
Models for Parallel Computation in
Multi-Core, Heterogeneous, and
Ultra Wide-Word Architectures

by

Alejandro Salinger

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2013

c© Alejandro Salinger 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Multi-core processors have become the dominant processor architecture with 2, 4, and 8 cores
on a chip being widely available and an increasing number of cores predicted for the future. In ad-
dition, the decreasing costs and increasing programmability of Graphic Processing Units (GPUs)
have made these an accessible source of parallel processing power in general purpose computing.
Among the many research challenges that this scenario has raised are the fundamental problems
related to theoretical modeling of computation in these architectures. In this thesis we study
several aspects of computation in modern parallel architectures, from modeling of computation
in multi-cores and heterogeneous platforms, to multi-core cache management strategies, through
the proposal of an architecture that exploits bit-parallelism on thousands of bits.

Observing that in practice multi-cores have a small number of cores, we propose a model
for low-degree parallelism for these architectures. We argue that assuming a small number of
processors (logarithmic in a problem’s input size) simplifies the design of parallel algorithms. We
show that in this model a large class of divide-and-conquer and dynamic programming algorithms
can be parallelized with simple modifications to sequential programs, while achieving optimal
parallel speedups. We further explore low-degree-parallelism in computation, providing evidence
of fundamental differences in practice and theory between systems with a sublinear and linear
number of processors, and suggesting a sharp theoretical gap between the classes of problems
that are efficiently parallelizable in each case.

Efficient strategies to manage shared caches play a crucial role in multi-core performance.
We propose a model for paging in multi-core shared caches, which extends classical paging to a
setting in which several threads share the cache. We show that in this setting traditional cache
management policies perform poorly, and that any effective strategy must partition the cache
among threads, with a partition that adapts dynamically to the demands of each thread. Inspired
by the shared cache setting, we introduce the minimum cache usage problem, an extension to
classical sequential paging in which algorithms must account for the amount of cache they use.
This cache-aware model seeks algorithms with good performance in terms of faults and the amount
of cache used, and has applications in energy efficient caching and in shared cache scenarios.

The wide availability of GPUs has added to the parallel power of multi-cores, however, most
applications underutilize the available resources. We propose a model for hybrid computation in
heterogeneous systems with multi-cores and GPU, and describe strategies for generic paralleliza-
tion and efficient scheduling of a large class of divide-and-conquer algorithms.

Lastly, we introduce the Ultra-Wide Word architecture and model, an extension of the word-
RAM model, that allows for constant time operations on thousands of bits in parallel. We show
that a large class of existing algorithms can be implemented in the Ultra-Wide Word model,
achieving speedups comparable to those of multi-threaded computations, while avoiding the more
difficult aspects of parallel programming.

v

Acknowledgements

Many people have contributed, directly or indirectly, to a happy conclusion of this thesis.
Lucky me, I had not only one, but two advisors to guide me through the tough path of a doctoral
program. Most of the work in this thesis was carried out in direct collaboration with Professor
Alejandro López-Ortiz. I am immensely grateful to him for guiding me in finding interesting
problems, in identifying the right research questions, for providing me with crucial insights as to
how to address them, and not less importantly, for helping me appreciate the strengths of my
results. His invaluable advice has helped me make the right decisions both in my career as well
as in other important aspects of my life. I am also deeply grateful to my co-supervisor Professor
Ian Munro for providing me with his remarkable insights on research problems as well as with his
wise career advice. Thank you Alex and Ian for enabling me to work in a friendly atmosphere.
It has been a delight to work under your supervision.

I would also like to thank my thesis committee members —Professors Hiren Patel, Prabhakar
Ragde, Roberto Solis-Oba, and Bernard Wong— for their comments and suggestions, which have
contributed to the improvement of the contents and presentation of this thesis.

The results in this thesis would not have been possible without the important contribution of
my co-authors. I thank Reza Dorrigiv, Alejandro López-Ortiz, Arash Farzan, Patrick Nicholson,
and Robert Suderman for their ideas and hard work. I am also thankful to Jérémy Barbay,
Francisco Claude, Robert Fraser, Shahin Kamali, Daniel Remenik, and Gelin Zhou and surely
many others for the countless discussions that in one way or another shaped the research that
led to the results in this thesis (and thanks Francisco for printing my thesis!).

I would like to thank Wendy Rush and Helen Jardine for offering their help whenever I needed
it. Thank you as well to Professor Daniel Berry for the invitations to celebrate several holidays.
It means a lot to those of us who are away from our homes.

I am also very grateful to the Natural Sciences and Engineering Research Council of Canada
(NSERC) for providing me with funding through my supervisors and to the David R. Cheriton
School of Computer Science for awarding me the Cheriton scholarship.

I have been very fortunate to have met many great friends during my stay in Waterloo.
Thanks to everybody with whom I have shared the Algorithms Lab —in particular to the long-
lived clique BAPF— you made the lab my (n+ 1)-th home. To everybody who has proudly worn
the jersey of Hopeless Experts since I started playing in my first term. It has been my pleasure
to share our successes and disappointments with you, and I thank you for letting me play team
manager for so many years. To all the friends that have in one way or another made my PhD
experience a very enjoyable one (and whose names I omit for fear that I might forget someone),
I thank you and hope that our paths will cross again.

I wish to thank my family for their love and support. To my parents, René and Anamaŕıa,
who raised me to be who I am today and have supported me unconditionally in all my enterprises,

vii

academic or otherwise. I love you and I thank you for being the best parents anyone can ask
for. To the sunshine of my life, my son Nicolás, who has taken some stress out of my studies by
making me realize what the really important things in life are. Finally, a big thank you to my
lovely wife Natasha. Thank you for painfully reading through my thesis and showing me where
I should and where I should not put a comma. Thank you as well for making sure that I could
concentrate on my work by taking care of everything else during the busiest times. Thank you
for being so understanding and for always being there to listen and provide thoughtful advice.
Your encouragement and support are an invaluable contribution to this thesis and to everything
else in my life. I love you!

viii

Dedication

To my parents

ix

Table of Contents

List of Tables xvii

List of Figures xix

List of Algorithms xxiii

1 Introduction 1

1.1 Summary of Results and Structure of this Thesis 3

2 Parallel Computation 7

2.1 Sequential Models of Computation . 7

2.1.1 Turing Machine . 8

2.1.2 Random Access Machine . 9

2.2 Parallelism in Computation: Flynn’s Taxonomy . 10

2.3 Theoretical Modeling of Parallel Computation . 11

2.3.1 The Shared-Memory Model and the PRAM 11

2.3.2 Performance Measures . 13

2.3.3 Network Models . 15

2.3.4 Communication . 17

2.3.5 Directed Acyclic Graphs . 18

2.3.6 Boolean Circuits and Parallel Complexity Classes 20

2.3.7 Alternating Turing Machines . 24

xi

2.3.8 Vector Machines . 24

2.3.9 P-Complete Problems . 25

2.3.10 Amdahl’s Law . 26

2.4 Parallel Architectures . 27

2.5 Beyond the PRAM . 29

2.5.1 Variants of the PRAM Model . 29

2.5.2 Hierarchical Memory Models . 31

2.5.3 Bridging Models . 31

2.6 Aspects of Parallel Programming . 33

2.6.1 Scheduling Multi-Threaded Programs . 34

2.7 Basic Parallel Algorithm Design Techniques . 38

2.7.1 Balanced Trees . 38

2.7.2 Pointer Jumping . 39

2.7.3 Pipelining . 39

2.7.4 Divide and Conquer . 40

2.7.5 Partitioning . 40

2.7.6 Accelerated Cascading . 40

2.7.7 Symmetry Breaking . 41

2.8 The Multi-Core Era . 41

2.8.1 Multi-Core Architectures . 42

2.8.2 Models for Multi-Core Computation . 43

2.8.3 Graphic Processing Units . 59

2.9 Bit Parallelism and the Word-RAM . 62

3 LoPRAM: A Model for Low-Degree Multi-Core Parallel Computation 65

3.1 Model . 67

3.1.1 Thread Model . 67

3.1.2 Multiprocessing Model . 69

xii

3.2 Optimal Algorithm Parallelization . 69

3.2.1 Divide and Conquer . 70

3.2.2 Dynamic Programming . 73

3.3 Experiments . 81

3.4 Conclusions . 83

4 On the Sublinear Processor Gap for Parallel Architectures 85

4.1 Overview of Arguments . 86

4.2 Exposition . 88

4.2.1 Limited Parallelism . 88

4.2.2 Natural Constraints . 88

4.2.3 Write Conflicts . 89

4.2.4 Processor Communication Network . 91

4.2.5 Buffer Overflow . 92

4.2.6 Divide-and-Conquer Algorithms . 92

4.2.7 Cache Imposed Bounds . 93

4.2.8 The Class E(p(n)) . 94

4.2.9 Parallelism in Turing Machine Simulations 96

4.2.10 Amdahl’s Law . 99

4.3 Conclusions . 100

5 Algorithms in the Ultra-Wide Word Model 101

5.1 The Ultra-Wide Word-RAM Model . 103

5.1.1 UW-RAM Subroutines . 105

5.2 Simulation of FS-RAM . 107

5.2.1 Implementing FS-RAM Operations in the UW-RAM 108

5.2.2 Constant Time Priority Queue . 110

5.2.3 Constant Time Dynamic Prefix Sums . 111

5.3 Dynamic Programming . 112

xiii

5.3.1 Subset Sum . 112

5.3.2 Knapsack . 113

5.3.3 Generalizations of Subset Sum and Knapsack Problems 114

5.3.4 Longest Common Subsequence . 115

5.4 String Searching . 121

5.4.1 Shift-And and Shift-Or . 121

5.4.2 Boyer-Moore-Horspool (BMH) . 124

5.5 Conclusions . 125

6 Paging and Online Algorithms 127

6.1 Online Algorithms . 128

6.1.1 Competitive Analysis . 128

6.2 Paging . 129

6.2.1 Paging Algorithms . 130

6.2.2 Other Cost Models . 133

6.2.3 Alternative Performance Measures . 134

6.2.4 Paging with Multiple Request Sequences . 135

7 Paging for Multi-Core Shared Caches 139

7.1 The Cache Model . 141

7.2 Bounds of Online Strategies for Minimizing Faults 142

7.3 The Offline Problem . 150

7.3.1 Hardness of Multi-Core Paging . 151

7.3.2 Properties of Offline Algorithms for Final-Total-Faults 156

7.3.3 Optimal Algorithms for Final-Total-Faults and Partial-Individual-Faults . . 163

7.4 Conclusions . 166

xiv

8 Minimizing Cache Usage in Paging 169

8.1 Paging with Cache Usage . 170

8.1.1 Applications . 172

8.1.2 Related Cost Models . 173

8.2 Offline Optimum . 173

8.3 Online Algorithms . 177

8.3.1 A Family of Cost-Sensitive Online Algorithms 178

8.3.2 Bounds on the Competitive Ratio of Aα . 180

8.4 Real World Sequences . 185

8.5 Conclusions . 185

9 Toward a Generic Hybrid CPU-GPU Parallelization of Divide-and-Conquer
Algorithms 191

9.1 Related Work . 193

9.2 A Hybrid CPU-GPU Model . 194

9.3 Generic Divide-and-Conquer Parallelization . 195

9.3.1 Breadth-First Structure . 196

9.3.2 Conversion to GPU Code . 197

9.3.3 Example: Divide-and-Conquer Sum . 197

9.4 Work Division and Scheduling Strategies . 198

9.4.1 Basic Hybrid Work Division . 198

9.4.2 Advanced Hybrid Work Division . 200

9.5 Case Study: Mergesort . 203

9.5.1 Basic Hybrid Implementation . 205

9.5.2 Advanced Hybrid Implementation . 206

9.5.3 GPU Optimizations . 206

9.5.4 Experimental Results . 207

9.6 Conclusions . 211

10 Conclusions 213

References 217

xv

List of Tables

2.1 Flynn’s taxonomy . 11

2.2 I/O complexity of various problems in the Parallel External Memory model 45

2.3 Low-depth cache oblivious algorithms . 49

2.4 Multi-Core oblivious algorithms in the Hierarchical Model 58

3.1 Sequential and parallel time complexities for various divide-and-conquer algorithms
in the LoPRAM model . 74

4.1 Low degree parallelism: summary of performance according to processor count . . 86

5.1 Wide word memory access operations supported by the UW-RAM 105

8.1 Description of simulation sequences for paging with cache usage 186

9.1 Specification of hybrid platforms used in experiments 207

9.2 Estimated parameters of platforms used in experiments 207

xvii

List of Figures

1.1 Growth in processor performance . 2

2.1 The shared-memory model with p processors . 12

2.2 A 3× 3 mesh network of diameter 4 . 17

2.3 A 3-dimensional hypercube network . 17

2.4 A 3-dimensional butterfly network . 18

2.5 Example of a schedule of a Directed Acyclic Graph 19

2.6 Example of Amdahl’s Law . 27

2.7 A schematic representation of a multi-core processor 42

2.8 The Parallel External Memory model (PEM) . 44

2.9 A multi-core cache model . 50

2.10 Controlled-PDF schedule . 52

2.11 A component in the Multi-BSP model . 55

2.12 A hierarchical multi-level caching model . 57

2.13 Conceptual GPU architecture . 62

3.1 Example of an execution tree for mergesort in the LoPRAM 69

3.2 Execution tree of a divide-and-conquer algorithm in the LoPRAM 71

3.3 Dependency graph of the dynamic programming recurrence for Matrix Chain Mul-
tiplication . 77

3.4 Times and speedups for parallel mergesort in the LoPRAM 81

3.5 Times and speedups for parallel Strassen’s matrix multiplication in the LoPRAM . 82

xix

3.6 Times and speedups for parallel Matrix Chain Multiplication in the LoPRAM . . . 83

4.1 Expected number of write access collisions . 91

5.1 A wide word in the Ultra-Wide Word architecture 104

5.2 Illustration of the transpose operation in the Ultra-Wide Word architecture 106

5.3 Yggdrasil FS-RAM memory layout . 108

5.4 Example of dynamic programming tables for Longest Common Subsequence 118

7.1 Multi-Core paging example . 144

7.2 Schematic illustration of the sequence for the proof of the lower bound on the
competitive ratio of a shared LRU strategy . 149

