of soft-
ware architectures. Their definition can be adapted to hypermedia design: a
pattern system is as a collection of patterns, together with guidelines for their
implementation, combination and practical use in hypermedia development. A
pattern system should satisfy six conditions:

1. It should comprise a sufficient base of patterns.

2. It should describe all its patterns uniformly.

3. It should expose the various relationships between patterns.

4. It should organize its constituent patterns.

6. DESIGN PATTERNS IN HADEZ • 136

5. It should support the construction of hypermedia systems.

6. It should support its own evolution.

The 51 patterns listed in the appendix arguably form a sufficient base of
patterns to create a pattern system. Our intention is to create a system that can
be incorporated into Hadez.

The first step towards creating a system is to classify the patterns and then
organize them into groups. The patterns in each group should share common
characteristics. There exist many proposed classifications of design patterns in
the literature. Garrido et al. [GRS97] and Rossi et al. [RSG97] divide them
based upon the stage of the design process in which they are most likely used:
“navigational design” and “interface design”, which correspond to the naviga-
tional design and interface design stages of OOHDM. In [GC97] we proposed
a classification based upon the objective of the pattern: “structural”, “presen-
tational”, and “support.” Bernstein classifies his patterns [Ber98] as rhetorical
although they can be perceived as structural. Nanard and Nanard [NN98] pro-
posed a new type of pattern called “golden rules”. Lyardet et al. [LRS98a]
proposed to classify them based on the issues they target: “information orga-
nization”, “interface organization” and “implementation”. Lowe [Low99] pro-
posed a new category called “process patterns”. Each of these papers classifies
only the patterns that it presents. None attempts a wider taxonomy. Paolini
and Garzotto [PG99] proposed a global classification based upon whether the
patterns specify “user requirements”, “generic design ideas”, and “well defined
design ideas”; unfortunately, they did not classify any design patterns. Nanard
and Nanard [NN99] proposed a classification based on three major dimensions:
“hypermedia design and development”, “hypermedia application”, and “hyper-
media system”; each of these dimensions is further divided into subdimensions
(e.g. hypermedia system is divided into architecture, interaction and produc-
tion). Although they include a list of design patterns, they did not try to classify
them.

In Hadez, we will only be concerned with patterns that specify design prob-
lems that are specific enough to be used within Hadez context, but generic
enough not to be considered implementation specific. These patterns will form
a pattern system within the framework of Hadez and therefore be integrated
into the development process. Patterns are organized according to the stage of

6. DESIGN PATTERNS IN HADEZ • 137

the design—as defined by Hadez—to which they pertain:

Component Construction. These patterns characterize, mainly, the way that
individual composites are created. Examples of patterns in this group are Node
as a single unit, Component Layout, and Composite Consistence.

Structural Design Patterns. In the scope of Hadez, structural design patterns
solve problems involving the way groups of composites are interrelated, and
therefore, determine the overall structure of the characteristic graph of the hy-
perbase. Examples of these patterns are Cycle, Counterpoint, Mirrorworld, Tangle,
Sieve, Montage, Missing Link, Neighborhood, and Split/Join.

Perspectives Construction and Navigation. These patterns assist in the cre-
ation of ADPs, and how they should be crosslinked. Active Reference, Navigational
Context, Navigational Feint, Navigational Observer, News, Decorator, Set-based Navi-
gation, and Landmark are good examples of patterns in this group.

Behavioral/User Interaction. Patterns that solve problems related to the way
the user and the application interact. In the scope of Hadez, they solve prob-
lems related to the way the ADPs handle user input. The patterns in this group
include Behavior Anticipation, Information on Demand, Link Destination Announce-
ment, Process Feed-Back, and Collector.

6.2 Integrating design patterns into Hadez

Rossi et al.[RSG97], Schmidt [Sch95] and Garzotto et al. [GPBV99] have argued
why design patterns are valuable design artifacts:

• Patterns enable widespread reuse of architectures.

• Patterns improve communication within and across designers and devel-
opers.

• Pattern explicitly capture knowledge that experienced designers already
understand implicitly.

6. DESIGN PATTERNS IN HADEZ • 138

• Patterns facilitate training of new designers.

• Patterns increase the quality of design.

• Patterns reduce the cost of design and implementation.

The constructs of Hadez allow the designer to add patterns to a specifica-
tion, and subsequently specify parts of the application in terms of these pat-
terns. Design patterns become reusable solutions ready to be applied, and ex-
tend Hadez specification language.

When faced with a problem already solved by a design pattern, the designer
only needs to indicate that this part of the application is going to be solved with
that pattern. The designer then proceeds to indicate how the participants of
the pattern should be instantiated.

The goal of using patterns is to simplify the specification of the design. They
indicate how a part of the application is going to be solved in terms of well-
known solution.

Take for instance the pattern set-based navigation (described in detail in sec-
tion 6.4 in page 140). This pattern indicates how to solve the problem of pre-
senting a set of related objects to the reader. This problem is a common one
in a hypermedia application; in the scope of Hadez, sets of composites are
frequently presented to the reader. The designer is confronted with having to
specify how each one of these sets is to be navigated and presented to the reader.
By using the pattern, the designer can just indicate in the design, for example:
“for this set of composites, use the set-based navigation pattern in which you create the
menu of the composites using the perspective P1 and you order the elements according to
the relation R.” The job of P1 is to show one element of the set and link it to the
corresponding perspective that shows it in detail.

This description is simple and straightforward and only requires the reader
to know what the set-based navigation pattern is, and what its participants are.

Hadez attempts to take advantage of this succinctness in the specification
by providing a framework in which Hadez can be enhanced with a system of
patterns, in which each pattern is clearly and uniformly described, and, more
important, characterized in a way that it can be easily used within the specifica-
tion.

6. DESIGN PATTERNS IN HADEZ • 139

Hadez introduces the notion of design pattern characterization. A design
pattern characterization is a description of a pattern and an abstract type sig-
nature of its participants.

6.3 Characterizing design patterns

One of Hadez goals is to support the type verification of the specification. De-
sign patterns, however, are not types or classes. Patterns are generic guidelines
on how to solve a specific problem. We reach a compromise by only formalizing
the parameters necessary to instantiate the pattern.

The instantiation of a design pattern implies knowing what objects will be
used as the participants of the patterns and what generic characteristics they
should have. A pattern should be described in terms of the type signatures
of its participants and the type signature of the result of the instantiation of
the pattern. With this information, it will be possible to verify whether the
instantiation of a pattern is consistent with its definition.

For example, the main participant of the pattern set-based navigation is a
group of navigable objects. It will be clearly useless to instantiate this pattern
with, say, just one object, or with a set of integers (as the integers, by themselves,
are not navigable).

In Hadez, patterns are described with a group of generic types and the
type signatures of its participants (in terms of these generic types). The use
of generic types in patterns is similar to the way generic composite schemas use
generic types (see section 3.4.3 in page 60). As a result, if a pattern character-
ization indicates that a pattern requires a set of objects, the pattern cannot be
instantiated with only one object, for example.

