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Abstract

In this thesis, I present a computational neural model that reproduces the high-level
behavioural results of well-known fear conditioning experiments: first-order conditioning,
second-order conditioning, sensory preconditioning, context conditioning, blocking, first-
order extinction and renewal (AAB, ABC, ABA), and extinction and renewal after second-
order conditioning and sensory preconditioning. The simulated neural populations used to
account for the behaviour observed in these experiments correspond to known anatomical
regions of the mammalian brain. Parts of the amygdala, periaqueductal gray, cortex and
thalamus, and hippocampus are included and are connected to each other in a biologically
plausible manner.

The model was built using the principles of the Neural Engineering Framework (NEF):
a mathematical framework that allows information to be encoded and manipulated in
populations of neurons. Each population represents information via the spiking activity of
simulated neurons, and is connected to one or more other populations; these connections
allow computations to be performed on the information being represented. By specifying
which populations are connected to which, and what functions these connections perform,
I developed an information processing system that behaves analogously to the fear condi-
tioning circuit in the brain.
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Chapter 1

Introduction

The modern mammalian brain is built upon ancient emotional subsystems [53]. These
systems, which come hardwired at birth, ensure that animals are able to find food, avoid
predators, reproduce, and generally meet their basic needs [53]. Recently in the evolution
of mammals, the development of the cortex enabled more complex sensory processing,
motor planning, language, and so on. These faculties developed, not separately from the
emotional subsystems of the brain, but rather, alongside them [53].

Throughout their day to day activities, mammals answer to emotional subsystems, even
though it may be through complex networks of cortical associations. These subsystems
are ultimately what provide the motivational signals that guide learning and behaviour
[64]. If we hope to understand how the brain works and how it developed, theoretical
neuroscientists need to develop a deeper understanding of the mechanisms of emotion, and
how they affect the rest of the brain.

In this thesis, I examine one of the emotional subsystems, the fear system, using a
detailed neurocomputational model. The fear system has been extensively studied; the key
brain regions involved have been identified, and theories have been developed regarding
their functions [37]. It is a particularly interesting case study because of how well linked it
is to learning and memory; fearful experiences have a strong effect on an animal’s future
behaviour [37]. This link provides a potential avenue of investigation into how low-level
reward and punishment systems affect higher-level cognitive functions.

Building a computational model to simulate the fear system forces us to integrate a
wide variety of neuroscientific and behavioural evidence to tell a coherent story about what
specific neural mechanisms may be at work during fear-related behaviour. It also provides
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a medium for us to explore new theories, which can be incorporated into the model and
eventually tested by empirical experiments.

A good model should be able to replicate data from experiments performed on animals.
The fear system has a wide range of related behavioural data that comes from a collection
of ‘fear conditioning’ experiments, which show how animals learn that certain environmen-
tal stimuli come to predict aversive events [43]. The primary contribution of this thesis
is to demonstrate a model that can replicate a wide variety of the findings from these
experiments, suggesting that the specific mechanisms proposed in this thesis are plausible
candidates for those found in the biological systems under study.

I begin by providing background information on fear conditioning experiments, the
anatomy of the fear conditioning circuit, the mechanisms of computation in the brain, and
the modelling techniques employed. These sections provide the methods and empirical
constraints used for the design of the model, and give insights into how and why it was
developed.

1.1 Outline of thesis

Chapter 2, Fear conditioning, introduces the topic of fear conditioning. The results of
several classic fear conditioning experiments are presented.

Chapter 3, Anatomy of the fear conditioning circuit, discusses the regions of the brain
involved in the fear conditioning circuit. Their function, as it is related to known fear
conditioning experiments, is outlined.

Chapter 4, Other models of fear conditioning, reviews a selection of previously devel-
oped fear conditioning models. The function and implementation of each are outlined, and
comparisons are made to the model presented in this thesis.

Chapter 5, Neurons and plasticity, discusses the basic biological foundations of compu-
tation used to inform the development of the model. Neurons, synaptic weights, plasticity
and their basic mathematical characterizations are reviewed.

Chapter 6, Large-scale neural modelling with the NEF, provides an overview of the
computational methods used to build the model. It describes the Neural Engineering
Framework: a mathematical framework that allows information to be represented and
transformed in populations of spiking neurons. Learning in the context of the NEF is also
discussed, as is the single neuron model that is used in the simulations.
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Chapter 7, A new model of fear conditioning, presents the novel work of this thesis, the
NEF model of fear conditioning. The function of the model, as well as design justifications,
are detailed in the context of the fear conditioning experiments with which it was tested.
The results of simulations run using the model are plotted and discussed.

Chapter 8, Discussion and conclusions, provides an analysis of the pros and cons of the
model and sets the stage for future work on the project.

3



Chapter 2

Fear conditioning

2.1 Classical conditioning

Classical conditioning is a type of learning that involves the formation of associations be-
tween a neutral stimulus and a stimulus that has inherent relevance to an animal [55]. The
neutral stimulus (NS) can be any sensory stimulus such as an auditory, visual, olfactory, or
tactile cue, that does not have a significant emotional meaning to the animal. The stimulus
with inherent emotional meaning to the animal is called the unconditioned stimulus (US),
and can be a cue related to food, sex, danger, etc. to which the animal has a biologically
coded response called the unconditioned response (UR). Unconditioned responses include
behaviours such as salivation (for a cue related to food) or increased heart rate and dilated
pupils (for a cue related to fear).

Associations between the NS and the US are formed through temporal pairing. An
NS that is paired with a US such that the presence of the NS comes to predict a US will
acquire an emotional relevance to the animal. After becoming emotionally relevant, the
NS is considered a conditioned stimulus (CS), and will cause a biological response - called
a conditioned response (CR) - in the animal that is related to the US to which the CS was
paired. In the literature, and in this thesis, the NS is referred to as a CS both before and
after association with a US.

Perhaps the most well-known examples of classical conditioning are the experiments
performed by Ivan Pavlov [55]. In his experiments, Pavlov noted that when presented
with the sight of food, dogs began to salivate. Here, the food is the US, and salivation is
the UR. The presentation of food was then repeatedly paired with a bell (the CS); i.e.,
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the dogs were called to their food by the sound of a bell. After several repetitions of this
procedure, the dogs began to salivate at the sound of the bell even if no food was presented.
Thus, after pairing of the CS (bell) with the US (food), the CS evoked a CR related to the
behaviour evoked by a US.

The field of classical conditioning has been widely studied in psychology and neu-
roscience since Pavlov’s initial experiments [46]. One experimental paradigm that has
proven particularly fruitful in the study of classical conditioning is fear conditioning. Some
of the experimental results of the study of fear conditioning are discussed in the following
sections.

2.1.1 First-order cued fear conditioning

Fear conditioning is a subset of classical conditioning that involves the association between
CSs and USs that evoke behaviours associated with fear. One well-known (and ethically
controversial) fear conditioning experiment was performed by John Watson in 1919 [73].
In his experiment, Watson taught an infant (known as ‘Albert B.’) to fear a white rat.
Initially the infant was presented with a variety of animals (including the white rat) and
inanimate objects towards which he showed no signs of fear. The infant was given the
opportunity to play with the rat, during which time he would reach out to touch it. This
initial phase of the experiment established that the rat was not inherently frightening to
the child, and could thus be considered a neutral stimulus.

Subsequently, during periods of interaction with the rat, an experimenter would make
a loud sound behind the infant by striking a piece of metal with a hammer. The infant
reacted to the noise by crying and showing signs that he was afraid. This established the
noise as an unconditioned stimulus. After repeatedly pairing the disturbing noise with
periods of interaction with the rat, the infant came to show signs that he was afraid when
the rat was presented in the absence of the noise. He came to respond to the rat by crying
and turning, and moving away from it.

Although some doubt the validity of this particular experiment [27], fear conditioning
experiments have been replicated many times since (e.g. [11], [63], [17]).

The typical cued fear conditioning experiments - and all of those replicated by the
model described in this thesis - use a rat as a subject [66]. Rats are widely used in many
neuroscientific experiments; they are easy to breed, easy to handle, and have a similar
neuroanatomy to humans - especially regarding the brain regions involved in the fear
circuit [1]. The cue (CS) in these experiments is usually visual or auditory: for example
a light or a tone. The US is an electric shock applied to the foot of the rat. The UR to
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Figure 2.1: A demonstration of a first-order cue conditioning experiment. Frame 1: the
tone does not elicit a fear response. Frame 2: the tone is then paired with a footshock.
Frame 3: finally, the tone elicits a fear response.

a shock is typically an attempt to escape it. The CR that is typically measured as a sign
that an association between the CS and US has been made is ‘freezing’ (see figure 2.1).

Freezing is a natural fear response seen in rats. It is characterized by a period of
watchful immobility during which the rat stops moving (‘freezes’), and increases alertness
[12]. Dilated pupils as well as increased breathing and heart rate are also present during
freezing. In the wild, freezing helps the animal go undetected by predators, and also
prepares them for flight or fight responses. In fear conditioning experiments, freezing is
used as the conditioned response as it is very easy to observe, and has been shown to be
a reliable indicator of learned fear [11].

2.1.2 First-order context fear conditioning

As described above, humans and other animals demonstrate fear conditioning through
associations between specific cues and USs; however, animals also demonstrate fear con-
ditioning through associations between contexts and USs. Although a context might be
thought of as a collection of cues, the literature on fear conditioning generally draws a
distinction between a cue and a context [58].

The typical context experiment involves placing a rat in an environment, such as a box
or cage, and applying an aversive US, such as a footshock [9]. The association between the
US and the context can be learned either after a single trial or after multiple trials. The
rat is then removed from the environment. After being placed back into the environment,
the rat will demonstrate a fear response (see figure 2.2).
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Figure 2.2: A demonstration of a context conditioning experiment. Frame 1: being in
context A does not elicit a fear response. Frame 2: the rat is given footshocks in context
A. Frame 3: the rat is moved to context B. Frame 4: returning to context A elicits a fear
response.

2.2 Second-order conditioning

Direct pairing between CSs and contexts and USs is considered first order pairing; a neutral
cue or context is associated directly with the aversive stimulus. However, once a CS (call
it CS1) has been associated with a US, such that it is capable of eliciting a fear response,
a second CS (CS2) that is paired with CS1 can also come to elicit a fear response in the
absence of CS1 and the US [25].

A standard experiment used to demonstrate this phenomenon is performed as follows
[63]. First a CS1, say a tone, is paired with with a footshock until CS1 comes to elicit the
fear response in the absence of the footshock. Following that, the tone is played to the rat
at the same time as a light (CS2) is presented. During the pairing of the light and the
tone, the rat comes to associate the light with the fear that is associated with the tone.
Subsequent presentations of the light on its own will elicit a fear response (see figure 2.3).

2.3 Sensory preconditioning

Second-order conditioning is considered higher-order conditioning: a CS gains affective
significance without being paired directly with a US. Another form of higher-order condi-
tioning is sensory preconditioning. The distinction between second-order conditioning and
sensory preconditioning is that second-order conditioning involves pairing between two CSs
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Figure 2.3: A demonstration of a second-order conditioning experiment. Frame 1: the
light does not elicit a fear response. Frame 2: a neutral tone is paired with a footshock.
Frame 3: the light is paired with the tone (the tone elicits a fear response). Frame 4: the
light elicits a fear response on its own.

after training between a CS and US has taken place, while sensory preconditioning involves
pairing between two CSs before any training with a CS and US has taken place [25].

A standard sensory preconditioning experiment is performed as follows [63] . A CS1,
for example a tone, becomes associated with a CS2, for example a light, through pairing
of the two stimuli. Next, the tone is paired with a footshock (US) until the tone comes to
elicit a fear response when presented in the absence of the footshock. Subsequently, when
the light is presented, it elicits a fear response through its association with CS1 (see figure
2.4).

2.4 Blocking

In the previous examples, pairing between a CS and a US is able to give affective significance
to the CS. However, under certain conditions this association does not occur; one commonly
studied phenomenon that prevents this association is called blocking. Blocking occurs when
a CS that has been trained to elicit a fear response is present while a neutral stimulus
is being paired with a US. The strong CS overshadows the neutral stimulus and blocks
the conditioning of the weaker neutral stimulus by the US [31]. An explanation for this
phenomenon is that the animal’s attention is directed at the strong CS, which has affective
significance, and the neutral stimulus therefore does not have the salience required for
learning [62].

A standard blocking experiment is performed as follows [31]. CS1, a tone, is paired
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Figure 2.4: A demonstration of a sensory preconditioning experiment. Frame 1: the light
and the tone are paired together. Frame 2: the tone is paired with a footshock. Frame
3: the light (through its association with the tone and the tone’s association with the
footshock) elicits a fear response.

with a US until CS1 is able to elicit a fear response on its own. While CS1 is present,
CS2, a light, is introduced and paired with a US. In subsequent presentations of CS2, the
animal will not demonstrate a fear response despite the pairing between CS2 and the US
(see figure 2.5).

2.5 Extinction

In the study of fear conditioning, extinction refers to a conditioned stimulus losing its
affective significance. As seen in the experiments discussed above, a CS gains the ability
to elicit a fear response after being paired with a US. However, there are mechanisms in
the brain that prevent a CS that once evoked a fear response from evoking future fear
responses.

