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Abstract

This thesis discusses cache oblivious data structures. These are structures which

have good caching characteristics without knowing Z, the size of the cache, or L,

the length of a cache line. Since the structures do not require these details for good

performance they are portable across caching systems. Another advantage of such

structures is that the caching results hold for every level of cache within a multilevel

cache. Two simple data structures are studied; the array used for binary search

and the linear list. As well as being cache oblivious, the structures presented in

this thesis are space eÆcient, requiring little additional storage.

We begin the discussion with a layout for a search tree within an array. This

layout allows Searches to be performed in O(log n) time and in O(logL n) (the

optimal number) cache misses. An algorithm for building this layout from a sorted

array in linear time is given. One use for this layout is a heap-like implementation

of the priority queue. This structure allows Inserts, Heapi�es and ExtractMaxes in

O(log n) time and O(logL n) cache misses. A priority queue using this layout can

be built from an unsorted array in linear time. Besides the n spaces required to

hold the data, this structure uses a constant amount of additional storage.

The cache oblivious linear list allows scans of the list taking �(n) time and

incurring �(n
L
) (the optimal number) cache misses. The running time of insertions

and deletions is not constant, however it is sub-polynomial. This structure requires

�n additional storage, where � is any constant greater than zero.
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Chapter 1

Introduction

Moore's Law was a conjecture that the density of transistors in chips would double

every twelve months. Although it was later revised to eighteen, the exponential

growth has continued for the last 35 years. This has lead to processors whose speed

increases at approximately the same rate, and today processors are available which

run at over 1 Gigahertz. For memory technology, this increase in density has lead

to chips capable of storing hundreds of Megabytes. However, the access times have

not increased as quickly. Faster memory requires using di�erent technologies which

are expensive, in terms of space and cost.

This speed di�erence is a problem because every instruction and piece of data

that the CPU uses is stored in main memory. If the CPU needs to access main

memory for every instruction, it will spend many cycles waiting. An even worse

situation occurs in systems which require more data than they have space in main

memory. These systems usually use hard drives to store their data. Hard drives

have worst case individual access times thousands if not millions of times slower
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CHAPTER 1. INTRODUCTION 2

than memory. If the CPU requires a piece of data stored on disk the data must be

read from disk to memory and then frommemory to the CPU. The obvious solution

for this problem is to keep a copy of the most heavily used data in main memory. If

most of the required data is in memory then disk accesses are dramatically reduced.

This idea can also be applied to main memory by adding a small amount of fast

memory between main memory and the CPU. These are examples of the most basic

form of caching.

Caching allows blocks of data to be moved from a slow storage medium to a fast

one. Any additional accesses into that block of data can be made directly from the

faster location. If there are multiple accesses to a single block in the cache, then the

cost of the transfer from slow memory to fast memory can be amortized over these

additional accesses. Unfortunately there is no guarantee that more than a single

element of the data block will be used. If the data in the cache is only accessed

once, then the cache does not provide any advantages. Therefore, to fully exploit

the bene�ts of the cache, algorithms must be designed with this notion explicitly

in mind.

Many algorithms and data structures have been designed to work with the

cache. The blocking approach of Golub and Van Loan leads to such an algorithm

for matrix multiplication [GvL89]. The B-Tree [BM72, CLR91] is an example of

a data structure that can be tuned to exhibit good caching characteristics. Most

of the work in algorithms and data structures with good caching characteristics

is cache aware. A cache aware algorithm (or data structure) is one which has

knowledge of the caching architecture on which it is running. This knowledge is
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used to set parameters which allow the algorithm or data structure to exploit the

cache.

Although aware solutions have good caching characteristics, they do have their

downsides. Being aware means that the program must know some details about

the system on which it is executing. In terms of portability, this means there must

be a di�erent version of the program for each platform or the program must be able

to detect the system at runtime and modify its algorithm for the particular system.

Neither of these is an attractive solutions.

Another problem is that many caching systems are multilevel. A cache aware

solution must be aware of every level to be e�ective at each level. Although this

can be achieved, the resulting data structures are complex. A structure that does

not require this level speci�c tuning, but still achieves good caching at each level,

would be a much cleaner solution.

A solution to these problems is algorithms and data structures that have good

caching characteristics but do not use information about the architecture of the

cache. This is what Frigo, Leiserson, Prokop and Ramachandran [FLPR99, Pro99]

propose. They de�ne a cache oblivious algorithm to be one that does not know

the size or layout of the cache. Algorithms can be constructed with the knowl-

edge that a cache exists and with some basic ideas of how it operates, but not

the speci�c details of the cache architecture. These algorithms have good, often

optimal, caching characteristics. To analyze cache oblivious algorithms, Frigo et

al. introduce a new caching model. While the model makes some strong sounding

assumptions, Frigo et al. show that these assumptions are reasonable. Although
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the main focus of their paper is algorithms, they suggest that the same ideas can

be applied to data structures.

There are many important data types and a correspondingly large number of

implementations of them as data structures. Most of these implementations do not

take caching into account. When they do it is almost exclusively in a cache aware

manner; and so there are many problems that can be investigated in an oblivious

fashion. As the area of cache oblivious data structures is fairly new, it is interesting

to study simple abstract data types. These simple types are often used within more

complex data structures. Studying the simple structures may lead to solutions to

the more complex ones.

In this thesis, existing data structures are modi�ed to improve their caching

characteristics in an oblivious fashion. The work presented here, particularly in

Chapter 4, is theoretical and is probably not directly applicable. Many of the

results presented are asymptotically optimal. However, this notation does hide

signi�cant constants. Although these results are interesting in themselves, they also

suggest more generally applicable approaches to cache oblivious data structures. A

major contribution of this work is the exploration of the idea of using the recursively

rotated list of Frederickson [Fre83] in the implementation of a cache oblivious linear

list. Hopefully the important ideas presented here will be useful in creating new,

more usable structures. This work is complementary to the approaches by others,

[BDFC00], to produce entirely new cache oblivious data structures.

In Chapter 2 caching will be discussed in greater detail and the caching model

will be described. In Chapter 3 a static search tree will be presented. This structure
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allows searches to be performed in O(log n) time and incurs O(logL n) cache misses.

This structure will also be extended to implement a heap. The heap will allow

Insert, Heapi�es and ExtractMaxes in O(log n) time, while incurring only O(logL n)

cache misses.

Chapter 4 describes a linked list structure which allows for a scan of a list to be

performed in �(n) time and incurs �(n
L
) cache misses, where L is the length of a

cache line. Insertion and deletion times are not constant in this structure, but they

are in o(n�) for any constant � > 0. Finally Chapter 5 discusses possible areas for

further study.

Notation and Conventions

In this thesis terms being de�ned will be written in bold italics, like this. Variables

from pseudocode will be indicated in non-bold italics like this. It is necessary to

use multi-variable asymptotic notation, such as O(f(x; y)). This notation means if

all variables but one are �xed, then the standard asymptotic equations hold for the

remaining variable.

The following conventions will be used in this thesis:

� All arrays begin indexing at 0

� All logarithms are base 2 unless otherwise indicated



Chapter 2

Caching

2.1 Introduction

Caching is one attempt to reduce the waiting period imposed on a fast processor by

slow memory. As discussed in Chapter 1, the high speed of modern processors and

the relatively slow speed of memory access means that hundreds or even thousands

of cycles could be wasted while waiting for a single memory access. The basics of

caching can be found in many textbooks on modern computer architectures, such

as [PH94].

The basic cache structure is shown in Figure 2.1. There are two levels of memory,

main memory which is arbitrarily large1 it but slow and the cache which is faster

but has a �xed size. Both main memory and the cache are divided into blocks of

�xed size. When an element in memory is accessed the cache is checked for the

element's block. If the block is in cache, then the element can be read from the

1In theory at least. In practice it will be a large �xed size

6



CHAPTER 2. CACHING 7

Z

L

Cache
lines

Cache

CPU

L

.

.

.

Main Memory

Large
Arbitrarily

Figure 2.1: The Basic Cache Structure.

cache and an access to main memory is not required. Having an element in cache

when it is accessed is called a cache hit . If the block is not in cache then an access

to main memory is used to copy the block from main memory into the cache. This

is called a cache miss.

Let Z be the size of the cache in words and L be size of a block, also in words.

De�ne a cache line as the space in the cache which stores one block from main

memory. Clearly, there are Z

L
cache lines. In practice the size of the cache is usually


(Z2), and so the number of cache lines is usually 
(L). A cache where this is true

is called tall . Due to the limited size of the cache, it may not be able to store all

of the required data. Therefore if a cache miss occurs when the cache is full, the

contents of one cache line will need to be overwritten.

In real systems the problem can be even worse. Ideally a cache would be fully

associative, meaning that any block from memory can be placed into any cache

line. However the process of checking each cache line for a particular block can



CHAPTER 2. CACHING 8

be too slow. Instead, some systems use a n-way set associative cache. In this

system a block can be placed anywhere within a set of n lines. Therefore, when

checking to see if a block is in cache, only n lines need be checked. The downside

of this method is that cache misses can occur even if there are free cache lines.

Another key aspect of caching is the replacement technique. This is an algorithm

which de�nes how the cache is updated when a new block must be added. The

most important aspect of this is deciding which blocks to replace when there are

no free lines. Clearly this is an online problem, since the algorithm cannot know

what requests it will have in the future. As well, the algorithm must not take

too long when deciding which block is to be replaced. These constraints lead to

the development of algorithms based on simple heuristics, the most popular being

Least Recently Used (LRU). The LRU algorithm makes the obvious choice for

replacement, choosing the line whose contents have not be accessed for the longest

time.

More advanced caching architectures will use multi-level caches. A multi-level

cache has multiple caches which get smaller and faster as they get closer to the

CPU. A level i cache will act as a cache for the level i+ 1 cache (level 1 being the

cache closest to the CPU). Using a multi-level cache can further reduce the cost of

a cache miss since the data may reside in the next level of cache.

2.2 The Ideal Cache Model

To analyze the caching characteristics of algorithms it is important to have a good

theoretical model of the caching system. Frigo et al. [FLPR99, Pro99] suggest the
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ideal cache model . This model is similar to a real cache as described in the

previous section, with some simpli�cations introduced. These simpli�cations make

the analysis much cleaner. However, each of these simpli�cations must be justi�ed

for the model to be valid.

The ideal cache model, like most modern computers, has a �xed word size. The

total size of the cache is Z words. The length of a cache line is L words, where

L > 1. Main memory is also divided into blocks of length L. These blocks are

always transfered between memory and the cache as a single unit.

The processor can only access data stored in the cache, therefore every cache

miss forces a new block to be placed into the cache. If the cache is full then

some older block must be evicted. The ideal cache model uses the optimal o�ine

replacement strategy, in which the cache line whose contents are not going to be

accessed for the longest time is used to store the new block.

The ideal cache model is also assumed to have a fully associative cache. To

defend this choice Frigo et al. show how to simulate such a system in main memory.

Their implementation has O(1) expected time accesses and uses O(Z) space. Thus

a fully associative system can be simulated with at worst a constant factor overhead.

Let Q(n;Z;L) be the number of cache misses of a problem of size n, using a cache

of size Z and cache line length of L and the optimal o�ine replacement algorithm.

Let Q�(n;Z;L) be the number of cache misses when using LRU. Using a result

from Sleator and Tarjan [ST85], Frigo et al. show that if an algorithm satis�es

a simple regularity condition, Q(n;Z;L) = O(Q(n; 2Z;L)), then Q�(n;Z;L) =

�(Q(n;Z;L)). This regularity condition states that doubling the cache size does
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not signi�cantly e�ect the caching characteristics of the algorithm. Therefore the

number of cache misses incurred by using the optimal o�ine strategy is bounded

by a constant times the number used by LRU. This is important because the LRU

replacement strategy, or a modi�cation of it, is commonly used in real caching

systems.

This regularity condition is important because it allows the data structure to

avoid some of the worst case behavior of LRU. Consider the well known example

of LRU's worst case behavior; accessing, in a cyclic pattern, Z

L
+ 1 elements which

reside in distinct memory blocks. After having accessed the �rst Z

L
elements, the

cache will be full. To access the next element, a line must be evicted. The least

recently used line will be the �rst one read into memory. That line will be evicted

and the new one will replace it. However, the next element to be accessed will be

the one in the block that was just evicted. Accessing it causes another cache miss.

The block evicted for this cache miss will be the block that was accessed second,

which will also be the block that is to be accessed next. This pattern will continue

as long as elements are accessed in this order. Each access will cause a cache miss.

Therefore, the total number of cache misses is �(n) for n accesses. This simple

situation does not satisfy the regularity condition because doubling the size of the

cache will alleviate this behavior, reducing the number of cache misses to Z

L
.

Another simpli�cation is that the ideal cache model has only two levels of mem-

ory, main memory and cache memory. However Frigo et al. show that if an algo-

rithm is cache oblivious in a two level memory system it will also be oblivious in

a multilevel system. The basic idea is that each consecutive pair of memory levels
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acts as a two level memory.

2.3 Simple Caching Results

Arrays will be used throughout this thesis; therefore knowing the basic caching

characteristics of arrays is going to be important. First consider accessing an array

in an arbitrary location and then scanning L consecutive positions (in either direc-

tion). The �rst access into the array causes a cache miss. Since this access is at

an arbitrary location in memory the location of the element within the cache line

cannot be determined. To �nish the scan a second cache miss may be required.

It is useful to be able to assume that the accessed element is always in a par-

ticular position in the cache line (usually the �rst location). This can be assumed

if �(1) cache misses is acceptable. In fact using two cache misses suÆces. Let i

be the index that is assumed and j the actual location. Then if i < j there will

be elements at the end of the cache line that are assumed to be in cache which are

not. When one of these elements is accessed another cache miss will occur and the

elements will be brought into cache. Now all the elements that were assumed to be

in cache are in cache. The case when j < i is similar.