6.1 Definition (Design Pattern Characterization) A design pattern characteriza-
tion (DPC) is a tuple P = 〈GenTypes, P1 : t1, ..., Pn : tn〉 where GenTypes is a set of
generic types and P1, ..., Pn, each of type ti ∈ GenTypes, are the participants of the design
pattern P.

Some patterns might have no participants. In that case, the DPC of the
pattern is an empty sequence. A DSP does not indicate how the pattern is
to be implemented. This is an important feature, because Hadez should not

6. DESIGN PATTERNS IN HADEZ • 140

constrain the implementation of the application. By using DPCs we can avoid
the specification of repetitive low level details without jeopardizing the quality
of the design.

A DPC is described in Hadez with a design pattern characterization schema
(DPCS). The general form of a DPCS is:

π Name[t1, ..., ti] : instance type
P1 : t′1
P2 : t′2
...
Pn : t′n

Where Name is the name of the pattern; t1, ..., ti are to generic types used
within the scope of the DPCS; instance type corresponds to the type signature
of the element created when the pattern is instantiated (it can be a composite
or a perspective with its corresponding parameter sequence, and determines
whether the instantiation of the pattern creates a composite or a perspective);
P1, P2, ..., Pn, each of type t′1, t′2, t′n correspond to the participants of the pattern.
Each of t′i can be defined in terms of the generic types t1, ..., ti.

A DPCS is used in a pattern instantiation by declaring an element as the
result of the application of the pattern. For instance:

InstantiatedName ≡ Name[t1, ..., ti](P1, P2, ..., Pn)

Where InstantiatedName is the name of resulting element, t1, ..., ti correspond
to the instantiation of the generic types, and P1, ..., Pn the instantiation partici-
pants. This construct is equivalent to create a composite or perpective schema
in which the inner details of the schema are hidden, but well known.

6.4 An example

We will illustrate DPCSs with a pattern that are is particularly useful in most
designs: set-based navigation.

Name: Set-based navigation

6. DESIGN PATTERNS IN HADEZ • 141

Intent: The intent of the pattern is to present in order, and in a uniform
way, a set of similar objects.

Motivation: Collections of similar objects, presented as a group, appear in al-
most any hypermedia application. A reader usually needs, either,
sequential access to the each of the members of the set, or direct
access to one or more of its members.

Applicability: This pattern is applicable in a variety of domains. For example,
the set of articles written by a professor, the set of students in a
department, the set of class course offerings by a department for
a given term, the set of books on sale today, the set of results of a
search engine, etc.

Solution: A good solution involves, first, ordering the elements of the set
according to a specific property of the elements. Each of the el-
ements will be presented in one hypermedia node in the same
uniform manner, reinforcing in the reader the fact that each el-
ement is part of the same set. Each of the nodes will be linked
to the previous and next one, so the entire sequence can be tra-
versed sequentially. Furthermore, a main table of contents will
assist into navigating directly into one particular node. The ta-
ble of contents will be ordered according to the same ordering
function as the order of the sequence.

Participants: • Set of composites. These are the objects to navigate.

• Ordering relation. A relation used to order the set into a
sequence.

• A perspective to use to present each of the elements of the
set in the table of contents perspective. Each of these per-
spectives shows one or more attributes of an element and
links it to another perspective that depicts in detail the ele-
ment.

Collaborations: The ordering relation transforms the set into a sequence. The
table of contents is created with a sequence of perspectives, one
for each element in the sequence.

6. DESIGN PATTERNS IN HADEZ • 142

Known uses: This pattern is ubiquitous; almost any hypermedia application
lists sets of similar objects.

Related patterns: Guided Tour (also known as Pure Guided Tour) [GD99], Hy-
brid Collection and Collection Center [GPBV99] are based on the no-
tion of set-based navigation and can be considered refinements of
it. Collection Center [GPBV99] corresponds to the Menu compo-
nent of this pattern.

The DPC of Set-Based Navigation is:

π Set-Based Navigation[element type] : perspective(P element type)
OrderRel : element type× element type
ElePers : perspective(element type)

The first participant of the pattern (the set of navigable objects) is part of
the type signature of the instantiated pattern (P element type), while the other
two are part of its participants section.

We exemplify the use of this pattern by defining GroupArtistsADP (shown in
figure 4.13 in page 107). This perspective shows, for each author, its name; the
name is liked to the corresponding ArtistADP for that artist.

We need to define a simple ADP that is used to present each artist in the set.

ADP SimpleArtistsADP Observes Artist : ArtistComposite
Block ArtistLink:

anchor Artist.A.Name linkto ArtistADP(A)

End SimpleArtistsADP

OrderArtistsComposites is a relation that orders elements of type ArtistsComposite:

OrderArtistComposite : ArtistsComposite× ArtistsComposite

∀ a, b : ArtistsComposite • OrderArtistComposite(a, b)⇒ a.A.Name < b.A.Name

We are now ready to instantiate the pattern:

GroupArtistsADP2 ≡ Set-Based Navigation[ArtifactComposite]
(OrderArtistComposite, SimpleArtistsADP)

Which creates a perspective GroupArtistsADP2 which is equivalent to GroupArtistADP.

6. DESIGN PATTERNS IN HADEZ • 143

6.5 A system of patterns for Hadez

The creation of a complete system of patterns in beyond the scope of this thesis.
It is our intention, however, to incorporate some design patterns into Hadez.
It is also clear that not all patterns can be characterized within this framework
because they might be too abstract or their application might not result in a
perspective or a composite.

The following patterns are good candidates to be part of our system of pat-
terns:

• Active Reference. It provides a perceivable and permanent reference about
the current status of navigation [RSL99]. [GRS97, LRS98b, RSG97].

• Navigational Context. It provides the user with closed navigational sub-
spaces containing related information [GRS97, LRS98b, RSG97].

• Landmark. It provides a set of hyperlinks to important areas of the appli-
cation [RSL99].

• News. It provides a list of most recently modified items in the application
[LRS98a, RSL99].

• Shopping Basket. Keeps track of user selections during navigation, mak-
ing these selections persistent to process them when the user decides to.
Decouple product selection from product consumption and/or processing
[RSL99].

This list does not pretend to be definite. As more patterns are discovered
and many are further refined, this list will change. The Gamma et al. collection
(or Gang-of-Four patterns, the first widely accepted catalog of design patterns
for software engineering) went through a period of evolution from their first
appearance, in 1991, to their final publication, in 1995. For instance, some
patterns were added; some had their names changed; and the average size of
each pattern grew from two to ten pages.

Furthermore, Hadez gives designers the ability to define and add their own,
application domain patterns.

6. DESIGN PATTERNS IN HADEZ • 144

6.6 Summary

In this chapter we integrate design patterns into Hadez. A pattern is charac-
terized by describing the type signature of each of its participants, and the type
signature of the result of the instantiation of the pattern (either a composite or
a perspective). We use the pattern Set-Based Navigation as an example; we first
characterize this pattern, and then instantiate it into a perspective equivalent to
one depicted in the specification of the virtual museum.

None but those who have experienced them
can conceive of the enticements of science.
In other studies you go as far as others have
gone before you, and there is nothing more
to know; but in a scientific pursuit there is
continual food for discovery and wonder.