2.5.1 Context-dependent extinction and renewal

A CS with affective significance can lose its ability to evoke a fear response if it is repeatedly
presented in the absence of a US. While conditioning can be explained as the animal
learning to associate a CS with a US, this type of extinction can be explained as the
animal learning to associate a CS that previously evoked a fear response with the absence
of a US [61]. Critically, this process seems to be dependent on the context in which the
extinction occurs. If a CS with affective significance is extinguished in one context, it
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Figure 2.5: A demonstration of a blocking experiment. Frame 1: a conditioned tone elicits
a fear response. Frame 2: a light is paired with a footshock in the presence of the tone.
Frame 3: the light does not elicit a fear response because pairing between the light and
the footshock was blocked by the tone.

can maintain its ability to elicit a fear response in another context [10]. Because of this
observation, it is thought that extinction is an active learning process (between a CS and
the absence of a US) as opposed to an unlearning of the association between a CS and a
US. The ability for an extinguished CS to elicit a fear response in a context other than the
one in which extinction occurred is called renewal.

A standard context-dependent extinction/renewal experiment is performed as follows
[71]. In this AAB renewal experiment, a CS, such as a tone, is paired with a footshock so
that it comes to elicit a fear response. While in the same environment, the tone is repeatedly
presented to the rat in the absence of the footshock. After some time, fear responding to
the tone in this context will cease. Then the rat is moved to a new environment, context
B, and presented with the tone cue again. In the new environment the tone cue is again
able to elicit a fear response (see figure 2.6).

Another experimental setup demonstrates ABC renewal [71]. First a CS, for example
a tone, is paired with a footshock (US) so that it comes to elicit a fear response. The rat
is then placed in a new environment. In this environment the tone is presented to the rat
repeatedly (in the absence of a US). Fear responding to the tone will decrease during this
time. Subsequently the rat is placed in another environment. When the tone is presented
in this environment, it elicits a fear response. This phenomenon is referred to as ABC
renewal because of the three different contexts involved (see figure 2.7).

In ABA renewal, the ‘AB’ part of the experiment proceeds as described with ABC
renewal [71]. However, instead of being placed in a new context, C, after extinction in B
the rat is placed back into context A, and fear responses to the tone cue are renewed (see
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Figure 2.6: A demonstration of an AAB extinction experiment. Frame 1: a tone is paired
with a footshock in context A. Frame 2: the tone elicits a fear response in context A. Frame
3: after repeatedly being played in the absence of a footshock, the tone stops eliciting a
fear response in context A. Frame 4: the tone is able to elicit a fear response in a new
context, B.

figure 2.8).

2.5.2 Extinction in second-order conditioning and sensory pre-
conditioning

The experiments described above demonstrate the effect of extinction on a CS that was
trained through direct pairing with a US. In the case of higher-order conditioning, extinc-
tion has an effect on both the CS1 (the CS trained through direct pairing with the US) and
the CS2 (the CS trained through pairing with CS1). Extinction has a different effect on a
CS2 after second-order conditioning than it does on a CS2 after first-order conditioning.

Extinction of a CS1 after second-order conditioning does not extinguish the CS2 with
which it was trained [54]. This follows from the observation that, in second-order con-
ditioning, a CS2 is associated with the fear response evoked by CS1 as opposed to CS1
directly (see figure 2.9).

On the other hand, extinction of a CS1 after sensory preconditioning can extinguish
the CS2 with which it was trained [54]. This follows from the observation that, in sensory
preconditioning, CS2 is associated directly with CS1, which only later becomes associated
with fear (see figure 2.10).
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Figure 2.7: A demonstration of an ABC extinction experiment. Frame 1: a tone is paired
with a footshock in context A. Frame 2: the tone elicits a fear response in context B. Frame
3: after repeatedly being played in the absence of a footshock, the tone stops eliciting a
fear response in context B. Frame 4: the tone is able to elicit a fear response in a new
context, C.

Figure 2.8: A demonstration of an ABA extinction experiment. Frame 1: a tone is paired
with a footshock in context A. Frame 2: the tone elicits a fear response in context B. Frame
3: after repeatedly being played in the absence of a footshock, the tone stops eliciting a
fear response in context B. Frame 4: the tone is able to elicit a fear response in the original
context, A.
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Figure 2.9: A demonstration of an extinction after second-order conditioning experiment.
Frame 1: a tone is paired with a footshock. Frame 2: the tone is paired with a light. Frame
3: the light elicits a fear response. Frame 4: the tone elicits a fear response. Frame 5:
after repeatedly being played in the absence of a footshock, the tone stops eliciting a fear
response. Frame 6: the light still elicits a fear response.
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Figure 2.10: A demonstration of an extinction after sensory preconditioning experiment.
Frame 1: a tone is paired with a light. Frame 2: the tone is paired with a footshock. Frame
3: the light elicits a fear response. Frame 4: the tone elicits a fear response. Frame 5:
after repeatedly being played in the absence of a footshock, the tone stops eliciting a fear
response. Frame 6: the light no longer elicits a fear response.
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2.6 Other phenomena related to fear conditioning

The phenomena discussed in this chapter are some of the most well-known related to fear
conditioning, and are thus the focus of the model discussed in this thesis. However, the
experiments performed related to fear conditioning have produced many interesting results
in addition to those discussed. The model presented in this thesis does not account for all
of these results.

For example, as discussed above, presentation in a new context is enough to renew
a response to a CS after extinction. Another form of renewal, in which the CS regains
affective significance, occurs when an extinguished CS is later paired with a US [13]. This
type of renewal appears to be context independent.

As well, a significant factor in how well a CS is conditioned is the order and timing of
presentation of the CS relative to the US. In this chapter, a CS was said to be conditioned
through ‘temporal pairing’ of a US. In reality, temporal pairing does not describe the
requisite condition well enough. How well a CS is conditioned is dependent on the time
interval between presentation of the CS and the US [70]. If a CS precedes a US by too
long of a time period, conditioning will proceed slowly. Similarly, if a CS precedes a US
by too short of a time period, or occurs after the presentation of the US, conditioning will
proceed slowly. There appears to be a ‘sweet spot’ in which the CS is learned as a predictor
of the US and in which conditioning proceeds the fastest. Testing the presented model to
determine its detailed temporal properties is left for future work.
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Chapter 3

Anatomy of the fear conditioning
circuit

The fear conditioning circuit model described in this thesis includes multiple regions of the
mammalian brain. A brief overview of the structure and function of these brain regions is
given in this chapter. Figure 3.1 shows simplified connections between the relevant brain
regions; a more detailed circuit diagram will be presented in chapter 7.

3.1 Amygdala

The amygdala is a small, almond-sized region found in each hemisphere of the brain. It is
part of what would be considered the ‘old brain’ of mammals; analogous regions are found
in distant relatives such as birds and reptiles [29]. It has long been associated with learning
and memory involved in emotional processes - especially fear. Much is known about the
function of three main sub-regions of the amygdala [43]: the lateral amygdala (LA), the
lateral basal area (BL), and the medial central nucleus (CEm), all of which are included
in this model.

The lateral amygdala has been found to respond to both conditioned and unconditioned
stimuli [69]. It is this convergence of CSs and USs that suggests that the LA is involved
in forming the associations required for cued fear learning. Lesion studies (in which the
region is intentionally damaged) reported in [38] support the critical role of this brain
region in fear learning. The type of learning that occurs in the LA is thought to involve
both neuromodulatory and Hebbian processes, which will be discussed in section 5.2 [69].

16



Figure 3.1: Anatomical regions of the fear conditioning circuit that are being modelled
here. The dashed lines coming from the periaqueductal gray are to signify that these are
generally reinforcement signals facilitating learning in the other regions. Note that these
signals may project to their target areas indirectly: going first through other brain regions.
The sub-regions of the amygdala are the lateral amygdala (LA), lateral basal area (BL),
and the medial central nucleus (CEm).
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BL has also been implicated in the formation of associations between conditioned and
unconditioned stimuli. Specifically, the BL is thought to play a role in contextual learning
as it receives significant projections from the hippocampus [44]. The BL also serves as a
path through which information from the LA reaches the CEm. Krasne et al. also propose
that there may be an alternate route to the CEm from the LA, but that route is not
included in this model [35].

The CEm is thought to drive fear responses [20]. It receives input from BL and LA and
its activity is correlated with fearful behaviour in animals. Lesions of the CEm interfere
with nearly every measurable fear response including freezing [36]. This is likely because
the output of the CEm goes on to the periaqueductal gray: a region responsible for the
autonomic responses associated with many fear responses [40].

3.2 Periaqueductal Gray

There are many potential routes for the affective value of USs to reach the amygdala; one
proposed route is through the periaqueductal gray (PAG) [35]. Because of its proposed
access to US information, in this model PAG is responsible for the reinforcement signals
that project - at least in part, indirectly [35] - to the other regions to facilitate learning.
The control of these signals - also proposed to occur in PAG [35] - enables more complex
learning behaviours such as blocking, extinction, and second-order conditioning.

PAG has another distinct, yet crucial, role in the fear conditioning circuit. Experiments
have implicated PAG in various autonomic processes including cardiovascular control, vo-
calization, and those related to fear and anxiety [4]. In the context of the fear conditioning
circuit, PAG is thought to be responsible for initiating fear responses such as freezing [23].
These processes are initiated by activity in the CEm.

3.3 Hippocampus

The hippocampus has long been implicated in learning and memory, especially related to
contextual information; it is thought to represent relationships between various stimuli as
opposed to individual cues such as tones and lights [51]. The hippocampus provides input
to the BL where associations between context and unconditioned stimulus are thought
to occur [43]. Studies have implicated the region in fear conditioning; in particular, in
animals with hippocampal lesions, fear responding elicited by contexts is attenuated, but
fear responses elicited by tones are not [68].
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There is also evidence that implicates the hippocampus in the process of context-
dependent extinction and renewal of cues. Cells in the rat hippocampus have been identified
that respond to cues only when the rat is in a particular context [49]. Based on this
evidence, the model includes a circuit in the hippocampus that associates cues with the
contexts in which they were presented.

3.4 Sensory cortex

The cortex is involved in many higher-level neural processes, such as the formation of
complex relationships between stimuli and concepts [33]. The cortex is an evolutionarily
new brain region that experienced expansion well after limbic structures like the amygdala
were established [18]. It is often classified into many sub-regions; however, for the model
presented here, we are only interested in the outputs of the sensory cortex (processed
sensory information) that reach the amygdala [39]. These outputs provide the amygdala
with the CSs involved in fear conditioning.

3.5 Thalamus

One of the roles of the thalamus is to relay sensory information to the amygdala for
processing in fear conditioning [43]. While the cortex is implicated in processing sensory
information, the thalamus provides a direct pathway to the fear conditioning circuit for CSs.
Joseph Ledoux has referred to the differences between these two pathways as the high road
(cortex) and low road (thalamus) [37]. The cortical pathway is slower but provides more
complex representations, whereas the thalamic pathway is faster and bypasses the cortical
route to the amygdala. Emotionally relevant visual or auditory cues are therefore able to
engage the fear conditioning circuit quickly: something that can be very advantageous for
an animal upon seeing or hearing a predator for example.

For the model presented here, we do not distinguish between these two pathways; CS
information comes from one neural population which can be thought of as either the cortex
or thalamus.
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3.6 Prefrontal cortex

The prefrontal cortex (PFC) is thought to be involved in the normal function of the condi-
tioning circuit; however, its role may be a supporting one, facilitating proper functioning
of memory consolidation and retrieval between the hippocampus and other cortical areas
[35]. These higher-level functions are thought to affect the conscious processing of fear
memories in humans [7]. Because of its proposed role mainly in higher-level functions, the
PFC is not included in the model presented here.
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Chapter 4

Other models of fear conditioning

Before discussing the theory behind the novel NEF model of the fear conditioning circuit,
the following presents a short review of other models related to fear conditioning that have
been previously developed. Following the summaries of these models, we will look at how
the model presented in this thesis compares to the previous approaches.

4.1 Grossberg and Levine

Grossberg and Levine developed a mathematical model of the interactions of a CS1, CS2,
and US [26]. The model accounts for first and second-order conditioning, and is able to
reproduce experimental data showing the relationship between learning efficacy and the
time between the presentation of a CS and a US. The model also accounts for the formations
of two types of memories: short term memories and long term memories.

The activity of each of the nodes in figure 4.1 is represented by a differential equa-
tion. There are no biologically realistic neurons in the model; rather, it is an abstract
mathematical model that accounts for the behaviours observed in the first and second-
order conditioning and blocking experiments discussed earlier, as well as other lower-level
results.

4.2 Balkenius and Morén

Balkenius and Morén developed a computational model of emotional learning which in-
cludes mathematical descriptions of the amygdala, orbitofrontal cortex, sensory cortex,
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Fig. 11. Simulated network. Each sensory representation pos-
sesses two stages with STM activities xi1 and x,2 , respectively. A CS
or US input activates its corresponding xi1. Activation of xi, gener-
ates unconditionable signals to Xi2 and conditioned reinforcer signals
to D, whose activity is denoted by y. Conditionable incentive moti-
vational feedback signals from D activate the second stage potentials
xi2, which then deliver feedback signals to xi1. Motor learning is
elicited by sensory-motor signals from the Xi2 to the motor command
representations. Long-term memory traces are designated by semi-

disks at the ends of conditionable pathways.

to representations of motor commands. Figure 11
describes a variant of Fig. 5 (Refs. 3 and 5) in which the
sensory representations are divided into two succes-
sive stages. The activity xi, of the ith first stage can
activate conditioned reinforcer pathways, whereas the
activity xi2 of the ith second stage receives conditioned
incentive motivational pathways from D. The xi2 loci,
in turn, project back to the xi,, thereby closing the S -
D - S feedback loop, and also project forward to the
motor representations.