Another useful observation is the minimum number of cache misses required to

scan an array. An array of length n can be scanned in at most n

L
+ 1 cache misses.

Scanning an array is an example of an operation with good caching characteristics.

Every cache miss except for the �rst and the last brings L elements into cache.

Each of these L elements is used. Therefore the total number of cache misses used

is in �(n
L
).



Chapter 3

A Cache Oblivious Binary Search

and Heap

In his Masters Thesis, Prokop [Pro99] suggests a layout for a complete binary tree

that incurs O(logL n) cache misses for a search. This layout can be implemented

using a pointer based system which allows searching of the tree in O(log n) time.

Concurrent with the work reported here, Bender et al. [BDFC00] implemented a

similar layout as a component in a cache oblivious B-Tree. Their solution requires

signi�cant extra space. This chapter describes a layout that has the same cache

complexity and running time of Prokop's layout but does not require extra storage.

In addition, this structure can be created from a sorted array in linear time. Beyond

the n spaces required for the data, only a constant number of indices are required

for the structure. The Search procedure requires only O(log log n) extra memory.

12
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3.1 Layout

When studying binary search algorithms and heap structures certain types of bi-

nary trees are of particular interest. The �rst type, sometimes referred to as com-

plete [CLR91] or perfect [LD91], has exactly 2i�1 nodes and is laid out in perfect

triangular shape (it has 2i�1 leaves). The second type, sometimes referred to as

heap shape or (rather confusingly) complete [LD91], has all of its levels complete

except possibly the last level which is full from left to a point. These two ideas will

be used to build a new layout that will achieve good caching characteristics. For

the purposes of this thesis the �rst de�nition of complete is the one that will be

used.

To begin the description of the layout, �rst de�ne a recursive level i complete

tree (or a complete tree of recursive level i). This will be a complete binary

tree on 22
i�1 nodes. A recursive level 0 complete tree is a single node. A recursive

level 1 complete tree is simply a balanced tree of 3 nodes, but it is also viewed as

being constructed by taking a recursive level 0 complete tree and attaching two

recursive level 0 complete trees as its children. A recursive level 2 complete tree

is constructed by attaching recursive level 1 complete trees as the children of the

4 leaves of a recursive level 1 complete tree, which gives a tree of 15 nodes. In

general a recursive level i + 1 complete tree is constructed by taking a recursive

level i complete tree and for each of its leaves attaching a recursive level i complete

tree as the leaf's left child and another as the leaf's right child. The recursive

level i trees used to construct a recursive level i + 1 tree will be referred to as

its components. Finally de�ne the leaf layer of a complete recursive level i
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0

21

Components of
Recursive Level i

Level i+1

. . .

2
2i

Figure 3.1: Constructing a recursive level i+1 tree from recursive level i components

tree to be all the nodes of depth 2i. An illustration of the construction is given

in Figure 3.1. The recursive form of this layout corresponds closely to the tree

structure proposed by van Emde Boas [vEB75, vEBKZ77] for a priority queue.

It is easy to show by induction that a recursive level i complete tree has 22
i � 1

nodes. For i = 0 we have 22
0�1 = 1. A recursive level i+1 complete tree consists of

22
i

+1 recursive level i complete trees. Therefore it has (22
i�1) �(22i+1) = 22

i+1�1
nodes.

A structure of arbitrary size is far more useful than a recursive level complete

tree. Informally, a recursive level tree with n nodes, (rlt(n)) is a recursive

level dlog log(n + 1)e tree with some of the \trailing" sub-trees missing. More

formally it is constructed as follows: Let r = dlog log(n + 1)e, be the recursive

level of the tree and let m = bn=(22r�1 � 1)c be the number of complete sub-trees.

Take a recursive level complete r � 1 tree as the root sub-tree and attach m � 1

recursive level complete r � 1 subtrees contiguously from the left. Finally attach
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. . .

0

1 2 m-1 m

Figure 3.2: An recursive level i tree. The subtrees 0 to m�1 are complete recursive
level i� 1 trees and m is a rlt(n�m � 22r�1 � 1).

an rlt(n�m � 22r�1 � 1) as the next child. Figure 3.2 shows an rlt(n).

It will be useful to de�ne an ordering for the components of an rlt(n) with

recursive level r. Label the sub-tree which contains the root 0. The remaining

components are labeled from 1 at the leftmost component to m at the rightmost,

where 1 � m � 22
r�1

. For a recursive level complete tree all the components

are recursive level complete trees and m = 22
r�1

. For an rlt(n) there are m =

bn=(22r � 1)c recursive level complete trees and possibly one rlt(n�m � 22r�1 � 1).

This tree can be represented implicitly in an array. To convert an rlt(n) with

recursive level i to its array representation, recursively represent each of its com-

ponents and then append them in the order de�ned by the labeling. A tree of

recursive level 0, a single node, is represented by the value at the node. The posi-

tion of a node in the array in this representation will be called its index . Notice

that encoding a tree of n nodes uses n indices of an array. Therefore, since the

index of the �rst node in the array is 0, any index that is greater than or equal to
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the number of nodes in the tree does not represent a node in the tree.

There are two important observations to make about this structure. First, a

recursive level r complete tree is a complete binary tree, therefore the height of a

recursive level complete tree is the same as the height of a complete binary tree

with the same number of nodes. Therefore the height of a recursive level r complete

tree is 2r. The second observation is a rlt(n) has height bounded above by 2 log n.

To see this notice that the height of a level r rlt(n) is bounded above by 2r, the

height of a recursive level r complete tree. As well n > 22
r�1 � 1, the number of

nodes in a recursive level r � 1 complete tree. Therefore h < 2 � 2r�1 < 2 log n.

A cache aware method for binary search divides the array into sub-arrays of

size L. Each sub-array represents a balanced subtree of the original search tree.

Once a sub-array is in cache, it can be searched without any cache misses. Cache

misses only occur after a search in one sub-array is completed and another needs to

be pulled into cache. Searching within a single cache line allows the algorithm to

move down the search tree logL steps. Therefore this arrangement requires dlogL ne
cache misses. A simple information theoretic argument can be used to show this is

optimal.

The layout presented here uses this idea, but implicitly uses recursive level r

complete subtrees where r = blog log(L + 1)c is the recursive level of the largest

recursive level complete tree that �ts into a single cache line. In the worst case,

the cache utilization can be quite low, however the height of the subtrees is at least

one half the height of the complete binary tree with L nodes. Therefore each cache

miss still allows moving down the search tree �(logL) elements.
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The standard binary search algorithm uses an implicit tree of height log n. To

move from a parent to a child requires a simple constant time calculation and so

the running time of the search is �(log n). In the new layout, a constant time

calculation to �nd the child of a node has not been found. However an algorithm

exists to descend from any node to any leaf in its subtree in O(log n) time. Using

this algorithm a binary search can be performed in the new layout in O(log n)

time. The caching characteristics of the standard binary search algorithm is poor.

If implemented using a sorted array every cache miss but the �rst returns only one

useful element. Therefore the standard binary search algorithm incurs log n� logL
cache misses in a search to the bottom of the tree; i.e. in every unsuccessful search

and in most successful ones.

To quickly �nd the children of a node, more positional information is required

than just the node's location in the array. Any node in a recursive level r rlt(n)

is contained within one of the tree's recursive level r � 1 components. Within the

recursive level r� 1 component the node is also contained in a recursive level r� 2

component, similarly for all recursive levels down to 0. De�ne the leaf depth of a

node to be the largest j such that the node is in the leaf layer of a recursive level

j component. Figure 3.3 shows the leaf depth of some nodes. Node Y is the root

of a level 1 tree so the level of the largest tree it is in the leaf layer of is 0. Node X

is the root component of a level 2 tree and the leaf layer of a level 1 tree so its leaf

depth is 1. Node Z is in the leaf layer of a level 2 tree and the root component of

a level 3 tree thus its leaf depth is 2. Then the children of this node, and any node

in the leaf layer are roots of components of recursive level j.
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X

Z

Y Leaf Depth 0

Leaf Depth 1

Leaf Depth 2

Figure 3.3: Examples of leaf depth.

De�ne the leaf indent of a node with leaf depth j to be the number of nodes

in the leaf layer of the recursive level j subtree to the left of the node. Then twice

the leaf indent of a node is the number of recursive level j subtrees to the left of

the children of the node, Figure 3.4 illustrates this. Each of these subtrees contains

22
j �1 nodes. Knowing the index I of the root of the recursive level j tree in which

the node resides and the leaf indent of the node, the indices of its children can be

calculated using the following equations,

CL = I + (22
j � 1) � (2 � indent+ 1)

CR = I + (22
j � 1) � (2 � indent+ 2)

Therefore to calculate the index of the children of a node one needs to know:

� j, the leaf depth of the node.

� I, the index of the root of the tree.
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# of elements to the
left of the child

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11

Leaf Indent

Figure 3.4: Examples of leaf indent.

� indent, the leaf indent of the node.

To �nd j one needs to know in which components the node resides. To do this

use a table of size dlog log ne+ 1 called location. This table holds the labels of the

components which contain the node (location[i] is the label of the component of

recursive level i� 1 within the component of recursive level i). Indices to the roots

of each of the components are also needed. These will be stored in another table,

of the same size, called o�set. An example of these tables is given in Figure 3.5.

The following procedure computes these tables. It assumes that the location and

o�set tables are global variables. It also assumes a global level variable exists which

stores the recursive level of the tree.

FindLocation(index )

lev  level

o�set [lev ]  0

location[0]  0

while (lev > 0)

size  22
lev�1 � 1

location[lev ]  b index�o�set[lev]

size
c

o�set [lev�1]  o�set [lev ]+location[lev ]� size
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Location

Offset

75

76

78
80 86 89

77

0 2

0 1 2

0 1

77

2 3

3

50

07575

1110
9

8

0

4 5
3

7
6

1413
12

21

79 82 83 88
878481

85

Figure 3.5: An example of the location and o�set tables for the element with index
77
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lev  lev�1

The work done before the while loop is constant. One iteration of the while loop is

also takes constant time, therefore the running time of FindLocation is �(level) =

�(log log n), the number of iterations of the while loop. The algorithm makes

�(level) accesses into various arrays. These accesses have decreasing indices starting

from level going down to 0. The cache complexity of stepping through these arrays

is �( level
L
) = �( log logn

L
).

Given the location and o�set tables, the leaf depth and leaf indent of the node,

v, must be calculated. The leaf depth of v can be found by looking through the

table for the smallest i such that location[i] = 0. This is the �rst subtree for which

v is not in its leaf layer. Therefore the leaf depth is i� 1. The leaf indent can be

calculated by using the following observation: in a component j of a recursive level

k tree, the number of nodes in the leaf layer of the tree to the left of the leftmost

node of j is the number of leaves in a recursive level k � 1 component times the

number of components to the left of j. By the labeling, the number of such subtrees

is j � 1. To calculate the indent of a node sum the indents of the leftmost nodes

of each of the recursive level i components, for 1 � i � depth. Notice that v is the

leftmost node of the subtree of recursive level 0. The following procedure calculates

both the indent and the depth. As before assume that location, o�set, indent and

depth are global variables.

CalcIndent()

indent  0
i  1
while (location[i ] > 0)

indent  indent + 22
i�1�1 � (location[i]� 1)
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i  i+1

depth  i�1

The running time of this function is �(depth). The cache complexity of this function

is �(depth
L

). Notice that if the �rst L elements of location are already in the cache

and depth is less that L, then this function incurs no cache misses.

The following two procedures return the left and right child of the current

location.

CalcLeftChild()

return o�set [depth]+(22
depth � 1) � (2 � indent + 1)

CalcRightChild()

return o�set [depth]+(22
depth � 1) � (2 � indent + 2)

The FindLocation procedure is too slow to use for every node as the search

moves down the tree. Instead of re-evaluating each time, the location and o�set

tables can be modi�ed to re
ect the changes when moving to a child. Before moving

down the node is on the leaf layer of each of the depth subtrees. After the move

down, the new node is in the label 0 component of all the depth subtrees. This

means for 0 � i � depth, location[i]= 0. Since the child node is the root of all

of these subtrees, the correct o�set value is the child node's current value. The

child node is no longer within the depth+1 subtree labeled 0, however we can easily

calculate which of its children we are in since we know the leaf indent of the node.

The new label for depth+1 is 2 � indent+1 if moving left or 2 � indent+2 if moving

right. In the following pseudocode implementation of MoveDown, the variable left

is a boolean variable which represents whether child is the left child.
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MoveDown(child, left)

for i in 0 to depth

location[i ] 0
o�set [i ]  child

if (left)

location[depth+1]  2�indent+1
else

location[depth+1]  2�indent+2

This procedure also has running time �(depth) and cache complexity �(depth
L

). As

before if depth � L and the �rst L elements of location already in cache then this

function incurs no cache misses.

3.2 \Binary" Search

This Section will describe one use for the cache oblivious tree layout, a cache obliv-

ious search. The Search procedure will have optimal running time and caching

characteristics. A linear time method to convert a sorted array into this layout is

also presented.

The Search procedure is basically identical to the standard binary search pro-

cedure, except using the more complex child �nding procedures.

Search(value)

FindLocation(0)

CalcIndent()
if (value = array[0])

return true
next  0

while (next < length)
if (value > array[next ])

next  CalcLeftChild()
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left  true

else if (value < array[next ])

next  CalcRightChild()
left  false

else

return true

MoveDown(next,left)

CalcIndent()

return false

Theorem 1 Search takes O(log n) time.