7.3 Schematic illustration of the NP-completeness proof of Partial-Individual-Faults . . 151

7.4 Example of forcing a fault . 157

7.5 State diagram for proof of optimality of lazy algorithms 159

7.6 Example of execution in proof of optimality of lazy algorithms 160

8.1 Example of interval representation of a request sequence 175

8.2 Cost ratio, fault rate, and average cache used of various paging algorithms on the
sequence “espresso” . 187

8.3 Cost ratio, fault rate, and average cache used of various paging algorithms on the
sequence “gs” . 188

8.4 Cost ratio, fault rate, and average cache used of various paging algorithms on the
sequence “acroread” . 189

8.5 Cost ratio, fault rate, and average cache used of various paging algorithms on the
sequence “grobner” . 190

9.1 Basic hybrid work division . 199

9.2 Advanced hybrid work division . 200

9.3 Level of the recursion tree reached and fraction of total work by the GPU as a
function of the CPU-GPU work ratio for hybrid mergesort 204

9.4 Advanced hybrid work division for mergesort example 204

xx

9.5 Empirical estimation of maximum number of GPU parallel threads 208

9.6 Empirical estimation of scalar performance ratio between CPU and GPU 209

9.7 Hybrid mergesort speedups as a function of CPU-GPU work ratio 209

9.8 Hybrid mergesort speedups as a function of the input size 210

9.9 Times and speedups of GPU mergesort with parallel merge 211

9.10 Best estimated and empirical work ratios and transfer levels for hybrid mergesort . 212

xxi

List of Algorithms

3.1 Parallel dynamic programming . 78

5.1 Wide-word transpose . 106

5.2 Wide-word reverse transpose . 107

5.3 FS-RAM read . 109

5.4 FS-RAM write . 110

5.5 UW-RAM LCS-length . 119

5.6 Shift-And . 122

5.7 UW-RAM Shift-And . 123

5.8 UW-RAM BMH . 125

7.1 Minimum final total faults . 165

7.2 Partial individual faults . 167

8.1 Minimum cache usage cost . 177

9.1 Generic divide-and-conquer . 196

9.2 Breadth-first divide-and-conquer . 196

9.3 GPU generic function . 197

9.4 Divide-and-conquer sum . 197

9.5 GPU sum . 198

9.6 Recursive mergesort . 203

xxiii

9.7 Breadth-first mergesort . 205

9.8 Advanced hybrid mergesort . 206

xxiv

Chapter 1

Introduction

In 1965, Gordon Moore, co-founder of Intel Corporation, observed that the number of transis-
tors in integrated circuits doubled approximately every two years and predicted that this trend
would continue for the foreseeable future [Moore, 1965]. Since the number of transistors in a
microprocessor is closely related to its speed, this observation, commonly known as Moore’s law,
has also been regarded to predict that the speed of processors would double every 18 months.
This form of Moore’s law remained remarkably accurate for about four decades, with a notable
period of steady increases of about 50% per year in performance since the early 1980’s with the
appearance of RISC (Reduced Instruction Set Compiler) architectures [Hennessy and Patterson,
2007]. However, due to a combination of problems arising from power dissipation, little progress
in instruction-level-parallelism, and the non-matching improvement of memory latency, the yearly
improvement in performance decreased to about 20% in the early 2000’s (see Figure 1.1). The
continuous reduction of the size of integrated circuits is nearing fundamental physical limits. Con-
sequently, major processor manufacturers have turned to seeking improvements in performance
through placing multiple cores on the same chip, with each core running more slowly than previ-
ous sequential processors. Using the same power as their preceding faster processors, multi-core
chips would enjoy an aggregate improvement in performance. This marked an inflexion point in
the history of personal computing, as the dominance of scalar processors has given way to parallel
computers, which in the past were reserved mostly for High Performance Computing (HPC).

Multi-cores have become the dominant processor architecture with 2, 4, and 8 cores widely
available, and with plans of an increasing number of on-chip cores in the near future. Researchers
and practitioners must adapt to the new scenario. While in the past a hardware upgrade to a
newer, faster processor implied a significant performance improvement for unmodified sequential
applications, currently the only way to attain significant performance gains is through parallelism.
As a consequence, research in multiple areas of Computer Science has turned to parallelism.

Research in parallel computation is by no means new —parallel computers and distributed

1

1

5

9

13

18

24

51

80

117

183

280

481

649

993

1,267

1,779

3,016

4,195
6,043 6,681

7,108

11,865
14,387

19,484
21,871

24,129

1

10

100

1000

10,000

100,000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

P
e

rf
o

rm
a

n
c
e

 (
v
s
.

V
A

X
-1

1
/7

8
0

)

25%/year

52%/year

22%/year

 IBM POWERstation 100, 150 MHz

Digital Alphastation 4/266, 266 MHz

Digital Alphastation 5/300, 300 MHz

Digital Alphastation 5/500, 500 MHz

AlphaServer 4000 5/600, 600 MHz 21164

Digital AlphaServer 8400 6/575, 575 MHz 21264
Professional Workstation XP1000, 667 MHz 21264A

Intel VC820 motherboard, 1.0 GHz Pentium III processor

 IBM Power4, 1.3 GHz

 Intel Xeon EE 3.2 GHz
 AMD Athlon, 2.6 GHz

 Intel Core 2 Extreme 2 cores, 2.9 GHz

 Intel Core Duo Extreme 2 cores, 3.0 GHz

 Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
 Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)

 Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)

Intel D850EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology)

1.5, VAX-11/785

 AMD Athlon 64, 2.8 GHz

Digital 3000 AXP/500, 150 MHz

HP 9000/750, 66 MHz

IBM RS6000/540, 30 MHz

MIPS M2000, 25 MHz

MIPS M/120, 16.7 MHz

Sun-4/260, 16.7 MHz

VAX 8700, 22 MHz

AX-11/780, 5 MHz

Figure 1.1: Processor performance compared to the VAX 11/780 in the period 1978-2010. The reduction
in processor performance in the early 2000’s led to processor manufacturers shifting to the development
of multi-core processors. Figure obtained from [Hennessy and Patterson, 2011, Figure 1.1] and used with
permission of Elsevier Inc.

systems have been developed for many years, and there exists a vast body of research on the
subject, including theoretical models and algorithms. Nevertheless, the focus of parallel com-
putation in the past was mainly on high performance computing, and only a small fraction of
computer scientists and practitioners were familiar with the technology and theory behind it.
The appearance of multi-cores marks a significant change in the focus of parallel computation.
Parallelism is here, whether we like it or not, and it affects all aspects of computation, from
the most performance driven scientific computations to the most popular every day applications
running on a low end laptop. This change of focus implies that developing parallel programs is
not anymore a task restricted to eager experts only, but could soon become part of the job of
every software developer.

There are many challenges that arise in this new scenario, ranging from the development of ac-
cessible programming environments for parallel programming to determining the proper changes
in the curriculum of Computer Science students to reflect the new requirements in parallel pro-
gramming skills. The Theoretical Computer Science community is not exempt from the scenario
change, and researchers have been faced with the fundamental problem of backing technological

2

advancements with models of computation and algorithms for the new multi-core architecture.
For many years the Random Access Machine (RAM) model of computation faithfully represented
the architecture of computers. With the advent of multi-core architectures this ceased to be the
case. Currently there is no established model of computation that reflects the characteristics
of commodity computers. How should we adapt existing models of parallel computation to the
multi-core scenario? What algorithms are still efficient in the new architecture, and what new
algorithms and algorithmic techniques could result in more efficient implementations? How can
we properly manage the resources that multiple cores share in a multi-core chip? What are the
trade-offs in multi-core chip design? Is it preferable to add more cores or more cache? These are
only a few examples of the myriad of questions that continue to raise interesting and relevant
theoretical problems, leading to a revival of research in theoretical parallel computation.

Adding to the relevance of parallel computation in today’s computing landscape, the emer-
gence of programming languages for general purpose programming on Graphic Processing Units
(GPUs) has led to an increasingly large number of applications and algorithms that use these
massively parallel devices to boost performance. Originally intended for exclusively executing
data-parallel graphic tasks, GPUs are now regarded as commodity accelerators, whose affordable
prices have made them ubiquitous in desktop and laptop computers. GPUs bring similar chal-
lenges to the ones raised by multi-cores. While there are many implementations of algorithms
in GPUs, there are currently no established theoretical models to design and analyze algorithms
in these devices, a task which is hindered by the diversity of designs and programming models
across vendors and models.

In this thesis we address several theoretical aspects of parallel computation in these new ar-
chitectures, from modeling of computation in multi-cores and heterogeneous multi-core and GPU
platforms, to multi-core cache management strategies, through the proposal of a new parallel ar-
chitectural feature in processor development, together with accompanying model of computation
and algorithms.

1.1 Summary of Results and Structure of this Thesis

We begin by reviewing the aspects of parallel computation that are most relevant to our work
in Chapter 2. We describe existing models of parallel computation, paying special attention to
the shared memory model and the Parallel Random Access Machine (PRAM). We cover parallel
architectures, parallel programming, and algorithmic techniques. We then describe parallelism
in multi-cores, GPUs, and at the processor’s word level, together with related computational
models.

In Chapter 3 we introduce the LoPRAM model of computation for multi-core architectures.
This model is based on the observation that the number of processors in current multi-core chips

3

is small compared to the large scale parallelism targeted in past models and parallel architectures.
More specifically, we assume that the number of cores p is bounded by a logarithmic function
on the input size, i.e., p = O(log n). We describe the characteristics of the model, including its
multi-threading model and scheduler, and show how it naturally leads to work-optimal parallel
algorithms for a large class of divide-and-conquer and dynamic programming algorithms via sim-
ple modifications to sequential implementations. The assumption of a small number of processors
is the key factor in obtaining the optimal speedup. In contrast, in the PRAM model the design,
analysis and implementation of work-optimal algorithms for the assumed Θ(n) processors proved
to be one of the biggest challenges in practice for its adoption.

In Chapter 4 we further explore how a low number of processors affects the design and perfor-
mance of a parallel system. We argue that design and implementation issues of algorithms and
architectures are significantly different—both in theory and in practice—between computational
models with high and low degrees of parallelism. We report an observed gap in the behavior of
a parallel architecture depending on the number of processors that separates the performance,
design, and analysis of systems with a sublinear number of processors and systems with linearly
many processors. More specifically, we observe that systems with either logarithmically many
cores or with O(nα) cores (with α < 1) exhibit a qualitatively different behavior than a system
with Θ(n) cores in terms of the design of work-optimal algorithms, communication between pro-
cessors, hardware implementations, generic simulations, and achievable speedups, among others.
The evidence we present suggests the existence of a sharp theoretical gap between the classes
of problems that can be efficiently parallelized with o(n) processors and with Θ(n) processors,
unless P = NC.

In Chapter 5 we explore an alternative view of parallelism in the form of an ultra-wide
word processor. We introduce the Ultra-Wide Word architecture and model, an extension of
the word-RAM model, that allows for constant time operations on thousands of bits in parallel.
We argue that a large class of word-RAM algorithms can be implemented in the Ultra-Wide
Word model, obtaining speedups comparable to multi-threaded computations while keeping the
simplicity of programming of the sequential RAM model. We show that this is the case by
describing implementations of Ultra-Wide Word algorithms for dynamic programming and string
searching. In addition, we show that the Ultra-Wide Word model can be used to implement a
non-standard memory architecture, which enables the sidestepping of lower bounds of important
data structure problems such as priority queues and dynamic prefix sums.

Next, we turn our attention to more practical aspects of computation in multi-cores and GPUs,
including paging strategies for shared caches in multi-core processors. The paging problem models
a two-level memory hierarchy consisting of a fast but small cache of size k, and a slow memory
of infinite size. The input to the problem is a sequence of page requests. A request is a fault
if the corresponding page is not in the cache, and a hit otherwise. A paging algorithm must
decide which pages to keep in cache at each request in order to minimize the number of faults. In
Chapter 6 we review the paging problem in more detail, including different cost models, measures

4

of performance, and related work in the case of various sequences sharing a cache.

In Chapter 7 we study the paging problem for multi-core processors, which extends the clas-
sical paging problem to a setting in which several processes simultaneously share the cache.
Building on a previously proposed model by Hassidim [2010] that allows paging strategies to
schedule requests, we propose a more conventional model in which requests must be served as
they arrive. We study the problem of minimizing the number of faults, deriving bounds on the
competitive ratios of natural strategies to manage the cache. We show that traditional online
paging algorithms are not competitive in our model. We then study the offline paging problem
and show that the problem of deciding if a request can be served such that at a given time each
sequence has faulted at most a given number of times is NP-complete and that its optimization
version is APX-hard (for an unbounded number of sequences). We show as well that although
offline algorithms can benefit from properly aligning future requests by means of faults, an algo-
rithm that does so by forcing faults on pages that it has in its cache has no advantage over a lazy
algorithm which evicts pages only when faults occur. Lastly, we describe offline algorithms for
the decision problem and for minimizing the total number of faults that run in polynomial time
in the length of the sequences.