An additional mechanism was used to regulate STM
decay of the sensory representations of CSs and USs.
Short-term memory can be weakened through time
due to habituation, competition from other incoming
stimuli, and nonspecific gain changes that occur, for
example, when attention shifts to a different modality.
(See Refs. 8 and 55-58 for theories and simulations
incorporating some of these effects.) These multiple
influences on STM decay are replaced here by a simple
rule which suffices for our present purposes. We as-
sume that the self-excitatory feedback term that main-
tains STM storage is multiplied by a factor that equals
1 for a short time after the initiation of STM activation
and decays exponentially thereafter. The self-excita-
tion term is also supplemented by feedback due to Xi2,
so that STM decay is slower for motivationally signifi-
cant stimuli.

IX. Computer Simulation Results
Figures 12-14 show some representative computer

simulations of the ISI effects using the network in Fig.
11. Various measures of the strength of conditioning
were plotted against the ISI, all other parameters be-
ing equal. The first measure is the speed of CR acqui-
sition, as indicated by the reciprocal of the number of

I I I I I .__I__ _I__ _ __ _ Is;-./ , , , , \ I~~~~~~~SI
2 4 6 a 10 12 14

Fig. 12. Plot of CR acquisition speed as a function of ISI. This
speed was computed by the formula 100 X (number of time units per

trial)/(number of time units to first CR).

trials to the first conditioned response. To generate
this figure, a conditioned response was said to occur if
the STM trace y of D was activated by the CS represen-
tation xi, in the absence of the US.

The curve of Fig. 12 shows that the speed of CR
acquisition relates to ISI in a manner that is qualita-
tively compatible with the experimental data of Gor-
mezano and his co-workers17 18 on the nictitating mem-
brane response. For ISIs of 1 time unit or less, the
competition from the US representation x31 prevented
the CS activity x1 , from staying above the threshold in
the ScS - D pathway long enough while y at D was
being activated by the US for the associative strength
zil to increase appreciably. At long ISIs, the decay of
the STM trace x1, prevented zil from sensing the later
large values of y at D.

In Fig. 13, the STM activities of Scs, Sus, and D (x11,
x31, and y) and the LTM trace z11 of the Scs - D
pathway are plotted in real time given a choice of ISI =
6 that led to good learning in Fig. 12. Although the US
[Fig. 13(b)] suppressed the x variable [Fig. 13(a)]
after activating the y variable [Fig. 13(c)], the LTM
trace z11 correlated positive x and y values well
enough to achieve an S-shaped cumulative learning
curve across trials [Fig. 13(d)]. As the LTM trace z11
grew, the CS elicited a progressively larger STM reac-
tion x1, across trials due to the increasing size of the
positive feedback signal which it generated in the SCs

D Scs pathway [Fig. 13(a)]. This reduced the
STM activity x31 of the US [Fig. 13(b)] due to competi-
tion between CS and US sensory representations.
Such a small decrement in the sensory activity of Sus
during conditioning is an, as yet, untested prediction of
the model. Figure 14 plots the asymptotic, or maxi-
mal, value of z 11 as a function of ISI. An inverted-U
function obtained even after many learning trials.

Figure 15 illustrates a computer simulation of a
blocking experiment using the same parameters. The
STM activities of the CS1 and CS2 representations (xi,
and x21) and the LTM traces of the Scs - D pathway
(zll and Z2 1 ) were plotted in real time. Pairing of CS1
with a delayed US enabled the LTM trace z to
achieve a classical S-shaped learning curve [Fig. 15(c)].
After CS1 became a conditioned reinforcer, it en-
hanced its own STM storage via x, by generating a

1 December 1987 / Vol. 26, No. 23 / APPLIED OPTICS 5023

Figure 4.1: Grossberg and Levine model from [26]. xij and y denote the different compu-
tational nodes. The projections terminating with semi-disks are plastic, and allow learning
to occur in the model. See cited paper for details.

and thalamus [2]. A focus of the model is the interaction between the orbitofrontal cortex
and the amygdala, with the orbitofrontal cortex inhibiting incorrect emotional responses
of the amygdala. The model reproduces phenomena related to fear conditioning including
extinction and blocking, and is used to investigate the effects of lesions to parts of the
model.

The information processing units of the model are generalized nodes (circles in figure
4.2) that are connected with excitatory, inhibitory, or plastic connections. Because it lacks
neural detail, the authors say that “[t]he model should be considered at a functional rather
than at a neuronal level” [2].

4.3 Vlachos et al.

Vlachos et al. developed a large-scale neural network model that explains how contextual
information might affect learning in the amygdala [72]. It is primarily a model of the
basal nucleus of the amygdala, receiving inputs from the lateral amygdala and the medial
prefrontal cortex. The model reproduces behavioural results related to cued and context
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responses. The amygdaloid system appears to be involved in excitatory

emotional conditioning, while the prefrontal system controls the

reactions to changing emotional contingencies (Rolls, 1986, 1995). Here,

we describe a preliminary model of these processes. The model is based

on neural networks, but we do not claim to model the neurons in the

different areas. The model should be considered at a functional rather

than at a neuronal level.

Figure 3 shows the main components of the model. It has four main

parts: thalamus, sensory cortex, amygdala, and orbitofrontal cortex.

The functions of the thalamus and the sensory cortex are only modelled

Figure 3. A computational model of the interaction between the amygdala and

orbitofrontal cortex in emotional conditioning. See text for explanation.
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Figure 4.2: Balkenius and Morén model from [2]. The circles are computational nodes:
each classified into an anatomical region of the brain. The legend shows the types of
inter-nodal connections used in the model. See cited paper for details.
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The evolution of the connection strengths is given by

djA,CS
dt

~aA:CS CTXA, ð3Þ

djB,CS
dt

~aB:CS CTXB: ð4Þ

Here, jX ,Y (X ,YefA,Bg) represents the connection strength
from population (or external input) Y to population X, tX is the
time constant governing the dynamics of population X, kX is the
maximum firing rate of population X, and rX captures the
refractoriness of neurons in X. The transfer function S is a sigmoid
function, integrating all inputs to population X in a non-linear
fashion and producing a bounded output rate. The parameters p
and h of the sigmoid function determine the steepness and the
position of its maximum slope, respectively. The term g(t), with
zero mean, reflects the stochastic input to the two populations,
mimicking the background activity in the BA.
Equations 3 and 4 describe the dynamics of the connection

strengths of the CS afferents onto populations A and B
respectively. These weights were increased in an additive way
whenever the respective CS and CTX inputs were present
simultaneously and remained constant otherwise. The parameters
aA and aB specify the learning rates (see also Eqs. 6–8).
We simulated fear conditioning and extinction by applying CS

input to both populations in the form of short pulses of 50 ms
duration each, based on the experimental design used in [17].
Contextual input was provided continuously. Note that we did not
make any explicit distinction between the unconditioned stimulus
(US) and conditioned stimulus (CS). Instead, we assumed that
during conditioning, neurons in the LA initially responded to the
US and eventually to the CS, while continuing to respond to the
CS during extinction [23]. The output of these LA neurons was
then fed downstream to the BA. In addition, US or CS inputs from
the thalamus or the primary sensory cortex may directly target BA
neurons [24]. In our model, we represented those inputs,

Figure 1. Fear and extinction neurons in rodents. (A) CS-evoked
activity in the BA in pre-conditioning (left), post-conditioning (center)
and post-extinction (right). After conditioning one subpopulation of
neurons within the BA (fear-neurons, amber) increased their firing rates
in response to the CS. This subpopulation did not show any CS evoked
response after extinction. A different subpopulation (extinction
neurons, cyan) did not respond to the CS during or after fear
conditioning, but showed a CS evoked response after extinction
training. (B) Population activities of fear and extinction neurons during
extinction training for different blocks of CS presentations. In a different
context, extinction training resulted in a progressive decrease in the
response of fear neurons and increase in the response of extinction
neurons. The switch of activity was correlated with a shift in behavior
from high to low freezing. Figure adapted from [17].
doi:10.1371/journal.pcbi.1001104.g001

Figure 2. Schematic network model diagrams of the BA. (A) Firing rate model. Two neuron populations A and B are mutually coupled with
negative weights. Both populations receive US-CS and context-specific (CTX) inputs. These external inputs can exhibit LTP. (B) Spiking neural network
model. The network consists of 3400 excitatory and 600 inhibitory LIF neurons. The neurons are interconnected in a recurrent fashion. US-CS input is
provided to all neurons. CTX input is fed only to two subpopulations of excitatory neurons. The external inputs (CS, US and CTX) are modeled as rate-
modulated Poisson spike trains.
doi:10.1371/journal.pcbi.1001104.g002

Fear and Extinction Memories in the Basal Amygdala

PLoS Computational Biology | www.ploscompbiol.org 3 March 2011 | Volume 7 | Issue 3 | e1001104

Figure 4.3: Vlachos et al. model from [72]. Excitatory (top box) and inhibitory (bottom
box) neural populations receive CS/US/context information as well as background inputs
(BKG). In addition, each population has recurrent connections (KEE and KII). See cited
paper for details.

conditioning, as well as context-dependent extinction and renewal, and shows how two
distinct areas of the basal nucleus of the amygdala are recruited during these processes.

It is a spiking neural network model that uses 4000 leaky-integrate-and-fire neurons:
3400 excitatory (top box in figure 4.3) and 600 inhibitory (bottom box in figure 4.3). The
activity of the populations of these neurons are explained with differential equations, as
are the changes in connection strengths between the populations. The learning rule in the
model relies on temporal overlap between stimuli.
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Using the experimental information cited in the preceding text, we
developed an LA network model consisting of eight pyramidal cells
and two GABAergic interneurons (see Fig. 2A) with all-to-all con-
nectivity (Durstewitz et al. 2000; Wang 1999). Among the eight
pyramidal cells, five were type A (P1–P5), two were type B (P6–P7),
and one was type C (P8). In the network model, we were particularly
interested in information processing in the sensory-receptive region—
the dorsal part of LA (LAd). Three of the pyramidal cells (P5, P7, and
P8) and both the interneurons received direct tone/shock inputs; P3
received only tone input, and P1 and P4 received only shock input;
and P2 and P6 received no direct afferent inputs. In this fully
connected architecture, each pyramidal neuron received excitatory
inputs from all other pyramidal cells (excluding itself) as well as
inhibitory inputs from both the interneurons. Both interneurons re-
ceived excitatory inputs from all pyramidal cells and thus provided
both feedforward and -back inhibition to pyramidal cells. Also the two
interneurons inhibited each other (Woodruff and Sah 2007). The
synaptic delays for tone and shock inputs were set to 8 ms to represent
the transmission delay between the start of tone and the arrival of
information in the LA (Li et al. 1996). The synaptic delays for all
intrinsic transmission were set to 2 ms.

The AMPA/NMDA receptors were placed in the dendrite compart-
ment, whereas the GABAA receptors were located in the somata of
both the pyramidal cell and interneuron models (Fig. 1). The synaptic
conductance induced by the arrival of presynaptic spikes was summed
at each synapse with saturation. On glutamate binding, both AMPA
and NMDA receptors become permeable to a mixture of ions includ-
ing Na!, K!, and Ca2!, and binding of GABA to GABAA receptors
leads to the opening of channels selective to chloride ions (Koch
1999). The summed response of these ionic channels to transmitter
binding can be treated as a time-varying change in the membrane

conductance in series with the synaptic reversal potential (Koch
1999). Accordingly, the AMPA, NMDA, and GABAA synaptic trans-
mission currents were all modeled by dual exponential functions as
listed in Eqs. 5–7 (Durstewitz et al. 2000)

IAMPA ! GAMPA"V " EAMPA# ! Āw"t#gAMPA,max

#1#2

#2 " #1
$exp"%t/#2#

" exp"%t/#1#&"V " EAMPA# (5)

INMDA ! GNMDA"V " ENMDA# ! ĀwgNMDA,maxs"V#
#1#2

#2 " #1
$exp"%t/#2#

" exp" " t/#1#&"V " ENMDA# (6)

IGABAA ! GGABAA"V " EGABAA# ! Āw"t#gGABAA,max

#1#2

#2 " #1
$exp" " t/#2#

" exp" " t/#1#&"V " EGABAA# (7)

where w(t) is the adjustable synaptic weight for AMPA and GABAA
synapses (w was held fixed for the NMDA synapses); Ā is a normaliza-
tion constant chosen so that gAMPA, max, gNMDA, max, and gGABAA, max
assume their maximum values; and #1 and #2 are the rise and decay time
constants, respectively. Spontaneous excitatory postsynaptic currents
(sEPSCs) were always significantly faster in interneurons than in pyra-
midal cells (Mahanty and Sah 1998). So for AMPA receptor channels, #1
' 0.5 ms and #2 ' 7 ms for pyramidal cells, and #1 ' 0.3 ms and #2 '
2.4 ms for interneurons (Mahanty and Sah 1998). For NMDA receptor
channels, #1 ' 5 ms, #2 ' 125.0 ms for both pyramidal cells and
interneurons (Weisskopf and LeDoux 1999). The voltage-dependent

FIG. 2. Architecture of the lateral amygdala (LA) network and conditioning protocol. A: triangles represent pyramidal cells and circles representing
interneurons. Among the 8 pyramidal cells, 5 were type A (P1–P5), 2 type B (P6–P7), and 1 type C (P8). Each pyramidal cell excited all the other cells including
interneurons. Each interneuron inhibited all the pyramidal cells and the other interneuron. Three pyramidal cells (P5, P7, and P8) and 2 interneurons received
direct tone/shock inputs; P3 received tone input only; P1 and P4 received shock input only; and P2 and P6 did not receive direct tone/shock inputs. B: simulation
schedule showing tone (green) and shock (red) inputs during sensitization, conditioning and the 2 extinction phases. There was a short gap between conditioning
and extinction and a longer gap before re-extinction.
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Figure 4.4: Li et al. model from [41]. Tone and shock signals project to excitatory (triangles
1-8) and inhibitory (circles 1 and 2) neurons each with recurrent connections (connections
terminating with open circles are inhibitory). The neurotransmitters modelled are specified
in the legend. See cited paper for details.