Proof: To begin the proof the contribution from the while loop will be cal-

culated. Let h be the height of the tree. Consider the location array as holding

zero or non-zero values; then it encodes the height of the location it represents in

binary. The larger the index into the table, the higher the order of the bit (we will

not consider the recursive level 0 element as it is always 0 and never changes). A

move down increments this \binary counter" (replace the initial block of consecu-

tive non-zeros with zeros and change the next zero to a non-zero). So moving from

the root, (all zeros) to a leaf (encoding of h) is work equivalent to incrementing a

binary counter h times. The work required to increment a binary counter h times

is the total number of bits 
ipped. For half of the increments 1 bit is 
ipped, for a

quarter 2 bits are 
ipped, for 1=2i of the increments i bits are 
ipped.

Let b = dlog he, the number of bits in the counter. Then the work done incre-

menting a binary counter h times is bounded by

bX
i=0

h

2i
= h

bX
i=0

1

2i

� h
1X
i=0

1

2i
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= h
1

1 � 1
2

= 2 � h

Therefore the running time of the while loop is O(h). Since the height of the tree

is at most 2 log n, the running time is O(log n).

The call to FindLocation and the �rst call of CalcIndent contribute �(log log n)

to the running time and rest of the function is constant time. Hence using this

layout we can perform searches in O(log n) time. 2

Theorem 2 If L � 5, Search incurs O(logL n) cache misses.

Proof: To show O(logL n) cache complexity, a caching scheme will be given

which uses O(logL n) cache misses for a search. Since an optimal o�ine caching

strategy is assumed in our model, the algorithm will incur at most this many cache

misses. The number of cache lines required is: 1 for searching the tree and 2 for

each of the tables. Therefore a total of 5 cache lines are required.

There are two sources of cache misses in this operation, the array which stores

the data and the location and o�set tables. The contributions from each of these

will be considered separately. First consider those cache misses caused by reading

from the data array.

A rlt(n) of recursive level j can be viewed as constructed from recursive level k

complete trees, 0 � k < j, and a small number of rlt(m) trees, 1 � m < 22
k � 1.

To view a tree this way recursively consider the components of the tree until the

components are of recursive level k. For r = blog log(L + 1)c, r is the recursive
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level of the largest recursive level complete tree that can �t into a single cache line.

View a tree using the given layout as consisting of subtrees of this size.

A recursive level r tree can be brought into cache using 2 cache misses. If n < L

then the 2 cache misses required to load rlt(n) into cache suÆces for the entire

search. Otherwise, consider the search path. It is of length at most 2 log n. The

height of a recursive level r complete tree is 2r, which is at least 1
2
logL. Therefore

the search path is covered by at most 2 log n=2r complete recursive level r trees.

The total number of cache misses required to follow this path is twice the number

of trees, 2 � 2 log n=1
2
logL = 8 logL n.

To see that this can be done in a single cache line, notice that once a cache line

has been searched it does not need to be considered again. Therefore there is no

reason to keep the elements in cache. They can be overwritten by the incoming

elements without causing cache misses later.

Now consider the more subtle issue of the location and o�set tables. Looking

over the pseudocode one notices that the two tables are accessed in slightly di�erent

ways. The location table is scanned from 0 to depth + 1 twice. The o�set table

is accessed once at depth + 1 and then scanned from 0 to depth. An upper bound

on how many access are required for both tables is two scans from 0 to depth + 1.

Using this upper bound the same analysis can be used for both tables.

The caching scheme used for the tables is to place �rst L table elements into

the cache. If accesses to more than the �rst L elements are required, then, as often

as needed, load the required values into the cache line. After they have been used,

preload the �rst L table elements back into cache. (Alternatively the next access
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will be for the �rst element in the table so �rst L elements will be cached then.)

Since the �rst L elements may not be within a single block, two cache lines are

required to guarantee that these elements are in cache.

Now from the equations from above the total number of table accesses is
Pb

j=0
h
2j
,

where b = dlog he as before. Assume L < b, that is, the tables are larger than a

single cache line (otherwise it would only require a single cache miss to load the

entire table into the cache). So the total number of table accesses which occur

within the �rst L elements of the table is
PL

i=0
h

2i
Therefore the total number of

table accesses which occur outside the �rst L elements is

bX
i=0

h

2i
�

LX
j=0

h

2j
= h

0
@ bX

i=0

1

2i
�

LX
j=0

1

2j

1
A

= h

 
(1
2
)b+1 � 1
1
2
� 1

� (1
2
)L+1 � 1
1
2
� 1

!

= h

 �
1

2

�L
� 2 �

�
1

2

�b
+ 2

!

= h

�
1

2

�L
� h

�
1

2

�b

=
log n

2L
� log n

2log logn

=
log n

2L
� 1

= O

 
log n

2L

!

So even if every table access that occurs outside the �rst L elements causes a cache

miss the number of misses caused by the tables is much smaller than is used in

searching the tree. Therefore the total cache complexity of a search in this layout

is O(logL n). 2
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Given a sorted array a search tree using this layout can be built in O(n) time.

No claims about the caching characteristics of this procedure will be made. To

begin the description, a method for converting a sorted array with 22
i � 1 (for any

integer i � 0), elements into a recursive level complete tree will be presented. The

basic idea of this method is to place the n

2
leaves of the recursive level complete tree

in their correct locations while dividing the remaining elements into sorted arrays.

The algorithm will then recursively insert these arrays into the new layout.

The goal of this algorithm is to convert the sorted array representation of a

binary search tree to the new layout. Doing this will not change the position of

elements in the implicit tree, only the indices of the elements in the representation

are modi�ed. Therefore the leaves in the sorted array representation are also leaves

in the new representation. In the sorted array, the leaves are in the even indices of

the array. To add the leaves to the new layout, their correct position in the new

layout must be determined.

From the recursive description of the layout, a recursive description for �nding

the indices of the leaves can be found. Let i be an integer greater than zero. The

leaves of a recursive level i complete tree are the leaves of its recursive level i � 1

components with label greater than 0. Since the tree is recursive level complete the

component with label 0 has no leaves. When the recursion reaches a recursive level

0 complete tree, that node is a leaf.

Using this recursive de�nition, the new tree layout can be stepped through

from back to front, in a manner that touches all leaves without touching the internal

nodes. Recursively inspect each of the components in order from the highest labeled
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component to the component labeled 1 and then skip the component labeled 0. This

can also be done without recursion. To do this, start at the end of the array and

move towards the front; if the next element is in a component labeled 0, skip the

entire component.

This iterative method can be used to �nd the correct position for the leaves

in the new representation. However, the internal nodes also need to be added. If

instead of skipping, as described above, these elements are stored then they can

be inserted recursively. To store these internal nodes a two dimensional array will

be used. An array will store the elements of a label 0 component that has not

been added to the new layout. Therefore there will be arrays of size 22
i � 1 for

0 � i < level where level is the recursive level of the tree.

A label 0 component will be written out after the label 1 component is added.

To determine when a label 0, recursive level i component should be added, a check

is performed after each recursive level i component is added. If the array storing

the label 0 recursive level i component is full, then it should be added. Notice that

after adding a label 0 recursive level i component, the addition of a recursive level

i + 1 component has been completed. Therefore this check is performed within a

loop which increments the recursive level as label 0 components are added.

For this method to work, the algorithm must be able to determine where to put

elements from the input array. If the index into the input array is even, then it is a

leaf and should be added directly into the new layout. Otherwise store the node in

the array corresponding to the recursive level i label 0 component, where i is the

recursive level of the last tree added to the new layout.



CHAPTER 3. A CACHE OBLIVIOUS BINARY SEARCH AND HEAP 30

The following pseudocode will illustrate the conversion procedure. The vari-

able compZero is the two dimensional array containing level arrays. The array

compZero[i ] is of length 22
i � 1. This array will be used to store elements for the

recursive level i component labeled 0. The variable compZeroIndex is an array such

that compZeroIndex [i ] is the current insertion point in compZero[i ]. Elements will

be added to the compZero arrays from the last element to the �rst. Since the algo-

rithm decrements through the sorted input array, this will guarantee the elements

are added in sorted order.

LevelCompleteBuild(data, level)

LevelCompeteBuildHelper(data, level, 0, 22
level � 1)

LevelCompeteBuildHelper(data, level, low, high)
arrayIndex  high

dataIndex  22
level � 2

Set compZeroIndex [i ] 22
i � 2 for 0 � i < level

while (arrayIndex � low)
if dataIndex is even

array[arrayIndex ] data[dataIndex ]
dataIndex  dataIndex -1
arrayIndex  arrayIndex -1

last  0

else
while (compZeroIndex [last ] = �1)

end  arrayIndex

arrayIndex  arrayIndex�22last � 1

LevelCompleteBuildHelper(compZero[last ], last, arrayIndex, end)

arrayIndex  arrayIndex�1
compZeroIndex [last ] 22

last � 2

last  last+1
compZero[last ][compZeroIndex [last ]] data[dataIndex ]

dataIndex  dataIndex -1
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compZeroIndex [last ]  compZeroIndex [last ]�1

Theorem 3 A sorted array with 22
i � 1 elements can be converted into a recursive

level i complete tree in O(n) time.

Proof: The given algorithm adds all of the leaves of the input tree to the new

layout. The internal nodes are added recursively. The amount of work done, not

considering the recursive calls, is proportional to the size of the input array. The

total number of recursive calls is hard to calculate, however the total number of

elements recursed upon is less than n

2
. Let R be the set of sub-arrays that are

recursed upon. Then the following is a recurrence for the running time of this

algorithm.

L(n) = n+
X
r2R

L(length of r)

L(1) = 1

A proof by induction will show L(n) < 2n. This is clearly true in the base case.

Assume it is true for values less than n. Then recurrence becomes,

L(n) = n+
X
r2R

L(length of r)

� n+ 2
X
r2R

(length of r)

� n+ 2(the number of elements recursed upon)
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� n+ 2
n

2

� 2n

Therefore the algorithm is O(n). 2

To build a tree with n elements, for any n, use LevelCompleteBuildHelper as a

subroutine. Given a tree in the sorted array representation, its recursive level, l,

can be easily computed. A rlt(n) of level l is made of one or more complete trees of

recursive level l� 1 and one rlt of level l� 1. The recursive level complete subtrees

can be laid out using LevelCompleteBuildHelper and the incomplete recursive level

l � 1 subtree can be laid out recursively. The elements in the components with

labels greater than 0 are stored contiguously in the input array, the elements for

the label 0 components are not. These elements are interlaced between the elements

for the components with label greater than 0. When there are fewer than 22
l�1

such

components, there are elements at the end of the input array which are not allocated

to a component. These elements are elements of the recursive level 0 component.

Build(data, n)
level  dlog log ne
BuildHelper(data, level, 0, n)

BuildHelper(data, level, o�set, n)

s  22
level�1 � 1

numOfCompleteComp  bn
s
c

sizeOfIncompleteComp  n mod s

for i = 0 to numOfCompleteComp�2
low  (s+ 1)i
high  (s+ 1)i+ s� 1

Copy elements data[low...high] into a temporary array tmp
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(This could also be achieved using pointers into the data array)

LevelCompleteBuildHelper(tmp, level�1, s(i+ 1), s(i+ 2)� 1)

compZero[i ]  data[high+1]
low  (s+ 1)(numOfCompleteComp � 1)

high  low + sizeOfIncompleteComp � 1

Copy elements data[low...high] into a temporary array tmp

BuildHelper(tmp, level�1, o�set+ low, sizeOfIncompleteComp)

Copy the elements data[low+ sizeOfIncompleteComp...n�1] to the end of compZero

LevelCompleteBuildHelper(compZero, level�1, 0, s� 1)

Theorem 4 A sorted array of length n can be converted into the new layout in

�(n) time.

Proof: Let s = 22
l�1 � 1, the size of a recursive level l � 1 complete tree. Let

L(n) be the running time of LevelCompleteBuildHelper. Then a recurrence for the

running time of this algorithm is as follows,

T (n) =
�
n

s

�
L(s) + T (n mod s) + n

The running time for LevelCompleteBuildHelper is linear so this recursion simpli�es

to

T (n) = T (n mod s) +O(n)

An upper bound on n mod s must be determined. To make the number of elements

recursed upon as large as possible (in terms of n), the number of recursive level
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complete sub-trees should be as small as possible. Therefore if there is one recursive

level complete sub-tree and one incomplete one, the number of elements that is

recursed upon is at most n

2
. Given this, the recursion simpli�es even further and

the result is a simple application of the Master Theorem [CLR91]. 2

This section has described a cache oblivious layout which encodes a static binary

search tree into an array. This layout allows searches in O(log n) time and incurs

O(logL n) cache misses, thus it is time and cache optimal.

3.3 Heaps

Another application of our layout is a heap-like implementation of a priority queue

with good cache characteristics. The major di�erence between binary search and

the heap is the necessity of moving up the tree as well as down. A Parent function

will be introduced that calculates the parent of a node, as well as a MoveUp function

that will modify the location and o�set tables when the algorithms need to go to

a parent. These functions will then be used to implement the standard priority

queue functions.

To calculate the index of the parent of a node a procedure similar to �nding

the children will be used. As before the discussion will start with some de�nitions.