–Dr. Frankenstein
Mary Wollstonecraft Shelley

Frankenstein, 1818

C H A P T E R 7
Conclusions

7.1 Summary

In this dissertation we described Hadez, a formal specification language for
hypermedia design. A Hadez specification is divided in three parts: conceptual
schema, structural schema, and perspective schema.

• The conceptual schema of Hadez is a collection of given types, type con-
structors, classes definitions, relations and instances. This part of Hadez
is very similar to a Z structural specification (as opposed to a behavioral

145

7. CONCLUSIONS • 146

one). Hadez allows the declaration of classes that can be defined using
single inheritance.

• The structural schema is a collection of Hadez composite schemas. A com-
posite schema describes how to create a composite from other composites
or from data from the conceptual schema. As described in section 2.4 (in
page 30), a composite schema is composed of three main parts: its pa-
rameters section, which specifies what composites or data are required to
instantiate the composite; a sequence of free variables; and a set of pred-
icates that bind those free variables to instances in the hyperbase or to
other composites.

• The perspective schema is composed of a sequence of abstract perspective
schemas (ADP). An ADP serves three main purposes: 1) it specifies how
the composite should be broken into pages; 2) it indicates which attributes
of the composite should be presented to the reader; and 3) it specifies
what attributes of the composite should be hyperlinked to other compos-
ites. A perspective is not an static entity. The user can change its state. An
ADP specifies how the perspective reacts to the user requests. The state of
an ADP determines what parts of the composite the ADP should show at
that particular state.

We demonstrated how Hadez can be used in the specification of a large
hypermedia system by describing the web site of the National Gallery of Art, in
the United States (www.nga.gov). This web site is one of the best of its kind.

We also presented a framework in which questions about the specification
can be formalized and verified, in particular, those regarding the behavior of
ADPs. Finally, we presented a method to enhance Hadez with the notion of
hypermedia design patterns.

7.2 Contributions

The main contribution of this dissertation is Hadez, a formal language for the
specification of large hypermedia applications.

7. CONCLUSIONS • 147

• The data model of Hadez divides a hypermedia application in three main
components: data (conceptual schema), structure (structural schema) and
navigation/presentation (perspective schema). As a consequence, any changes
in one of these three components will have a reduced impact on any of the
other components.

• A Hadez specification describes unambiguously the characteristics of an
application in an implementation-independent manner.

• One of the most important contributions of Hadez is the notion of Ab-
stract Design Perspective (ADP). An ADP is a user interface to a composite
and indicates: 1) how a composite is broken into pages; 2) what attributes
of the composite are presented to the reader; 3) any crosslinking to other
perspectives; and 4) how the interaction with the user affects the behavior
of the perspective.

• We have presented a framework for the specification of properties of the
specification and their verification. This provides assurance to the de-
signer that the specification complies with certain user requirements. In
particular, we argue how the behavior of perspectives can be modeled and
analyzed.

• The museum specification (in chapter 4) showed that Hadez can be used
to specify large, real-world applications.

• Finally, we demonstrated how the language can be extended with the use
of design patterns, which simplifies specifications and promotes the reuse
of designs.

Hadez is particularly useful in the specification of data-intensive applica-
tions. In the case of hypermedia literature, where entities are difficult to identify
ore are non-inexistent, its value will be very limited.

Many hypermedia designers have no logic training. For them, writing a
Hadez specification would be very difficult. However, by forcing a designer to
write a Hadez specification of the application before it is implemented, will most
likely guarantee that the designer has a clear understanding of the requirements
of the problem and its proposed solution.

7. CONCLUSIONS • 148

7.3 Future work

The work presented in this dissertation can be extended in several directions,
which can be classified in the following categories:

• Tool support for the development of Hadez specification.

• Studies on the effectiveness of Hadez.

• Tool support for mechanical verification.

• Tool support for the automatic implementation of Hadez specifications.

• A further extension of Hadez to support applications that modify the un-
derlying hyperbase

Tool support for Hadez can take several forms. Syntax and type verifica-
tion require a parser that takes as input a Hadez specification and verifies if
it is syntactically correct and type-consistent. The parser could be based in
the FuZZ Z type checker (recently open sourced) [Spi92b]; or in the PRECC
compiler-compiler for which there exists a Z grammar [BB95]. Another area of
importance for tool support is the creation of a graphical environment-oriented
towards the creation of Hadez specifications. This environment would include
syntax and type verification. Finally, a tool for the visualization of the specifica-
tion would create a graphical representation of the specification (for example,
its structural graph) that could be browsed by the designer.

Studies in the usability and adequacy of Hadez for the specification of large
actual applications are required. These studies could reveal advantages and
disadvantages of the language and would influence its future development and
application. It is also necessary to asses the impact of using Hadez in the design
process (as compared to current practices). For instance, it would be valuable
to know whether the use of Hadez in a large project reduces the overall devel-
opment time, reduces the number of errors in the implementation, simplifies
communication amongst parties involved, eases maintenance and improves the
reuse of the design in new applications. Similar studies are needed to asses
the impact of using Hadez within the framework of a design method, such as
OOHDM or RMM.

7. CONCLUSIONS • 149

The mechanization of the verification of Hadez specifications is an impor-
tant area for further research. It is important for the user to be able to pose
questions to a prover and know the answer with little or no effort. The theorem
prover HOL seems like a good candidate for such a system because, both, Z
[BG94] and I/O automata [Pau94, NS95b, NS95a] have been modeled with it.

In terms of implementation, it is important to investigate the automated
transformation of the specification into an implementation. This transforma-
tion would require that primitives in Hadez are translated to primitives in the
corresponding run-time system where the application is expected to be dis-
played. Because a Hadez specification is implementation-dependent, this trans-
formation might not result in a complete implementation. It is also possible to
translate the specification into a metadescription which is more implementation-
oriented, such as XML. For example, the WebComposition Markup Language
(WCML) [GWG97] is an XML-based language oriented towards the implemen-
tation of hypermedia applications, particularly in the scope of the World-Wide
Web. WCML follows the design process of OOHDM and, as a consequence, it is
viable to translate Hadez specifications into WCML.

Finally, Hadez can be extended to allow the modification of the hyperbase.
In our current model an application is a view that does not alter the underlying
data. Although most hypermedia applications fall into this category, the ones
that alter the data are becoming more frequent. Hypermedia is becoming a
common interface to database applications in which the readers are allowed to
change information. In the future, the difference between a software system
and a hypermedia system will be so minute that—for practical purposes—the
two systems may be considered to be the same.

A P P E N D I X A
Summary of Z Syntax
This section summarizes the Z notation used in this paper. The formal seman-
tics of the Z specification language is based on first-order predicate logic and set
theory. A complete description of the language can be found in Spivey [Spi92a].