4.4 Li et al.

Li et al. developed a model focused on acquisition and extinction of fear in lateral amygdala
neurons [41]. It is a cellular model that takes into consideration levels of neuromodulators
available at synapses, and includes details such as calcium, sodium, and potassium concen-
trations, as well as GABA, NMDA, and AMPA receptors. The amygdala model includes
different types of pyramidal cells (triangles in figure 4.4) as well as interneurons (circles in
figure 4.4).

Learning in the model depends on calcium concentrations at the cell and resembles basic
Hebbian learning. The model explores the cellular mechanism of plasticity in the amygdala
including the role of NMDA currents in extinction learning. The stated goal of the model is
to “bridge biophysical and network modelling approaches” to gain a greater understanding
of fear conditioning [41]. However, the model only accounts for the first-order conditioning,
extinction, and blocking experiments discussed earlier.
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Figure 4.5: Krasne et al. model from [35]. The circles represent neuron-like computational
nodes with different types of connections as shows in the legend. Learning occurs on the
projections from the cortex and hippocampus to the LA and BL respectively. See cited
paper for details.

4.5 Krasne et al.

Krasne et al. developed a functional model of fear conditioning that reproduces results
from first-order conditioning, second-order conditioning, blocking, and extinction and re-
newal experiments [35]. The model includes areas of the amygdala and the periaqueductal
gray and receives inputs from cortical/thalamic neurons as well as hippocampal neurons.
Subpopulations of the amygdala and periaqueductal gray are connected with excitatory,
inhibitory, neuromodulatory and plastic connections in order to simulate a wide range of
fear conditioning related behaviours.

The model uses generalized, non-spiking neurons to represent its sub-populations (one
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neuron per population: circles in figure 4.5). Plasticity of connections in the model is
described by a Hebbian-like rule that includes an eligibility parameter governed by reward
signals as well as local cellular activity.

4.6 Comparisons of the models

There are considerable similarities and differences between the models discussed above and
the model presented in this thesis.

The model presented by Li et al. includes greater biological detail than the one pre-
sented in this thesis, but is focused on a specific region of the amygdala only. Grossberg
and Levine’s model formulates equations governing CS/US association, but does not closely
map the equations to biological function. Vlachos et al.’s model does use spiking neurons,
but considers only a specific part of the fear conditioning circuit. Balkenius and Morén’s
model, as well as Krasne et al.’s model, takes a circuit level modelling approach but uses
idealized neurons as opposed to spiking neural populations.

One of the main benefits of developing neural models with the NEF is that it is easy
to construct circuit-level models that are based on biologically realistic spiking neurons
and neural connections. The model presented in this thesis combines many aspects of the
above models; it accounts for the widest variety of behavioural experimental results, and
contains detailed biological mechanisms. In fact, the model is based on the model described
by Krasne et al. with added biological detail, more flexible and general representations,
and functional extensions. The important differences between this model and the one
described by Krasne et al. will be covered in chapter 8.
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Chapter 5

Neurons and plasticity

5.1 Neurons

The neuron is the fundamental information processing component of the animal brain.
The remainder of this thesis assumes a basic understanding of the biological properties of
a neuron, which will be discussed briefly here.

A neuron is a cell that contains mitochondria, ribosomes, DNA, and the other cellular
components that are found across most animal cells. One of the distinguishing features
of a neuron (compared to other cells) is the branches that extend from its cell body [33].
The majority of these branches are dendrites, which connect up to, and receive information
from, other cells (a pyramidal neuron may have thousands of these connections [3]). In this
way, dendrites can be thought of as the inputs to the cell. Each neuron typically has one
axon, the output, which is a branch that sends information from the cell to other neurons
via the axon terminal. See figure 5.1 for an illustration of these parts of a neuron.

The process by which input and output signals are collected and sent involves chemical
as well as electrical mechanisms [33]. Along the length of a dendrite or axon, transmission
can generally be thought of as an electrical process. Electrical activity at one end of a
dendrite or axon propagates through its length to the other end of the branch. Where
axons of one cell meet dendrites of another (a location called a synapse), communication
is achieved via a chemical process. Electrical activity arriving at the end of an axon causes
the release of chemicals called neurotransmitters. The neurotransmitters released from the
axon are detected by nearby dendrites, and cause an increase in electrical activity at those
dendrites. See figure 5.2 for an illustration of a synapse.
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Chapter 2

Synaptic plasticity

In order to understand the constraints involved in brain modelling, we begin this chapter
with an introduction to the relevant neurobiology. This introduction is a simplification of
the true complexity of neurobiology, but serves as a good introduction to the phenomeno-
logical level of the models presented in this thesis.

Dendrites

Cell Body (Soma)

Axon

Axon
Terminal

Figure 2.1: Illustration of the main parts of a neuron.

The brain is primarily made up of neurons. In general, a neuron can be thought of as a
very simple computational device; it takes in input from other neurons through dendrites,

4

Figure 5.1: Illustration of a neuron, from [5]. The cell receives inputs from the dendrites,
processes them at the cell body, and sends the output down the axon. The axon terminals
transmit signals to dendrites of other neurons.

While dendrites and axons are primarily involved in the transmission of information
(in the form of electrical activity) from neuron to neuron, much of the actual computation
is typically taken to be performed at the cell body. Incoming dendritic currents meet at
the cell body; the electrical activity on the axon (output) of a neuron can be thought of as
being the sum of the electrical activity on the dendrites (input) of that neuron [45]. This
computation can be generalized as follows:

a =
n�

i=1

di (5.1)

where a is the electrical activity on the axon, di is the electrical activity on dendrite i, and
n is the number of dendrites on a neuron.

Critical to this summation, is that dendrites do not precisely transmit the information
passed to them by an axon. Some dendrites of a cell are more or less affected by the
electrical activity of an axon of another cell than are other dendrites [45]. How well each
axon transmits information to a dendrite is characterized by the connection weight of a
synapse. A high connection weight means that a dendrite receives and transmits to its cell
body a large electrical signal when excited by a specific nearby axon. A low connection
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Figure 5.2: Illustration of a synapse. Electrical activity on the axon causes the release of
neurotransmitters. These neurotransmitters are detected by the dendrites of the postsy-
naptic neuron.
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weight means that a dendrite receives and transmits to its cell body a small electrical signal
when excited by a specific nearby axon.

To account for this, we can then rewrite equation 5.1 as follows:

a =
n�

i=1

piwi (5.2)

where wi represents the weight for a particular dendrite, i, and pi represents the presynaptic
axon activity at that dendrite.

Equation 5.2 describes a simple, commonly used abstraction of the information pro-
cessing capabilities of a neuron [45].

5.2 Plasticity

The connection weights discussed in the previous section do not always remain the same
value. Connection weights are plastic (able to change); the term ‘synaptic plasticity’
describes the process by which a weight at a synapse increases or decreases. Synaptic plas-
ticity is thought to be the primary mechanism by which animals learn and store memories
[32].

Two models (which are employed in the work described in this thesis) have been pro-
posed to explain various synaptic plasticity experiments.

5.2.1 Hebbian plasticity

One model that has been proposed to govern synaptic plasticity has been attributed to the
Canadian neuroscientist Donald Hebb [28]. The model is described nicely in Hebb’s own
words:

Let us assume that the persistence or repetition of a reverberatory activity
(or “trace”) tends to induce lasting cellular changes that add to its stability.
When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells firing
B, is increased. [28]
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B) Associative LTP

Figure 2.4: Cartoon depiction of the two classical methods of inducing LTP, recreated

from [121]. Vertical lines do not depict spikes, but pulses applied to the presynaptic

cell. + marks show which synapse is potentiated. (A) Homosynaptic (synapse-specific)

LTP is induced by high-frequency tetanic stimulus (usually 100Hz for 1 second) of the

presynaptic cell. (B) Associative LTP is induced by pairing a tetanic stimulus in one or

more presynaptic cells with a low-frequency (usually 5Hz) stimulus in the presynaptic cell

whose synapse is to be potentiated. Note that typically the synapses stimulated with the

tetanic stimulation will also be potentiated.

A back-propagating action potential allows calcium to enter the cell and the dendrites

through NMDA receptors and other sources [145], a process which is now widely believed

to be necessary for LTP [45, 113, 129, 217], though recent experiments have suggested that

local synaptic depolarization and dendritic spikes may be much more influential on LTP

than back-propagating action potentials [33, 82].

Despite decades of LTP research and thousands of publications, there are still many

open questions in the field. The varying and sometimes contradictory findings suggest that

there are a number of mechanisms that result in the long-term potentiation of excitatory

synapses [131], making it difficult to build general models that can be applied to the various

parts of the brain where LTP has been shown to take place.

Regardless, many of the mechanisms that are termed LTP provide experimental cre-

dence behind the main idea of Hebb’s postulate, that a neuron that fires at the same time

as a neuron it projects to will have its connection to that neuron strengthened. However, it

faces the same problem as the original Hebbian learning rule (2.1): it can only potentiate.

Natural decay of synapses over several days can theoretically enable networks to arrive at

10

Figure 5.3: Illustration of one of the consequences of Hebbian learning, from [5]. When
a weak stimulation (bottom synapse) is present at the same time as a strong stimulation
(top synapse) causes the cell to fire, the weight at the synapse of the weak stimulation will
be strengthened (indicated by the plus sign)

Figure 5.3 illustrates an example of Hebbian plasticity.

The popular axiom summarizing this paragraph is: “cells that fire together wire to-
gether”. The following equation describes this phenomenon:

∆ωij = aiaj (5.3)

That is, the change in weights at the synapse between two neurons depends on the
co-activity of the presynaptic neuron (ai) and the postsynaptic neuron (aj).

Hebbian learning on its own is unstable and does not allow for decreases in synaptic
weights. As seen in equation 5.3, if activity is a positive quantity, the synaptic weight could
grow without bound. To account for this unrealistic behaviour, modifications to Hebbian
learning have been proposed. One well known modification is the Bienenstock, Cooper,
and Munro (BCM) rule [8]. The BCM equation (5.4) is similar to equation 5.3, but with
an added term that allows for both increases and decreases in synaptic weights. If the
activity of the postsynaptic cell is above its average activity, θ, the weight between the
active presynaptic and postsynaptic cells will be increased. However, if the activity of the
postsynaptic cell is below its average activity, the weight between the active presynaptic
and postsynaptic cells will be decreased.
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Figure 5.4: Illustration of neuromodulatory learning, modified from [5]. The presence of a
neuromodulator (red arrow) at the synapse between two neurons affects the change of the
weight at the synapse. The release of the neuromodulator could be a result of the activity
of this neuron, or other neurons.

∆ωij = aiaj(aj − θ) (5.4)

In summary, if the presynaptic neuron, i, is involved in making the postsynaptic neuron,
j, fire more than it usually does, weights between i and j will increase. If i is involved in
making the postsynaptic neuron j fire less than it usually does, weights between i and j
will decrease.

5.2.2 Neuromodulatory learning

In Hebbian learning, synaptic plasticity is governed by the activity of presynaptic and
postsynaptic cells. However, synaptic plasticity can also be governed by neurotransmitters
released from cells that do not directly excite the postsynaptic cell (see figure 5.4).

Certain neurotransmitters, such as dopamine, are released by brain subsystems in re-
sponse to affectively significant stimuli [57] [60]. It is hypothesized that these neurotrans-
mitters help to facilitate synaptic plasticity in the brain regions in which they are released
[56]. One popular suggested mechanism of this facilitation is that the neurotransmitter
carries an error signal [67]. This error signal provides information to the synapse which
determines whether the weight of the synapse should be strengthened or weakened. The
effects of this type of error signal will be discussed further in section 6.4, but can be
summarized with the following equation.
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∆ωij ∝ E (5.5)

The error signal E can be either a positive or negative value, and may be modulated
by pre and post-synaptic activity as discussed later in section 6.4.
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Chapter 6

Large-scale neural modelling with the
NEF

The Neural Engineering Framework developed by Eliasmith and Anderson [21] provides
a method for representing and transforming information with neurons. Using the NEF,
complex algorithms can be encoded in neurons to generate models such as the one presented
in this thesis.

The NEF has three principles. The first is the representation principle, which details
how a population of spiking neurons can represent high dimensional information (a vector).
The second is the transformation principle, which details how the connections between pop-
ulations of neurons can be used to perform computations on the vectors being represented;
the synaptic connection weights between populations can be solved for analytically in order
to efficiently compute an approximation to a wide variety of functions. In addition, these
synaptic connection weights can be learned during a simulation to approximate a desired
function [42]. And the third principle is the principle of dynamics, which we will not be
considering in detail here.

6.1 Single neuron model

The NEF can support a wide variety of neuron models. Neuron models describe the
dynamics of individual neurons; i.e., how they turn input activity from dendrites into
output activity on axons. The most common neuron model used in NEF models (including
the one presented in this thesis) is the leaky integrate and fire (LIF) model.
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Parameter Value
tref .002s
RC .02s
Vthresh 1

Table 6.1: Default LIF parameters used in this thesis.