Motivated by the paging problem in shared caches, in Chapter 8 we introduce the minimum
cache usage problem, an extension to classical sequential paging in which algorithms must account
for the amount of cache they use. Thus, the cost of an algorithm is a combination of the number of
faults and the amount of cache it uses, with the weight of each measure depending on the intended
application. We show that traditional online paging algorithms achieve the same competitive ratio
k as in the classic model, but that, as expected, they do not adapt to the differences between
cache and fault costs. We then describe a simple family of online algorithms for the problem
that achieve a competitive ratio of 2 if α < k, where α = f/c is the ratio between fault and

cache cost, and max
{
k, α(k+1)

α+k−1

}
if α ≥ k. We further parametrize the analysis by considering the

locality of reference of the sequence, and show that for sequences with high locality of reference
the competitive ratio of our algorithms is at most 2. An experimental evaluation on real-world
memory traces shows that our algorithms are close to optimal. We show as well that the offline
problem admits a polynomial time algorithm. In doing so, we define a reduction of paging with
cache usage to weighted interval scheduling on identical machines.

In Chapter 9 we address hybrid computation in a heterogeneous architecture with a multi-core
processor and a GPU. Given the streaming-processing characteristics of GPUs, most practical
applications so far are on highly data-parallel algorithms. Many problems, however, allow for
task-parallel solutions or a combination of task and data-parallel algorithms. For these, a hybrid
CPU-GPU parallel algorithm that combines the highly parallel stream-processing power of GPUs
with the higher scalar power of multi-cores is likely to be superior. In this chapter we describe
a generic translation of any sequential implementation of a divide-and-conquer algorithm into
an implementation that benefits from running in parallel in both multi-cores and GPUs. This

5

translation is generic in the sense that it requires little knowledge of the particular algorithm.
We then present a schedule and work division scheme that adapts to the characteristics of each
algorithm and the underlying architecture, conveniently balancing the workload between GPU
and CPU. Our experiments show a 4.5x gain over the single core recursive implementation, while
demonstrating the accuracy and practicality of the approach.

Finally, in Chapter 10 we present the conclusions of this thesis and directions for future
research.

6

Chapter 2

Parallel Computation

Parallel computation is a broad field that encompasses several areas of Computer Science, from
theoretical parallel complexity classes to practical implementations of computer clusters with
hundreds of processing nodes. In this chapter we provide an overview of various aspects of parallel
computation. Before a brief review of classic sequential models of computation in Section 2.1,
we turn to a description of Flynn’s taxonomy and the different forms of parallel computation in
Section 2.2. We then describe in Section 2.3 several models of theoretical parallel computation,
with a special focus on the Parallel Random Access Machine (PRAM) model. In Section 2.4 we
describe the most important types of parallel architecture designs. We describe in Section 2.5
the various models that attempt to improve the PRAM model by including relevant practical
considerations. We review in Section 2.6 important aspects of writing parallel programs, including
scheduling of multi-threaded computations. We describe next the most used techniques in parallel
algorithm design in Section 2.7.

We then turn to parallelism in modern multi-core and many-core processors in Section 2.8,
where we describe the multi-core and Graphic Processing Unit (GPU) architectures, and the
recent models that have been proposed for multi-core computation. We end this chapter in
Section 2.9 with a description of bit-parallelism —a form of parallel computation which takes
advantage of the intrinsic parallelism of instructions in sequential processors—, together with the
word-RAM model of computation.

2.1 Sequential Models of Computation

Before we turn to models of parallel computation, let us review two classic models of sequential
computation: the Turing Machine and the Random Access Machine (RAM).

7

2.1.1 Turing Machine

The Turing machine is a simple but powerful mathematical model of a general purpose computer.
A Turing machine consists of an infinite length tape and a finite set of rules to operate on symbols
on the tape. The input to a computation is a set of symbols initially on the tape. The machine
carries out a computation by reading symbols from the tape and writing symbols to the tape
according to its set of rules, possibly stopping at some point. Formally, a Turing machine is a
tuple (Q,Σ,Γ, δ, q0, qaccept, qreject) [Sipser, 1996], where

• Q is a finite set of states.

• Σ is a finite input alphabet, not containing a blank symbol t.

• Γ is a finite set of tape symbols, with t ∈ Γ.

• δ : Q× Γ→ Q× Γ× {C,B} is the transition function.

• q0 ∈ Q is the start state.

• qaccept ∈ Q is the accept state.

• qreject ∈ Q is the reject state, with qaccept 6= qreject.

A tape of a Turing machine is an infinite one-dimensional sequence of cells, each of which can
hold one symbol, bounded to the left by a leftmost cell and unbounded to the right. The tape has
a head which at any given time is placed on one cell and can be moved during the computation.
The computation of a Turing machine M starts with the tape containing a string w ∈ Σ∗ on the
leftmost cells, followed by blanks (‘t’), with the tape’s head on the leftmost cell. The state of
M is initially q0. At each step, M reads the symbol under the head and acts according to the
transition function δ, possibly changing its state and either writing a symbol on the tape under
its head or moving the head one cell to the left (C) or right (B). The computation continues
until M enters the accept or reject states, in which case we say M halts. Otherwise, M continues
forever. A configuration C = (q, T, h) of a Turing machine is given by its state q ∈ Q, the contents
of its tape T ∈ Γm, and the position of the head in the tape h, where m is the largest cell number
with a non-blank symbol. An accepting configuration is any configuration containing qaccept, and
a rejecting configuration is a configuration containing qreject. We say that M accepts (rejects)
an input w if it enters an accepting (rejecting) configuration and halts. M recognizes a language
L if it enters an accepting configuration on every input w ∈ L, and it decides language L if it
accepts on every input w ∈ L and it rejects on every input w /∈ L.

The time of a Turing machine computation is the number of steps that it takes until it halts,
and its space equals the maximum number of cells that its scans. For a Turing machine M

8

that always halts, its time (space) complexity is the function f : N → N such that f(n) is the
maximum time (space) of M on a computation on an input of size n.

There exist several variants of Turing machines that generalize and extend the definition
above. Some notable examples are multi-tape Turing machines, machines with bidirectional
tapes, multi-head Turing machines , restricting input alphabets to be binary, or restricting some
tapes to be read- or write-only (see [Sipser, 1996; Arora and Barak, 2009] for definitions).

Turing machines are the base model for the theories of decidability and complexity of lan-
guages, this is, the study of the sets of languages that can be decided by Turing machines, and
the resources (in terms of time and space) that the decision of languages require. Changes in the
definitions of the original Turing machine model and its variants do not significantly affect the
results that can be derived from them since each of the models can simulate the rest [Arora and
Barak, 2009]. In terms of decidability theory this means that the classes of languages that can
be decided remain the same across variants of Turing machines, while in terms of complexity it
means that simulations can be done efficiently (i.e., with at most polynomial slowdown). This
invariance with respect to changes is known as robustness [Sipser, 1996].

2.1.2 Random Access Machine

The Random Access Machine (RAM) model of computation [van Emde Boas, 1990] models the
Von Neumman architecture: a processing unit and an infinite set of registers (memory) which
store both the instructions of a program and the data. This model faithfully represents the design
of modern computer architectures, and thus the RAM has become the standard model used in
the design and analysis of algorithms for general purpose computers. The basic model consists
of a control unit where a program is stored, a program counter, a set of accumulator registers,
and an infinite set of memory registers. The set of instructions of the model allows moving data
between accumulators and memory, performing arithmetic operations, and influencing the flow
of control of the program by changing the value of the program counter either unconditionally or
depending on the value of an accumulator.

The set of arithmetic instructions that are available vary across definitions of the model. The
basic RAM model allows for only addition and subtraction, while more powerful models extend
the instructions with multiplication, division, and bitwise Boolean instructions.

There are, in general, two ways of measuring the time complexity of a computation in the
RAM model. In the uniform cost measure, every instruction takes one unit of time, regardless
of the size of the values on which the instruction operates. In the logarithmic cost measure, the
cost of an instruction is the sum of the of the lengths of the data involved in the instruction.
Clearly, the time complexity of a uniform cost RAM is at most the one of a logarithmic cost
RAM, and the gap between the two measures might be excessive depending on the instructions
available. While the overhead in simulating a uniform cost RAM by a logarithmic cost RAM with

9

only arithmetic and boolean instructions is polynomially bounded, if multiplication is allowed
then this overhead is exponential. Consequently, the uniform cost RAM with multiplication is
not considered a reasonable sequential model in terms of the invariance thesis, which says that
“reasonable machine models can simulate each other within a polynomially bounded overhead in
time and a constant-factor overhead in space” [van Emde Boas, 1990]. In fact, P = NP under
this model [Pratt and Stockmeyer, 1976; Hartmanis and Simon, 1974].

In the analysis of algorithms in the RAM model, space is normally measured in terms of the
number of registers used, which is justified by the fact that values in registers are bounded in
terms of input values. However, in the theory of machine models, space is measured in terms
of the size of the values stored in each register, which conforms to the logarithmic measure of
time. A measure that allows the space complexity of RAMs to be fully equivalent of that of a
multi-tape Turing machine is to charge every register with the size of the maximum value ever
stored during a computation and to add up the cost over all registers up to the maximum address
reached. The cost contributed by a register is zero if the register is unused and the sum of its
address and maximum size value otherwise [van Emde Boas, 1990].

2.2 Parallelism in Computation: Flynn’s Taxonomy

The most natural way of conceiving a parallel computer is as a collection of similar processors
physically close to each other and with facilities to communicate and synchronize. However,
parallelism in computation can take many forms, not necessarily implemented by this conception
of a parallel computer. What defines a computation as parallel or sequential depends on what we
consider to be the unit of information in the computation and the operations involved in it. For
example, a computation on a single processor subtracting two 64-bit numbers and comparing the
result to zero can be regarded as sequential if the goal is to determine which number is larger,
and as parallel if the goal is to verify if there is any value of i for which the i-th bit in both words
differs in value. While a subtraction of two 64-bit numbers is implemented by a parallel circuit
in hardware, it is considered as a basic sequential operation in the RAM model.

A first approach to classify different kinds of parallelism in computation is to separate them
along the dimension of data and instructions. The following classification is known as Flynn’s
taxonomy [Flynn, 1972]; it separates computation depending on whether different processors
execute the same or different instructions, and on whether they operate on the same or different
data. Flynn’s taxonomy defines the following categories, which are shown in Figure 2.1.

Single-Instruction-Single-Data (SISD): a sequential processor executing one instruction
stream on one data stream.

10

Data
Single Multiple

Single SISD SIMD

Instructions

Multiple MISD MIMD

Table 2.1: Flynn’s classification of types of parallel computations.

Single-Instruction-Multiple-Data (SIMD): each processor executing the same instruction
stream on different data. A simple example of such a computation is an elementwise addition of
two vectors in which the addition of each element is performed by a different processor. Graphic
Processing Units (GPUs) implement this mode of parallelism (see Section 2.8.3).

Multiple-Instruction-Single-Data (MISD): processors execute different instruction streams
on the same data. MISD can refer to simultaneous computation on replicated data, which can
be used for fault tolerance purposes, as well as to a pipelined execution [Flynn and Rudd, 1996].

Multiple-Instruction-Multiple-Data (MIMD): processors execute different instruction
streams on different data. This is the least restrictive mode of parallelism, and it is the one
implemented by modern multi-core processors.

2.3 Theoretical Modeling of Parallel Computation

In this section we review several models of parallel computation and the most relevant performance
measures. We also define the most important parallel complexity classes.

2.3.1 The Shared-Memory Model and the PRAM

The shared-memory model is the natural extension of the RAM model. It consists of a number of
processors, each with its own private memory and executing its own local program, communicating
with one another by exchanging data through a shared global memory. Processors can either
be synchronous, executing in lockstep under the control of a common clock, or they can be
asynchronous, each of them running under its own clock [JáJá, 1992]. Figure 2.1 depicts the
concept of this model.

11

P2 Pp

Shared memory

P1

Figure 2.1: The shared-memory model with p processors.

The dominant model for theoretical research on parallel computation is the Parallel Random
Access Memory (PRAM) model [Fortune and Wyllie, 1978], which is the synchronous version of
the shared-memory model.

The standard PRAM model is a Multiple-Instruction-Multiple-Data (MIMD) type, since at
any time each processor may execute different instructions on different data (see Section 2.2). A
PRAM computation consists of a sequence of unit-cost operations of the following type: read,
compute, and write [Gibbons, 1989]. In a read operation, a processor can read a global memory
location and copy it into its local memory. In a compute operation, it can execute a single RAM
operation on local data, storing the result in its local memory. In a write operation, a processor
can write from its local memory to the shared memory.

There are different variants of PRAM models according to how they deal with memory con-
tention. The most powerful one is the Concurrent-Read-Concurrent-Write (CRCW) PRAM,
which allows unit-cost concurrent reads and concurrent writes on the same memory address, with
different varieties depending on how a concurrent write is resolved: arbitrarily, by priority, ran-
domly, or by allowing concurrent writing only when all processors attempt to write the same value
(known as common CRCW) [JáJá, 1992]. On the other end, the Exclusive-Read-Exclusive-Write
(EREW) PRAM model does not allow any simultaneous access to a single memory location, while
the CREW model allows simultaneous read access only.

It is easy to see that any algorithm that works on an EREW PRAM works on a CREW PRAM
and any algorithm that works on a CREW PRAM works on a CRCW PRAM of any type. On
the other hand, any algorithm that works on a priority CRCW PRAM (the most powerful of
the CRCW PRAMs [Karp and Ramachandran, 1990]) can be simulated by an EREW PRAM
with the same number of processors and with a factor of O(log p) of overhead in the parallel time,
where p is the number of processors [Eckstein, 1979; Vishkin, 1983; Fich et al., 1988]. In addition,
a priority CRCW PRAM can be simulated by a common CRCW PRAM with no loss in time,
provided that sufficiently many processors are available [Kucera, 1982].