Declarations

The basic unit of modularity is the schema. A schema, which may be parameter-
ized by a set of types (i.e., a generic schema), introduces a set of variables and

150

A. SUMMARY OF Z SYNTAX • 151

the predicates constraining their possible values:

SchemaName
variables

predicates

GenSchemaName[FORMALPARM1..n]
variables

predicates

Schema variables are not visible outside the definition, however, a definition
can incorporate the declarations and constraints of other schemas using schema
inclusion:

SchemaName
S
other variables

predicates

where S is a schema defined previously. The declarations of both schemas are
merged, and their predicates are conjoined. Schemas may also be defined as
the result of schema expressions:

SchemaName =̂ S ∧ T SchemaName =̂ S ∨ T

These definitions result in a new schema whose signature consists of the signa-
tures of both S and T, and whose predicates are joined by the respective logical
connective.

Global variables and axioms are introduced with an axiomatic description:

global variables

predicates

A generic constant definition is similar to a schema, but without a name. The
constants are introduced into the global specification scope:

[FORMALPARM1..n]
constants

predicates

A. SUMMARY OF Z SYNTAX • 152

[X, Y] Introduces given sets, i.e., X and Y are uninterpreted types.
X == Y The identifier X is a syntactic abbreviation for the expression, Y.

For the following definitions, assume that P and Q are predicates, S, T, and
U are sets, X and Y are arbitrary types, and R and Z are relations:

Logic

P ∧ Q Conjunction
P ∨ Q Disjunction
P ⇒ Q Implication
P ⇔ Q Equivalence (if and only if)
∃ x : S • P There exists at least one element of S that satisfies P
∀ x : S • P All elements of S satisfy P

Set Theory

{x1, x2, ..., xn} Set enumeration
P S The power set (set of all subsets) of S
F S The set of all finite subsets of S
x ∈ S Membership
x �∈ S Non-membership
#S Cardinality of S
x ⊆ S Subset
∅ Empty set
{x : S | P} The elements of S that satisfy P
S ∩ T The intersection of S and T
S ∪ T The union of S and T

Relations

X × Y Cartesian product
X ↔ Y Binary relation
(a, b) Ordered pair
first First of an ordered pair
second Second of an ordered pair
dom R Domain of R
ran R Range of R
R o

9 Z The composition of R and Z, e.g., {a : A, b : B, c : C | (a, b) ∈ R ∧ (b, c) ∈ Z • (a, c)}
R(| S |) Relational image of R, e.g., {a : A, b : B | (a, b) ∈ R ∧ a ∈ S • b}

A. SUMMARY OF Z SYNTAX • 153

Functions

X �→ Y The set of all partial functions from X to Y
X → Y The set of all total functions from X to Y
X �→→ Y The set of all partial surjections from X to Y

X →→ Y The set of all total surjections from X to Y
X �� Y The set of all partial injections from X to Y
f (a) Function application
f ⊕ {(a, b)} Function override, e.g., f (a) = b replacing any previous value of f (a)

Sequences

seq X Finite sequence of X
〈 〉 Empty sequence
〈S, T〉partitions U U = S ∪ T ∧ S ∩ T = ∅

Important Identities

X ↔ Y == P(X × Y)

x �→ y == (x, y)

A P P E N D I X B
Overview of I/O Automata
An I/O automaton [LT87, LT88] is a possible infinite state automaton where
each transition between states is labelled from a set of actions. For an I/O au-
tomaton A, we refer to its set of actions as actions(A). This set is partitioned into
sets of input, output and internal actions. We refer to these sets as input(A),
output(A), and internal(A). These sets of actions determine an interface between
the automaton and its environment. This interface is known as the action sig-
nature of an automaton, actsig(A). An I/O automaton A is formally defined as:

B.1 Definition (I/O automaton) An I/O automaton A is defined as a tuple
A = 〈actsig, S′, S′

0, Ψ
′, φ〉 where actsig is an action signature, S′ a set of states, S′

0 ∈ S′ is
a set of start states, Ψ′ is a transition relation Ψ′ ⊆ S′ × actsig× S′. φ is an equivalence
relation used to define fairness.

154

B. OVERVIEW OF I/O AUTOMATA • 155

An element (s, a, t) ∈ Ψ′ is known as a step and it is represented by s a→ t. An
execution fragment consists of a finite or infinite sequence s0

a0→ s1
a1→ ...

an−1→ sn...
such that si

ai→ si+1 ∈ Ψ′. An execution is an execution fragment that begins with
a start state. The execution set of A is denoted by execs(A). A state is reachable
if it is the final state of a finite execution.

By removing the actions from an execution fragment of an I/O automaton
A we obtain a schedule of A. If, from a schedule of A, all the internal actions are
removed, the resulting sequence is known as a behavior. The set of all behaviors
of an I/O automaton represents the externally observable activities that A can
execute and it is denoted as behaviour(A).

B.1 Composition

For composition, an output action a of one automaton is matched to automata
with input action a. In order for two automata to be composed, their signatures
should be strongly compatible. A countable collection of action signatures {Si}i ∈I

is said to be strongly compatible, if, ∀ i, j ∈ I, i = j:

1. output(Si) ∩ output(Sj) = ∅

2. internal(Si) ∩ actsig(Sj) = ∅

3. No action is contained in infinitely many sets actsig(Si)

These restrictions state that a set of I/O automata are strongly compatible if
no two automata generate the same output message; the internal actions of one
automaton does not trigger an action in another automaton; and, no action is
in an infinite number of action signatures of the component I/O automaton.

In order to describe the composition of a set of I/O automata, we need first
to describe the action signature of the composition.

B.2 Definition (Action Signature of the Composition of I/O automata) The ac-
tion signature S of the I/O automaton A = ‖i∈IAi of a countable collection of strongly
compatible I/O automaton {Ai}i∈I, each with action signature Si is:

input(S) =
⋃
i∈I

input(Si)−
⋃
i∈I

output(Si)

B. OVERVIEW OF I/O AUTOMATA • 156

output(S) =
⋃
i∈I

output(Si)

internal(S) =
⋃
i∈I

internal(Si)

Notice that the composition does not hide output messages that match in-
put messages of another automaton in the composition. This is because if these
messages were hidden, then the order of the composition of more than two au-
tomata would generate different resulting I/O automaton. For instance, assume
that and I/O automaton A generates an output message M that is an input mes-
sage of two I/O automata B and C. If matching messages were hidden, then A
composed with B would hide B as in internal message and M would never visible
if the resulting I/O automaton is later composed with C; on the other hand, if
we compose B and C first and then the result I/O automaton with A, both B and
C would be able to see the message M generated by A. This is clearly not the
desired behavior. It is important that the composition of several I/O automaton
be independent of the order in which the composition is made.

Finally, the composition of I/O automata is defined as:

B.3 Definition (Composition of a set of I/O automata) The composition A of a count-
able collection of n strongly compatible I/O automaton A = ‖i∈1..nAi is defined as:

signature(A) =‖i∈1..nsignature(Ai)

states(A) =
∏

i∈1..n

states(Ai)

start(A) =
∏

i∈1..n

start(Ai)

steps(A) ={(
s1, a,
s2) | ∀ i ∈ 1..n, a ∈ actions(Ai)⇒ (
s1[i], a,
s2[i]) ∈ steps(Ai) ∧
a �∈ actions(Ai)⇒ s1[i] = s2[i]}

In the above definition,
∏

refers to the set-theoretic product of a fam-
ily of sets. The j-th state of the result automata
sj corresponds to the tuple
〈sj[1], ..., sj[n]〉 in which sj[i], i ∈ 1..n correspond to the j-th state of the i-th I/O au-
tomaton of the composition. The composition ‖i∈IAi can be written as A1‖...‖An.