For this neuron model, the activity on an axon is a train of spikes. At a synapse, the
train of spikes is translated into a current injection into nearby dendrites. The generation
of a cell’s output spikes proceeds as follows. The voltage at the soma of an LIF neuron
(V (t)) is affected by the sum of the currents from its dendrites (J(t)). Once the voltage
level of the soma reaches a threshold voltage, Vth, a spike is generated, and the soma
voltage is reset to zero. If the voltage does not reach Vth, it will tend towards zero over
time; this is what the ‘leak’ term in the name refers to. After a spike has been generated,
the membrane voltage will be reset to zero and remain zero for a certain length of time,
tref , before it can begin to increase again.

Figure 6.1 shows how a cell membrane can be described as an electrical circuit. Equation
6.1 describes how this circuit behaves while the soma voltage is between 0 and Vth.

dV

dt
= − 1

RC
(V (t)− J(t)R) (6.1)

The parameters required for this LIF model, along with their corresponding default
values used here, are shown in table 6.1.

There are advantages to choosing LIF neurons over other model neurons: they capture
the primary computational mechanisms of biological neurons, and at the same time are
computationally efficient to simulate.

6.2 Representation

At the core of the NEF is a method for representing information in neural populations.
That is, a method that allows the activity of a population of neurons to represent an
external stimulus, a numeric value, a concept, etc. Any of these types of information can
be represented by a vector in a one-dimensional, two-dimensional, or n-dimensional space.

36



84 Chapter 4

Outside Membrane

Inside Membrane

V CRJR

JM

JCτref

δ(tn)

V=Vth

Figure 4.2
An RC circuit that implements the LIF neuron. The standard RC circuit, describing the sub-threshold behavior
of the neuron is that part outside of the dashed box. It consists of the membrane potential, , the leak resistance,

, and the capacitance due to the bilipid layer, . The active, super-threshold behavior is described by the
additional components inside the dashed box. When the membrane potential is equal to the voltage threshold,

, at a time, , the short-circuit switch is closed, resulting in a ‘spike’, . The switch remains closed,
resetting the circuit and holding , until it is opened after the refractory period, .

into and out of the cell. The ionic current, , accounts for this passive ‘leak’ of charge
across the membrane.1 Ohm’s law tells us that the ionic current is

(4.2)

The final current of importance to the LIF model is the membrane current, . In
effect, this current represents the input to the model. It can be thought of as the somatic

Because we are assuming that the circuit is passive, is constant and we can assume that linear cable theory is
applicable (see Jack et al. 1975, chapters 8, 9, and 10 for a discussion of nonlinear cable theory applied to cellular
models).

TLFeBOOK

Figure 6.1: Circuit that models a leaky integrate and fire neuron, from [21]. The membrane
voltage V depends on the leak resistance, R, the capacitance of the bilipid layer of the cell,
C, and the components inside the dashed box. Once V reaches the threshold voltage, Vth,
at time tn, the switch in the dashed box is closed. This generates a spike, δ(tn), and resets
V to zero until the switch is opened again after the refractory period, τ ref .
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For a working example, consider that it may be useful for an animal to have access
to a neural representation of the two-dimensional position of an eye; having access to
such a neural representation may allow the animal to keep the eye steady while its head
moves. In this case, the vector being represented by the population of neurons could be
[x-coordinate, y-coordinate]. A single population of neurons could represent all the possible
positions of the eye.

A population of neurons, as opposed to a single neuron, is required to represent infor-
mation in a high-dimensional space, because a single neuron cannot accurately represent
information in a high-dimensional space on its own. The output of a neuron in the NEF
could theoretically represent one entire dimension (although it can represent parts of many
dimensions); that is, the representational information from a neuron is taken only from
its spike-rate (the frequency at which it generates spikes along its axon), which is a scalar
(one-dimensional) value. It would be impossible to represent an entire two-dimensional
space using only a single neuron.

The NEF provides a method for combining the scalar outputs of single neurons to repre-
sent higher-dimensional information. This is done by allowing each neuron in a population
to represent a part of a higher-dimensional space. In the two-dimensional eye positioning
example, one neuron could represent either the y-position of the eye, or the x-position of
the eye. One population of two neurons - one representing the entire y-axis, and the other
representing the entire x-axis - could represent any possible position of the eye. In this
case, one neuron may not fire at all when the eye is at −1 (looking all the way down) on
the y-axis, and might fire fastest when it is at 1 (looking all the way up) on the y-axis; the
preferred direction of this neuron would be said to be along the y-axis, and is represented
with [0, 1]. The other may not fire at all when the eye is at −1 (far left) on the x-axis, and
might fire fastest when it is at 1 (far right) on the x-axis; the preferred direction of this
neuron would be said to be along the x-axis, and is represented by the vector [1, 0].

The two-neuron population is an idealized example. Animal brains are thought to utilize
population coding in representing information [24], so in reality, the two-dimensional eye
position may actually be represented in a population of neurons containing hundreds or
thousands of neurons instead of only two. In such a population, some neurons will be more
sensitive to the input (have a greater gain), and some may respond most sensitively as
the input moves along a line other than the x or y axis; for example, a diagonal (such a
neuron would have a preferred direction vector of [0.707, 0.707] if we restrict our preferred
direction vectors to the unit circle).

Every neuron in the population will respond differently to the same input depending
on which part of the space (which vector) the neuron prefers. As discussed in the previous
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section, the spike rate of a neuron depends on the sum of the currents being received
from the dendrites of the cell. In the example of the two-dimensional eye position, let us
assume that each neuron in the population representing eye position is connected to the
muscles of the eyeball. The amount of current, J , that each neuron receives is dependent
on the position of the eye (as measured from the muscles), x, the neuron’s gain, α, the
neuron’s preferred direction vector, e, and a value that accounts for background current
that the neuron receives regardless of its input, Jbias (see equation 6.2). It is thought that a
population of neurons is made up of many heterogeneous neurons with different parameters
[15]. Because of this, when creating neural populations with the NEF, the parameters α,
e, and Jbias are often randomly chosen (within a suitable range) for every neuron in a
population.

J = αe · x+ Jbias (6.2)

The dot product between eye position and the neuron’s preferred direction vector de-
termines how sensitive the neuron is to input in a particular direction. For example, let
us consider two neurons with preferred direction vectors along the x-axis and y-axis. The
preferred direction vectors of these neurons are [1, 0] and [0, 1] respectively. If the eye po-
sition is at [0.5, 1], the result of the dot product for the x-axis neuron is 0.5, and the result
of the dot product for the y-axis neuron is 1. Assuming other parameters being equal,
the y-axis neuron would have more current injected into it; it is more sensitive to that eye
position. Consider another neuron in the population that has a preferred direction vector
on the diagonal: [0.707, 0.707]. If the eye position is at [0.5, 0.5], its dot product would be
0.707, whereas both the x and y-axis neurons would have dot products of 0.5. The neuron
with a preferred direction vector along the diagonal is more sensitive to that eye position,
and would have more current injected into it than the other two neurons.

This discussion applies for higher-dimensional representations as well. The preferred
direction vector of a neuron will always be in the same dimensionality as the information
it is encoding. In any dimensionality, the result of a dot product is a scalar value that
represents the similarity of the two vectors.

Having calculated the current being injected into the neuron, we turn our attention to
the function of the neuron that converts the sum of its input currents to output spikes,
which is described by the LIF model mentioned earlier. The non-linear function of the LIF
neuron will be referred to as G() from here on. Using this convention, activity of a cell can
be written as

a(J) = G(J). (6.3)
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Figure 4.4: Example neuron response curves: (Left) Response curves plotted for regular-spiking
neurons found in the guinea pig neocortex, from [McCormick et al., 1985]. (Right) Response
curves generated by the LIF neuron model using Equation (4.3). Note that for this graph, the
x-axis does not indicate the input current, but rather a value proportional to the input (injected)
current.

One will notice that the units of a(x) are given in spikes per second (Hz), which is not ideal.
A scaling factor is thus needed to “decode” the activity information back into the appropriate
units for x. We can then write the estimated representation of x as:

x̂ = a(x)φ, (4.4)

where x̂ represents the estimate of the value of x, and φ is the scaling factor – known as the
“optimal decoder” in the NEF – used to convert the activity of the neuron back into the units
and scale of x.

Even with this decoder, a single neuron still does a horrible job at representing some given
value x. As we have seen, a linear change in x results in a non-linear change in a(x), and no
amount of scaling will reverse this non-linearity. In order to compensate for the non-linearity,
additional neurons need to be recruited.

4.2.2 Representation using Populations of Neurons

The reason that a better reconstruction of a physical value is achieved by employing more neurons
can be understood using the following analogy. Suppose we wanted to represent an arbitrary
number, for example 3.5763. If we had only one “neuron”, it is equivalent to being able to use
only multiples of 1 to reconstruct the number; and the best job we can do is either 3 or 4. If
we had two “neurons”, we could use not only multiples of 1, but multiples of 0.1 to reconstruct
the number. With this, we can get 3.5, which is much better than either 3 or 4, but still not the

39

Figure 6.2: Tuning curves for a population representing a one-dimensional input, x, from
[16]. Each line on the plot represents the response of a neuron in a population. These
neurons increase their firing rate as the input increases.

Allowing for randomly generated parameters within a biologically realistic range for
equation 6.2, the current injected into a neuron can be considered primarily a function of
the information it is representing, x. As the activity (spike-rate) of a neuron is a function of
J , and allowing for randomly generated parameters within a biologically realistic range for
the LIF equation 6.1, the activity of a neuron can also be considered primarily a function
of x. For one-dimensional inputs, a plot of neuron activity vs x yields what is called a
tuning curve for a neuron (see figure 6.2).

For the case of higher-dimensional inputs, a similar tuning curve can be found for each
neuron by plotting neuron activity vs the dot product between x and the neuron’s preferred
direction vector e. This means simply replacing the x-values on the x-axis of figure 6.2
with dot products.

It should be clear by looking at figure 6.2 that a single neuron will likely not represent a
one-dimensional space well on its own. Further, it should be clear that a single neuron will
likely not represent one direction in a higher-dimensional space well on its own. Because of
the assumptions made in the NEF, the number of neurons in a population, N , needed to

40



achieve a specified accuracy in a representation can be determined analytically; the mean
square error of the representation decreases at 1/N . See [21] for details. Further discussion
in this thesis assumes that information is being represented in a population with enough
neurons to encode the input information with a root-mean-square precision of around 1%.

We have seen how to generate neuron activities in a population of neurons based on
some input, but we can go the other way as well. We can estimate the input to a population
of neurons by measuring the firing rate of every neuron. The task here is explained by the
following equation.

x̂ =
n�

i=1

diai (6.4)

Multiplying a vector of the same dimensionality as x, d, by the activity of a neuron, a,
and summing all of those multiplications for every one of the n neurons in the population,
gives back an estimate of the information encoded in that neural population (x̂). This
variable d is called the neuron’s decoder value, and is constant - it stays the same regardless
of what the input to the neuron is. Each neuron in a population has an associated decoder.

We want to solve equation 6.4 for d such that the difference between x (the actual
value of the input) and x̂ is minimized. The following matrix algebra solves for d in this
way.

X = [−x,−x+ dx, ..., x− dx, x]

A =




a1(X)

...
an(X)





d = Γ−1Υ,where Γ = AAT and Υ = AXT (6.5)

In equation 6.5, d is an m by n matrix containing every neuron’s decoder, where m is
the number of dimensions in the input. The activity matrix A is an xrange

dx by n matrix
that contains the activity of every neuron for every value of input to be considered.

The d solved for in equation 6.5 allows us to go from spike rates of a population of
neurons back to the original signal. However, the activity of neurons cannot always be
characterized by a spike rate. If the activity of a population is changing over time, then
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we need a way to determine the original signal only from the sequence of spikes and not
from a spike rate.

The outputs of neurons are not simply discrete spikes; they are spikes filtered by a
postsynaptic current (PSC). A biologically determined function that represents this filter
is PSC(t) (equation 6.6). The function depends on the synaptic time constant, τPSC .

PSC(t) =
1

τPSC
e−t/τPSC (6.6)

Filtering a spike train with this filter results in an output that looks like the plot in
figure 6.3.

Given this output of our neurons, which we will call a(t), to determine the estimate
of the original signal, x̂, we must find the appropriate decoders, d. Having solved for
the decoder of every neuron in the population in the above equation so as to minimize
the difference between x (the actual value of the input) and x̂, the original signal can be
reconstructed by multiplying the activity, a(t), of each neuron by its corresponding d, and
summing the result for all neurons in the population:

x̂(t) =
n�

i=1

diai(t)

=
n�

i=1

di

nspikesi�

si=1

PSC(t− tsi),

(6.7)

where si indexes each of the nspikesi spikes produced by a neuron.

In the next section we consider how we can use the encoding and decoding processes
discussed here to compute functions between populations of neurons.

6.3 Transformation

In the example from the previous section, the state represented by the neurons was eye
position (more specifically, the activity needed to drive the muscles that control an eyeball).
However, most of the inputs to neurons in the brain are the outputs of other neurons. One
population of neurons can be directly connected to another population of neurons as is
shown in figure 6.4.
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Figure 4.6: (Top Left) Plot of the shape of the PSC signal, h(t), in response to one spike arriving
at the synapse. (Top Right) The input spike train,

�
s δ(t− ts), used in this example. (Bottom)

Plot of the total input current going into the soma, calculated using Equation (4.14). The input
spike train is overlaid on this plot in grey.

44

Figure 6.3: Plot of postsynaptic current (top left). Plot of spikes (top right). Plot of spikes
filtered by postsynaptic current (bottom). From [16]. These plots show how a time varying
signal can be approximated by spiking neurons.
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144 Chapter 6

x y

ai bjωji

Figure 6.1
A communication channel in a neural network. Solid lines indicate possible connections. Dotted lines indicate
an encoding/decoding relation.

from one location to another location. In this case, our signal will be a scalar value, , and
the two locations are neural populations and (see figure 6.1).