12

2.3.2 Performance Measures

The performance of sequential algorithms is measured primarily in terms of worst-case time
and to a lesser extent in terms of the space used. The performance of parallel algorithms has
more aspects to consider. Naturally, parallel time is a key performance measure, although it is
not enough to use time as the only measure of performance; the amount of resources that an
algorithm uses is also relevant. For example, an algorithm A that runs in O(n) parallel time with
Θ(n2) processors might not always be preferable to an algorithm B that runs in time O(n log n)
but with O(n) processors. Perhaps Θ(n2) processors are not available in practice, and simulating
algorithm A with fewer processor might result in an implementation which is slower than B.
Algorithm B, although slower than A, performs less work per processor used and has a smaller
cost in terms of the total processor-time product.

As this example illustrates, there are several considerations of relevance in the performance
of a parallel algorithm. We already mentioned parallel time and the number of processors. We
consider both these measures to be functions of the input size n. The number of processors is
not always explicit in the description of an algorithm, and this is actually a desirable property.
An algorithm should work for a non-fixed number of processors. It is thus common to have the
running time as a function of both the size of the input and the number of processors used. Hence,
we can talk about the performance of a parallel algorithm by specifying a time function with the
number of processors p as a parameter or in terms of the minimum of this function and the value
of p that realizes it. We now formalize these notions and define other important measures of
performance of parallel algorithms.

Definition 2.1 (Work) We define the work W (n) of an algorithm as the total number of oper-
ations it performs on an input of size n.

A common way of referring to the performance of a parallel algorithm is by its parallel
time and work, known as the work-time framework [JáJá, 1992]. Like the number of processors
in the example above, the work of an algorithm is also a second indicator of its performance
and, depending on the scenario, a slow algorithm with small work might be preferable to a faster
algorithm whose work is larger. Let T (n) be the time of the fastest sequential algorithm for a given
problem. We say that a parallel algorithm for that problem is work-optimal ifW (n) = Θ(T (n)). A
work-optimal algorithm performs the same number of operations as the best sequential algorithm
for the problem. A measure that is related to the work is the cost of an algorithm.

Definition 2.2 (Cost [JáJá, 1992]) The cost of an algorithm A that solves a problem of input
size n in parallel time Tp(n) with p(n) processors is defined as c(n) = Tp(n)× p(n).

Note that although related, cost and work are not equal in general. The work of an algorithm is
independent of the number of processors, while the cost depends on the number of processors used.

13

For example, consider a simple parallel algorithm to add n numbers a0, . . . , an−1, with n = 2k

for some k. The algorithm works by first adding pairs of numbers in parallel: a′i = a2i + a2i+1

for 0 ≤ i ≤ n/2, and then recursively adding the numbers in a′ until there is only one number
left. The total work of this algorithm is W (n) = O(n), which is independent of any number
of processors. Since the fastest sequential algorithm to solve the problem takes time Θ(n), this
algorithm is work-optimal. Now, if we use p(n) = n/2 processors, and at each level of the
recursion a processor is assigned a pair of elements to add, the total time of the algorithm is
Tp(n) = O(log n), since there are log n recursion levels and the parallel time is constant at each
level. The cost of the algorithm would then be O(n log n). The two measures are, however, closely
related and, as we shall see, they might coincide depending on the number of processors used by
the algorithm.

A measure that describes the performance gains of a parallel algorithm over the best sequential
algorithm for a given problem is the speedup:

Definition 2.3 (Speedup [JáJá, 1992]) Let Π be a problem whose fastest sequential algorithm
runs in serial time T (n). Let A be a parallel algorithm for Π that runs in parallel time Tp(n) with
p processors. Then, the speedup achieved by A is

Sp(n) =
T (n)

Tp(n)
.

Naturally, Sp(n) ≤ p. We say that a parallel algorithm achieves optimal speedup if Sp(n) =
Θ(p).

The work-time framework enables the presentation of an algorithm independently of the
number of processors and a particular assignment of tasks to processors. For example, the simple
algorithm to add n numbers described above can be presented as a O(log n) time and O(n)
work algorithm. This high level description of algorithms is even independent of an underlying
parallel architecture. However, when implementing the algorithm in an actual parallel computer,
the assignment of tasks to processors must be specified. The number of processors limits the
number of parallel operations that can be carried out in one step of the algorithm, and thus the
specification of this algorithm must take this into account. Conveniently, one can keep the original
algorithm’s description and apply Brent’s Lemma to obtain the time bounds for an execution on
a parallel computer with a fixed number of processors.

Brent’s Lemma [Brent, 1974] Consider a parallel algorithm that runs in parallel time t(n)
and requires work W (n). Suppose that at each timestep i the algorithm performs wi(n) opera-
tions. A PRAM implementation of this algorithm requires m = maxi{wi(n)} processors in order
to run in time t(n). If the number of processors available is p < m, we can simulate each set

14

of wi(n) operations in time dwi(n)/pe ≤ wi(n)/p + 1. Hence, the complete algorithm can be

simulated in at most
∑t(n)

i=1 wi(n)/p+ 1 = W (n)/p+ t(n) parallel steps.

Thus, using Brent’s Lemma one can specify the time of an algorithm on any number of
processors. For the addition algorithm in the example with time O(log n) and work O(n), the
parallel time with p ≤ n/2 processors becomes Tp(n) = O(n/p + log n). Since for this problem
T (n) = O(n), this algorithm achieves optimal speedup for any p ≤ n log n. In general, given
a work-optimal algorithm of parallel time t(n) and work W (n) = T (n), by Brent’s Lemma
the time of the algorithm with p processors is Tp(n) = O(T (n)/p + t(n)) and thus its speedup

is Sp(n) = Ω
(

T (n)
T (n)/p+t(n)

)
. Hence, the algorithm achieves optimal speedup so long as p =

O(T (n)/t(n)) [JáJá, 1992].

Similarly, for a (not necessarily work-optimal) algorithm of parallel time t(n) and work W (n),
since the running time on a p-processor PRAM is Tp(n) = O(W (n)/p+ t(n)), the corresponding
cost is c(n) = O(W (n) + t(n)p), and hence cost and work are asymptotically equal if p =
O(W (n)/t(n)).

A work-optimal algorithm in general might not necessarily run in the fastest possible parallel
time for a problem. An algorithm which does achieve the best possible parallel running time is
called a work-time optimal algorithm [JáJá, 1992].

Finally, we define the notion of efficiency of a parallel algorithm.

Definition 2.4 (Efficiency [JáJá, 1992]) Let A be parallel algorithm for a problem Π that
runs in parallel time Tp(n) with p processors. The efficiency of A is given by

Ep(n) =
T1(n)

pTp(n)
.

Note that T1(n), the time of the parallel algorithm A with one processor, is not necessarily
equal to the time T (n) of the best sequential algorithm for the problem, and thus the efficiency
of an algorithm might be different from its speedup. While the speedup is a measure of the
advantage of a parallel algorithm with p processors relative to a problem, the efficiency measures
the effective utilization of p processors relative to the particular parallel algorithm A.

2.3.3 Network Models

In a shared-memory model like the PRAM model, processors have access to a common memory
which is used for communication and synchronization purposes. In addition, each processor may
have a local private memory. In a network model of parallel computation, we have a network

15

of processors, each with a local private memory, and communication takes place through the
network. The most common application of this model is to distributed computation, in which
a group of separate computers is connected by an interconnection network, although it can also
be applied to systems in which processors are in the same computer and may have access to a
shared memory in addition to being connected by a network.

In the network model, processors communicate with one another by exchanging messages, a
scheme known as the message passing model [JáJá, 1992]. When a processor sends a message to
another processor, it executes a send message instruction and resumes its execution immediately.
When receiving a message, a processor suspends the execution of its program until the data from
the sending processor is received.

Different network models are defined according to the topology of the network that connects
the processors. Several parameters can be used to evaluate the topology of a network, for example,
the diameter, which measures the maximum distance between any two nodes in the network; the
maximum degree of a node; and the edge connectivity of the graph, defined as the minimum
number of link deletions required to cause the network to become disconnected.

We now describe some of the common network topologies: linear array, ring, mesh, torus,
hypercube, and butterfly.

The Linear Processor Array and the Ring In this model, a set of p processors P1, . . . , Pp
are connected in a linear list. The diameter of the network is p − 1, the maximum degree is 2
and the edge connectivity is 1. In a ring model, processors are connected in a circular list. The
diameter of the network in this case is bp/2c, and the maximum degree and the edge connectivity
are 2. The ring model is also known as a one-dimensional torus.

The Mesh In this model, p = m2 processors are arranged in an m×m grid. The diameter of
the network is 2

√
p−2, the maximum degree of a node is 4, and the edge connectivity is 2. Given

its Θ(
√
p) diameter, many computations in this model require Ω(

√
p) parallel steps [JáJá, 1992].

Figure 2.2 shows a 3× 3 mesh. The 2D torus is the analogous of the ring in one dimension: each
row and column forms a ring, with extreme nodes connected to each other directly. Compared
to the mesh, the maximum degree is still 4, but the diameter becomes 2b√p/2c and the edge
connectivity 4. Meshes and tori can be generalized to higher dimensions.

Hypercubes A hypercube of dimension d consists of p = 2d processors indexed with numbers
0, . . . , p − 1. Two processors are connected to each other if the binary representation of their
indices differs in exactly one bit. The diameter of a d-dimensional hypercube is d = log p. Every
node has degree d and thus the edge connectivity is d as well. The virtues of this model are its
small diameter, its regularity, its graph theoretic properties, and that many computations are
simple and fast in it [JáJá, 1992]. Figure 2.3 shows a 3-dimensional hypercube network.

16

P2,2

P1,1 P1,2 P1,3

P2,1 P2,3

P3,1 P3,2 P3,3

Figure 2.2: A 3× 3 mesh network of diameter 4.

000 001

010 011

100 101

111110

Figure 2.3: A 3-dimensional hypercube network.
The index of each processor is given in binary.

Butterfly One disadvantage of the hypercube is that the degree of each node increases with
the size of the network [Leighton, 1992]. The butterfly is a variant of the hypercube with similar
computational properties but with bounded degree. A butterfly network of d dimensions has
p = (d+ 1)2d nodes at various levels and rows. Each node is specified by a pair (w, i), in which i
is the level of the node, with 0 ≤ i ≤ d, and w is an d-bit binary number representing the row of the
node [Leighton, 1992]. Two nodes (w1, i1) and (w2, i2) are connected if i2 = i1+1 and w1 = w2 (a
straight edge), or if i2 = i1 + 1 and w1 and w2 differ in the i2-th bit only, with bit indices starting
from 1 (a cross edge). Figure 2.4 shows a three-dimensional butterfly network. The butterfly is
similar in structure to the hypercube. In fact, a hypercube is equivalent to a butterfly with the
nodes in each row merged together. Hence, the butterfly shares some of the nice properties of
the hypercube, such as its recursive structure and its small diameter (O(log p)) [Leighton, 1992].
Moreover, its maximum degree is 4, as each node is connected to at most two other nodes in the
same row and to at most two other nodes in other rows, and its edge connectivity is 2.

2.3.4 Communication

An important feature of parallel computers is the communication between processors. In paral-
lel architectures with distributed memory, processors communicate with each other by sending
messages through a network. If the number of processors is large, not all processors are adjacent
and a strategy for passing messages from one processor to another is required, a problem known
as routing.

In shared-memory architectures, communication takes place through this memory, and each
processor can communicate directly with any other. Together with time complexity of parallel
algorithms, communication complexity plays an important role in measuring the performance of
parallel algorithms. In the PRAM model, communication complexity is defined as the worst-case

17

level

row

000

001

010

011

100

101

110

111

0 1 2 3

Figure 2.4: A 3-dimensional butterfly network. Figure adapted from [Leighton, 1992].

traffic between shared memory and any local memory of a processor [JáJá, 1992]. Algorithms that
are optimal in terms of time complexity may not be optimal when considering communication as
an additional performance parameter, and an alternative algorithm may be required in order to
achieve optimality.

2.3.5 Directed Acyclic Graphs

A directed graph is a graph G = (V,E) in which each edge (u, v) ∈ E is outgoing from node u
and incoming to node v. A path from a node u to a node v is a sequence of nodes w0, w1, . . . , wk
with w0 = u, wk = v, and such that (wi, wi+1) ∈ E, for 0 ≤ i < k. A cycle is a path containing
at least one edge in which the first and the last nodes are the same [Cormen et al., 2001]. A
directed acyclic graph (DAG) is a directed graph with no cycles. Any computation, parallel
or otherwise, can be represented by a DAG that specifies the tasks to be executed and their
precedence constraints. Nodes in a DAG without incoming edges are called root nodes, while
nodes without outgoing edges are called leaves. In a DAG representation of a computation, each
root node represents an input, each leaf represents an output, and internal nodes represent tasks
or actions. The edges of the graph describe the precedence order between actions. There is an

18

v1

v2

v3

v4

v5

v6

v7

v8

v9

V1 = {v1, v2}
V2 = {v4, v5}
V3 = {v3, v6, v9}
V4 = {v7}
V5 = {v8}

1

Figure 2.5: Example of a 3-schedule of a DAG of depth 5. Vi contains the nodes scheduled at step i.
The schedule requires τ = 5 steps.

edge between nodes u and v if the action for u must complete before the action for v can start.
In this case, we say that u is a parent of v and v is a child of u. We say that u is an ancestor of
v and v is a descendant of u if there is a path between u and v. The depth or level of a node v is
the number of nodes in the longest path between a root node and v. The depth of a DAG is the
maximum depth of any node in the graph [Blelloch et al., 1999]. Figure 2.5 shows an example
of a DAG of depth 5. A task can be assumed to have unit time duration, as longer tasks can
be modeled as consecutive unit time tasks. This representation is completely independent of a
parallel architecture [JáJá, 1992].