De�ne root depth to be the recursive level of the largest component that has the

node as its root. Figure 3.6 illustrates this. The node X is in the leaf layer of a

level 1 tree therefore the largest component that has X as a root is 0. Node Y is

the root of a level 1 tree but not a level 2. Therefore Y's root depth is 1. Similarly

node Z is the root of a level 2 tree, but not level 3 and so its root depths is 2.
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Y

Z

X
Root Depth 0

Root Depth 1

Root Depth 2

Figure 3.6: Examples of root depth and root indent

De�ne root indent to be the label of the node's level root depth component

(the one the node is a root of) in the recursive level root depth + 1 tree. Finding

the root depth is similar to �nding the leaf depth; simply scan through the location

table until the �rst non-zero entry is found. The �rst non-zero entry is the �rst tree

for which the node is not in the root component. Since the node was in the root

component for all the lower level trees it was the node for each of them. The root

indent is the label of the component within the root depth + 1 tree. Calculating

the root indent is simply a matter of taking the di�erence in the index of the root

of the root depth + 1 tree and the node (the number of nodes between them) and

dividing by the number of nodes in a recursive level root depth complete tree. This

counts the number of level depth complete sub-trees that are between the root of

the level depth+ 1 tree and the node. The CalcParentIndent function will be used

to �nd these values.

CalcParentIndent()

i  1

while (location[i ] = 0)

i = i+1
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depth = i�1
indent = b (index�offset[depth+1])

22
depth�1

c

The running time of this function is �(depth).

The root indent of a node indicates the subtree in which it resides. The parent

of this node is the b indent�1
2
cth node from the left in the label 0 component. The

label 0 component (of recursive level depth) is composed of recursive level depth�1
components. The number of leaves in the leaf layer of one of these components can

be calculated using their depth. By dividing the parent indent by the number of

leaves, the recursive level depth�1 component that the parent is in can be found.

By taking the parent indent modulo the number of leaves in the leaf layer of a

depth�1 component we can �nd the indent into this component. The o�set to the

root of these subtrees becomes the index of the parent node when the recursive

level of the subtree is 0. The following function calculates the index of the parent.

Parent()

total  o�set [depth+1]

b  b indent�1
2
c

lev  depth�1
while (lev� 0)

size  22
lev�1

total  total + b
size+1

� (2size � 1)

b  b mod size

return total

Once again the running time of this function is �(depth).

Calling FindLocation every time the algorithm move to a parent is too slow.

Therefore a MoveUp function is used which updates the location and o�set tables
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to the parent of a node in �(depth) time. This function is nearly identical to the

FindLocation function, the di�erence being it only modi�es the �rst depth elements.

Notice the MoveDown function is a similar modi�cation, except since the �rst depth

elements must be 0, their values need not be calculated.

MoveUp(index )
location[depth+1]  0

o�set [depth]  o�set [depth+1]

lev  depth

while(lev> 0)

size  22
lev�1 � 1

location[lev ] = index�offset[lev]
size

o�set [lev -1] = o�set [lev ]+location[lev ]�size
lev  lev -1

It is clear that the running time of this function is also �(depth).

Inserts are performed as normal with the addition of the new navigation func-

tions. The element is added to the end of the array and then moved up the tree

until the heap property is achieved.

Insert(val)

if (numOfElements = 22
level � 1)

level  level+1

i  numOfElements

numOfElements  numOfElements+1

FindLocation(i)
CalcParentIndent()

par  Parent()

while (i > 0 AND array[par ] < val)

array[i ] array[par ]

i  par

MoveUp(par)
CalcParentIndent()
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par  Parent()

array[i ] val

To analyze the running time and cache complexity of this function apply the ideas

used in the proofs for Search's complexity. First notice that the path traveled from

the leaf to the root for an Insert is the path that a Search to that leaf would have

taken in reverse order. Also notice that the leaf depth of a node is the same as

the root depth of its child. This means that calling MoveDown at some node takes

similar time and memory accesses to calling MoveUp from its child to get to the

node.

Theorem 5 Insert has running time O(log n).

Proof: Outside of the while loop, Insert calls FindLocation and CalcIndent

and does a constant amount of other work. So the cost outside the while loop is

�(log log n). Using the observations above, the sum of the leaf depths moving down

a path is the same as the sum of the root depths moving up a path. Therefore the

while loop does asymptotically the same amount of work as the while loop from

Search moving down that path. Therefore the while loop takes O(log n) and so the

Insert function takes O(log n) time. 2

Theorem 6 Insert has cache complexity O(logL n).

Proof: The analysis of the cache complexity of Insert is also similar to that of

Search. There are two source of cache misses; the accesses into the data array and

the accesses into the o�set and location tables. For Search the number of table

accesses was bounded by two scans through an array from 0 to depth+1 per step.
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In this case three are required. Notice that each of CalcParentIndent, Parent and

MoveUp access the o�set array. However this is only a constant multiple di�erence

and so does not a�ect the asymptotic number of cache misses. Since the leaf depth

for a transition from a node to its child is the same as the the root depth when

moving from child to parent, the total number of accesses into the tables for a path

from the root to a leaf is the same as the path from the leaf to the root. Therefore

the result obtained in the proof for Search's cache complexity applies and so the

total number of cache misses caused by table accesses is O( logn
2L

).

Now consider the number of cache misses contributed by the data array. Let

r = blog log(L+1)c. As in the analysis for Search a complete recursive level r tree

can be brought into cache with 2 cache misses. The height of the level r tree is at

most 1
2
log L. As well, the length of the path from the new leaf to the root is at

most 2 log n. Thus the number of cache misses required to move the element up

the heap is at most 8 logL n. 2

The Heapify function is important to maintain the heap property after extract-

ing the maximum element. Heapify assumes that FindLocation has been called

before its �rst invocation.

Heapify(index )

calcChildIndent()
left  LeftChild(index )
right  RightChild(index )

which  true

if (left < numOfElements AND array[left ] > array[index ])

larger  left

else
larger  index

if (right < numOfElements AND array[right ] > array[larger ])
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larger  right

which  false

if (larger 6= index )
Swap the values of array[index ] and array[larger ]

MoveDown(larger, which)

Heapify(larger)

Theorem 7 Heapify has O(log n) running time.

Proof: Proving the running time for Heapify is very similar to the proofs from

previous theorems. Descend the tree calling by CalcChildIndent and MoveDown

at each step does O(depth) work per step. Using the calculations from above the

total running time of Heapify is O(log n). 2

Theorem 8 Heapify has cache complexity O(logL n).

Proof: As before let r = blog log(L + 1)c. Notice that, unlike previous algo-

rithms, Heapify must access a node's left and right child to decide how to proceed.

This means that it will access array positions and then decide to not proceed to

them. Previous proofs assumed that complete level r trees were brought into cache

with 2 cache misses. In a complete tree the only nodes which do not have left and

right children in cache are the leaves. Therefore only when moving between the com-

plete level r sub-trees are extra cache misses required and then only one additional

miss per sub-tree. Instead of charging 2 cache misses per sub-tree, charge 3. The to-

tal number of cache misses required to walk the path is 3�2 log n=1
2
logL = 12 logL n.

The tables are used as before and so contribute a lower order term. 2

Since we know Heapify's caching and running time characteristics it is easy to

�nd ExtractMax's characteristics.



CHAPTER 3. A CACHE OBLIVIOUS BINARY SEARCH AND HEAP 41

ExtractMax()

if (numOfElements < 1)

Error("Heap Under
ow")
max  array[0]

array[0] array[numOfElements]

numOfElements  numOfElements-1

if (numOfElements = 22
level�1 � 1 AND numOfElements > 0)

level  level -1

FindLocation(0)

Heapify(0)

return max

Theorem 9 ExtractMax has running time O(log n) and cache complexity O(logL n).

Proof: Before the call to FindLocation, the function uses a constant amount

of time and cache misses. FindLocation takes �(log log n) time and �( log logn
L

)

cache misses. Thus the running time and cache complexity of this function is

dominated by Heapify. Therefore ExtractMax has O(log n) running time and has

cache complexity of O(logL n). 2

To build a heap in O(n) time a similar method as was presented for the search

tree will be used. As before no claims about the caching characteristics of this

algorithms are made. To begin the discussion consider an input array containing

22
i�1 elements. A heap storing these elements will be a level i complete tree. Such

an array can be converted into a heap stored as a level i complete tree in O(n) time.

First run the standard make heap algorithm to reorganize the array such that it

is stored as a heap. By performing an in order walk of this tree and writing the

elements into an array, they are converted into the layout used for the input to the

LevelCompleteBuild algorithm from Section 3.2. Using LevelCompleteBuild this
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array will be rearranged into the new layout. All of the steps required to convert

the array into the new layout take O(n) time, so the entire operation takes O(n).

LevelCompleteHeapBuild(data, n, low, high)

MakeHeap(data, n)

tmp = InOrderWalk(data, n)

LevelCompleteBuildHelper(tmp, n, low, high)

This procedure will be used as a subroutine for the general building procedure.

Most input arrays will not be of length 22
i � 1. As with building the search tree,

an input array will be divided into a set of sub-trees which are of size 22
j�1 � 1,

where j is the level of the rlt(n), and one sub-tree of smaller size that is laid out

recursively.

To make an unsorted array into a heap, the values stored in a parent must be

larger than those stored in its children. Therefore if the top 22
j�1 � 1 elements

are selected and assigned to be the root sub-tree, then any heaps made from the

remaining nodes can be placed as the children of any of the leaves of this sub-tree.

By using the linear selection algorithm of Blum, Floyd, Pratt, Rivest and Tarjan

[BFP+73, CLR91] the kth element can be found in linear time. By partitioning the

input array using this element the k largest elements can be split from the n � k

smallest. The remaining nodes will be divided into groups of size 22
j�1 � 1 and

possibly one of smaller size. The root sub-tree and the groups of size 22
j�1 � 1 can

be laid out using LevelCompleteHeapBuild. The one group of smaller size can be

laid out recursively.

HeapBuild(data, n)
HeapBuildHelper(data, n, 0)
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HeapBuildHelper(data, n, low)

level  blog log(n+ 1)

SubTreeSize  22
j�1 � 1

k  Select(data, n, SubTreeSize)

(topK, rest)  Partition(data, n, k, SubTreeSize)

LevelCompleteHeapBuild(topK, SubTreeSize, low)

i  SubTreeSize

while (i+SubTreeSize < n)
tmp  rest [i,...,i+ SubTreeSize]

LevelCompleteHeapBuild(tmp, SubTreeSize, low+ i)

i  i+ SubTreeSize

tmp  rest [i,...,n]
HeapBuildHelper(tmp, n � i, low + i)

The running time analysis is identical to the one used in the proof of Theorem 4.

Therefore this algorithm is also �(n). Thus a heap can be built using the new layout

in linear time from an array of n numbers.



Chapter 4

Cache Oblivious List

4.1 Introduction to Rotated Lists

The linear list is one of the simplest abstract data types. Standard implementations

allocate nodes such that moves forward and backward, as well as insertions and

deletions take constant time. However, these methods lead to the list having poor

caching characteristics. A scan of the entire list can take n cache misses, one miss

for each node in the list. A data structure that can be used to represent a linear list

and also has good caching characteristics is desirable. The data structure presented

here will allow a list to scanned in �(n) time and incur the optimal number of cache

misses, �(n
L
), without knowing L. It also allows insertions and deletions in time

O(n
1p
log n
p
log n). The extra space used by this new structure, over and above

the data itself, can be made as small as �n for any constant � > 0. This is in

contrast to the work of Bender, Demaine and Farach-Colton on B-trees [BDFC00]

which requires considerable extra storage. Most notably, they make use of bu�er

44
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nodes which substantially increase the storage requirements. This structure requires

no such nodes. To achieve these results, the recursively rotated list, a structure

proposed by Frederickson [Fre83], will be used. This structure is a generalization

of the rotated lists of Munro and Suwanda [MS80].

Rotated lists were proposed by Munro and Suwanda to solve the dictionary

problem with no structural information (pointers). They store their data in nearly

sorted order and allow fast structural operations. Like Frederickson's generaliza-

tion, the structure presented here exploits these properties to store the nodes of

a list in nearly contiguous order while allowing updates in O(n
2p

2 log n
p
log n) time.

As a linear list is implemented instead of a dictionary, there are some di�erences

between the operations of the two data types. The most important di�erence is

that inserting into a linear list has both the value to be inserted and the location.

A dictionary is given only the value and must itself decide where to put the ele-

ment. As the original application stores elements ordered by value the description

of recursively rotated lists will as well, however once the new structure is described

in Section 4.3 this will not longer be the case.

A rotated list is a sorted array whose which has had a cyclic shift (shifted to

the right with the elements shifted o� the end moved to the spaces opened at the

beginning) applied to its elements. Instead of the �rst element being at index 0

and the last at index n � 1, the �rst element is at index s, the n � sth element

is in index n � 1, the n � s + 1th element is in index 0 and the nth element is

in index s � 1. For a rotated list it is useful to understand how far the array has

been rotated. To do this, de�ne the rotation element of a rotated list to be the
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A B C D E F G H IM N JPOLK

Figure 4.1: A rotated list of 16 elements.

physical location or index of the logically last or largest element in the array. This

element indicates how far the array has been rotated. In the example of a rotated

list given in Figure 4.1 the rotation element occurs at position 5, as the list has

been shifted 6 locations.

There are two important operations that can be performed on a rotated list, the

easy exchange and the hard exchange. An easy exchange is inserting an element

that is smaller than any other element in the rotated list and deleting the largest

element. A hard exchange is inserting an element whose value is larger than the

smallest value in the list and deleting the largest element.

An easy exchange can be implemented in constant time by replacing the largest

element in the rotated list with the new smallest one. Figure 4.2 is an example of an

easy exchange1. To perform a hard exchange, �nd the location for the element to

be inserted and replace the value stored in that location with the new one and the

insert the old value into the next position. Continue shifting values back through

the list until the last position is reached. Since the largest value is being deleted its

value can be overwritten with the new one. Figure 4.3 illustrates this procedure.

Clearly this operation can take time linear in the length of the rotated list. During

either of these operations there will an element that is not stored within the array,

1In examples, letters will be used as data items. They are in alphabetical order
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50 1 2 3 4 50 1 2 3 4

A

G

B C DE GF A B DE F C

Figure 4.2: An easy exchange: inserting A, deleting G.