A P P E N D I X C
Published Hypermedia Design
Patterns
The list has been ordered by pattern name and includes a brief description and
the publications in which it has appeared. In the case of those patterns which
have been published more than once by the same group of authors under the
same pattern name (for example, Active Reference and News), we assume that the
new versions are refinements of the same pattern, hence we consider it to be the
same one. The descriptions presented are the same as in the original papers
(in some cases, they were abbreviated for the sake of space). As a consequence,
some descriptions are vague, others are stated as a question, and overall, there
is no consistency from one pattern description to another.

157

C. PUBLISHED HYPERMEDIA DESIGN PATTERNS • 158

Active Reference: Provides a perceivable and permanent reference about the
current status of navigation. [GRS97, LRS98b, RSG97]

Avatar: How can a self-representation of users be provided in an intuitive way?
[SS99]

Behavioral Anticipation: How do you indicate the effect or consequence of
activating an interface object? [GRS97]

Behavioral Grouping: How to organize the different types of controls in the
interface so the user can easily understand them? [GRS97]

Clustering: Avoid the presentation of more than 7 items simultaneously. [NN98]

Collector: How to make a set of elements behave in the same way depending
on one element. [DM99]

Communication Channel: How can information be exchanged that is not di-
rectly related to the document content? [SS99]

Component Layout: Several artifacts need to be arranged in respect to their
audio-visual properties. [CL98]

Compound: How to describe the resulting behavior when two elements are
joined to work together. [DM99]

Constructive Templates: It is a generic specification which makes it easier for
the developer to build up actual hypermedia structure and populate it
with its data. [NN98]

Contour: Cycles overlap on each other, allowing free movement from one cycle
to another. [Ber98]

Counterpoint: Two “voices” alternate, interleaving, giving the reader the op-
tion to either follow one or to jump from one to the other. [Ber98]

Cycle: The reader returns to a previously visited node and departs along a new
path. [Ber98]

Decorator: Provides a flexible alternative to subclassing for extended function-
ality. [GLWG99]

C. PUBLISHED HYPERMEDIA DESIGN PATTERNS • 159

Dynamic Configuration Pattern: How to provide the user with the means to
perform a selection over a set of options that might be arbitrarily large,
while keeping track of them, and then validate them. [LRS98a]

Glue: Joins a number of multimedia artifacts into a single composite artifact.
[CL98]

Group Location Awareness: How can we provide a permanent reference about
the user’s current locations in the collaborative hypermedia space? [SS99]

Hierarchical Structure through Navigation Side Bars: Provides a way to graph-
ically distinguish between hierarchical structure and cross-references when
there is only one underlying link type available, as on the Web. [Oes99]

Hyper-Book: Presents a hypertext version of a sequential document (book, ar-
ticle, report). [GC99]

Hyper-Map: Provides an interface to geographical information. [GC99]

Information Factoring: Presents information needed by the reader to under-
stand a given topic/information unit. [LRS98b]

Information on Demand: Lets users decide which items they want further de-
scribed in the context of the same node. [GRS97, LRS98b, RSG97]

Information-Interaction Coupling: How do we make clear what is the object
affected by a control in a node’s interface? [GRS97]

Information-Interaction Decoupling: How do you differentiate contents and
various types of controls in the interface? [GRS97]

Landmark: Provide direct access to critical sub-systems in the WIS. [RSL99]

Link Creation Method: When is it better to create static links, and when is it
preferable to create links through computations? [GRS97]

Link Destination Announcement: Avoids unnecessary link firing by providing
information about the destination. [NN98]

Logical Glue: Small information sets need to express meaningful structure to
avoid being perceived as an arbitrary grouping. [NN98]

C. PUBLISHED HYPERMEDIA DESIGN PATTERNS • 160

Logical Glue Consistency: Homologous strategies should be used in similar
parts of the design in order to help the reader build up a mental model
of the structure. [NN98]

Mirrorworld: Provides two or more views of the same information. [Ber98]

Missing Link: Suggests a link that does not exist. [Ber98]

Montage: Several distinct writing spaces appear simultaneously, maintaining
their separate identities. [Ber98]

Navigational Context: Provides the user with closed navigational subspaces con-
taining context-related guidelines and relationships. [GRS97, LRS98b,
RSG97]

Navigational Feint: Establishes the existence of a navigational opportunity that
is not meant to be followed immediately. [Ber98]

Navigational Observer: Decouples the navigation process from the perceiv-
able record of the process. [RSG97]

Neighborhood: Establishes an association among nodes through proximity, shared
ornament, or common navigational landmarks. [Ber98]

News: Allows easy access to new information items as the WIS grows. [LRS98a,
RSL99]

Node Creation Method: When is it better to create nodes statically, and when
is it preferable to create nodes dynamically? [GRS97]

Node as a Single Unit: How do you decide the extent of a node? [GRS97,
LRS98b]

Partitioned Incremental Development: Provides the basis for development of
hypermedia in an incremental manner, supporting progressive integra-
tion and delivery of components. [Low99]

Process Feed-Back: How do we keep users informed about the status of the
interaction in such a way that they know what to expect? [GRS97]

Session: How can we structure collaboration between users and groups of users?
[SS99]

C. PUBLISHED HYPERMEDIA DESIGN PATTERNS • 161

Set-based navigation: Organizes the information in sets of related information
items. Provide intra-set navigation capabilities [RSL99]

Shopping Basket: Keeps track of user selections during navigation, making
these selections persistent to process them when the user decides to. De-
couple product selection from product consumption and/or processing.
[RSL99]

Sieve: Sorts readers through one or more layers of choice in order to direct
them to a given section. [Ber98]

Split/Join: Knits two or more sequences together. [Ber98]

Tangle: Confronts the reader with a variety of links without providing clues to
guide the reader’s choice. [Ber98]

Template: A need exists to produce a collection of composite artifacts similar
in structure and contents. [CL98]

User Role: How to represent the different behaviors a user shows, depending
on the collaborative context? [SS99]

Virtual Product: Displays a product as part of an electronic catalog. [GC99]

Virtual Room: How can we structure collaboration between users and groups
of users in a natural and intuitive way? [SS99]

Bibliography
[AC96] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag,

New York, 1996.

[AIS77] C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language.
Oxford University Press, 1977.

[Aks96] M. Aksit. Separation and composition of concerns in the object-
oriented model. ACM Computing Surveys, 28(4es):148, December
1996.

[Ale79] C. Alexander. A Timeless Way of Building. Oxford University Press,
1979.

[AMM97] P. Atzeni, G. Mecca, and P. Merialdo. Design and maintenance

162

BIBLIOGRAPHY • 163

of data intensive Web sites. Technical Report RT-DIA-25-1997,
Universita della Basilicata, June 1997.