In the DAG model it is assumed that any processor can access the data computed by any
other processor without incurring in additional cost. A particular implementation of an algorithm
can be specified by a schedule.

Definition 2.5 (Schedule of a DAG [Blelloch et al., 1999]) A schedule of a DAG is a se-
quence of sets V1, . . . , Vτ where set Vi contains the nodes that are visited or scheduled at time step
i, with the following properties:

• the sets V1, . . . , Vτ form a partition of V , i.e., no node belongs to more than one set, and

• if a node u ∈ Vi is an ancestor of a node v ∈ Vj, then i < j, that is, a node is scheduled
only after all its ancestors are visited.

Thus, nodes that are scheduled in the same step are unordered. A p-schedule, for p ≥ 1, is
a schedule in which at most p nodes are scheduled at the same time, and it is parallel if p > 1
and sequential otherwise. Two common sequential schedules are breadth-first (or level-order) and
depth-first. In a breadth-first 1-schedule, a node is scheduled only after all nodes of lower levels
have been scheduled. A node is ready if it is a root node, or if all of its ancestors were scheduled.
A depth-first 1-schedule, at each step, schedules a root if there are no scheduled nodes with a
ready child. Otherwise, it schedules a ready child of the most recently scheduled node with a
ready child [Blelloch et al., 1999].

19

Assuming unit time duration tasks, the time complexity of a schedule is the number of steps τ .
The following well-known lemma places a lower bound on the number of steps for any p-schedule:

Lemma 2.1 For all p ≥ 1, any p-schedule of a DAG with n nodes and depth d requires at least
max{n/p, d} steps.

An example of a p-schedule with p = 3 is shown in Figure 2.5.

The lower bound in Lemma 2.1 is matched up to a factor of 2 by any greedy schedule. A
greedy schedule is one in which no processor is idle if there is a task ready to execute. More
specifically, using the terminology in Definition 2.5, a p-schedule is greedy if at each step i with
r ready nodes, |Vi| = min{p, r} [Blelloch et al., 1999]. The following lemma bounds the number
of steps of any greedy schedule:

Lemma 2.2 ([Blumofe and Leiserson, 1993]) The number of steps of a greedy p-schedule of
a DAG of n nodes and depth d is at most n/p+ d.

It follows from the lower bound in Lemma 2.1 that a greedy schedule gives a 2-approximation
to the optimal schedule of a DAG, since n/p+ d ≤ 2 ·max{n/p, d}.

Lemma 2.2 extends the result of Brent’s Lemma (see Section 2.3.2) to greedy schedules on
DAGs [Blumofe and Leiserson, 1999]. Assuming unit cost tasks, the number of nodes in a DAG
corresponds to the work of the computation, while the depth corresponds to the minimum parallel
time achievable. A level-order schedule of a DAG with a number of processor p′ large enough so
that at each step all ready nodes are scheduled can thus be seen as a parallel algorithm of work n
and parallel time d. By Brent’s Lemma, this computation can be scheduled on p ≤ p′ processors
in time Tp(n) = n/p+ d.

In Section 2.6.1 we describe work stealing and parallel depth first, two of the most studied
schedules in the DAG model of parallel computation. We further describe their properties with
respect to cache performance in the context of multi-cores in Section 2.8.2.

2.3.6 Boolean Circuits and Parallel Complexity Classes

A theoretical computational model that has been widely used in Computational Complexity is
the circuit model [Karp and Ramachandran, 1990]. This model is of special interest in parallel
computation, since it is the basis for the definition of parallel complexity classes.

Definition 2.6 (Boolean Circuit [Karp and Ramachandran, 1990]) A boolean circuit is
a directed acyclic graph (DAG), in which nodes are labeled as input, constant, AND, OR, NOT,
or output nodes. The in-degree of input and constant nodes is 0, the in-degree of AND and OR

20

nodes is 2, and NOT and output nodes have in-degree 1. Output nodes have out-degree 0. A
boolean circuit with n input nodes and m output nodes computes a function f : {0, 1}n → {0, 1}m.
We define the size of a circuit as the number of edges in the DAG, although it can also be defined
as the number of gates or the sum of both gates and edges. The depth of a circuit is the length
of the longest path between an input and an output node.

The size of a circuit is a measure of the amount of computational resources, while the depth
of a circuit measures the time required for the computation of its boolean function, assuming
unit time gates.

A boolean circuit has fixed input and output sizes and thus a different circuit is required for
inputs of different sizes. Our usual notion of computation, however, is that one algorithm handles
inputs of any size [Greenlaw et al., 1995]. The notion of circuit can be generalized as a model for
computing functions of any input and output sizes by considering families of circuits, with one
circuit for each input size. Without loss of generality, we can assume that the size n of an input
string determines the size `(n) of the output string [Karp and Ramachandran, 1990].

Definition 2.7 (Family of Circuits) A family of circuits is an infinite sequence C = {Ci},
where circuit Ci has size i and output size `(i).

We are interested in solving problems using families of circuits. A problem can be considered
as a transducer of strings over {0, 1}, i.e., a function from {0, 1}n to {0, 1}m. We say that a
family of circuits C solves a problem P if the function computed by Ci defines precisely the string
transduction required by P for inputs of length i [Karp and Ramachandran, 1990].

We restrict families of circuits to be uniform and, in particular, logspace uniform. A family
of circuits is logspace uniform if there is a logarithmic space-bounded Turing machine that on
input 1n generates a description of Cn, for each n. Without a uniformity restriction, families of
circuits can be excessively powerful. For example, a circuit family could be defined such that Cn
outputs 1 if the n-th Turing machine halts on its own description and 0 otherwise. This family of
functions would then solve an undecidable problem [Greenlaw et al., 1995]. Intuitively, the notion
of uniformity implies that the circuit construction should not exceed the computational power of
the constructed circuit [Greenlaw et al., 1995]. In this sense, logspace uniformity has the property
that circuits can be constructed in a reasonable time, both sequentially and in parallel [Greenlaw
et al., 1995].

The Class NC

We now define complexity classes for problems that can be solved with families of circuits as
follows.

21

Definition 2.8 (CKT(C(n), D(n)) [Karp and Ramachandran, 1990]) For C(n) ≥ n and
D(n) ≥ log n, a problem P is in the class CKT (C(n), D(n)) if there is a logspace uniform family
of circuits C = {Cn} solving P such that Cn is of size O(C(n)) and depth O(D(n)).

Since the size of a circuit is related to its work and its depth is related to its parallel time,
the class defined above relates problems to the work and parallel time required to solve them.
The following classes group problems that are solvable in polylogarithmic time with polynomial
amount of work.

Definition 2.9 (NCk [Karp and Ramachandran, 1990]) The class NCk, k > 1, is the class
of problems that belong to CKT(poly(n), O(logk n)), where poly(n) = ∪d≥1O(nd) 1.

Definition 2.10 (NC [Karp and Ramachandran, 1990])

NC =
⋃

k≥1
NCk

NC is generally accepted as the class of problems that are solvable with a high degree of
parallelism with a feasible amount of resources [Cook, 1981]. This class is robust with respect to
variations of the model. For example, NC is precisely the class of problems that are solvable in a
PRAM in polylogarithmic time with a polynomial number of processors [Papadimitriou, 1994].

By removing the restriction on the bounded in-degree of AND and OR gates in the cir-
cuit, we obtain the unbounded fan-in circuit model. The class UCKT for this model is defined
analogously to the CKT class defined in Definition 2.8, and we define the class ACk as ACk =
UCKT(poly(n), O(logk n)) 2 and AC = ∪k≥0ACk. It is interesting to note that AC = NC [Karp
and Ramachandran, 1990].

Under the assumption of a bounded amount of local computation per processor per unit time
in a PRAM, a strong relation between the computational power of unbounded fan-in circuits and
CRCW PRAMs can be established [Stockmeyer and Vishkin, 1984]. Let CRCW(P (n), T (n)) be
the class of problems solvable on a CRCW PRAM in time O(T (n)) with O(P (n)) processors.
Any unbounded fan-in circuit in UCKT(S(n), D(n)) can be simulated by a CRCW PRAM in
time O(D(n)) with S(n) processors, and hence UCKT(S(n), D(n)) ⊆ CRCW(S(n), D(n)).

A CRCW PRAM can also be simulated by an unbounded fan-in circuit, although special care
has to be taken when simulating memory accesses. It can be shown that a single step of the

1The classes NC0 and NC1 require a different notion of uniformity. Appropriate uniformity notions for NC0 and
NC1 are given, respectively, in terms of deterministic logarithmic time random access Turing machines (DLOGTIME
uniformity), and in terms of alternating Turing machines (which we describe in Section 2.3.7) [Greenlaw et al.,
1995].

2 The notions of uniformity usually applied in the definition of ACk are logspace uniformity for k ≥ 1, and
DLOGTIME uniformity in the case k = 0 [Greenlaw et al., 1995].

22

CRCW PRAM can be simulated by an unbounded fan-in circuit of polynomial size and constant
depth and thus CRCW(P (n), T (n)) ⊆ UCKT(poly(P (n)), T (n)). If we define CRCWk as the class
of problems solvable by CRCW PRAM algorithms in time O(logk) with a polynomial number
of processors, we have CRCWk = ACk, for k ≥ 1, and thus ∪k≥1CRCWk(poly(n), logk) = NC
[Stockmeyer and Vishkin, 1984]. Since we noted that simulations between the different types of
PRAMs (EREW, CREW and CRCW) can be carried out with a O(logP) overhead in the parallel
time (see Section 2.3.1), we have

PRAM(poly(n), polylog(n)) = NC,

where polylog(n) = ∪d≥1O((log n)d) and the PRAM processor and time bounds can refer to any
of the PRAM models [Karp and Ramachandran, 1990].

Given the small number of processors in multi-core chips, our focus is primarily on moderate
parallelism. The classes described above capture parallel algorithms that achieve polylogarithmic
times and assume a large (polynomial) number of processors. The classes of problems defined
above in terms of PRAM algorithms could be defined as well for lower degrees of parallelism,
although with a different notion of parallel time achieved. With a sublinear number of processors,
the times achievable by parallel algorithms are closer to the sequential complexities of problems,
and thus a class definition that specifies the parallel time relative to the original sequential
complexity and the number of processors explicitly can be more informative than the standard
definition.

We can adapt the definitions above to the case of a sublinear number of processors as follows.
We define as PRAMs(P (n), S(n)) the class of problems that are solvable in a PRAM (of a par-
ticular type) with P (n) processors and S(n) speedup. For example, PRAMs(logk n, log` n) with
k ≥ ` is the class of problems that can be sped up by a log` n factor with logk n processors. This
definition captures the extent to which a problem can be efficiently parallelized with a specific
number of processors. Classes like PRAMs(logk n, log` n) and PRAMs(n

α, nβ), with β ≤ α ≤ 1,
can give a more refined partition of problems in terms of their susceptibility to be parallelized with
a small number of processors, a feature which is not captured by the class NC. Similar definitions
of parallel complexity classes that capture efficiency are the classes ENC and EP [Kruskal et al.,
1990], which are defined as the class of problems that can be parallelized optimally (up to con-
stant factors) with a polynomial number of processors, achieving polylogarithmic and polynomial
parallel time, respectively.

In Chapter 4 we elaborate on complexity classes for parallel problems that can be parallelized
with a sublinear number of processors and show a strict separation between the problems that
can be sped up optimally with a polynomial number of processors and those that can achieve
optimal speedups with a logarithmic number of processors.

23

2.3.7 Alternating Turing Machines

Another formal model of parallel computation is the alternating Turing machine (ATM). An
ATM is a nondeterministic Turing machine whose states can be either existential or universal.
As in regular Turing machines, a configuration of an ATM at one point of a computation is
given by its current state, the content of its tapes, and the position of the heads on the tapes. A
configuration is accepting if its state is an accepting state, it is existential if its state its existential,
or it is universal if its state is universal. A regular nondeterministic Turing machine accepts a
computation if any of its configurations is accepting. In ATMs, a computation from a given
configuration α is accepting if:

• α is accepting or,

• α is existential and ∃β such that α leads to β and β is accepting, or

• α is universal and ∀β such that α leads to β, β is accepting.

An ATM accepts an input x if its computation from the initial configuration with input
x is accepting. We define the class ATM(S(n), T (n)) as the class of languages that can be
accepted by an ATM in time O(T (n)) and space O(S(n)). It can be shown that for k ≥ 1
ATM(log n, logk n) = NCk [Ruzzo, 1981], and hence

ATM(log n, polylog(n)) = NC.

Here, in order to allow sublinear computation times, a random access model can be used to
read the input tape, allowing the machine to write a number indicating the address on the input
tape of the symbol it reads, which takes O(log n) time.

2.3.8 Vector Machines

A vector machine [Pratt and Stockmeyer, 1976; Simon, 1977] consists of a collection of bit pro-
cessors together with a set of registers that can store bit vectors. In a vector machine, the set of
possible operations for a processor are boolean operations on registers, complementation of the
contents of a register, conditional jump on zero, right and left shift of contents or registers, and
a mask instruction that inhibits some processors from executing the next instruction.

The input is provided in a subset of the registers called the input registers. Each step of
the computation consists of the i-th processor reading the i-th bit of the operands specified in a
common instruction, executing the instruction and writing the result in the i-th bit of an output
vector. In case of the shift operations, the i-th processor writes the result in the appropriate

24

shifted position. This way, processors are able to communicate with each other. At the end of a
computation, the result is written in the output registers.