0 1 2 3 4 5 0 1 2 3 4 5

A B D EF G

C D

E

F

G

A B C DE F

Figure 4.3: A hard exchange: inserting C, deleting G.

either the new element being inserted or the old element being deleted or in the

case of a hard exchange one of the elements that is being shifted. Call this element

the shift element .

Inserting into a rotated list means adding an element in an arbitrary location

while maintaining the order of the elements. Given that the rotated list is repre-

sented within an array, the insertion will need to move elements so that a space

at the end of the array is used. Therefore performing an insert in a rotated list is

similar to performing a hard exchange. The di�erence is that instead of moving

elements towards the rotation element they are moved towards the end of the ar-
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a) 0 1 2 3 4 5 0 1 2 3 4 5

A C DE F

B DC

A B C DE F

b) 10 2 3 4 5 10 2 3 4 5

A BC D F

E
D

C

A B CD E F

Figure 4.4: Insertion into a rotated list. Figure 4.4a is an insertion to the right of
the rotation element. Figure 4.4b is an insertion to the left of the rotation element.

ray. At the end of this procedure the shift element will be the element that should

be placed at the end of the array. Once this element is found it can be added to

the end of the array. Performing insertions in this way maintains the rotated list

structure.

It maybe desirable for the position of the rotation element not to change during

an insert operation. Therefore if the insertion occurs before the rotation element,

instead of shifting towards the end of the array one can shift towards the beginning.

Once the front of the array is reached the shift element can be placed at the end of

the array and still maintain the rotated list structure. Examples of the two insertion

directions are given in Figure 4.4. This operation is also linear in the length of the

rotated list.

A deletion is completely analogous to an insertion. The element to be deleted

is removed. To �ll the gap shift elements either forwards or backwards depending
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on the location of the deletion relative to the rotation element. If elements are

being shifted from the back, when the end of the array is reached the algorithm can

terminate. If elements are being shifted from the front, when the �rst element is

reached the element from the end of the array is removed and used to �ll the �rst

location.

4.2 Multi-Level Rotated List Structures

4.2.1 Two Level Structures

Munro and Suwanda [MS80] use rotated lists to make a new structure, the list

of rotated lists. A list of rotated lists is a structure which stores a set of sorted

elements using multiple rotated lists. The structure is represented in an array. The

smallest element in the set is stored at the beginning of the array in a rotated list

of length 1. The next two smallest elements from the set form a rotated list of

length 2 stored in the array after the rotated list of length 1, then next 3 are stored

in a rotated list of length 3. In general, the (
Pk�1

i=1 i)
th to

�
(
Pk

i=1 i)� 1
�st

smallest

elements are stored in a rotated list of length k stored in the array starting at

position
Pk�1

i=1 i. The last rotated list may not be full; in this case it is represented

as a rotated list containing the remaining elements. Figure 4.5 is an example of a

list of rotated lists.

To insert an element perform a hard exchange on the rotated list in which the

insert occurs. If the value of the element falls between two lists then the initial

hard exchange is not required. The shift element is smaller than any element in the
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A BC D E F G HI J O K L M N P

Figure 4.5: A list of rotated lists containing 16 elements.

following rotated list so an easy exchange can be performed. The largest element

from the rotated list becomes the shift element after the easy exchange. Continue

performing these easy exchanges until the last rotated list is reached. Perform an

insert into the last rotated list. If this �nal rotated list is full, then create a new

rotated list of one element and add it to the end of the list2.

As before, deletes are similar to inserts. Remove the element to be deleted from

the rotated list. Then perform a hard-exchange-like operation which moves the free

space to the end of the rotated list. To �ll this position take the smallest element

from the next list. By the properties of the list of rotated lists this element is

larger than any element in the previous list therefore placing it in the last position

maintains the properties of a list of rotated list. To �ll the now empty position

in this rotated list take the smallest element from the next rotated list. Since the

gap was created by removing the smallest element a new element larger than any

in the list can be placed in that position, similar to an easy exchange. Continue

performing these operations until the last rotated list is reached. The smallest

element from this list was used to �ll the gap in the previous list so its position can

be deleted.

Frederickson [Fre83] generalized the list of rotated lists by noticing that the array

2Memory management will be discussed in Section 4.5.1
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could be divided in a more arbitrary manner. Given a function f : Z+ ! Z
+ and n

the number of elements to be represented, de�ne r to be the smallest integer such

that n � Pr
i=1 f(i). Divide the array, of size n, into r sub-arrays, S(1); S(2) : : : S(r).

Each of the sub-arrays, S(j) with 1 � j < r contains the f(j) elements from

the array in positions
Pj�1

i=1 f(i) to (
Pj

i=1 f(i)) � 1. The remaining elements from

position
Pr�1

i=1 f(i) to n are stored in S(r). The elements in the sub-arrays can be

stored using a secondary structure.

Using this method the list of rotated lists can be viewed as using the function

f(i) = i. Therefore n � r(r+1)

2
and so r is approximately

p
2n. The running time

of an insert is the time to perform the insert in the last rotated list plus the time

for the easy exchanges. There are at most r rotated lists so the number of the easy

exchange is O(
p
n) and the size of the last rotated list is O(

p
n), so the running

time of an insert in this structure is O(
p
n).

4.2.2 Recursively Rotated Lists

Frederickson further generalized these ideas into recursively rotated lists [Fre83]. A

recursively rotated list of recursive level h is a rotated list that has been divided

into sub-arrays, A(0); A(1); : : : ; A(B(h)� 1), where B(h) is the branching factor of

level h. Each of these sub-arrays are then represented as recursively rotated lists of

recursive level h � 1. A recursively rotated list of recursive level 0 is a rotated list

of c elements (where c is an arbitrary parameter). The total number of elements

in a recursively rotated list of recursive level h is c
Qh

i=1B(i), (c can be viewed as

B(0)). The elements in the B(h) sub-arrays of a recursively rotated list satisfy two
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properties. Let p be the index of the sub-array such that the rotation element of

the rotated list appears in A(p).

1. x < y, for all x 2 A(i) and all y 2 A((i+1) mod B(h)) for 0 � i < B(h) and

i 6= p; i 6= (p+ 1) mod B(h).

2. z 2 A(p) implies z < y for all y 2 A((p + 1) mod B(h)) or x < z for all

x 2 A((p+ 1) mod B(h)).

The �rst condition states that for two adjacent rotated lists, neither of which

contains the rotation element for this level, all the elements in the �rst list are

smaller than all the elements in the second. This is a similar constraint to the one

imposed in a list of rotated list. The second constraint states that any element from

the sub-array containing the rotation element is either larger than every element in

the next list or smaller than every element from the next list. This is reasonable

since the sub-array containing the rotation element will contain some of the largest

elements in the list and in general some of the smallest.

A sub-array which does not contain the rotation element from the level above

is simply a sorted array. Therefore the initial position of its rotation element is the

last position in the sub-array. If the sub-array does contain the rotation element

of the level above, then the initial position of its rotation element is the location

of the rotation element of the level above. In either case the sub-array is a valid

recursively rotated list.

These two possibilities for the initial position of the rotation element raise an

important issue. There are two concepts of the order of elements in a recursively

rotated list. One idea is the order in which the elements are stored in the entire
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structure. For a standard recursively rotated list this is sorted order. The second

idea is the order the elements appear in the array which stores the recursively

rotated list. When a recursively rotated list does not inherit the rotation element

from the level above these two ideas are the same. However, when the recursively

rotated list does inherit the rotation element from above these ideas are di�erent.

To distinguish these two concepts de�ne list �rst and list last to be the �rst

and last elements in a recursively rotated list that are �rst and last according to

the order of the entire structure, (notice that the rotation element is the list last

element). As well, de�ne array �rst and array last to be the elements of a

level i recursively rotated list that would be the �rst and last in the array if the

level i structure were simply an array. One useful observation to make is that an

inherited rotation element is a array last element from a level above. Therefore

every rotation element is an array last element from a list of level greater than or

equal to its level.

Since this is a dynamic structure it is possible that a level h recursively rotated

list does not contain B(h) sub-arrays. In this general case, a level h recursively

rotated list contains d sub-arrays where 2 � d � B(h). The sub-arrays A(0) to

A(d � 2) are complete level h � 1 recursively rotated lists (having B(h � 1) sub-

arrays). The sub-array A(d� 1) need not be complete.

An example of a recursively rotated list

It is diÆcult to visualize the multiple levels of rotations that a recursively rotated

list uses. This example gives a complete explanation of the rotated nature of a

recursively rotated list. Figure 4.6 is the recursively rotated list that will be used
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0 1 2 3 4 5 11109876 12 13 14 15

Level 0
Level 1
Level 2
Level 3

A B JKL N O PCDE M F HG I

Figure 4.6: A level 3 rotated list containing 16 elements

as an example. It contains the elements A to P. This example will be constructed

through a set of rotations at each level.

First, if the entire structure were a single rotated list it would be the rotated

list shown in Figure 4.7. The elements have been shifted by 6 positions, moving

the elementsG,H,I,J to the end of the list. This rotated list of 16 elements will be

divided into sub-arrays of length 12. Since there are only 16 elements, the array is

divided into two sub-arrays, one of length 12 and one of length 4. The four elements

in the second sub-array are determined by this �rst rotation. Since the unrotated

version of the list in Figure 4.7 is simply a sorted array the array �rst and list �rst

are the same as are the array last and list last.

Figure 4.8 adds the level 2 rotations (shown in the �gure as a level 1 recursively

rotated list). The array has been split into two sub-arrays. The �rst sub-array

contains the rotation element, P, from the level above, therefore P is the rotation

element of this rotated list. This also means that the array last is di�erent from

the list last. Since this list has been rotated by 3 positions the array last element
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Level 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

JK L N O P A B C D E F G H IM

Figure 4.7: The level 3 rotation of Figure 4.6 shown as a level 0 rotated list.

is located in position 2. This diagram shows what array �rst and last elements

indicate. The elements K and F are the array �rst and last elements for the �rst

rotated list. Although they are in alphabetical order, there are elements between

that are stored in a di�erent rotated list. Therefore these elements represent a

possible discontinuity that is not obvious from the order of the elements in the

array.

The second sub-array does not contain the rotation element from the level above

so the initial position of its rotation element is the last position in the array. There-

fore the array �rst and list �rst are the same, as are the array last and list last. In

this example, this sub-array is not rotated from its initial position, though it can

be in general.

The next level of recursion divides the array into sub-arrays of length 6. In this

case we get 3 new sub-arrays, two of length 6 and one of length 4. This is shown

in Figure 4.9. The �rst rotated list does not contain the rotation element from the

level above so it is simply a sorted array. This sub-array is rotated by 1 position, as

indicated by the arrow. The next sub-array does contain the rotation element from

the level above, therefore the initial position of its rotation element is the position
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Level 0
Level 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

G H JK L M N O PD E F CBA I

Figure 4.8: The second level of rotations. Notice the rotation element for the �rst

rotated list is the rotation element from the level above.

0 1 2 3 4 5 11109876 12 13 14 15

Level 0
Level 1
Level 2

JK L N O P G H IDM E F A B C

Figure 4.9: The third level of rotation.

of the rotation element from the level above. This sub-array has been rotated by

3 elements. The last sub-array also contains the rotation element from the level

above (which happens to be in the last position) and is rotated by 1 position.

The �nal level of rotation, show in Figure 4.10, divides the array into sub-arrays

of length 3. As before, the sub-arrays which do not include the rotation element

from the level above are simply sorted arrays with the initial position of their

rotation element in their last position. The other arrays have the initial position of

their rotated element in the position from the level above.
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0 1 2 3 4 5 11109876 12 13 14 15

Level 0
Level 1
Level 2
Level 3

JKL N O P G H IC A BDE M F

Figure 4.10: The level 3 recursively rotated list from above, notice the positions of
the rotation elements.

4.2.3 Operations on Recursively Rotated Lists

An easy exchange on a recursively rotated list can be performed as before, by simply

replacing the largest element with the new element. To see that this maintains the

properties outlined in Section 4.2.2, notice that after an easy exchange the second

to largest element is now the largest. Usually this element will be within the same

rotated list, however it is possible that it is not. In the case when it is within the

same rotated list, the list contains some number of the smallest elements and some

of the largest elements. Therefore property 2 still holds since an element in this

list is either one of the smallest, thus smaller than any other element in the rest

of the list or one of the largest, thus larger than any other element in the rest of

the list. Property 1 holds since none of other sub-arrays were modi�ed. If the easy

exchange does move the rotation element from one sub-array to another, the old

sub-array contains the smallest elements in the list and the new one contains the

largest. This means the sub-array after the array containing the rotation element
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contains the smallest elements in the list, thus property 2 holds. Since the sub-

array containing the smallest elements no longer has the rotation element property

1 must be checked. However, this is obvious given that this sub-array contains the

smallest elements in the list.

A general recursive hard exchange can be implemented as follows: First �nd the

sub-array in which the element should reside, perform a recursive hard exchange

in this list. Then perform easy exchanges in each sub-array until the sub-array

containing the rotation element is reached. Perform a recursive hard exchange

in this sub-array. Some cases are not covered by this general statement. If the

element to be added falls between two sub-arrays then the initial hard exchange

is not required since the element does not need to be inserted into an array. If

the correct sub-array to add the new element into is the sub-array containing the

rotation element, then only a single recursive hard exchange is required. Due to

the recursive nature of this structure this sub-array is a recursively rotated list so

performing a hard exchange in this sub-array does have the correct e�ect. The

element returned from this hard exchange is the largest element in the sub-array

which is also the largest element in the entire list.