[BB95] P. T. Breuer and J. P. Bowen. A concrete grammar for Z. Techni-
cal Report PRG-TR-22-95, Oxford University Computing Labo-
ratory, UK, September 1995. Presented as a poster at the FME’96
symposium [GW96].

[Ber98] M. Bernstein. Patterns of hypertext. In Proceedings of the Ninth
ACM Conference on Hypertext, Hypermedia Application Design,
pages 21–29, 1998.

[BG94] J. P. Bowen and M. J. C. Gordon. Z and HOL. In J. P. Bowen and
J. A. Hall, editors, Z User Workshop, Cambridge 1994, Workshops
in Computing, pages 141–167. Springer-Verlag, 1994.

[BI95] M. Bieber and T. Isakowitz. Designing Hypermedia Applications.
Communications of the ACM, 38(8):26–27, August 1995.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stad. Pattern-Oriented Software Architecture – A System of Patterns.
John Wiley, 1996.

[BN92] S. M. Brien and J. E. Nicholls. Z base standard. Technical Mono-
graph PRG-107, Oxford University Computing Laboratory, 11
Keble Road, Oxford, UK, November 1992. Accepted for stan-
dardization under ISO/IEC JTC1/SC22.

[Bor98] J.L. Borges. Obras Completas I, chapter El Jard́ın de los Senderos
que se Bifurcan, pages 472–480. Emecé Editores, 1998.

[Bus45] V. Bush. As we may think. Atlantic Monthly, 176(1):101–108, July
1945.

[BV97] M. Bieber and F. Vitali. Toward Support for Hypermedia on the
World Wide Web. IEEE Computer, 20(1):62–70, January 1997.

[Cat96] R.G.G. Cattell, editor. The Object Database Standard: ODMG-93.
Morgan Kaufmann Publishers, Inc., 1996.

BIBLIOGRAPHY • 164

[CC94] L.M.F. Carneiro-Coffin. JASMINUM: Joining ADVs and State Ma-
chines in a Notation for User-Interface Modelling. PhD thesis, Uni-
versity of Waterloo, Waterloo, Ontario, Canada, August 1994.

[CdOdCC94] J.-P. Courtiat, R. Cruz de Oliveira, and L. Rust da Costa Carmo.
Towards a new multimedia synchronization mechanism and its
formal definition. In Proceedings of the Second ACM International
Conference on Multimedia (MULTIMEDIA ’94), pages 133–140,
New York, October 1994. ACM Press.

[CDOS96] J. P. Courtiat, M. Diaz, R.C. De Oliveira, and P. Senac. Formal
Methods for the description of timed behaviors of multimedia
and hypermedia distributed systems. Computer Communications,
19:1134–1150, 1996.

[CES86] E. M. Clarke, E. Allen Emerson, and A. P. Sistla. Automatic ver-
ification of finite state concurrent systems using temporal logic
specifications: A practical approach. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):244–263, 1986.

[CILS93] D.D. Cowan, R. Ierusalimschy, C.J.P. Lucena, and T.M. Stepien.
Abstract data views. Structured Programming, 14(1):1–13, 1993.

[CL95] D.D. Cowan and C.J.P. Lucena. Abstract Data Views: An Inter-
face Specification Concept to Enhance Design for Reuse. IEEE
Transactions on Software Engineering, 21(3):229–243, March 1995.

[CL98] J. L. Cybulski and T. Linden. Composing Multimedia Artefacts
for Reuse. In Proceedings of The 4th Pattern Languages of Program-
ming Conference, 1998.

[CO96] J. P. Courtiat and R. C. De Oliveira. Proving temporal consistency
in a new multimedia synchronization model. In Proceedings of
the Fourth ACM Multimedia Conference (MULTIMEDIA’96), pages
141–152, New York, NY, USA, November 1996. ACM Press.

[CS95] J. O. Coplien and D. C. Schmidt, editors. Patterns Languages of
Program Design. Addison-Wesley, 1995.

BIBLIOGRAPHY • 165

[CTL+91] M. A. Casanova, L. Tucherman, M. J. D. Lima, J. L. R. Netto,
N. Rodriguez, and L. F. G. Soares. The Nested Context Model
for Hyperdocuments. In Proceedings of the Third ACM Conference
on Hypertext, pages 193–200, 1991.

[DAP97] P. Dı́az, I. Aedo, and F. Panetsos. Labyrinth, an Abstract Model
for Hypermedia Applications. Description of its Static Compo-
nents. Information Systems, 22(8):447–464, 1997.

[dH97] M. d’Inverno and M. J. Hu. A Z specification of the soft-link
hypertext model. In J. P. Bowen, M. G. Hinchey, and D. Till,
editors, ZUM’97: The Z Formal Specification Notation, 10th Inter-
national Conference of Z Users, Reading, UK, 3–4 April 1997, vol-
ume 1212 of Lecture Notes in Computer Science, pages 297–316.
Springer-Verlag, 1997.

[Dis99] A. Discenza. Design Patterns for WWW Museum Hypermedia.
Technical Report 99.4, Politecnico di Milano, 1999.

[DM99] A. Diaz and R. Melster. Patterns for Modelling Behavior in Vir-
tual Environment Applications. In 2nd Workshop in Hypermedia
Development: Design Patterns in Hypermedia, 1999.

[DP94] J. Dospisil and T. Polgar. Conceptual Modelling in the Hyperme-
dia Development Process. In Jeanne W. Ross, editor, Proceedings
of the 1994 ACM SIGCPR Conference, pages 97–104, New York,
NY, USA, March 1994. ACM Press.

[dP95] M. d’Inverno and M. Priestley. Structuring specification in Z to
build a unifying framework for hypertext systems. In J. P. Bowen
and M. G. Hinchey, editors, ZUM’95: The Z Formal Specification
Notation, volume 967 of Lecture Notes in Computer Science, pages
83–102. Springer-Verlag, 1995.

[Eng63] D. C. Engelbart. A conceptual framework for the augmentation
of man’s intellect. In P. D. Howerton and D. C. Weeks, edi-
tors, Vistas in Information Handling, Volume 1, pages 1–29. Spartan
Books, Washington, D.C., 1963.

BIBLIOGRAPHY • 166

[Gar88] P. K. Garg. Abstraction mechanisms in hypertext. Communications
of the ACM, 31(7):862–870, July 1988.

[GC97] D.M. German and D.D. Cowan. Hypermedia Design Patterns.
In 7th. Mini Euro Conference on Decision Support Systems, Groupware,
Multimedia and Electronic Commerce, April 1997.

[GC99] D. M. German and D.D. Cowan. Three Hypermedia Design Pat-
terns. In 2nd Workshop in Hypermedia Development: Design Patterns
in Hypermedia, Febrary 1999.

[GC00] D.M. German and D.D. Cowan. Towards a unified catalog of
hypermedia design patterns. In Proceedings of the 33th Hawaii
International Conference on System Sciences, Jan. 2000.

[GD99] F. Garzotto and A. Discenza. Design Patterns for Museum Web
Sites. In Proceedings of MW’99 – 3rd International Conference on
Museums and the Web, pages 144–153, 1999.