We define VM(S(n), T (n)) as the class of problems that can be solved on a vector machine
with O(S(n)) processors in O(T (n)) time. When the number of processors of a vector machine
is polynomial and we allow polylogarithmic time, the problems that we can solve with a vector
machine are exactly those we can solve with a PRAM or a boolean circuit with the same amount
of resources, i.e., VM(poly(n), polylog(n)) = NC [Karp and Ramachandran, 1990].

2.3.9 P-Complete Problems

A problem is in the class P if it can be decided in polynomial time by a (sequential) Turing
machine. P can also be defined as the class of problems that can be solved in polynomial time
on a RAM, and it is generally regarded as the class of problems that can be efficiently solved on
a sequential processor [JáJá, 1992] 3. Since an algorithm solvable in polylogarithmic time with a
polynomial number of processors can be run with one processor in time bounded by a polynomial,
every problem in NC is in P. However, it is not known if every problem in P is also in NC. This
open question is a fundamental problem in Computational Complexity. If this was the case, it
would mean that every algorithm that is solvable efficiently in a sequential model of computation
can also be solved efficiently in parallel [Karp and Ramachandran, 1990].

We say that a decision problem A is logspace reducible to a decision problem B if there exists
a function f : {0, 1}∗ → {0, 1}∗ such that f is computable by a logspace Turing machine and, for
all x ∈ {0, 1}∗, x ∈ A if and only if f(x) ∈ B. A problem A ∈ P is P-complete if every problem
A′ ∈ P is log-space reducible to A. P-complete problems are of special interest because if any
P-complete problem is in NC, this would imply that P = NC. No efficient parallel algorithms
have been found for P-complete problems, leading to the belief that these problems are inherently
sequential. The following are two examples of P-complete problems.

Example 2.1 (Monotone Circuit Value) The Monotone Circuit Value problem (MCV) is the
standard problem used to show that other problems are P-complete (by reduction from MCV). The
input to this problem is a boolean circuit without NOT gates, such that each gate has fan-in 2 and
there is a single output value, together with an assignment of a constant value 0 or 1 to each input
line. The problem is to determine the output of the circuit. It can be shown that any computation
of a Turing machine taking time bounded by a polynomial can be transformed in logspace to the
specification of a MCV problem, and thus any problem in P is reducible to MCV [Karp and
Ramachandran, 1990; Goldschlager, 1977].

3Strictly speaking, an algorithm with a running time of Θ(n100) is infeasible for even moderate values of n.
However, problems that are shown to be in P are usually shown to admit O(nk) algorithms for some small constant
k and small constants hidden in the asymptotic notation (in some cases after several iterations of reducing the
running times from algorithms with larger constants) [Arora and Barak, 2009].

25

Example 2.2 (Maximum-Flow) The input to this problem is a directed graph G = (V,E) with
a vertex s called the source and a vertex t (different from s) called the sink. Each of the edges
e ∈ E is assigned a nonnegative capacity c(e). Given such graph G and a value f , the problem
is to determine whether the value of the maximum flow from s to t is at least f [Greenlaw et al.,
1995; Lengauer and Wagner, 1990].

Showing that a problem is P-complete is good evidence that it cannot be efficiently parallelized.
However, there may be problems that are not efficiently parallelizable and that are not P-complete.
In fact, there are various problems that are solvable in sequential polynomial time for which their
parallel complexity is unknown. It is also not known if these problems are P-complete. Examples
of such problems are the existence of a perfect matching in an arbitrary graph, integer greatest
common divisor, and modular integer exponentiation [Karp and Ramachandran, 1990]. Although
there exist parallel algorithms to solve these problems, none of these achieve polylogarithmic time
with a polynomial number of processors. Thus, it is not known whether these problems are in
NC. A problem that is neither in NC nor P-complete is called a P-intermediate problem. A proof
of the existence of these problems would answer the P = NC question negatively, showing that
not all problems are highly parallelizable.

2.3.10 Amdahl’s Law

Consider a system whose performance is improved by enhancing a part of it. For example, the
system can be a computer and the enhancement to replace a component by a faster one or
the system could be a computer program with the enhancement being an optimization of some
function in the program. Amdahl’s Law states that the performance of the enhanced system
is limited by the fraction of the performance to which the enhancement applies [Hennessy and
Patterson, 2007]. In the context of parallel computation, we can apply the law to the speedup
that can be obtained by parallelizing a fraction of a program. Let T1(n) denote the sequential
time of a program. Suppose that a fraction f of the program’s original running time is parallelized
optimally with p processors. Amdahl’s Law states that the overall execution time due to this
improvement is

Tp(n) =
T1(n)f

p
+ T1(n)(1− f).

Hence, the speedup obtained with the improvement is

Sp(n) =
T1(n)

Tp(n)
=

1
f
p + (1− f)

.

Figure 2.6 shows the overall speedup achievable as a function of the number of processors for
various fractions. This figure illustrates the limitations imposed by Amdahl’s Law; the maximum

26

speedup achievable by a parallelization that speeds up a fraction f of the original performance
is 1/(1 − f). For example, for an enhancement that perfectly parallelizes 80% of a program, no
matter how many processors are used, gains cannot go beyond a 5-fold speedup.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 20 30 40 50 60 70 80 90 100

sp
ee

du
p

number of processors

Amdahl’s Law

90%
80%
70%
50%
30%
10%

Figure 2.6: Example of Amdahl’s Law: overall speedup as a function of the number of processors for a
program in which a given fraction can be parallelized optimally.

2.4 Parallel Architectures

There are different ways to implement parallelism in computers. Here we describe the most
common types of architectures according to how parallelism is exploited.

Pipelined Processors Consider a task S that can be broken in a number of subtasks s1, . . . , sk.
Assuming each subtask takes the same time t, the total time of a sequential execution of S would
be t · k. If we need to execute n tasks sequentially, the total time would be n · t · k. Pipelining
takes advantage of the observation that after executing subtask s1 for the first task, the subtasks
of the second task can start being processed, concurrently with the ones of the first task. With
pipelining, the n tasks could be executed in time k · t+(n−1) · t, where the first term corresponds
to the time taken to execute the first task, and the second term corresponds to a result being
produced every t units of time for the rest of the tasks [Parrot, 1987]. In a pipelined processor
architecture, subtasks are handled by different processing units, increasing the number of executed
operations per unit of time.

27

Array Processors Also known as vector processors, this architecture consists of a set of pro-
cessing units, each with its own memory, running synchronously in SIMD mode directed by a
single control unit. Vector processors exploit data-parallelism by executing the same instruction
simultaneously on large data stored in the form of linear arrays or vectors. An example of this
architecture is the family of Cray computers, which also uses pipelining in combination with
vector processors. This architecture is also implemented by Graphic Processing Units (GPUs),
which we describe in Section 2.8.3.

Symmetric Multiprocessing (SMP) In this architecture, a number of identical processors
are attached to a bus that connects them to a shared memory. Processors commonly execute in
MIMD mode and communicate with each other through the shared memory. In practice, there is
contention between processors for memory access, which limits the number of processors allowed
by this setup. This is the architecture implemented by multi-core processors (see Section 2.8.1).

Distributed Architectures In this type of architecture, multiple processors have each its own
local private memory and are connected to each other in a network. Processors commonly run in
MIMD mode and communication between processors takes place by message passing through the
communication network. Communication latency is usually high compared to the cost of local
computation and therefore algorithms for distributed architectures try to minimize the effects of
latency by interleaving communication and computation, a technique known as latency hiding.
Network latency depends on the physical distance between processors as well as on the network’s
topology (see Section 2.3.3).

Data Flow Architectures Data flow computers represent computations as graphs of depen-
dencies. In this architecture, the order of execution of instructions does not depend on the order
in which the programmer states their order but on the availability of data [Parrot, 1987]. If data
is available for several instructions at the same time, then these instructions can be executed in
parallel. Hence, if the architecture provides multiple processing elements and instructions and
data are matched, then a complete program can be executed in parallel.

The data flow architecture can be seen as a pipelined ring structure connecting a set of pro-
cessing units, a matching unit, and an instruction store. The data flows around the ring entering
the matching unit, which arranges the data into sets of matched operands. These operands obtain
the corresponding instruction from the instruction store, after which the processing elements are
activated. Any resulting data is then put again on the ring.

28

2.5 Beyond the PRAM

The PRAM model has been fruitful from a theoretical perspective, mainly because it meets the
high standards of descriptive simplicity set by the RAM. However, it has failed in accurately ex-
pressing the characteristics of real parallel architectures. Characteristics like the cost of non-local
memory references and bandwidth limits, relevant in practice, are not included in this model,
and hence the PRAM has proved to be unrealistic. Including these and other characteristics in
parallel models has been the goal of various attempts to refine and improve the PRAM model.
However, no agreement has been reached in terms of what characteristics should be modeled
and no single model has been broadly accepted as the most suitable. Part of the success of the
RAM model is due to the assignment of a unit cost to both memory and arithmetic operations,
which allows for the use of asymptotic analysis. This balance between memory access and arith-
metic operations is not present in parallel computation, and hence asymptotic analysis is less
effective [Maggs et al., 1995]. Given the broad use of asymptotic analysis in the RAM model,
the acceptance of a parallel model that considers constant factors to account for the difference
between memory and arithmetic operations has been rather difficult. A second drawback of the
PRAM lies in the difficulty of deriving algorithms that take full advantage of the presumed Θ(n)
processors.

Following the presentation in [Maggs et al., 1995], in this section we present some of the most
important models of parallel computation that were proposed to improve upon the PRAM and
more accurately model the reality of (pre-multi-core) parallel architectures.

2.5.1 Variants of the PRAM Model

In what follows, we describe models that enhance the PRAM model by including some of the
characteristics that are most relevant in practice.

Memory Access In many architectures it is not possible to have simultaneous access to the
same memory location by more than one processor, be it for reading or writing. In Section 2.3.1,
we described variants of the PRAM that restrict concurrent access to memory, restricting either
writing (CREW PRAM) or both reading and writing (EREW). Although these models preserve
the unit cost per memory access, they introduce the notion of serial access. Other models that
introduce contention criteria for simultaneous memory access are the Module Parallel Computer
(MPC) [Mehlhorn and Vishkin, 1984], which allows only one access to the same module of memory
at each step; the Local-memory PRAM (LPRAM) [Aggarwal et al., 1990], which is basically a
CREW PRAM where each processor is provided with unlimited amount of local memory; and
the QRQW PRAM [Gibbons et al., 1994], which introduces a cost of memory access proportional
to the number of processors attempting to access the same memory location at a given step.

29

Synchronization In the PRAM model, processors are synchronized by a global clock. In
reality, different instructions do not have the same time duration. For example, an addition often
is faster than a floating point multiplication or a global memory access [Gibbons, 1989]. Hence,
different processors execute instructions at different speeds, and the computation is asynchronous.
Asynchronous execution is considered in models like the APRAM [Cole and Zajicek, 1989], which
introduces the round complexity as a measure of the total number of ticks of a virtual clock that
can tick only after every processor has executed at least one instruction, thus reflecting the real
time of execution from start to termination of an algorithm when running on an asynchronous
machine.

The Asynchronous PRAM [Gibbons, 1989] is a PRAM in which processors run asynchronously,
executing their instructions independently of other processors. Besides the read, write, and
compute operations, it introduces synchronization steps. In a synchronization step between a set
S of processors, all processors in S wait for all the rest of the processors in S to arrive at a logical
point in the computation before proceeding. In this model a processor cannot read a memory
location written by another one before a synchronization step involving the two processors takes
place between these memory accesses. Thus, there are no race conditions. The cost model
considers the time of processors’ instructions plus the time for synchronization steps, with the
total running time being the maximum between the running times of the local programs of each
processor.

Another model that considers synchronization between intervals of asynchronous execution
is the XPRAM [Valiant, 1990b]. In this model, operations are executed in supersteps. In each
superstep, a processor executes a number of local operations and sends or receives messages to
implement global memory accesses. The cost of a superstep for a processor is the sum of the
number of its local operations and memory accesses, the latter multiplied by a constant overhead
factor. The runtime of a superstep is the maximum cost of that superstep over all p processors.
Synchronization takes place every L = log p global operations, with no synchronizations within
this period.

Latency In practice, the time delay of a non-local memory access is higher than that of a
local access or an arithmetic operation. In the context of memory accesses, the term latency
denotes the time between a memory access request and the retrieval of the content. The LPRAM
model [Aggarwal et al., 1990] suggests a fixed constant cost for a global memory access. The
BPRAM [Aggarwal et al., 1989], an elaboration of the LPRAM, considers a fix cost for the first
global memory access, and a variable cost for each additional access to the same memory block,
thus providing incentives for locality of reference and block transfer.

Bandwidth The bandwidth of a channel is the maximum rate at which data can be communi-
cated through it. Bandwidth is considered in the Distributed Random Access Machine (DRAM)

30

model [Leiserson and Maggs, 1988], in which memory accesses are implemented by routing mes-
sages through a network. The goal of the model is to reflect limited bandwidth in the commu-
nication network, thus providing incentives to limit access to remote data. Another model that
considers limited communication between processors is the PRAM(m) [Mansour et al., 1994],
which modifies the PRAM model by restricting the size of the global shared memory to m mem-
ory locations, with m being much smaller than the number of processors p (e.g., m =

√
n). The

model is a priority CRCW PRAM in which the number of messages that can be transmitted
between processors at any time is restricted by the size of the global memory.

2.5.2 Hierarchical Memory Models

Computers store data in various types of physical memory units, each of different size and access
time. A large amount of work has been devoted to include these characteristics in theoretical
models for the design and analysis of algorithms. These models seek a more refined reflection
of memory access costs by defining a memory hierarchy with increasing sizes and access costs at
each level. These models take into account data movements and provide incentives for exploiting
data movement in parallel in the form of block transfers and parallel transfers.