RecHardExchange(array, level, element)
if (level = 0)

return HardExchange(array, element)
Set i to be the index of the sub-array (S(i)) in which the element should reside

or the following sub-array if the element falls between two sub-arrays.

if (the element does not fall between two sub-arrays
AND S (i) does not contain the rotation element)

element  RecHardExchange(S(i), level � 1, element)
i (i+ 1) mod B(level)

while (S(i) does not contain the rotation element)
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element  RecEasyExchange(S (i), level � 1, element)

i (i+ 1) mod B(level)

return RecHardExchange(S (i), level � 1, element)

An example of a hard exchange in a recursively rotated list is given in Sec-

tion 4.3.23.

A hard exchange does not violate the properties of a recursively rotated list.

First notice that much of the work done by a hard exchange uses easy exchanges.

Easy exchanges have already been shown to perserve the recursively rotated list

properties. The rest of the work is done by performing hard exchanges in level 0

rotated lists. A hard exchange in a rotated list does not change the relative order

of the elements. The position of the largest element is unchanged after a hard

exchange, although the value is not. The other elements are handled similarly.

Thus the properties hold since the relative order of elements is unchanged after a

hard exchange in a level 0 rotated list.

Performing an insert in a recursively rotated list is the natural extension of

an insert into a list of rotated lists. The main idea is to change the element and

position of insertion from the original to the end of the rotated list so the element

added to the end of the list maintains the properties of a recursively rotated list.

The �rst step is to check if there is space for the new element. If there is no free

space it must be allocated4. The actual insertion is then performed.

An insertion can be thought of as a hard exchange in the recursively rotated

list containing the insertion point, followed by easy exchanges until the recursively

3The example includes modi�cations for the new structure

4The details of this are presented in Section 4.5.1
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rotated list containing the free spaces is reached. A recursive insert is then per-

formed in this recursively rotated list. During this sequence passing over the �rst or

last element of the entire list is a problem. An easy exchange cannot be performed

within this list as the element to be inserted is not necessarily smaller than any

element within the list. An operation similar to a hard exchange could be made

to work, however this is undesirable. It is faster to simply �nd the direction for

operations which avoids this position.

Unfortunately this is not as simple as it sounds. Although this operation is

simple in general, it breaks down in some cases which must be handled individually.

The general idea of this operation is to determine the relative positions of the

insertion point and the rotation element. If the insertion point is after the rotation

point, then the insertion can proceed to the end of the array without encountering

the rotation element. If the insertion point is before the rotation point then the

insertion must proceed towards the beginning of the array to avoid the rotation

element.

To determine the direction �rst check the values of the insertion point and

rotation element. If the insertion point is the same as the rotation element, then

move towards the front of the array. If these positions are not equal then view the

level h recursively rotated list as being 1 < b � B(i) level h� 1 recursively rotated

lists where the last sub-array, A0, may not be full. If the sub-array which contains

the insertion point, I0, is di�erent from the sub-array that contains the rotation

element,R0, then this is the easy case. If the position of R0 is less that the position

of I0 then the operations proceed towards the end of the array. If I0 is before R0
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proceed towards the beginning of the array. If I0 is the same sub-array as A0 then

simply perform an insert in the level h� 1 array.

The diÆcult case is when I0 and R0 are the same. Consider the recursively

rotated list I0. To determine the correct direction to move the relative positions of

the rotation element and the insertion point must be determined. If the insertion

point is after the rotation element and before, or equal to the array last element,

then move towards the end of the list. Otherwise move towards the front. Let

j be the level of the recursively rotated list. Let the sub-array containing the

insertion point be I, the sub-array containing the rotation point be R, and sub-

array containing the list last element (for the level j recursively rotated list) be

L.

If the order of these three sub-arrays is R, I, L, in the rotated sense, then the

insertion point is clearly after the rotation point and before the array last element.

If the order is R, L, I then the insertion point is after the array last element, but

before the rotation point. Now the cases in which some of the sub-arrays are the

same must be considered.

If I and R are the same but L is not, then recursively apply this procedure on

this sub-array. The position of the insertion point relative to the rotation point

within this sub-array will imply its position in the array. If I and L are the same

but R is not, then determining the direction to move is equivalent to determining

if the insertion point is before or after the array last element in this sub-array. A

recursive call in this sub-array can be used to solve this case. If the insertion point

is before the array last element then move towards the array last element, thus the
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end of the array. Otherwise move toward the array �rst element.

If R and L are the same, but I is not then �nding the order of the three

positions is equivalent to �nding the order of the rotation point and the array last

element within the sub-array. Therefore recursively apply this within the sub-array

to determine the correct order of the positions. The �nal case is I, R and L all the

same sub-array. This case can also be solved recursively. However, in this case the

array last element from the current array is passed into the sub-array to be used,

instead of its own array last value.

If the recursion reaches a level 0 sub-array then the relative order of the positions

can be determined by noticing that this case is similar to having sub-arrays of length

1. Since the insertion and rotation elements are known to be di�erent, the only

case to worry about is if the insertion element and the array last element are the

same, or the rotation element and the array last element. In the �rst case, the

rotation point must be before the insertion element, so the operation can proceed

towards the end of the array. In the second case, the insertion element is clearly

before the rotation element and so the operation should proceed towards the front

of the array.

Once the direction to move has been determined a procedure similar to a recur-

sive hard exchange is performed in that direction. First a recursive hard exchange

operation is performed in the sub-list of level h�1 in which the insert occurs. This

operation adds the new element to the list and removes either the largest element or

the smallest depending on the direction. Easy exchanges are used to shift elements

until an element whose position is between the last recursively rotated list in the
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array and the �rst. The algorithm checks to see if the last sub-array is full. If it

is then instead of recursively inserting, a new recursively rotated list of the same

level as the sub-array is created. The algorithm will add an element to this new

recursively rotated list.

If the last sub-list is not full then a recursive insert is performed in the last sub-

list. If the algorithm reaches level 0 then the rotated list obtained is incomplete.

Therefore the element can be inserted in this rotated list.

The following pseudocode illustrates the recursively rotated list Insert proce-

dure.

RecInsert(array, level, element)
if (level = 0)

Insert(array, element)
return

Set i to be the index of the sub-array (S(i)) in which the element should reside
or the following sub-array if the element falls between two sub-arrays.

Determine the direction to perform the operations

if (proceeding towards the end of the array)
if (the element does not fall between two sub-arrays)

element  RecHardExchange(S(i), level � 1, element)
i (i+ 1) mod B(level)

while (S(i) is not the �rst sub-array)
element  RecEasyExchange(S (i), level � 1, element)
i (i+ 1) mod B(level)

else
Similar to moving towards the end of the array, except with backward
hard and easy exchanges. Check for the last sub-array instead of the

�rst
if (the last sub-array is not full)

RecInsert(last sub-array, level � 1, element)
else

Create a new recursively rotated list of level level containing only element

return
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To see that an insert does not violate the properties of a recursively rotated

list, �rst consider the movement of elements within the rotated list. To obtain an

element whose position is between two rotated lists a hard exchange is used. Easy

exchanges then shift elements until an element whose correct position is between

the last rotated list and the �rst if found. This element could be inserted into either

list if there is space. However, knowing that the �rst list is fullonly the last needs

to be checked. If it is full then a new list is created. The new list becomes the last

list in the array. Therefore the value of it's elements should be between those in

the recursively rotated list before it and the recursively rotated list after it. The

element that was used to create the new list has this property. In the case that

the insertion reaches a level 0 rotated list, then there is space for the element in

the level 0 list. An insertion will add the element into this list. The level 0 rotated

list is the last one in the array. Therefore adding the element to this list places

at the end of the last recursively rotated list. This maintains the properties of a

recursively rotated list.

Deletions can be performed using a similar procedure to insert. First determine

which direction to proceed. The desired element is removed, creating a gap in a

recursively rotated list. A hard-exchange-like operation is used to shift the gap to

the end of the recursively rotated list. Easy-exchange-like operations can shift the

gap until it is in a recursively rotated list that is adjacent to the last recursively

rotated list. The last element from the last recursively rotated list is �ll the gap

and then it is recursively deleted.
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4.3 New Structure

4.3.1 Modi�cations

The new data structure uses recursively rotated lists, but changes some aspects so

that it represents a linear list and not a sorted array. This makes the structure

explicit rather than implied by the key values. The nodes of the list are standard

doubly linked list nodes. They store a data item, a next pointer and previous

pointer (a method will be presented later which will reduce the required space).

The element reached by following a next pointer corresponds to the next larger

element in Fredrickson's dictionary. All of the list nodes are stored in an array.

Within this array the nodes are stored in a recursively rotated list in list order.

Since the data cannot be used to determine relative order between nodes, pointers

will be stored and used to maintain the order. Each recursively rotated list will

have a pointer to its array �rst, array last, list �rst and list last element. Since

these modi�cations do not e�ect the order elements are stored in the recursively

rotated list, the properties listed in Section 4.2.2 must still be maintained.

The layout of the list within the array is as follows. A list with recursive level 0

has a constant number of elements, c, stored as a rotated list in a contiguous block

of memory. Pointers to the array �rst and last and the list �rst and last elements

in the rotated list are stored in a secondary structure. A level h recursively rotated

list consists of B(h) level h� 1 recursively rotated lists stored contiguously in the

array. Pointers to the array �rst and last and list �rst and last elements of this list

are also stored.
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The pointers can be stored in four two dimensional arrays. One dimension

indicates the level of the recursively rotated lists that the pointers index. The

other dimension determines which recursively rotated list of that level it points

into.

4.3.2 Easy Exchanges and Hard Exchanges

An easy exchange in the new structure is more complex than in a regular rotated

list. As with a standard recursively rotated lists replace the last element in the

rotated list with the new one; however, the pointers in the new structure must also

be updated. The pointers for the list can be updated as in a standard list. To

update the array �rst and array last pointers notice that the element that was the

array �rst element is now the second and the element that was the second to last

element is now the array last. By using the list pointers the addresses of the new

array �rst and last elements can be found. The list �rst and list last change in a

similar manner to the array �rst and last. When their values are the same (in the

case when there is no inherited rotation element), then they change in the same

way. When there is a di�erence their positions change the number of list elements

between the rotation element and the array �rst and last elements is the same.

Unfortunately in a recursively rotated list changing these elements at one level

can a�ect the values at other levels. Therefore a check of the array and list, �rst

and last pointers for all levels in the recursively rotated list is required, as they may

need to have their pointers updated. This leads to a worst case running time of

O(h) for an easy exchange where h is the level of the recursively rotated list.
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Hard exchanges require similar modi�cations. A hard exchange performed on a

level 0 rotated list can a�ect the pointers, however only in a particular case. If the

rotated list's array �rst and last pointers are not equal to its list �rst and last, then

a hard exchange that occurs before the array �rst and last elements will cause these

to shift by one position. The list �rst and last elements do not change position.

If the lists array and list pointers are equal then this does not happen. The easy

exchanges that need to be performed for a recursive hard exchange will change their

�rst and last pointers as described above.

In a standard hard exchange the position to add the new element can be deduced

from the order of the elements. This is not possible in a list. Therefore a hard

exchange will be given a pointer to the location where the element is to be added.

For the initial call of a hard exchange this value will be passed in, for the subsequent

recursive calls the previous and next pointers can be used. When performing a

recursive hard exchange there are two hard exchanges that need to be performed.

The �rst is at the insertion point where the position is already known. The second

occurs after the sequence of easy exchanges. The position for this hard exchange is

found by following the next pointer from the last element in the previous recursively

rotated list (the list which had an operation performed on it most recently).

An example of a recursive hard exchange in the new structure

The initial recursively rotated list is pictured in Figure 4.11. This rotated list con-

tains the elements A...D, F...O in that order. The First and Last tables represent

the list �rst and last pointers that are used in the new structure. Shown are the

indices of the �rst and last elements of the recursively rotated lists of levels 3, 2
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Level 0
Level 1

10

10

10

12

1251

0 1 2 3 4 5 6 7 8 9 10 11 12 13

LastFirst

11

11

11

13

1373
Level 3
Level 2

H I D C L M K J N B O A G F

Figure 4.11: The initial recursively rotated list

and 1. Level 0 rotated lists are not pictured as they are indicated by the value of

the elements. The array �rst and last are not shown for brevity's sake, since they

are not used for this operation. The one point when they need to be modi�ed it

will be mentioned.

To perform a hard exchange in this recursively rotated list, the element to be

inserted and the position for the element to be inserted must be known. For this

example the elementE is to be added before the elementF. The recursively rotated

list in this example is of level 3. To perform the recursive hard exchange the level

2 recursively rotated list which contains the insertion point is found. This is done

using simple index arithmetic. In this example the second level 2 recursively rotated

list contains the insertion point. This process is repeated until the level 0 rotated

list containing the insertion point is found. A hard exchange is performed to add

the element into the level 0 rotated list. This is shown in Figure 4.12. The element

that is removed from the list is G.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

LastFirst

11 10

11 10

11 10

1213

13 127 513

ABCD FGH I JKL M N O

EFG

Figure 4.12: The level 2 recursive hard exchange: add E and delete G

Having just completed a level 0 hard exchange the algorithm must decide if the

level 1 hard exchange is complete. To do this it compares the rotation element of

the level 0 list to the rotation element of the level 1 list. If they are the same then

the level 1 hard exchange is completed. In this case, the rotation element from

level 0 is the rotation element from level 1. Notice that the Last table has a 12 in

its position for the level 1 rotated list. The element that was in position 12 was

G. Similarly for level 2, G was the rotation element. Therefore this operation also

completed the level 2 hard exchange. HoweverG is not the last element of the level

3 recursively rotated list (O is) so the operation is not complete.

To continue the operation, the next level 2 recursively rotated list is checked.