We can begin constructing our model by writing down the representations in the two
neural populations, as derived in section 2.1.2. Thus, we have the population

(6.1)

(6.2)

(6.3)

where (6.2) defines the encoding and (6.3) defines the decoding. As before, is taken
to be defined by a LIF neuron, and is for ‘on’ neurons and for ‘off’ neurons. In
(6.3) we have introduced a new notation with respect to the decoding weight, . From
now on, we often write the variable that the decoder is for (i.e., ) as a superscript on the
decoder (i.e., ), as this serves to disambiguate decoders. Disambiguation is important
because, as we will see, characterizing transformations often requires identifying multiple
decoders.

For population we define the representation analogously:

(6.4)

(6.5)

TLFeBOOK

Figure 6.4: A communication channel between two populations of neurons, from [21]. A
vector, x, is represented in a population, a, with neurons indexed by i. A second population,
b, represents a vector, y, and has neurons indexed by j. For a communication channel, the
weights, ωij, are chosen so that x = y.

In the simplest case, the neurons in population a are connected to the neurons in
population b such that population b represents the same information as population a; such
a connection between two populations is called a ‘communication channel’.

When we wanted to determine the amount of current required for a neuron to represent
an external input, we used equation 6.2, shown again here.

J = αe · x+ Jbias

In the communication channel described here, we want x in equation 6.2 to be replaced
with x̂: the value that the a population is representing. From the previous section (equation
6.4) we know that

x̂ =
n�

i=1

diai.

Substituting the right hand side of equation 6.4 into equation 6.2 for x gives the amount
of current to be injected into a neuron in population b (indexed by j) in terms of the

44



activity of the neurons in a neural population a (indexed by i) in order to implement a
communication channel.

Jj = αjej · x̂+ Jbiasj

Jj = αjej ·
n�

i=1

diai + Jbiasj
(6.8)

Having found the current injected into each neuron of the b population, we can apply
the neuron model function G(Jj) to determine the activity of a neuron in the b population
(bj) when it is representing x̂.

bj = G(αjej ·
n�

i=1

diai + Jbiasj) (6.9)

As discussed earlier, a weight is the term used to describe how well activity from the
axon of a presynaptic neuron induces current in a dendrite of a postsynaptic neuron. We
can collect αj, and the dot product between ej and di from equation 6.9 into one weight
term.

ωij = αjej · di (6.10)

Substituting into 6.9 gives

bj = G(
n�

i=1

ωijai + Jbiasj). (6.11)

The weights determined by equation 6.10 are the weights needed to create a commu-
nication channel. But if we want population b to represent something other than what
population a is representing, we need only replace x̂ in equation 6.8 by Cx̂ where C is
any matrix that can be multiplied by x̂. This allows population b to represent any linear
transformation of the value represented by population a. Weights can now be represented
as

ωij = αjejCdi. (6.12)
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Feed-forward transformations 149

x

y

ai

bj

ωkj

ωki

z

ck

Figure 6.3
A network to sum two variables. Solid lines indicate possible connections. Dotted lines indicate an
encoding/decoding relation.

So, as before, we assume our estimates are good ones (i.e., , etc.) and substitute the
representations for and into the encoding rule for to give

where the weights and determine the connection strengths
needed to perform the given transformation (i.e., addition). Given the resultant firing rates,

, we determine the estimated value of by using the appropriate decoding rule. Again,
we can make this rate model into a spiking model by using PSCs as our linear temporal
decoder, . Figure 6.4 shows the results of simulating such a network, using spiking LIF
neurons.

TLFeBOOK

Figure 6.5: A neural population, c, with inputs from neural populations a and b, from [21].
The value represented in population c (z) is a linear combination of the values represented
in b (y) and a (x).
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Population b can also receive more than one input. Let’s introduce another population,
c (whose neurons are indexed by k), into this example, and connect the populations as
shown in figure 6.5. We can easily modify equation 6.8 for this situation.

Jk = αkek · (x̂+ ŷ) + Jbiask
or with transformations, Jk = αkek · (C1x̂+C2ŷ) + Jbiask

(6.13)

Now the activity at population c will be

ck = G(αkek · (C1

�

i

diai +C2

�

j

djbj) + Jbiask)

ck = G(
�

i

ωikai +
�

j

ωjkbj + Jbiask) .
(6.14)

This method can be applied to any number of input populations. A population can
therefore represent any combination of linear transformations applied to its inputs. The
same derivation holds for nonlinear functions of the input as well, although the decoders
optimized for will change (see [21]).

6.4 Learning

In section 5.2, the commonly held belief that learning occurs by adjusting weights between
neurons was introduced. Equations 6.11 and 6.12 demonstrate how changing weights be-
tween neurons leads to a different transformation being calculated between two populations.

Indeed, in the NEF, the assumption is that learning in brains occurs by adjusting the
weights, and therefore the transformations computed, between populations of neurons.
The following sections discuss two different ways in which the weights of NEF neurons can
be adjusted online, rather than by solving the least-squares minimization in equation 6.5.

6.4.1 Error minimization

The error minimization technique of learning involves comparing the value represented by
a population of neurons to a value that we want the population to represent, and using that
difference to adjust the input weights to that population in order to achieve the desired
representation (see figure 6.6).
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Figure 6.6: A general error-modulated learning circuit. The difference between the desired
value represented by population Y , y, and the actual value represented by population Y ,
ŷ, is calculated by the Error population, and used to modify the weights between X and
Y such that Y comes to represent the desired value y for a given input.

MacNeil and Eliasmith demonstrated a least squares error method locally implemented
in a spiking network that accomplishes this [42]. The least squares technique aims to
reduce the squared difference between the actual representation of the output population
and the desired representation. The error, E, is represented as

E = y − ŷ. (6.15)

We will represent the squared error as follows.

SE =
1

2
(y − ŷ)2 (6.16)

Next we use equation 6.4 to replace ŷ in the above equation and take the derivative
with respect to di.

SE =
1

2
(y −

n�

i=1

diai)
2

dSE

ddi
= (y −

�

j

djaj)ai

In the above equation, i indexes only the neuron whose connection is being optimized,
while j indexes all neurons in the population. Notice that the term in brackets is equivalent
to the error we defined in equation 6.15.
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dSE

ddi
= (E)ai (6.17)

If we rewrite this using delta rule form and add a learning rate parameter κ, we get

∆di = κEai. (6.18)

To get this expression in terms of weights, we multiply both sides by the encoding
vector ej, and the neuron gain αj.

∆di · ejαj = καjej · Eai
∆ωij = καjej · Eai (6.19)

Equation 6.19 describes how to adjust weights of a specific neural connection in order
to minimize the representation error of a population.

It is important that such a proposed learning rule could potentially be implemented in a
biologically plausible way. One way to check for biological plausibility is to ensure ‘locality’
of the learning rule; i.e., that the parameters on the right hand side of equation 6.19 are
available to individual synapses. α and e are neural parameters, and a is a measurement
of presynaptic cell activity which is directly available to the synapse. The learning rate
parameter, κ, is a constant that accounts for how quickly synaptic weights can change;
this process relies on biochemical factors such as changes to neurotransmitter release and
uptake. It is possible for the error, E, to be available to every synapse as well, under specific
assumptions. One assumption is that errors, and therefore desired values, are represented
in neural populations in the brain. The other assumption is that error populations are
connected to the synapses between the input and output neural populations as shown in
figure 6.6.

6.4.2 Hebbian learning

In addition to the error modulated learning rule, a Hebbian learning rule has also been
implemented in the NEF [5]. As discussed earlier, Hebbian learning is the modification
of synaptic weights governed by the timing of input and output activity of a neuron. A
simplified characterization of this relationship was given in equation 5.3 and is repeated
here.
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∆ωij = aiaj

This equation can be translated directly into terms used by the NEF. We can include
the scaling factors for the learning rate (κ) and the neural gain (α) from equation 6.19 to
represent the Hebbian learning rule as

∆ωij = καjaiaj. (6.20)

As mentioned earlier, purely Hebbian learning would cause runaway synaptic weight
changes at all neurons. To combat this, the Hebbian learning rule is modified using the
BCM rule. As shown in equation 5.4, the BCM rule can be described as

∆ωij = aiaj(aj − θ).

The BCM rule in the NEF is formed by substituting the Hebbian component from
equation 6.20 into the BCM rule.

∆ωij = καjaiaj(aj − θ) (6.21)

Because the NEF is a spiking-neuron architecture, the θ parameter is taken to be
the average of the filtered spike train of the postsynaptic neuron (see [34] for a biological
justification of such a parameter). This average is computed over a long time frame (greater
than 20ms) prior to the current time step. As shown in [6], this learning rule seems to
have the effect of creating sparse representations in neural populations.

6.4.3 Combined learning rule

There is evidence to suggest that learning in some parts of the brain (including the brain
region in the model described in this thesis) utilizes a combination of the learning methods
described above (this will be discussed later in the thesis) [69]. To account for this phe-
nomenon, a rule combining the error modulated learning rule and the BCM learning rule
for the NEF was developed called the hPES (homeostatic Prescribed Error Sensitivity)
rule [5] [6].

∆ωij = καjai(Sej · E+ (1− S)aj(aj − θ)) (6.22)
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This rule is simply a combination of the rules in equation 6.19 and equation 6.21 with
the addition of a scaling factor S (where 0 <= S <= 1) that determines what proportion of
each rule contributes to the combined rule. The combined rule has been shown to minimize
error as well as the error minimization rule alone, and has shown to be beneficial when
learning nonlinear transformations [6].
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Chapter 7

A new model of fear conditioning

Figure 7.1 shows the new NEF model of the fear conditioning circuit and is shown here
to serve as a reference while reading the following sections. The structure, function, and
implementation of the model will be explained in detail in this chapter.

7.1 Implementation

The model is organized as a collection of interacting NEF neuron populations as shown
in figure 7.1. These populations correspond to regions of the PAG, amygdala, thala-
mus/cortex, and hippocampus.

The design of the model began by determining what computations were required to gen-
erate the behaviour seen in fear conditioning experiments. Much of this work had already
been done in the development of the Krasne et al. model [35]; however, additional com-
putations were required to maintain biological plausibility and to expand the capabilities
of the model. The populations shown in figure 7.1 are the main functional populations in
the model; however, there are some populations that contain sub-populations (not shown)
that are either necessary to support the main function, or make the implementation of the
model with the NEF easier. These include sub-populations for gating to ensure learning
only occurs at the desired times, and sub-populations specifically for plastic connections
in populations involved in learning.

Some of the populations in the model have known direct mappings to actual neural
populations in the rat brain. These populations are the lateral amygdala (LA), the lateral
basal area (BL), and the medial central nucleus (CEm). The remainder of the populations
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Figure 7.1: The proposed model. The connections between the anatomical regions, as
outlined in 3.1, are shown in detail here along with the connections between sub-populations
of these regions. Some of the population labels contain abbreviations: CS stands for
conditioned stimulus, US for unconditioned stimulus, LA for lateral amygdala, BL for the
lateral basal area, CEm for the medial central nucleus, i for image, r for recurrent, and e
for error. The function of every neural population is explained in sections 7.2.1 through
7.2.6. Neural populations are explained in the sections corresponding to behaviours for
which they are required.
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do not correspond directly to an anatomically identified sub-population of neurons, and
have been given arbitrary labels. However, even these populations implement functions
that are thought to be performed in their respective anatomical region. These functions
are all supported by biological data, and their implementations in this model should be
thought of as specific computational proposals for how the brain could be performing the
required computations. The S, R, U, X, and Fear populations share a similar function to
their correlates in the Krasne et al. model.

The number of neurons assigned to each population depends on the value that the
population is required to represent. For example, populations that represent a scalar value
were assigned 100 neurons (to achieve a root-mean-square precision of around 1%), while
populations representing three dimensional vectors were assigned 300 neurons (for the same
precision in higher dimensions). These numbers do not reflect the actual number of neurons
in these brain regions; they are only what is required to create a functioning model.

While all neurons making up the populations in the model are LIF neurons, their en-
coders, gains, and current biases (see chapter 6) are randomly generated within biologically
plausible ranges at the start of every simulation. This means that neural populations are
not identical from simulation to simulation. However, this does not have a significant im-
pact on the function of the model, demonstrating the robustness of the design to specific
neuron parameter values.

After the main anatomical areas had been divided into functional populations, the
transformations between populations were specified. It is these transformations (computa-
tions on the values represented by populations of neurons) that govern the behaviour of the
model. Some of these transformations are changed as the model learns through the course
of a simulation; however, it is important to point out that the initial transformations be-
tween neural populations are exactly the same at the start of every simulated experiment
performed. This means that no functional parameters of the model were changed to suit
specific experiments. The function of the model is identical at the start of every simula-
tion; it is the combination of inputs that it receives during the simulation that changes its
function.

The model receives three different inputs representing CSs, contexts, and USs. The
CS and context inputs are each three-dimensional vectors; each dimension can be thought
of as representing one CS or one context. While three dimensions was chosen for these
simulations, any number of dimensions could be used. It is likely that the brain can form
associations between a wide variety of sights, sounds, textures, and environments; in order
to account for the wide variety of possible inputs, the input dimensions would have to be
increased substantially, and so would the number of neurons in downstream populations.
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However, in order to demonstrate the chosen fear conditioning experiments, only three
input dimensions were needed.

The model was generated and run using a software package called Nengo, which can
be downloaded from http://nengo.ca, that allows users to create and simulate models
through a user interface or through a scripting language. For this model, Nengo reads
inputs from a file once the model has been generated. The times at which these inputs
change values during the simulation are also read from the file. The input values and the
times at which they change are chosen to correspond to the fear conditioning experiment
being performed.