Early examples of sequential hierarchical models are the HMM [Aggarwal et al., 1987a] and
the BT [Aggarwal et al., 1987b] models. The HMM model considers k levels of memory, the
i-th level having size 2i and access time i+ 1, although other cost functions are considered. The
BT model extends the HMM, incorporating the possibility of moving large data in blocks. The
parallel versions of these models, P-HMM and P-BT, replicate the sequential models P times and
connect processors and memory through a network allowing parallel data movement.

Hierarchical memories play an important role in multi-core computation, as the way in which
parallel algorithms make use of on-chip private and shared caches can significantly influence their
overall performance. In fact, most models proposed for multi-cores focus on cache efficiency. We
will describe the most relevant models in detail when we review models for multi-core computation
in Section 2.8.2.

2.5.3 Bridging Models

As argued by Valiant [1990a], the success of the von Neumann model of sequential computation
relies on its ability to serve as an efficient bridge between software and hardware, as it enables
programs to run efficiently on real computers. He goes on to claim that in order for a general-
purpose parallel-computing to be widely used, an analogous unifying bridging model is required.

The bulk-synchronous parallel BSP model [Valiant, 1990a] is proposed as a viable candidate
for this role. It is defined as the combination of three attributes: a number of processors with

31

local memory, a router that delivers messages point-to-point between pairs of processors, and
facilities for periodic synchronization of all or a subset of the processors. Computation can be
synchronized at most every ` steps, which reflects the cost of a synchronization operation [Maggs
et al., 1995]. It also implies a communication latency because remote accesses must wait after a
synchronization operation in order for it to take effect. In addition, a parameter g is introduced as
the ratio of the number of local operations to the steps required for message transmission, which
enforces bandwidth limitations. This model does not charge a cost for injecting a message in the
network, thus the only communication overhead is the travel time of a message of the network.
However, the travel time can be hidden by performing local operations that do not require remote
memory access. In this sense, the BSP model provides incentives for latency hiding [Maggs et al.,
1995].

Another model proposed as a bridging model is the Candidate Type Architecture [Snyder,
1986]. This model considers two parameters: a fixed number of sequential von Neumann com-
puters and a constant communication cost. The computers execute asynchronously with a global
synchronization mechanism, and they are connected in a network of bounded degree. The two pa-
rameters and a two-level memory hierarchy provide incentives for locality of reference. However,
there is no incentive for latency hiding, bandwidth management, or synchronization avoidance,
since in this model synchronization is free and there are no bandwidth constrains.

The LogP model [Culler et al., 1993] is another example of a bridging model that uses the
BSP model as a starting point to develop a model that would more accurately reflect the existing
parallel machines at its time. The LogP is a model of distributed memory multiprocessors in
which processors communicate by point-to-point messages. Unlike the BSP model, the LogP
models asynchronous execution. It specifies four parameters: an upper bound L on communi-
cation latency, a communication overhead o defined as the time that a processor is engaged in
transmission or reception of a message, a gap g that specifies the minimum time between two
consecutive communications of a processor, and a number P of processor modules. In addition,
the network has a finite capacity. The structure of the network is not specified, although these
parameters model its performance characteristics. This model encourages coordination of work
assignment and data placement, so as to reduce communication bandwidth requirements and
the frequency of remote references. Also, the network capacity restriction encourages a careful
scheduling of computation, overlapping of computation with communication, and balanced com-
munication patterns between processors. The development of the LogP model is notable in that
it comprises the efforts by researches of backgrounds in theoretical, software, and hardware disci-
plines, suggesting that benefits of the model can be obtained in various areas, both in the design
and analysis of algorithms as well as in programming and performance [Maggs et al., 1995].

The LogGP [Alexandrov et al., 1995] model extends the LogP model to capture both short
and long messages. The model thus includes parallel machines that have special support for long
messages, which can provide a much higher bandwidth for long messages than for short messages.

32

2.6 Aspects of Parallel Programming

The goal of a programming language is to bridge the gap between the abstract description of
algorithms and computer architectures. Programming languages should provide a good balance
between simplicity and expressibility, at the same time retaining performance.

There exist several methods for programming parallel computers. Programming languages
and tools differ from each other mainly in the programming paradigm they follow. The most
common programming paradigms are message-passing, shared-memory, and data-parallel.

Message-Passing In the message-passing paradigm, processes have access to local memory and
communicate with one another by explicitly sending and receiving messages. Message passing
can be implemented either synchronously or asynchronously.

Shared-Memory In the shared-memory model, processes share a global common memory
with a global address space. The programmer specifies which parts of a program can be executed
in parallel by explicitly initiating and terminating threads. Communication between processes
takes places by writing and reading data in the shared memory. This requires some method
of synchronization in order to avoid inconsistencies or race conditions. There exists various
synchronization primitives that allow threads to be coordinated. Some of these are:

• Barrier: when simultaneous threads are running, a thread that reaches a barrier in the
code stops its execution and can only proceed after the rest of the threads have reached
this point.

• Semaphore: A semaphore [Dijkstra, 1974] is a data structure that restricts access to a
shared resource. A semaphore has a value that indicates how many units of the shared
resource are free. Semaphores can be accessed through two operations P and V . When
a thread wants to access the shared resource restricted by a semaphore s, it calls P (s) to
check if the counter associated with s is greater than zero, meaning that the resource is
available. If this is the case, the counter is decreased by one. Otherwise, the thread waits
until the counter gets incremented by another thread. The operation V is called when a
resource is to be made available again, and it increases the value of the counter. Both
operations P and V must be atomic and are usually implemented using compare-and-swap
or test-and-set hardware instructions, which allow conditional modification of variable in
an atomic fashion.

• Mutex: A mutex or lock is basically a semaphore with value 1. This is, there is only
one unit of the resource available at a given time. The word mutex is short for mutually

33

exclusive, which indicates the use of this primitive. A mutex is used when a thread reaches
a critical section of a program or when it needs to access a common shared variable. The
use of locks and semaphores can lead to a situation known as deadlock. A deadlock between
two processes occurs when each of them is waiting for the other one to release a resource, a
scenario that can be extended to many processes. Possible solutions to avoid this condition
include determining a partial order between resources so that requests are done in certain
order and having preemptive threads, i.e., threads can be interrupted by the scheduler.

Data-Parallel In the Data-Parallel paradigm, each process operates on different parts of the
same data. Hence, the approach is commonly a SIMD one. Logically, there is one thread of
control, which performs operations sequentially and in parallel.

It is important to note that the programming paradigm of a language does not necessarily
have to match the underlying architecture. For example, a shared-memory machine could be pro-
grammed with multiple threads sharing a common virtual address space or as different processes
running on distinct processors, each with its own local address space, using messages to exchange
data, which would actually be implemented as memory copies.

2.6.1 Scheduling Multi-Threaded Programs

Parallel programming in the shared-memory paradigm is most commonly implemented through
multi-threading. In such implementation parallelism is expressed through the creation of asyn-
chronous threads that can be executed in parallel, usually with synchronization points along the
execution. A crucial component of the execution of a multi-threaded program is the schedule,
which specifies the assignment of threads to processors and their relative order of execution. The
execution schedule of a multi-threaded program can be embedded in the program itself, it can
be implemented by an external scheduler, or it can be a combination of both. In Section 2.3.5
we defined the schedule of a computation represented by a directed acyclic graph (DAG). In
this section we describe two of the most relevant schedules for multi-threaded computation, work
stealing and parallel depth first, both of which assume the DAG model of computation.

The problem of computing the schedule of a DAG is offline if the scheduler has prior knowledge
of the entire graph and online otherwise. In the latter case, the scheduler learns the structure of
the DAG as the computation proceeds. For algorithms in which the structure of the computation
depends only on the size of the input, the DAG can be known in advance, and a schedule can be
computed offline. Matrix multiplication is an example of such algorithm. Quicksort, on the other
hand, is an example of an algorithm that requires dynamic scheduling, as the split sizes are not
known in advance [Blelloch et al., 1999]. In general, the DAG of the computation is not known
in advance, and schedulers must make decisions based on partial knowledge. Both work stealing

34

and parallel depth first admit online implementations for computations with certain structural
restrictions.

Work Stealing

Consider a multi-threaded computation in which each thread is divided in unit-time tasks. The
high level idea of work stealing [Burton and Sleep, 1981] is that a processor that runs out of
assigned tasks steals a task that is waiting to be executed by another processor. More specifically,
each processor has a double-ended queue (deque) in which it stores its tasks that are ready to
execute. Whenever the active task spawns another task, the new task is added to the bottom of
the deque. The active task enters a waiting state, and the processor starts executing the task
at the bottom of the queue. When a task is finished, if the deque is not empty, the processor
takes the next task from the bottom of the deque. Note that on one processor this leads to the
standard depth-first order of execution. In a parallel setting, if the deque of a processor is empty,
this processor (the thief) chooses another processor (the victim) and attempts to take the task at
the top of the victim’s deque. If the thief succeeds, it starts executing the stolen task. Otherwise
(the victim’s deque might be empty or a task might be stolen by another thief), it continues
trying to steal from other processors [Blumofe et al., 1996b]. A random work-stealing scheduler
is one in which the thieves choose victims randomly. In general, the choice of stealing strategy
may be of critical importance to the efficient performance of an algorithm. Thus, the term work
stealing subsumes a large family of schedules of varying performance.

Blumofe and Leiserson [1999] present a randomized work-stealing algorithm for multithreaded
computations. A multithreaded computation is modeled as a DAG of tasks connected by edges
of three types: continue edges specify the sequential order of tasks within a thread; spawn edges
connect a task that creates or spawns a new thread to the first task of the created thread, thus
forming an activation tree; and join edges connect a task to one that depends on it to exe-
cute. Since generic multithreaded computations with arbitrary dependencies can be impossible
to schedule efficiently [Blumofe and Leiserson, 1993], the focus of this randomized work-stealing
algorithm is on fully strict computations. A strict computation is one in which all join edges go
from a thread to an ancestor in the activation tree; a fully strict computation in one in which
all join edges go from a thread to its parent thread. Fully strict computations include backtrack
search computations, divide-and-conquer, as well as dataflow computations [Blumofe and Leis-
erson, 1999]. Blumofe and Leiserson show that randomized work stealing has good performance
guarantees in terms of time, space, and expected communication between processors. More specif-
ically, they show that for a fully strict computation represented by a DAG of depth d and total
work W , the expected running time of a multi-threaded execution with p processors using work
stealing, including scheduling overhead is Tp = O(W/p + d), which matches Lemma 2.2. Let S1
denote the minimum space required for a 1-processor execution of the computation. A parallel
execution with work stealing requires at most S1p space, thus achieving a linear expansion with

35

respect to the sequential computation. Finally, the expected number of total bytes communicated
between processors during execution is O(p dSmax), where Smax is the size of largest activation
frame of any thread4. This bound matches the minimum required communication for some fully
strict computations for any schedule [Blumofe and Leiserson, 1999]. This model of computation
and the randomized work-stealing algorithm are implemented in Cilk [Blumofe et al., 1996c], a
C-based runtime system for multithreaded programming.

In a parallel computation scheduled with work stealing, tasks that are close in the computa-
tional DAG tend to be executed in the same processor [Acar et al., 2002], thus contributing to the
data locality of the multithreaded computation. This property makes work stealing a schedule
with generally good private cache performance. We now describe works that prove bounds on
the private cache complexity of work stealing.

Blumofe et al. [1996b] analyze the performance of work stealing on fully strict computations
on a distributed shared-memory system with DAG consistency, as implemented by the BACKER
coherence algorithm [Blumofe et al., 1996a]. In a system with p processors, each with a private
cache of size C, the time complexity of a parallel computation scheduled with work stealing is
Tp(C) = O(T1(C)/p+mC d), where T1(C) is the sequential execution time including page faults,
m is the cost of a page fault, and d is the depth of the corresponding DAG. The cache complexity
Qp, measured in number of faults, is bounded by Q1(C) + O(pC d), where Q1 is the cache
complexity of a sequential execution. Thus, the parallel cache complexity of the computation is
only an additive term larger than the sequential one.

A similar result was shown by Acar et al. [2002] for nested-parallel computations on a shared
memory system. A nested parallel computation is one in which the corresponding DAG is a
series-parallel graph. This class of computation includes multi-threaded programs with parallel
loops and fork and joins, and most computations that can be expressed in Cilk and Nesl [Blelloch,
1996]. For such computations it is shown that work stealing achieves an expected cache complexity
Qp(C) ≤ Q1(C) +O(pC d dm/se), where m is time cost of a cache miss, and s the steal time. It
is shown as well that for general computations the parallel cache complexity can be much worse
than the sequential one. More specifically, there is a family of computations with sequential time
T1(n) = Θ(n) and cache complexity Q1(C) = 3C that when scheduled even on two processors
exhibit a cache complexity that is linear on the size of the input, i.e., Q2(C) = Θ(n). Moreover,
it is shown that the expected running time of a nested-parallel computation is O(T1(C)/p +
mdm/seCd+ (m+ s)d), where T1(C) is the sequential execution time including cache misses.

4In the model of multithreaded computation in [Blumofe and Leiserson, 1999], an activation frame is a block
of memory allocated for each thread for the storage of values on which it computes. The activation frame for a
thread remains allocated for the duration of the thread’s execution.

36

Parallel Depth First

Another schedule that exhibits provable time bounds and space usage is the PDF-schedule pro-
posed by Blelloch et al. [1999]. Using the DAG model of a computation in which a node is a
unit-time task, they define a parallel schedule that respects the priorities of tasks given by a
sequential schedule. The idea is that a parallel schedule that deviates little from a sequential
schedule can result in resource bounds that are close to those of the sequential schedule [Blelloch
et al., 1999].