If it does not contain the rotation element of the level 3 recursively rotated list

then an easy exchange is performed; if it does, as in this case, a hard exchange is

performed. Using the list pointer fromG's previous location, the location of H, the
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

LastFirst

11 10

11 10

11 10

1213

13 127 513

ABCD EF

G H

H I

I

JKL M N O

Figure 4.13: A level 1 hard exchange: add G and delete I

next element in the list, can be found. Using index arithmetic the level 1 recursively

rotated list which contains H can be found. To perform the hard exchange in the

level 1 rotated list the correct level 0 rotated list is determined and a hard exchange

is performed in that list. This is shown in Figure 4.13. Since this level 0 rotated list

contains the rotation element from the level 1 recursively rotated list, this operation

completes the level 1 hard exchange. Had it not contained the rotation element, the

next level 0 rotated list would have been checked for the level 1 rotation element. If

it did contain the rotation element a hard exchange would be performed, otherwise

an easy exchange (Since there are only two level 0 rotated lists per level 1 rotated

list this second list would have to contain the rotation element).

Continuing the level 2 hard exchange, the next level 1 rotated list (L,M,K,J) is

considered. A check for the rotation element (O) from the level 2 recursively rotated

list is performed. This level 1 rotated list does not contain this rotation element.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

LastFirst

11 10

11 10

11 10

1213

13 127 13 5

5 4

ABCD EFG H

I

JKL M

M

N O

Figure 4.14: A level 1 easy exchange: add I and delete M

Therefore an easy exchange is performed. The last element in the list is found using

the Last table. The elementM (index 5) is replaced with the shift element, I. The

First and Last tables are updated, the old Last for this list has become the First

and the element second to last is now the last. The array �rst and last elements

are also updated at this point. This operation is shown in Figure 4.14.

The next level 1 list is checked for the last element and it is found within this

list. Therefore a recursive hard exchange in performed. Therefore a hard exchange

is performed in the level 0 list containing the next element. This is shown in

Figure 4.15.

The next level 0 rotated list does contain the last element from the level 1

rotated list so a hard exchange is performed. This is shown in Figure 4.16. The

last element in the level 0 list is the last element in the level 1 rotated list so this
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

LastFirst

11 10

11 10

11 10

1213

13 1213 5 4

ABCD EFG H I JKL

M

N

N

O

Figure 4.15: A level 0 hard exchange: add M and delete N

completes the level 1 hard exchange. This also completes the level 2 hard exchange

and thus completes the hard exchange in this rotated list. The rotated list which

results from this operation is shown in Figure 4.17.

4.3.3 Insertion and Deletion

Insertions use hard and easy exchanges to perform most of the structural modi�-

cations. Therefore most of the required changes to the �rst and last pointers are

handled. The changes that are not handled are those caused by the insertion of

an element at the end of the array. If the last rotated list has space available then

insert the new element into that list. It is possible that this new element is a new

�rst or last element. If it is, then changes to the pointers are required. If i is the

level of the lowest level list such that the new element is not a new �rst or last,

then changes need only be made to the level 0; : : : ; i� 1 lists.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

LastFirst

11 10

11 10

11 10

1213

13 1213 5 4

ABCD EFG H I JKL M

N

O

O

Figure 4.16: A level 0 hard exchange: add N and delete O

0 1 2 3 4 5 6 7 8 9 10 11 12 13

LastFirst

11 10

11 10

11 10

1213

13 1213 5 4

ABCD EFG H I JKL M N

Figure 4.17: The recursively rotated list after the hard exchange.
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In the case when one or more new lists are created the new element is clearly

the �rst and last element for all the new recursively rotated lists. For the higher

level recursively rotated lists a check is performed, as in the previous case, to see if

this element is a new �rst or last element.

Deletions require modi�cations similar to insertions. When deleting an element

that is the �rst or last of a recursively rotated list, the list pointers can be followed

to �nd its next or previous element. The associated pointers can then be modi�ed

appropriately.

4.3.4 Caching Characteristics

Now consider scanning the list from beginning to end (or from end to beginning).

Clearly since this data structure has the list pointers a scan takes �(n) time. More

interestingly, consider the caching characteristics of this operation. The following

theorem will show that scanning this list causes an asymptotically optimal number

of cache misses.

Theorem 10 A scan of a list stored in this structure incurs �(n
L
) caches misses.

Proof: Each rotated list represented in this data structure introduces one array

last element. Each array last element can cause a constant number of additional

cache misses because it represents a discontinuity in the order of the list elements.

However the array last element created by rotated lists that are smaller than the

length of a cache line do not cause additional cache misses as their discontinuities

occur within the data in a cache line.
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Let B(i) be the branching factor of level i and assume that B(i) � 2 for all i. To

�nd the total number of array last elements that occur in a recursively rotated list

of n elements use the following observation: There are n

c
level 0 rotated lists, each

with one last pointer. B(1) of these form a level 1 rotated list each of which has

a level 1 pointer, so there are n

c�B(1)
level 1 pointers. Similarly there are n

c�B(1)�B(2)

level 2 pointers. The total number of pointers in one table is

n

c
�

hX
k=1

1Qk
i=1 B(i)

If L � c then the total number of array last elements is (within a constant factor)

the number of addition cache misses incurred. Since B(i) � 2,
Qk

i=1B(i) � 2k.

Therefore

n

c
�

hX
k=1

1Qk
i=1 B(i)

� n

c
�

hX
k=1

1

2k

� n

c
� (2�

�
1

2

�h
)

� n

c
� (2�

�
1

2

�h
)

� n

L
� (2�

�
1

2

�h
)

thus in O(n
L
). Otherwise let j an integer such that c �Qj�1

i=1 B(i) < L � c �Qj
i=1B(i).

Then the total number of array last elements that occur in a recursively rotated

lists of size greater than L is

n

c
�

hX
k=j

1Qk
i=1B(i)

=
n

c �Qj
m=1 B(m)

�
hX

k=j

1Qk
i=j B(i)
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=
n

c �Qj
m=1 B(m)

�
h�jX
k=0

1Qk
i=0B(i+ j)

� n

L
�
h�jX
k=0

1Qk
i=0 B(i+ j)

� n

L
�
h�jX
k=0

1

2k

� n

L
�
 
2 �

�
1

2

�h�j!

which is also O(n
L
). Since each of these array last elements can introduce at most a

constant number of cache misses the number of additional cache misses for a scan

in a recursively rotated list is at most O(n
L
). Therefore the number of caches misses

incurred from a scan of this structure is O(n
L
). It is obvious that a lower bound of


(n
L
) holds so, a scan of the entire list take �(n

L
) cache misses. 2

This is an optimal result for a scan of the entire list. However it is interesting

to consider shorter sequences. Assume L < c. The worst case sequence for a level

i recursively rotated list is as follows: First a worst case sequence in a level i � 1

sub-list, followed by a jump from one level i�1 sub-list to another (causing a cache
miss) and then a worst case sequence in the destination level i� 1 sub-list. From

this simple recursive idea it follows that a worst case a sequence of 2h cache misses

could occur in a row.

4.3.5 Runtime

To determine the running time of an insertion or deletion the branching factor

for the structure must be chosen. A good branching factor should be chosen to

minimize the running time of the various procedures. To �nd a good value the
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following analysis of the running time of a hard exchange will be used.

Lemma 1 The running time of a hard exchange in a level h recursively rotated list

with branching factor B(j) at level j is R(h) = 2h(c+ h) + h
Ph

j=1(B(j)� 2).

Proof: Performing a hard exchange in a level 0 recursively rotated list takes

c+ h time. The c term comes from performing the hard exchange and the h term

is the result of having to update pointers. For a level i recursively rotated list

perform a hard exchange in the level i� 1 rotated list in which the element resides,

then a sequence of easy exchanges through the rotated lists of the same size and

then another hard exchange in the rotated list containing the last element. In

the worst case there are B(i) � 2 rotated lists between the two hard exchanges.

Therefore running time, R(i), of a hard exchange in a sub-list of level i is given by

the following recursion:

R(i) = 2R(i � 1) + h(B(i)� 2)

R(0) = c+ h

Solving this recurrence leads the the following formula

R(i) = 2i(c+ h) + h �
iX

j=1

(B(j)� 2)
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When i = h

R(h) = 2h(c+ h) + h �
hX

j=1

(B(j)� 2)

2

To optimize the runtime of a hard exchange the two terms in this this formula

need to be balanced. The higher the branching factor the shorter the tree, thus the

fewer hard exchanges that need to be executed. However, as the branching factor

is increased the number of easy exchanges that need to be executed also increases.

In a similar structure Fredrickson uses a branching factor of B(i) = 2i.

Theorem 11 If B(i) = 21 then a hard exchange can be performed in O(n
2p

2 log n
p
logn)

time.

Proof: Using the branching factor B(i) = 2i the running time can be computed

as follows. First the height of the tree h can be found.

n = c
hY

i=1

B(i)

= c
hY

i=1

2i

log n = log c+
hX
i=1

i

log n = log c+
h(h+ 1)

2

h(h + 1) = 2(log n� log c)

h2 + h� 2(log n� log c) = 0
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To solve for h, use the quadratic formula. After some simpli�cation, the following

equation is obtained.

h = �
s
2 log n� (log c� 1

4
)� 1

2

Since h > 0, the positive root is the desired one.

h =

s
2 log n� (log c� 1

4
)� 1

2

=
p
2 log n� C for some C � 0

�
q
2 log n

Using Lemma 1 and the results obtained so far, the running time of a hard

exchange using B(i) = 2i in a level h recursively rotated list is

R(h) = 2h(c+ h) + h
hX

j=1

(2j � 2)

= 2h(c+ h) + h(
hX

j=1

2j �
hX

k=1

2)

= 2h(c+ h) + h(2h+1 � 1) + 2h2

= 2h(c+ h) + h2h+1 � h+ 2h2

The dominant term of this equation is h2h+1. Therefore the running time is

O(n
2p

2 log n
p
log n). (This notation is preferred over O(2

p
2 logn
p
log n) as it empha-

sizes the operation is sub-polynomial). 2
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Using this result the running time for an insertion or deletion can be found.

Theorem 12 The running time of an insertion or deletion in a list with n elements

is O(n
2p

2 log n
p
log n), the same as a hard exchange.

Proof: The running time for insertion and deletion is very similar. First these

algorithms must �nd the direction to operate, then perform a hard exchange fol-

lowed by B(h) � 2 easy exchanges and �nally a recursive call with level h � 1.

Therefore the following analysis will apply to both. For convenience insertion will

be used.

Let I(h) be the runtime of an insertion in a level h recursively rotated list. A

proof by induction will show that I(h) � c�h2+R(h). The result is then immediate.

A recurrence for the running time of an insertion is

I(i) = i+R(i� 1) + h(B(i)� 2) + I(i� 1)

I(0) = c

The base case is I(0) = c = R(0) so the equation holds. Now assume that it is

true for level j. Then

I(j + 1) = j + 1 +R(j) + h(B(j + 1) � 2) + I(j)

� j + 1 +R(j) + h(B(j + 1) � 2) + c � j2 +R(j)

� j + 1 + c � j2 +R(j) + h(B(j + 1)� 2) +R(j)
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From the proof of Lemma 1 the following substitution can be made.

j + 1 + c � j2 +R(j) + h(B(j + 1) � 2) +R(j) � c � (j + 1)2 +R(j + 1)

Therefore the running time of insertion or deletion is asymptotically equiva-

lent to the running time of a hard exchange. Thus the running time of insert is

O(n
2p

2 log n
p
log n). 2

4.4 Storage Reduction

The recursively rotated list was originally presented as an implicit data structure.

That is, a data structure which uses at most a constant amount of extra storage

beyond that required to hold the data. The modi�cations described here add extra

storage requirements in the form of pointers. However many of these pointers are

unnecessary and can be removed. The additional storage will be reduced to 8
c
n

where c is the size of a level 0 rotated list.

4.4.1 More Modi�cations

Each node in the list contains the data element and two pointers. These pointers

indicate which node is the next or the previous in the list. However the majority of

nodes are contiguous in memory, that is the next node or previous node is actually

next or previous (in the rotated sense) in the array. Discontinuities occur after an

array last element (or before it depending on the direction of the scan). De�ne a

jump to be the process of moving from a node to the next node when the next
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node is not contiguous. Since the number of array last elements is low compared to

the total number of elements, explicitly storing the implicit relationships between

contiguous nodes is extremely wasteful. These 2n pointers will be removed from

the structure and a method for �nding the next or previous node will be given that

will not e�ect the running time or cache complexity of a scan.

Recursively rotated lists allow array last elements to occur in arbitrary locations,

thus any node in the list is potentially an array last element. The locations of the

array last elements are stored in the array last table. These values can be used to

�nd the location of jumps. Using the level of the jump the destination recursively

rotated list can be found. The �rst element within the destination recursively

rotated list can be obtained using the array �rst table.

The element after (in list order) the array last element of a level i recursively

rotated list is in the next recursively rotated list of level i, within the level i + 1

list. Therefore the list �rst element of the next recursively rotated list is the next

node in the list. It is important to remember that the concept of being next in

a recursively rotated list includes the possibility of wrapping around to the �rst

sub-list of the level i+ 1 recursively rotated list.

An example of navigation

The rotated list in Figure 4.18 will be used as an example of the navigational

functions. The entire rotated list stores the elements from A to Y, although only

the �rst level 2 recursively rotated list is pictured. It stores the elements A to

F and T to Y. The array �rst and last elements are indicated for this section of

the recursively rotated list in two tables. Figure 4.18a shows the unrotated version
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Level 0
Level 1
Level 2
Level 3

0 8 10

1

9

3

60

2

10

5 7

1 5 6 11

0 1 2 3 4 5 76 111098

B A X W V U C D F T E

0 1 2 3 4 5 6 7 8 9 10 11

U V Y A B EDCW X

Y

0 1 2

0 1 2 3 4 5

W YX A B

A B

. . .