The data collected from the model simulations (shown in the plots in the following
sections) includes the changing decoded values of various populations including the primary
output population, which indicates the presence or absence of a fear response. These
decoded values are filtered spike trains of the neurons in an NEF population. Different
coloured lines in the same population represent the decoded values of different dimensions.

The x-axis of the results plots is time; however, the model has not been tested on
precise timing results from actual behavioural experiments. Consequently, the x-axis is in
seconds, but it can be thought of as a unit-less value used only to show the progression of
time and the order of events.

7.2 Model description and simulations

In this section, the model will be explained in the context of the experiments it has been
designed to model. Explanations of how the model is involved in each individual experiment
are built upon explanations in previous sections, so it is recommended that the following
sections are read in order. Simulation results will also be provided and discussed here.
Detailed descriptions of the experiments modelled have been given in chapter 2.

7.2.1 First-order conditioning

As discussed in earlier sections, the inputs for first-order conditioning experiments are a
CS and a US, and the output is a behavioural fear response (freezing). To explain how the
model replicates the results of conditioning experiments, let us start by looking at the US
population in figure 7.1. The US population represents a scalar input signal which is high in
the presence of a footshock, and zero in the absence of a footshock. The value represented
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by the US population is projected through the U population to the R population. For
now, ignore the purpose of the U population; for first-order conditioning it just relays the
output of the US population on to the R population (we will also defer explanation of
the projection from the US population to the X population until a later section). The
R population represents an error signal. When its represented value is high, learning is
enabled between CSs and the LA population.

Neurons in the amygdala have been shown to fire for only a short time at the onset of a
US [30]. In order to replicate these findings, the R population of neurons is only excited by
increases of its input. This is accomplished by a recurrent inhibition circuit that consists
of the R population connected to an inhibitory population, which in turn inhibits the R
population. At the onset of a US, this circuit is excited. After a short time - determined
by the neurons’ postsynaptic time constants - the R population will be inhibited, and the
reinforcement signal will no longer be sent to the amygdala.

The CS population represents a high-dimensional (in these simulations, three-dimensional)
vector that represents different input stimuli. The value represented by the CS population
is projected to the LA population through the C population (for first-order fear condition-
ing, the C population simply relays the value represented by the CS population to the LA
population). However, the connection between C and LA is not a direct communication
channel. The weights of this connection undergo modification and account for learning in
first-order conditioning experiments. Three populations play a role in this learning: the
R, C, and LA populations. This learning circuit is shown in figure 7.2. It should be noted
that LA represents a scalar value, not a high-dimensional value like C. In fear conditioning
experiments, the activity in the lateral amygdala has been shown to increase after receiving
paired US and CS inputs [59]. To account for this increase in activity, LA is modelled as
representing a scalar activity level.

The R population affects learning in two ways: one is by providing the error signal
referred to in section 6.4.1. Notice that there is no feedback between the output population,
LA, and the error population, R. This means that if R is representing a high value, the
weights of the connection between C and LA will be modified such that the value in LA is
increased. The error signal does not decrease as the value in LA increases, so the value in
LA will eventually be driven to saturation if R remains high for a long enough period of
time. Also, the value represented by R can only be positive; this means that R will never
be responsible for a decrease in the value represented by LA. Inhibition of LA activity is
handled by another mechanism which will be discussed later.

After this learning process, the value represented in C (a CS) while the value represented
in R was high will elicit an increase in the value represented in LA. It is important to
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Figure 7.2: Learning sub-circuit from figure 7.1 for LA. The circuit allows for representa-
tions of CSs in C to activate the LA (lateral amygdala) in the presence of a reinforcing
signal from R.

note that learning between the C population and the LA population only occurs if the
C population is representing a vector with at least one non-zero value. If there is no CS
present, the neurons in C will not be active, and a high value at R will not cause an increase
in the value represented in LA via the error modulation mechanism.

The other way that the R population affects learning is through the Hebbian mechanism
described in section 6.4.2. When the value represented by R increases, the value represented
by LA also increases (albeit only slightly) because of the excitatory connection between
the two populations. This activity changes the weights between R, C, and LA as described
by equation 5.3.

The result of this R/C/LA learning circuit is that stimuli (represented in C) that are
paired with the US (which causes the value represented by R to go high) gain the ability to
increase the value represented in the LA. This learning is specific to the stimulus present
during training; the synaptic weights are adjusted such that only the CS or CSs that were
present during the reinforcing signal will be able to elicit the learned response in LA in
the future. As seen in figure 7.1, LA projects to the BL population (which represents
the lateral part of the basal amygdala), which projects to the CEm. The BL population
represents a scalar value and, in the case of first-order conditioning, acts as a relay between
the LA and the CEm.

Increases in CEm activity have been found to be closely correlated with fear responses
[20]. The CEm is modelled as a neural population representing a scalar value. It projects
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to the Fear population, which also represents a scalar value that corresponds to freezing
behaviour. The Fear population has a threshold; when the CEm reaches that threshold
the Fear population goes high, at which point the animal freezes.

The above description of the pathways from US to LA, from CS to LA, and from LA
to Fear accounts for first-order conditioning behaviour. Figure 7.3 shows the results of a
first-order fear conditioning experiment simulated with this model.

7.2.2 Second-order conditioning

Second-order conditioning involves many of the same model populations as first-order con-
ditioning. The main difference is that in second-order conditioning, a well conditioned CS
is able to increase the value represented by the R population, and in turn, impact weight
changes between the C and LA populations.

The CEm population has a projection to the S population, which has a projection to
the R population. After training with a US and a CS (CS1), when CS1 is present in the
C population, LA will go high even in the absence of a US. If the value in LA is large
enough, CEm will go high and R will go high via the S population. This means that if
there is another stimulus (CS2) represented at C (remember C represents high-dimensional
information, so it can represent multiple stimuli at once), the weights between C and LA
will be modified such that CS2 is able to elicit a fear response as well.

The inclusion of the S population was to ensure that second-order conditioning only
occurs when a well-conditioned CS1 is present; the S population does not respond until
its input has reached a certain threshold. A direct connection from the CEm to the R
population would not have provided this functionality.

Figure 7.4 shows the results of a second-order fear conditioning experiment simulated
with this model.

7.2.3 Sensory preconditioning

Sensory preconditioning requires that stimuli can be associated with each other before any
pairing with a US occurs. To enable this, the CS population is connected to the CSi (i for
‘image’) population (representing values of the same dimensionality as the CS population)
via a plastic connection (figure 7.5). The weights between these two populations of neurons
are modified so that the value represented in CSi is the same as the value represented in
CS. This is achieved using the error minimization learning rule for the NEF and having the
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Figure 7.3: Simulation results for a first-order fear conditioning experiment. In epoch 1,
a CS is presented to show that there is no fear response to the stimulus yet. In epoch 2,
the CS is paired with the US a number of times. In epoch 3, when the CS is presented in
the absence of the US, it elicits a fear response. Learning here occurred in one trial; the
first pairing of the CS and US in epoch 2 elicited a fear response. The R population (the
reinforcement signal) responds with each presentation of the US or a CS that has been
sufficiently paired with a US.
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Figure 7.4: Simulation results for a second-order fear conditioning experiment. In epoch 1,
a CS (green) is presented to demonstrate that it does not elicit a fear response. In epoch
2, a different CS (blue) is paired with the US multiple times. Epoch 3 shows that the blue
CS is able to elicit a fear response after the training. In epoch 4, the blue CS and the green
CS are paired together multiple times. In epoch 5, the green CS is now able to elicit a fear
response in the absence of the blue CS or US even though it was never paired directly with
the US.
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Figure 7.5: Learning sub-circuit from figure 7.1 for CS and CSi populations. The circuit
allows for representations in CS to be mirrored in CSi.

error population (eCS: e for ‘error’) set to be the difference between the values represented
in CSi and the values represented in CS (CS-CSi). When an input is first presented to CS,
there will be a large discrepancy between the values represented by CS and CSi. This will
cause the error signal to be large and the weights will be adjusted in order to minimize
that discrepancy. Critically this error signal is of the same dimensionality as the values
represented in CS and CSi, so weights between CS and CSi will be adjusted so that the
value of each dimension of CSi will be the same as the value of the corresponding dimension
of CS.

This connection allows for the association of stimuli. If the representation in CS in-
dicates the presence of two stimuli, A and B (i.e., the values of two of the dimensions
are high), then the weights between CS and CSi will be changed such that CSi has two
dimensions high as well. In this case, the weights between the neurons activated by rep-
resentation A in CS and the neurons in CSi will be adjusted such that the presence of A
in CS causes the presence of A and B in CSi. Similarly, the weights between the neurons
activated by representation B in CS and the neurons in CSi will be adjusted such that
the presence of B in CS causes the presence of A and B in CSi. This is crucial to the
process. Because of this type of weight modification, after pairing between A and B for a
long enough time such that both CS and CSi represent high values of A and B, subsequent
presentations of either A or B at CS will bring about high values of both A and B in CSi.
Thus, after association, A at CS can bring about a representation of B (along with A) at
CSi, and B at CS can bring about a representation of A (along with B) at CSi.
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It is important to note that the ability for stimulus A or B to bring about a represen-
tation of the other stimulus will not last forever. If A is present at CS and A and B are
present at CSi, there is a discrepancy between the values represented at the populations
and the error minimization rule will begin to work towards making the representations at
CS and CSi the same once again. However, before that process is complete, the stimuli
will have the opportunity to affect fear conditioning in other parts of the model.

The CSi population is connected to the LA in the same way as the CS population; it
goes through an intermediary Ci population. This Ci population is connected to the LA
population in the same way as the C population is connected to LA, and the modification
of the weights between Ci and LA is subject to the same learning rules as those between
C and LA.

Here is an example of how this allows for sensory preconditioning. After two stimuli,
A and B, have been present for some time, they become associated such that the presence
of A or B at CS elicits a representation of both A and B at CSi (as explained above). If
A is subsequently paired with a US, learning occurs at two places: between C and LA (a
representation of A will come to cause a high value to be represented at LA), and between
Ci and LA (a representation of A will come to cause a high value to be represented at
LA, and a representation of B will come to cause a high value to be represented at LA).
Subsequently, if B is present at CS, it will not cause LA to go high via its representation
at C; however, it does elicit representations of both A and B at CSi and Ci, which in turn
causes LA to go high.

Figure 7.6 shows the results of a sensory preconditioning experiment simulated with
this model.

7.2.4 Blocking

The critical population in this model that allows blocking to occur is the U population.
As discussed earlier, U acts as an intermediary between the US population and the R
population. U also receives an inhibitory input from the CEm population. When the CEm
reaches a certain level, it inhibits U, bringing the value that it represents down to zero
regardless of what input it receives from US.

If a CS has been sufficiently paired with a US, it will cause the value represented by
CEm to go high in the absence of the US. Because the R population only responds to
changes in its input, it will go high for a period of time after the CS (CS1) is presented
because of the connection from S, which receives input from CEm. If CS1 remains present,
it will maintain a representation of a high value at CEm and cause inhibition of the U
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Figure 7.6: Simulation results for a sensory preconditioning fear conditioning experiment.
In epoch 1, a green CS and a blue CS are paired for considerable time. Epoch 2 shows
that the blue CS does not yet elicit a fear response, and epoch 3 shows that the green CS
does not yet elicit a fear response. In epoch 4, the blue CS is paired with the US. Epoch
5 shows that the blue CS has gained the ability to elicit a fear response after the training.
Epoch 6 shows that the green CS can elicit the fear response as well.
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population. During the presence of the CS1, if a second CS (CS2) was paired with a US,
no learning would occur between CS2 and the LA because the US will be unable to supply
the activation of the R population that is needed for learning at LA. Hence, CS1 blocks
CS2 from obtaining affective significance.

It should be mentioned that the traditional blocking experiments first performed by
Kamin [31] included simultaneous presentations of a combined representation of CS1 and
CS2 along with the US after CS1 had been conditioned. In this model, that experimental
setup would induce second-order conditioning with the reinforcing signal being supplied by
CS1 (see figure 7.4). However, blocking of US induced reinforcement signals would occur as
well (see figure 7.7). In actual animal tests the balance between blocking and second-order
reinforcement is more complex than this model can account for, and is likely affected by the
timing of stimulus presentations and attentional effects [52]. The simulation demonstrating
blocking was set up to eliminate second-order conditioning and demonstrate blocking of
US reinforcing signals only.

Figure 7.7 shows the results of blocking in a fear conditioning experiment simulated
with this model.

7.2.5 Context conditioning

Context conditioning with the model shares some similarities with first-order conditioning,
but here the learning occurs between the Context population and a proposed preBL pop-
ulation. The Context population, like C, represents high dimensional information; preBL,
like LA, represents a scalar value; and the value represented in R has the same effect on
weight modification between the two populations as it does for the connection between C
and LA.

The value represented in preBL passes through a population, rBL, with a recurrent
inhibition connection before it reaches BL. This is done to replicate the finding that an
animal does not maintain freezing behaviour for the entire time that it is in a context
in which it received an aversive stimulus [14]. If there is a learned association between a
context and a US via the Context/preBL connection weights, then the rBL population will
subsequently only go high at the onset of the context. The recurrent inhibition connection
here is essentially the same as the recurrent inhibition connection on the R population;
however, the inhibition here is slower.