[GGRS00] M. Gaedke, H.-W. Gellersen, G. Rossi, and D. Schwabe. Web En-
gineering. In Proceedings of the 33th Hawaii International Conference
on System Sciences, Jan. 2000.

[GHJV] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns: Abstraction and reuse in object-oriented designs. In
O. Nierstrasz, editor, Proceedings of ECOOP’93, Berlin. Springer-
Verlag.

[GLR95] A. Ginige, D. B. Lowe, and J. Robertson. Hypermedia authoring.
IEEE Multimedia, 2(4), 1995.

[GLWG99] M. Gaedke, F. Lyardet, and H. Werner-Gellersen. Hypermedia
Patterns and Components for Building better Web Information
Systems. In 2nd Workshop in Hypermedia Development: Design Pat-
terns in Hypermedia, 1999.

[GMP95a] F. Garzotto, L. Mainetti, and P. Paolini. Designing User Interfaces
for Hypermedia, chapter Hypermedia Application Design: a struc-
tured design. Springer Verlag, 1995.

BIBLIOGRAPHY • 167

[GMP95b] F. Garzotto, L. Mainetti, and P. Paolini. Hypermedia Design,
Analysis, and Evaluation Issues. Communications of the ACM,
38(8):74–86, August 1995.

[GMP98] F. Garzotto, M. Matera, and P. Paolini. To Use or Not to Use?
Evaluating Usability of Museum Web Sites. In MW’98 Museums
and the Web, 1998.

[GPBV99] F. Garzotto, P. Paolini, D. Bolchini, and S. Valenti. “Modeling by
Patterns” of Web Applications. In Advances in Conceptual Modeling:
Proceedings of ER’99 Workshops, volume 1727 of Lecture Notes in
Computer Science, pages 293–306. Springer-Verlag, 1999.

[GPS91] F. Garzotto, P. Paolini, and D. Schwabe. HDM – A model for the
design of hypertext applications. In Proc. of ACM Hypertext’91,
Hypertext – Integrative Issues, page 313, 1991.

[GPS93] F. Garzotto, P. Paolini, and D. Schwabe. HDM – A model-based
approach to hypertext application design. ACM Transactions on
Information Systems, 11(1):1–26, 1993.

[GRS97] A. Garrido, G. Rossi, and D. Schwabe. Pattern Systems for Hyper-
media. In Proceedings of The 3th Pattern Languages of Programming
Conference. University of Washington, 1997.

[GW96] M.-C. Gaudel and J. Woodcock, editors. FME’96: Industrial Bene-
fit and Advances in Formal Methods, volume 1051 of Lecture Notes in
Computer Science. Springer-Verlag, 1996.

[GWG97] H.-W. Gellersen, R. Wicke, and M. Gaedke. WebComposition:
An object-oriented support system for the Web engineering life-
cycle. Computer Networks and ISDN Systems, 29(8–13):1429–1437,
September 1997.

[Hal90] J. Anthony Hall. Seven myths of formal methods. IEEE Software,
7(5):11–19, September 1990.

[Hol91] I. M. Holland. The Design and Representation of Object-Oriented
Components. Ph.D. thesis, Northeastern University, 1991.

BIBLIOGRAPHY • 168

[Ier91] R. Ierusalimschy. A method for object oriented specification with
VDM. Technical Report 2/91, Puc Rio, Brazil, 1991.

[ISB95] T. Isakowitz, E. A. Stohr, and P. Balasubramanian. RMM: A
methodology for structured hypermedia design. Communications
of the ACM, 38(8):34–44, August 1995.

[Kro87] F. Kroeger. Temporal Logic of Programs, volume 8 of EATCS Mono-
graphs on Theoretical Computer Science. Springer Verlag, 1987.

[Lan92] K. C. Lano. Z++. In Susan Stepney, Rosalind Barden, and David
Cooper, editors, Object Orientation in Z, Workshops in Comput-
ing, pages 106–112. Springer-Verlag, Cambridge CB2 1LQ, UK,
1992.

[Lan94] D. Lange. An Object-Oriented Design Method for Hypermedia
Information Systems. In Proceedings of the 28th Hawaii Interna-
tional Conference on System Sciences, jan 1994.

[Low99] D. B. Lowe. Hypermedia Process Assessment Tasks: Patterns of
Inspection. In 2nd Workshop in Hypermedia Development: Design
Patterns in Hypermedia, 1999.

[LRS98a] F. Lyardet, G. Rossi, and D. Schwabe. Patterns for Dynamic Web-
sites. In Proceedings of The 4th Pattern Languages of Programming
Conference, 1998.

[LRS98b] F. Lyardet, G. Rossi, and D. Schwabe. Using Design Patterns in
Educational Multimedia Applications. In Proceedings of EDMe-
dia’98, 1998.

[LT87] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for
distributed algorithms. In Fred B. Schneider, editor, Proceedings
of the 6th Annual ACM Symposium on Principles of Distributed Comput-
ing, pages 137–151, Vancouver, BC, Canada, August 1987. ACM
Press.

[LT88] N. A. Lynch and M. R. Tuttle. An introduction to Input/Output
Automata. Technical Memo MIT/LCS/TM-373, Massachusetts

BIBLIOGRAPHY • 169

Institute of Technology, Laboratory for Computer Science,
November 1988.

[MAM+98a] G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sindoni.
The ARANEUS Web-base management system. SIGMOD Record
(ACM Special Interest Group on Management of Data), 27(2):544–??,
???? 1998.

[MAM+98b] G. Mecca, P. Atzeni, P. Merialdo, A Masci, and G. Sindoni. From
Databases to Web-Bases: The Araneus Experience. Technical Re-
port RT-DIA-34-1998, Universita della Basilicata, May 1998.

[MD99] S. Murugesan and Y. Deshpande. ICSE’99 workshop on web
engineering. In Proceedings of the 1999 International Conference
on Software Engineering, pages 693–694. IEEE Computer Society
Press / ACM Press, 1999. Workshop summary.

[Mey85] B. Meyer. On formal specifications. IEEE Software, pages 7–26,
January 1985.

[Nel65] T. H. Nelson. The hypertext. In Proceedings International Docu-
mentation Federation Annual Conference, 1965.

[NN98] M. Nanard and J. Nanard. Pushing Reuse in Hypermedia De-
sign: Golden Rules, Design Patterns and Constructive Templates.
In Proceedings of the Ninth ACM Conference on Hypertext and Hyper-
media, pages 11–20. ACM Press, June 1998.

[NN99] J. Nanard and M. Nanard. Toward an Hypermedia Design Pat-
terns Space. In 2nd Workshop in Hypermedia Development: Design
Patterns in Hypermedia, 1999.

[NS95a] T. Nipkow and K. Slind. I/O Automata in Isabelle/HOL. In P. Dy-
bjer, editor, Proc. of Types for Proofs and Programs, LNCS 996, 1995.

[NS95b] T. Nipkow and K. Slind. I/O automata in Isabelle/HOL. Lecture
Notes in Computer Science, 996:101–119, 1995.

[Oes99] K. Oesterbye. Hierarchical structure through navigation side
bars. In 2nd Workshop in Hypermedia Development: Design Patterns
in Hypermedia, 1999.