Fa)

b)

c)

Array First Array Last

T

V
6 7 8 9 10 11

D E F T U

3 4 5

W X
6 7 8

C D
9 10 11

F T

C

Y V U E

Figure 4.18: The recursively rotated list to be walked through.
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of the level 2 list. The array �rst element is shown in italics and the array last

element is shown in bold. Figure 4.18b and 4.18c show the level 1 and 0 sub-lists

respectively. The �nal position of these element in the complete rotated list is given

in the tables.

To walk through this list, begin at element A. Element A's index is 2 which is

not an array last element. This means that the next element is the next element in

the level 0 rotated list. Since this is a rotated list the next element is B. ElementB

is in the array last table at level 0 and level 1. Using the largest level, the element

B has a level 1 jump. This jump goes to the next level 1 rotated list, which is

the second 6 element rotated list. From the array �rst table look up the array �rst

element for this rotated list. The table gives index 7 which corresponds to element

C. This element does not appear in the array last table so it does not represent a

jump. The next element is D which does appear in the array last table. There is

a level 0 jump from D to E (index 11 in the array �rst table). Element E to F is

a simple step. Element F is the array last element for the level 2 list. From F the

jump goes to the neighbouring level 2 recursively rotated list (which is not shown

here). When returning from walking the neighbouring recursively rotated list the

algorithm looks in the array �rst table for the level 2 list and gets index 10 which

corresponds to element T. Element T is a level 0 jump to element U. Element U

is a level 1 jump to element to V. Elements V, W and X are all in the same level

0 list. Element X is a level 0 jump to element Y.

How can this procedure be performed eÆciently? When stepping through a

level h recursively rotated list, two arrays of pointers, both of length h will be
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maintained. The locations of the array last elements of all the recursively rotated

lists which contain the current position is stored in one array. The other array

points to the elements after the jumps. The order of the elements within the array

is the order that the array last elements appear physically in memory. A pointer

into this array indicates the position of the next jump. If the current element is not

the array last element indicated by the pointer then the next element is the next

element in memory. If it is the array last element, then the next element is found

by following the jump.

After following a jump these arrays must be updated to re
ect the new array

lasts. Assume the algorithm has just followed a level i jump. Then the pointers

associated with the jumps of levels less than or equal to i have all changed value.

The smallest and largest of these pointers de�ne a range within the array. All the

pointers that reside within this range may need to moved. So the time of a single

jump is proportional to the length of time required to sort the pointers within this

range.

For this method to be useful, the running time of a scan using this modi�ed

structure must still be �(n) and it must incur �(n
L
) caches misses. The next two

theorems will show these modi�cations can be used without seriously a�ecting the

running time or caching characteristics of a scan.

Theorem 13 Performing a scan of this modi�ed list takes �(n) time.

Proof: To analyse the running time consider the following cost model. When

updating an array assume that the number of element to be modi�ed is the highest

level of a jump within the level 0 rotated list. Assume that the time required to
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re-arrange these elements in the square of the number of elements and charge this

cost for every step in the level 0 rotated list, not just when following a jump. The

model is clearly far more expensive than the actual cost and is an upper bound on

the actual cost for any recursively rotated list.

A worst case for this model can be found by trying to maximize the number

of level 0 rotated lists with large jumps. To do this consider only the jumps of

level greater than 0 since every level 0 rotated list contains one level 0 jump. The

obvious thing to do is to put one high level jump per level 0 rotated list, making

the number of high level jumps as large as possible. This is a worst case in the

given cost model, but is it a worst case for the actual case? It may not be, however

the cost generated using this model and this example will be an upper bound on

the running time of any example in the actual cost model. This example provides

the maximum number of expensive operations.

To begin the analysis de�ne di to be the number of jumps of level i. The value

of di can be found by noticing that each rotated list of level i contains one level i

jump. The number of level i rotated lists is
Qh

j=i+1 B(j) since each level j rotated

list contains B(j) level j � 1 rotated lists and there is one level h rotated list.

As discussed above, for each level 0 list containing a level j jump charge c � j2.
The total charge for the entire list is c �Ph

i=1 dii
2. Since n = c

Qh
i=1B(i),

di

n
=

Qh
j=i+1 B(j)

c
Qh

k=1 B(k)

=
1

c
Qi

k=1 B(k)
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So the cost equation simpli�es to the following:

cn �
Ph

i=1 dii
2

n
= cn �

hX
i=1

dii
2

n

= n �
hX

i=1

i2Qi
k=1 B(k)

As before, B(i) � 2 so the following inequality holds

n �
hX

i=1

i2Qi
k=1 B(k)

� n �
hX
i=1

i2

2i

Since the sum in the �nal equation converges this value is in O(n). Therefore

the total time for a scan of the list is �(n). 2

Theorem 14 The number of cache misses incurred in a scan of the modi�ed list

is in �(n
L
).

Proof: Now to see that the number of additional cache misses is O(n
L
), consider

the following caching method. Reserve three cache lines for storing the L elements

on either side of the pointer into the tables. When a jump whose range falls within

these L element is performed, the elements can be sorted using bubble sort without

any additional cache misses. When a jump is followed that is outside of these 2L

elements, the elements are sorted using bubble sort and incur i2=L cache misses,

where i is the number of elements to be sorted.

The model and example used in the proof of Theorem 13 will again be utilized

to bound the worst case. As before the size i of a jump will be determined by the
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largest element in the range of elements to be sorted. If i � L then there is no

charge for the sort, otherwise charge i2=L. The number of additional cache misses

incurred by this method is then bounded by:

X
i>L

di � i
2

L
=

X
i>L

hY
j=i+1

B(j)
i2

L

�
X
i>L

2h�i
i2

L

� X
i>L

2h

L

i2

2i

� X
i>L

2h

L

i2

2i

This sum can be bounded by twice the �rst term in the summation. This leads to

the following equation

X
i>L

2h

L

i2

2i
� 2 � 2

h

L
� L

2

2L

� 2 � 2h � L
2L

This is in O(n
L
). Therefore this method introduces at most O(n

L
) additional cache

misses to a scan of the structure. 2

4.4.2 Storage Requirements

This modi�cation removes the 2n pointers associated with the list nodes. The

only additional storage beyond the n locations required for the data are the four

arrays required for storing the array and list, �rst and last pointers. The number
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of pointers in one of these arrays is:

n

c

hX
i=1

1Qi
j=1 B(j)

� n

c

hX
i=1

1

2i

� 2 � n
c

Four arrays of this size are required, so the total amount of storage is less than

8n
c
. If c is picked to be larger than 8, then the amount of extra storage is less that

n. In fact c can be chosen as large as desired to reduce the extra storage as long

as n is suÆciently large. Instead of the 2n+ 8n
c
space that was required before this

additional modi�cation, only 8n
c
additional pointers are required.

4.4.3 A Drawback

There is one signi�cant drawback to this modi�cation. Although a scan can be

performed from an arbitrary position in the list, there is an associated cost that

must be paid. Given an arbitrary location in the list it takes �(h) time and cache

misses, where h is the recursive level of the list, to collect the information required

to make the �rst step in the structure. Calculations must be performed to �nd the

rotated lists in which the current position resides. As well the values of their last

pointers must be copied into the array of jump pointers. The locations these values

are read from are independent locations in memory so each will cause a cache miss.

4.5 The Final Structure

The recursively rotated list can improved further by using Fredrickson's method.



CHAPTER 4. CACHE OBLIVIOUS LIST 90

Theorem 15 A structure can be built that implements a linear list with insertion

and deletion times in O(n
1p
log n
p
log n), and allows scans of the entire list taking

�(n) time and incurring �(n
L
) cache misses.

Proof: Let f(i) = 2i
2

and let the sub-arrays be represented as level i recursively

rotated lists with B(i) = 2i. The number of sub-arrays r is approximately
p
log n.

Therefore the largest sub-array is a level r recursively rotated list. An insertion (or

equivalently a deletion) is performed by executing a hard exchange in the sub-array

in which the insertion occurs, a series of easy exchanges until the last recursively

rotated list is reached and an insertion is performed in that list. The running time

of an insertion or deletion is dominated by the running time of the operation in the

largest sub-array. Therefore these operations take O(n
1p
log n
p
log n) time.

The caching characters of a scan is basically the sum of the scans in each of the

recursively rotated lists. The only added complication is the movement between

lists. However these misses are easily shown to be insigni�cant. If n � L, then they

do not cost anything as the jump stays within the cache line. When L < n each

such jump is the result of having scanned through a recursively rotated list who

length is greater than L. Therefore the frequency of such misses is less than O(n
L
)

and so do not a�ect the overall cache complexity in a negative fashion. 2

4.5.1 Memory Management

The discussion of memory management has been delayed to this point because

knowledge of the �nal structure and the running time of its operations can be used

to reduce wasted space. Notice that the structure is stored as a set of arrays.
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For a structure to grow new arrays must be allocated and others must be resized.

There are many resizeable array data structures, [BCD+99, GK99]. However, these

simulate an array using multiple sub-arrays. These solutions are undesirable for

cache oblivious data structures because moving between the sub-arrays causes cache

misses. Each of these sub-arrays will introduce an additional cache miss for a scan.

Instead of a scan through a resizeable array taking n

L
+ 1 cache misses, it will

take O(n
L
+ f(n)). The f(n) term is relatively small,

p
n in [BCD+99], however it

interferes with the optimal performance. Therefore an actual array will be used to

store the data. Resizing these arrays will be done using dynamic tables [CLR91].

Notice that for this structure constant time insertion or deletion is not required.

In fact, these operations are super logarithmic, so having an amortized cost of

O(log n) is acceptable. Why is this desirable? By re-allocating the arrays to size

n+ n

logn
, the unused space is in o(n).

Memory management will work as follows: The array which stores the nodes of

the list will be used to determine when re-allocations are required. The other arrays

will be resized or allocated so that they are able to support the array of nodes if

it becomes full. When the array of size n is full it will be re-allocated to be of size

n+ n

logn
. If the array contains less than n� 2 n

logn
elements it will be shrunk to size

n � n

logn
. The resizing and copying of arrays will be done in O(n) time. Clearly

there will be at least n
logn

operations between each resizing so the amortized cost

of these resizing operations is O(log n). Therefore the amortized cost of adding or

removing elements from the array is insigni�cant in comparison to the running time

of an insertion or deletion.
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Future Work

This thesis takes a few simple abstract data types and shows how they can be

implemented in a cache oblivious fashion. There are many other data types that

could be studied in a similar manner. Hopefully, the work presented here contains

some ideas that will be useful for future research in these areas. Alternatively, the

data structures presented here could be used as components to implement other

data types to improve their caching characteristics.

The direct practical applications of this work is limited. Although guaranteeing

optimal caching results, the impact of the improvementmay be o�set by the increase

in running time of the operations. The caching environment, speci�cally the size

of a cache line and the cache miss penalty, will determine if these structures give

an actual improvement. A scan of the list structure is probably faster than a

scan of a linked list when run in main memory and de�nitely faster when going

to disk. However the complexity of the structure and the relatively poor insertion

and deletion times make this structure undesirable. A search in the tree layout is

92
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probably competitive to a standard binary search when run in main memory. The

increased running time of the search will o�set the gains from the improved caching.

When going to disk the reduction in cache misses will give greater improvements

and the new structure will be faster.

Frigo et al.[FLPR99, Pro99] give two directions for future work in cache oblivious

algorithms. These ideas can also be investigated from a data structure point of view.

The �rst suggestion is called separation. Separation is studying the di�erence in

cache usage between the best oblivious solution and the best aware solution. Can

any data structure be made oblivious without an asymptotically signi�cant caching

penalty? The answer would seem to be no, as aware structures can exploit their

knowledge of the cache. A proof of this would be very interesting.

The second area they suggest is called simulation. Simulation compares the

eÆciency of cache oblivious data structure to cache aware ones. What is the loss

in eÆciency when making a data structure oblivious? Is there a provable bound

on how much worse the running time of operations should be? They suggest using

simulation methods to convert cache aware algorithms into cache oblivious ones.

Extending the work presented here is also an interesting direction. Can cache

oblivious lists be found that have faster insertion and deletion times? One idea

that was considered, but not investigated, was to attempt to amortize the cost of

reorganizing the data structure. For example, a list that has its nodes stored in

order in an array can have O(n
L
) cache misses introduced without asymptotically

e�ecting the caching characteristics. If each operation introduces a constant number

of cache misses then O(n
L
) operations can be performed before the structure needs
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to be reorganized. Unfortunately the number of operations that can be performed

before reorganization is required must not depend on L, otherwise the structure

becomes cache aware. Is there a method for deciding when to reorganize that does

not depend on L?

Another similar idea is to spend some time reorganizing the list every time a

data structure operation is performed. For example if every insert spends O(log n)

time reorganizing then maybe the list can be maintained ordered enough to still

obtain optimal caching characteristics for a scan. The running time of the operation

would be dominated by the amount of time reorganizing the structure, therefore

studying how little reorganization is necessary to maintain the optimal caching

characteristics would be important. It seems that more than a constant amount of

reorganization is necessary, but how much more? Does anything in !(1) work or

does it actually require a signi�cant amount of work?

Another data structure that would be very useful would be a cache oblivious

resizeable array. A data structure that supported constant time insertions and

deletions, scans in O(n
L
) cache misses and which does not waste an excessive about

of memory is very desirable. The simple dynamic table used in Section 4 has a

tradeo� between running time and wasted space. The manner in which it was used

in Section 4 allowed for logarithmic running time, however in many cases this will

not be suÆcient.
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