Figure 7.8 shows the results of a context fear conditioning experiment simulated with
this model.
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Figure 7.7: Simulation results for a blocking fear conditioning experiment. Epoch 1 demon-
strates that the blue CS does not elicit a fear response. In epoch 2, the blue CS is paired
with the US. At the start of epoch 3, the blue CS is introduced causing a fear response.
While the blue CS is present, the green CS is paired with the US multiple times. Epoch 4
shows that despite the pairing in epoch 3, the green CS does not elicit a fear response.
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Figure 7.8: Simulation results for a context fear conditioning experiment. Before pairing
with the US in epoch 1, the green context does not elicit a fear response. When paired
with the US, a fear response is activated. CEm activity increases quickly, but decreases
over time; in this model, contexts do not maintain a prolonged fear response. Epoch 2
shows that a red context does not elicit a fear response. At the reintroduction of the green
context in epoch 3, a fear response is activated.
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Figure 7.9: Learning sub-circuit from 7.1 for context-dependent extinction. The circuit
allows contexts to evoke representations in H of CSs that they were previously paired with
in the presence of a signal from X.

7.2.6 Extinction and renewal

Extinction and renewal with first-order conditioning

Context dependent extinction and renewal in this model is made possible by associating
each context with the extinction state (whether the stimulus has been extinguished in that
context or not) of every stimulus. This extinction state is saved if a stimulus that excites
the CEm is present for a length of time in the absence of the US. Because the stimulus
present is no longer predicting the occurrence of the US, it should lose its ability to activate
the CEm.

The two additional populations used to allow for extinction and renewal are the H
population and the eH (the e is for ‘error’) population. The Context population projects
to the H population via plastic synaptic connections. The error population receives inputs
from the CS population and the H population and calculates the difference between them
(CS-H). The error population represents the same number of dimensions as CS and is
therefore capable of adjusting the weights between Context and H such that each context
brings about in H the representation present in CS at the time of learning. Figure 7.9
shows the learning circuit involved in this process.

Critically, the error population is gated by the X population. The X population receives
excitatory input from CEm and inhibitory input from US and R. The result of these
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connections is that X is only high once R activity has decreased after a stimulus causes
significant activity in CEm in the absence of the US. As discussed earlier, a CS that
has gained the ability to excite the CEm will also excite the R population through the S
population. The value represented by the R population only remains high for a short period
of time after the presentation of the CS. During this time the X population is inhibited so
that second-order conditioning is possible before extinction of the stimuli occurs.

When the value represented by the X population is high, it allows the eH population to
modify the weights between Context and H. This is the time that the context learns what
stimuli should be extinguished. After learning, the H population represents the stimuli to
be extinguished, and projects that representation to the C population where it is subtracted
from the projection from the CS population. If a CS (CS1) is represented in population
H, the projection from H to C will inhibit the representation of CS1 coming from the CS
population in population C, and prevent CS1 from increasing the value represented in LA.

It is important to remember that each different context will bring about a different
extinction state in H depending on what extinction has occurred in that context in the
past. This means that a particular CS could be extinguished in one context, but not
in another. Figures 7.10, 7.11, and 7.12 show the results of model simulations using the
different extinction and renewal schedules discussed earlier in section 2.5.1.

The extinction method described here is also applicable to representations in the CSi
population. The Hi, and eHi populations have exactly the same function as the H and
eH populations. Hi receives input from Context just like H. eHi receives input from CSi
and Hi in the same way that eH receives input from CS and H. Hi projects to Ci just like
H projects to C, and the representations from Hi and H both have the same impact on
representations from Ci and C respectively. The purpose of extinction in the CSi circuit is
explained in the next section.

Extinction and renewal with higher-order conditioning

As discussed in section 2.5, the results of extinction of a first-order conditioned CS on
higher-order conditioned CSs differs depending on the method of higher-order condition-
ing. The way that higher-order conditioning is performed in the model accounts for this
observation.

In second-order conditioning, a CS2 is capable of eliciting a fear response because it was
associated with the fear response brought about by a CS1 that was previously associated
with a US. The ability for CS2 to elicit a fear response is the result of the modification
of weights between C and LA. When CS1 and CS2 were both present at CS, CS1 caused
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Figure 7.10: Simulation results for an AAB extinction and renewal experiment. In epoch
1, the blue CS is paired with the US while in the green context. At the start of epoch
2, the blue CS is able to elicit a fear response in the green context. After some time
being present in the absence of the US, the CS is extinguished in the green context. The
extinction process begins at the onset of activity in the X population. The blue CS is
presented again at the end of epoch 2 to demonstrate that it has been extinguished in the
green context. In epoch 3, we move to the red context. The same blue CS is presented in
the red context, but is renewed and elicits a fear response.
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Figure 7.11: Simulation results for an ABC extinction and renewal experiment. The blue
CS is paired with the US in the green context in epoch 1. In epoch 2, the blue CS is able
to elicit a fear response in the red context, but is eventually extinguished. It is presented
at the end of epoch 2 to demonstrate that it is no longer able to elicit a fear response in
the red context. In epoch 3, we move to the blue context, in which the blue CS is capable
of eliciting a fear response.
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Figure 7.12: Simulation results for an ABA extinction and renewal experiment. In epoch 1,
the blue CS is paired with the US in the green context. Epoch 2 shows that the blue CS is
now capable of eliciting a fear response. In epoch 3, we change to the red context. The blue
CS is presented, and after a while the X population initiates extinction. A presentation of
the blue CS shows that it has been extinguished in the red context. In epoch 4, we move
to the green context. The green context itself is able to elicit a fear response. Furthermore,
the blue CS that was extinguished in the red context elicits a fear response in the green
context.
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activity in R to go high, which then facilitated the weight modification between C and LA
that allowed a representation of CS2 at C to bring about increased activity in LA.

If CS1 is subsequently presented and extinguished in a particular context, there will be
an inhibiting representation at C from H in that context that prevents CS1 from activating
LA. However, a presentation of CS2 at C will not be inhibited (given that CS2 was not
present at the same time that CS1 was extinguished). The result is that extinguishing
CS1, the first-order conditioned CS, does not affect the ability of CS2, the higher-order
conditioned CS, to elicit a fear response. Figure 7.13 shows the results of a simulation
demonstrating this kind of extinction.

In sensory preconditioning, CS2 is capable of eliciting a fear response because of its
association with CS1 before CS1 was associated with the US. In this case, a representation
of CS2 at C does not increase activity in LA. It is the representation of CS2 at Ci that
increases activity in LA. If CS1 is presented, it brings about a representation of both CS1
and CS2 at the CSi population. If CS1 is present for a long enough time without being
accompanied by a US, the extinction state represented in Hi will include both CS1 and
CS2. Subsequent presentations of CS2 will project to Ci, but will be inhibited by the
extinction state from Hi. The result is that extinguishing CS1, the first-order conditioned
CS, does affect the ability of CS2, the higher-order conditioned CS, to elicit a fear response.
Figure 7.14 shows the results of a simulation demonstrating this kind of extinction.

The descriptions in this chapter have shown how the model is capable of reproducing the
results of fear conditioning experiments demonstrating first and second-order conditioning,
sensory preconditioning, blocking, and extinction and renewal - both first-order and higher-
order. Moreover, the model achieves this using spiking neuron populations corresponding
to known anatomical regions. This combination of behavioural and biological detail is
unique in fear conditioning models and provides advantages over other approaches. These
advantages will be discussed in the next chapter.
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Figure 7.13: Simulation results for a second-order conditioning extinction and renewal
experiment. Epoch 1 shows that the green CS is not able to elicit a fear response. In
epoch 2, the blue CS is paired with the US. Epoch 3 shows that the training has allowed
the blue CS to elicit a fear response. In epoch 4, the blue CS is paired with the green
CS multiple times. Epoch 5 shows that the green CS is now capable of eliciting a fear
response. In epoch 6, the blue CS is extinguished. Despite the extinction of the blue CS,
the green CS elicits a fear response in epoch 7.
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Figure 7.14: Simulation results for a sensory preconditioning extinction and renewal ex-
periment. In epoch 1, the blue and green CSs are paired for considerable time. Epoch 2
shows that neither the blue or green CS is capable of eliciting a fear response. In epoch
3 the blue CS is paired with the US. Epoch 4 shows that both of the CSs are capable of
eliciting a fear response. In epoch 5, the blue CS is extinguished. Because of the extinction
of the blue CS in epoch 5, the green CS cannot elicit a fear response in epoch 6.
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Chapter 8

Discussion and conclusions

The primary contribution of this thesis is demonstrating the ability to construct an in-
tegrative model of fear conditioning. To my knowledge, the model presented here is the
first to reproduce high-level behavioural data from such a wide range of fear conditioning
experiments with a spiking neuron model adhering to mammalian anatomy and known
neuroscientific data. Some of the differences between this model and the other fear con-
ditioning models were pointed out in section 4.6, but it is useful to now draw attention
to the main differences between it (an NEF-based model) and the Krasne et al. model on
which much of its structure was based.

One primary conceptual and implementational difference involves how high-dimensional
data is represented in the models. In the Krasne et al. model, each dimension (a cue or
a context) is assigned to one idealized neuron. In the NEF, a population of neurons
can represent many dimensions, and each dimension need not be assigned to particular
neurons; rather, the NEF employs distributed representations so that each neuron in a
population can represent a part of the population’s high-dimensional input. This is the
more biologically plausible solution [65], and has practical implications for the development
of the model. For example, when adding a new context or cue, the connections (including
the plastic connections) in the model can be left as they are. This allows us to avoid
the trouble of reorganizing a model just because we want it to be able to handle more
complex representations. Furthermore, with this approach the representational capacity
scales exponentially with the number of dimensions represented [21]. The result is that
models developed using the NEF can easily be scaled up into more complex models.

Another significant difference between the two models is how they are constrained by
biology. By restricting the model to spiking neurons, we are forced to implement functions
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in biologically plausible ways that may not be the easiest or most intuitive. For example,
the model requires that the activities of the R and rBL populations increase only at the
onset of activity from their inputs. There are different ways to model this behaviour
mathematically, but by restricting ourselves to spiking neurons, some implementations
seem more likely than others. For instance, we know that recurrent inhibitory connections
exist in the brain (e.g. [19]), so this seems like a reasonable way to implement the function.
It may not be the correct implementation, but it provides a more reasonable starting
place than specification of an arbitrary mathematical function that does not have the
implementational constraints of spiking neurons.

The biological constraint of spiking neurons also affects how learning is done in this
model. A learning rule that works with spiking neurons is employed, and again, because
we are forced to use a method that works with more realistic neurons, we expect that the
proposed mechanism is more likely to be correct.

The performance of the NEF model can also be compared to a wider range of exper-
imental data than the Krasne et al. model. Because many mathematical functions are
straight forward to implement using the NEF, high-level behavioural data can be matched
by the model (as was shown in this thesis). And because these functions are implemented
in spiking neurons, we can also compare the results of the model to electrophysiological
data, or other low-level neuroscientific data. The model presented here has not yet been
analyzed at that level, but the framework used will allow for that kind of comparison as
the model is further developed.

One last notable advantage of the model is that it allows us to make more detailed
predictions. Although informed by anatomy, the model takes many informed guesses as
to how a neural system could implement the functions needed to explain results from fear
conditioning experiments. These guesses have been implemented in sufficient detail so as
to allow for validation in neuroscientific experiments. For example, the organization of
populations in the hippocampus is, to my knowledge, novel. Experiments could be done to
test if there is a population of neurons like the H population that has significant activity
after extinction events, and that inhibits activity in another population of neurons, which
could be a correlate of the C population.

The design of such experiments may be difficult; it is likely that a population of neurons
that performs a specific function may be dispersed throughout a brain region. It may
also be the case that the brain performs the functions required for fear conditioning in
completely different ways. For example, the complex neurons of the brain may be able to
perform with one neuron what was in this model proposed with several populations. That
being said, testing the theories proposed by this model may be a good place to start.
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The limitations of this model also need to be mentioned here. One of the most signifi-
cant limitations is that the model as implemented here does not provide a detailed account
of timing. For example, in the model, the number of times a CS is paired with a US affects
how well conditioning will proceed; however, this number is not matched to actual biolog-
ical data. Additionally, in experiments, the length of time before or after the occurrence
of a US that a CS is presented affects conditioning, but this effect was not modelled here.

Another limitation of the model is that it essentially uses only one type of neuron. The
majority of LIF neurons used here can be thought of as excitatory pyramidal neurons.
However, the brain contains many different types of neurons with different characteristics
related to plasticity, neuromodulators, etc., which may have a subtle, or significant impact
on the information processing in the circuit. This model may be useful for investigating
where specific types of neurons might be involved in the fear conditioning circuit; the
functions that this model performs could be found to be better suited to certain classes of
neurons.

One last limitation of the model should be noted; it constrains itself to only certain
anatomical regions of the brain. There are other brain regions, not modelled here, that
likely play a role in the fear conditioning circuit: most notably, the PFC [50] [47]. However,
developing a highly functional model which utilizes only a few anatomical areas is a good
place to start exploring the potential role of other brain regions. Neuroscientific evidence
may later suggest that certain functions of the circuit are better mapped to other brain
regions, or that more advanced operation of the fear conditioning circuit requires the use
of other brain regions. Changes to this model can be made in order to test these theories.

Future work on this project should include testing the theories proposed by the model,
as well as addressing its limitations. More detail can be added to the model to match the
current experimental data on the fear condoning circuit, and in the future the model can be
expanded to account for new experimental data that will surely be generated. Inevitably,
as the model is grown to account for more phenomena, other brain regions and functional
circuits will need to be recruited. Continuing to develop such a model will hopefully give
us a better look into the effects of fear on the brain and help us understand the role of
emotional processing in general.
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