BIBLIOGRAPHY • 170

[Pau94] L. C. Paulson. Isabelle: A generic theorem prover. Lecture Notes
in Computer Science, 828:xvii + 321, 1994.

[PG99] P. Paolini and F. Garzotto. Design Patters for the WWW hyper-
media: problems and proposals. In 2nd Workshop in Hypermedia
Development: Design Patterns in Hypermedia, 1999.

[Pra97] B. Prabhakaran. Multimedia Database Management Systems. Kluwer
Academic Publishers, 1997.

[PTdOM98] F. B. Paulo, M. Augusto S. Turine, M. C. F. de Oliveira, and P. C.
Masiero. XHMBS: A formal model to support hypermedia spec-
ification. In Proceedings of the Ninth ACM Conference on Hypertext,
Structural Models, pages 161–170, 1998.

[Ros96] G. Rossi. An Object Oriented Method for the Development of Hyperme-
dia Applications. PhD thesis, Pontif́ıcia Universidade Católica do
Rio de Janeiro, Rio de Janeiro, 1996.

[RSG97] G. Rossi, D. Schwabe, and A. Garrido. Design Reuse in Hyperme-
dia Applications Development. In Proceedings of the Eighth ACM
Conference on Hypertext, Hypertext Design, pages 57–66, 1997.

[RSL99] G. Rossi, D. Schwabe, and F. Lyardet. Improving Web informa-
tion Systems with Navigational Patterns. In Proceedings of the 8th
International World Wide Web Conference. W3C, Elsevier, May 1999.

[RSLC95] G. Rossi, D. Schwabe, C.J.P. Lucena, and D.D. Cowan. An Object-
Oriented Model for Designing the Human-Computer Interface
Of Hypermedia Applications. In Proceedings of the International
Workshop on Hypermedia design IWHD’95, June 1995.

[Sch95] D. C. Schmidt. Using Design Patterns to Develop Reusable
Object-Oriented Communication Software. Communications of the
ACM, 38(10):65–74, October 1995.

[Sch99] D. Schwabe. Just add Water” Applications: Hypermedia Appli-
cation Frameworks. In 2nd Workshop in Hypermedia Development:
Design Patterns in Hypermedia, 1999.

BIBLIOGRAPHY • 171

[SF89] P. D. Stotts and R. Furuta. Petri-Net-Based Hypertext: Document
Structure with Browsing Semantics. ACM Transactions on Informa-
tion Systems, 7(1):3–29, 1989.

[SF98] P. David Stotts and Richard Furata. Hyperdocuments as Au-
tomata: Verification of Trace-Based Browsing Properties by
Model Checking. ACM Transactions of Information Systems, 16(1):1–
30, 1998.

[SFC98] P. D. Stotts, R. Furuta, and C. Ruiz Cabarrus. Hyperdocuments
as Automata: Verification of Trace-Based Browsing Properties
by Model Checking. ACM Transactions on Information Systems,
16(1):1–30, 1998.

[SLHS93] J. L. Schnase, J. J. Leggett, D. L. Hicks, and Ron L. Szabo. Se-
mantic Data Modeling of Hypermedia Associations. ACM Trans-
actions on Information Systems, 11(1):27–50, January 1993.

[Spi92a] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall
International Series in Computer Science, 2nd edition, 1992.

[Spi92b] J.M. Spivey. The f UZZ Manual. Computing Science Consultancy,
2 Willow Close, Garsington, Oxford OX9 9AN, UK, 2nd edition,
1992.

[SR94] D. Schwabe and G. Rossi. From Domain Models to Hypermedia
Applications: an Object-Oriented Approach. In Proceedings of the
International Workshop on Hypermedia design IWHD’94, 1994.

[SR95] D. Schwabe and G. Rossi. The Object-Oriented Hypermedia
Design Model. Communications of the ACM, 38(8):45–46, August
1995.

[SRB95a] D. Schwabe, G. Rossi, and S. Barbosa. Abstraction, Composition
and Lay-Out Definition Mechanisms in OOHDM. In Proceedings
of the ACM Workshop of Effective Abstractions in Multimedia, 1995.

[SRB95b] D. Schwabe, G. Rossi, and S.D.J. Barbosa. Systematic Hyper-
media Application Design with OOHDM. Technical Report 30,

BIBLIOGRAPHY • 172

Departamento de Informática, Pontif́ıcia Universidade Católica,
Rio de Janeiro, 1995.

[SRC95] L. F. G. Soares, N. L. R. Rodriguez, and M. A. Casanova. Nested
Composite Nodes and Version Control in an Open Hypermedia
System. Information Systems, 20(6):501–519, September 1995.

[SS99] J. Schummer and C. Schuckmann. Collaborative Hypermedia
Design Patterns in OOHDM. In 2nd Workshop in Hypermedia De-
velopment: Design Patterns in Hypermedia, 1999.

[SSGC98] C.A.S. Santos, L.F.G. Soares, G.L.Souza, and J. P. Courtiat. De-
sign Methodology and Formal Validation of Hypermedia Docu-
ments. In ACM Multimedia’98, pages 39–48, 1998.

[TD96] K. Tochtermann and G. Dittrich. The Dortmund Family of Hy-
permedia Models – Concepts and their Application. Journal of
Universal Computer Science, 2(1), 1996.

[Tom89] F. Wm. Tompa. A Data Model for Flexible Hypertext Database
Systems. ACM Trans. on Inf. Sys., 7(1):85, 1989.

[VCK96] J. M. Vlissides, J. O. Coplien, and N. L. Kerth, editors. Patterns
Languages of Program Design 2. Addison-Wesley, 1996.

[vHL89] I. van Horebeek and J. Lewi. Algebraic Specifications in Software
Engineering. Springer, 1989.

[Win90] J. M. Wing. A specifier’s introduction to formal methods. Com-
pute, 1990.

[WR98] W. Wang and R. Rada. Structured Hypertext with Domain Se-
mantics. ACM Transactions on Information Systems, 16(4):372–412,
1998.

[YB00] J. Yoo and M. Bieber. Towards a Relationship Navigation Anal-
ysis. In Proceedings of the 33rd Hawaii International Conference on
System Sciences, Jan. 2000.

Colophon
This dissertation was written and composed in its entirety using free software on
two laptops: Violeta, a Compaq Presario 1210, with a Pentium 166 MHz and 32
Mbytes of memory, running Linux 2.0 (RedHat 5.0) and later Linux 2.2 (Linux
6.0); and Iridium, a Dell Inspiron 7500 with a Pentium III at 450 MHz and 192
Mbytes of memory, running Linux 2.2 (RedHat 6.1).

The typesetting was done in LATEX2e, using tetex 1.0.6. The editing was
done in emacs 20.4 usign AucTex 9.81. The diagrams were drawn using xfig 3.2
and PsTricks v97.

The main text is set in NewBaskervilleIT by Bitstream. The mathematics are
set in Computer Modern by Donald Knuth.

The PostScript version was generated using dvips(k) 5.86 and later trans-
lated into Acrobat PDF by ghostscript 6.0.

173