Blelloch et al. define a p-schedule S to be based on a 1-schedule S1 if at each step i of S, the
earliest ki nodes that are ready in S1 are scheduled in S, for some ki ≤ p [Blelloch et al., 1999].
Intuitively, the p-schedule respects the priorities of the sequential schedule in the sense that at
any step in the p-schedule, ready nodes are scheduled respecting the order in which these nodes
are scheduled in S1. It could be the case, however, that nodes are scheduled in a different order
in S and S1. In general, a p-schedule that schedules more than one node in several steps will
schedule out-of-order with respect to most 1-schedules. For a given p-schedule, these nodes are
called premature [Blelloch et al., 1999]. Blelloch et al. show that for any p-schedule based on a
1-schedule, the number of premature nodes is at most (p− 1)(d− 1), where d is the depth of the
DAG.

The upper bound on the number of premature nodes can be used to show that the space used
by a p-schedule based on a 1-schedule is at most S1 + O(pd), where S1 is the maximum space
used by the sequential schedule and d is the depth of the DAG. Note that this improves the space
bound of S1p of work stealing whenever d ≤ S1, which is true for most parallel computations
since S1 is at least the size of the input and the depth of parallel algorithms is typically smaller
than the size of the input [Blelloch et al., 1999]. In addition, a greedy p-schedule based on a
1-schedule is uniquely defined and takes at most W/p+ d steps on a DAG of work W and depth
d (see Lemma 2.2).

Blelloch et al. define a PDF schedule as a p-schedule based on a depth-first schedule, and
describe an algorithm to implement this schedule for the class of nested-parallel languages while
keeping the space and time bounds. A nested-parallel computation of work W and depth d that
allocates at most O(W) space and uses sequential space S1 can be implemented in parallel with a
PDF schedule in O(W/p+ d) time and S1 +O(pd) space on a PRAM with prefix-sums [Blelloch,
1989] or in O(W/p+d log p) time and S1+O(pd log p) space on a PRAM without prefix-sums [Blel-
loch et al., 1999].

Subsequent work showed bounds for the PDF scheduler for computations with synchronization
variables [Blelloch et al., 1997]: a computation of work W , depth d, sequential space S1 and σ
synchronizations can be executed in parallel in S1+O(pd log pd) space and O(W/d+σ log(pd)/p+
d log(pd)) time on a p-processor CRCW PRAM with fetch-and-add primitive [Gottlieb et al.,
1983]. If the DAG is planar, then the bounds become S1 + O(pd log p) for space and O(W/d +
d log p) for time, independent of the number of synchronizations.

37

Parallel schedulers based on sequential schedulers also exhibit good performance on systems
with shared caches. Blelloch and Gibbons [2004] show that a computation on a cache of size C1

that incurs M1 cache misses under a sequential schedule S1 will incur no more than M1 misses
under a parallel schedule based on S1, provided that the shared cache has size Cp ≥ C1 +(p−1)d.
In other words, only an additive factor over the sequential cache size is required in order for the
parallel computation to incur no extra misses compared to the sequential computation. Moreover,
for greedy p-schedules the parallel computation takes W/p+ d steps, where W is the total work
of the sequential computation, and d is the depth of the computation under the p-schedule. In
this model, memory accesses are an action in the DAG, and they have different weights whether
their access is a cache hit or a cache miss. Thus, the weights of these actions depend on the
order in which they are executed. Hence, the depth of the DAG (defined as the path of maximum
weight) is schedule dependent. Note that, in general, p and d are small compared to cache sizes,
as the number of processors in shared cache architectures is small, and there are many parallel
algorithms with polylogarithmic depth, including the class NC [Blelloch and Gibbons, 2004].

The extra cache required for a parallel computation in order not to incur more faults than
the sequential one is asymptotically tight in the sense that there exist computations for which a
smaller cache is not enough. More specifically, Blelloch and Gibbons show that for any shared

cache size Cp ≤ C1+
(p−1)dp

3 , there exists a computational DAG G such that a depth-first schedule
S1 of G incurs M1 misses, and any greedy p-schedule based on S1 incurs more than M1 misses
with a cache size Cp, where dp is the depth of the DAG under the parallel schedule [Blelloch and
Gibbons, 2004].

In Section 2.8.2 we describe various models that have been proposed for multi-core computa-
tion. In many of these models algorithms and scheduler are separate entities. The work-stealing
and PDF schedulers that we describe in this section are two of the state-of-the-art schedulers
for private and shared cache systems, respectively, and thus many of the models and results for
multi-core computing are based on these schedulers.

2.7 Basic Parallel Algorithm Design Techniques

Various paradigms have been found to be useful for solving a wide range of problems in parallel.
In this section we describe some of these paradigms and the problems to which they can be
applied, following the presentation in [JáJá, 1992].

2.7.1 Balanced Trees

This strategy consists on building a balanced binary tree on the input elements of the problem.
An internal node usually holds information about the data stored at the leaves of the subtree

38

rooted at this node. The computation is carried out by traversing the tree forward and backward
to and from the root.

Consider the prefix-sums problem. Given a sequence of elements {xi}ni=1 and a binary asso-
ciative operation ∗, we wish to compute the n partial sums si = x1 ∗ . . . ∗ xi, for 1 ≤ i ≤ n.
Even though at first glance this problem seems inherently sequential, a fast parallel algorithm
can be obtained using a balanced binary tree. During the forward traversal of the tree, each node
represents the application of ∗ to its two children. Thus, after this traversal, each node v stores
the sum of the elements stored at the leaves of the subtree rooted at v. Then, in the backward
traversal we compute the prefix sums corresponding to the nodes at each level of the tree, so that
in the last step the prefix sums corresponding to the input elements are computed. An algorithm
using this idea takes time O(log n) with a total of W (n) = O(n) operations, which is work-time
optimal in the EREW and CREW PRAM [JáJá, 1992].

2.7.2 Pointer Jumping

This technique is useful in processing data stored in linked lists or rooted-directed trees. A root-
directed tree is a tree where there is a directed edge from every node (but the root) to its parent.
Consider a forest F of rooted-directed trees and the problem of finding for each node, the root
of its tree. F is specified in an array P such that P (i) = j if j is the parent of i in a tree in F
(P (i) is set to i if i is a root). Initially, the successor S(i) of each node is set to its parent P (i).
The technique of pointer jumping consists of repeatedly updating the successor of a node by the
successor’s successor until the root of the tree is reached. An algorithm that uses this technique
can find the roots of all nodes in time O(log h) and work W (n) = O(n log h), where h is the
maximum height of any tree in the forest, and n is the number of total nodes. Since a linear-time
sequential algorithm exists for this problem, this algorithm is not work-optimal (unless h is a
constant).

2.7.3 Pipelining

Pipelining consists of dividing tasks in several subtasks t1, . . . , tk such that once t1 is completed,
we can begin to process the sequence of subtasks of a second task concurrently and at the same
rate as the previous task. This technique can be used, for example, for inserting a sequence of
k elements into a 2-3 tree by inserting each element before all the operations corresponding to
the insertion of the previous element are finished, resulting in a O(log n) time algorithm with
O(k log n) operations [JáJá, 1992]. This technique has also been used to obtain optimal speedups
on priority queue algorithms [Munro and Robertson, 1979].

39

2.7.4 Divide and Conquer

This technique consists of partitioning the input in parts of approximately equal sizes, recur-
sively solving the subproblems for each part, and combining the results to obtain the solution
of the original problem. The idea is to solve the subproblems concurrently. The effectiveness
of the strategy depends on how efficiently we can partition the input and combine the results
to subproblems. In some cases, a straightforward application of this technique does not lead to
optimal time algorithms, mainly because of the difficulty of speeding up the merging phase. One
alternative to speeding up the merging phase is to use an nα (0 < α < 1) divide-and-conquer
strategy, which partitions the input in nα parts rather than into a small number of them. A
second alternative is to improve the merging phase by using pipelining, in a combined strategy
known as cascading divide-and-conquer [JáJá, 1992].

In Chapter 3 we analyze the divide-and-conquer strategy in the LoPRAM model, showing
that for a large class of problems we can obtain optimal speedup even in the cases in which the
division and merging phases are not parallelized.

2.7.5 Partitioning

This strategy is similar to divide-and-conquer in that the input is decomposed in various parts
in order to solve subproblems concurrently. However, while in the divide-and-conquer strategy
the main work lies in the merging phase, the partitioning technique does most of the work in
dividing the input in subproblems so that the results can be easily combined later. For example,
a work-optimal algorithm for merging two sequences of length n can be obtained by first choosing
approximately n/ log n elements of each A and B in order to partition them into blocks of almost
equal length and then concurrently merging each of pair of blocks of length O(log n) with an
optimal sequential algorithm. This algorithm runs in O(log n) time with a total of O(n) operations
on the CREW PRAM model [JáJá, 1992].

2.7.6 Accelerated Cascading

This technique consists of combining an optimal but slow algorithm and a non-optimal but fast
algorithm for the same problem. For example, such technique can be used to obtain an optimal
parallel algorithm for the problem of computing the maximum of a set of distinct elements. A
balanced tree can be used to compute the maximum in O(log n) time using O(n) operations,
which is optimal in terms of work, but it can be done faster. Using a doubly logarithmic-depth
tree computation, the maximum of the set can be computed in O(log log n) time on the CRCW
PRAM but with a total of O(n log log n) operations, which makes it non-optimal in terms of work.
Accelerated cascading can be used to obtain a fast work-optimal algorithm by first starting with

40

the optimal balanced tree algorithm until the size of the problem reaches a certain threshold and
then shifting to the fast doubly-logarithmic tree algorithm. The result is an O(log log n) time
and O(n) work algorithm on the CRCW PRAM, which is work-time-optimal for this model when
O(n) processors are available [JáJá, 1992].

2.7.7 Symmetry Breaking

This technique can be used in problems where elements in the problem are similar and a mecha-
nism should be used to partition the elements into classes that can be processed in parallel. For
example, consider the problem of k-coloring a directed cycle. The main difficulty in solving this
problem in parallel lies in the apparent symmetry of the input. In order to assign different colors
to different vertices, these have to be somehow distinguished from one another. However, all
vertices seem equal. In order to break the symmetry, we can consider the binary representation
of colors. Initially, a different color can be assigned to each vertex, and the number of colors can
be reduced by a simple procedure that ensures that the colors of neighboring vertices are different
by taking advantage of their binary representation. Symmetry breaking can also be implemented
using randomization [JáJá, 1992].

2.8 The Multi-Core Era

The steady improvement in performance in the form of higher clock rates enjoyed by the mi-
croprocessor industry for almost four decades came to an abrupt halt in the early 2000’s. In
light of the little progress in Instruction Level Parallelism (ILP), the significant disparity between
improvements in processor clock rate and off-chip memory latency, and more importantly the
difficulties related to heat and power dissipation, leading processor manufacturers shifted away
from seeking performance increases through the improvement of scalar processing and turned to
parallelism, realized through the design of chips containing various relatively simpler comput-
ing units or cores. Compared to single core processors, multi-core processors can run at lower
frequencies utilizing the power normally given to a single core processor, slowing down serial
processing [Gustafson, 2011] but leading to an increase in aggregate performance [Ramanathan,
2006] 5.

Is the shift to multi-cores the end of Moore’s law? Not quite. The number of transistors that
we are able to put on a chip still doubles every two years. While previously the more available
transistors were devoted to increase the clock rate of a single core, now they are used to include

5Some multi-core designs, however, allow to dynamically increase the operating frequency of cores to improve
performance, subject to the number of active cores and to limits on the processor power consumption and temper-
ature [IntelTurboBoost]. This feature could potentially be used to improve the performance of serial computation.

41

Memory

Shared Cache

Core

Private
cache(s)

Core

Private
cache(s)

Core

Private
cache(s)

Core

Private
cache(s)

I/O System

Figure 2.7: A schematic representation of a multi-core processor. Shared caches might be shared by all
or some cores. Figure adapted from [Hennessy and Patterson, 2011, Chapter 5].

more cores in one chip. In this sense, a newly revised version of Moore’s law stated that the
number of cores on a chip would double every two years.

2.8.1 Multi-Core Architectures

In a multi-core chip, each core consists of registers, arithmetic and floating point units, and
control logic [Riesen and Maccabe, 2011]. Cores in a multi-core processor share some resources
such as second- or third-level caches, memory, and I/O buses [Hennessy and Patterson, 2007].
While designs vary across manufacturers and models and continue to evolve, typically each core
has a private level one cache, and higher levels of cache are shared by either all or subsets of
all cores. The centralized shared memory design of multi-cores with uniform access time from
any core places them under the category of Symmetric Multi-Processors (SMP). Architectures
with this feature are also known as uniform memory access (UMA) [Hennessy and Patterson,
2007]. This design can be scaled to a few dozen processors [Hennessy and Patterson, 2007], as
with a larger number of processors it becomes hard to keep the uniform latency from all cores.
Figure 2.7 depicts a schematic representation of a multi-core processor with a centralized shared
memory.

Multi-core architectures belong to the category of MIMD architectures, as each core can
execute different programs on different data. They allow the simultaneous execution of multiple
processes with separate address spaces as well as of multiple threads sharing the same address

42

space. In a shared memory multi-core processor, communication between threads occurs through
the shared address space via load and store operations [Hennessy and Patterson, 2007]. Data
that is accessible by multiple cores is denoted as shared data. When this type of data is cached,
its value might be replicated across the private caches of various cores, which reduces access
latency as well as memory bandwidth and contention. However, replicating data introduces the
problem of maintaining a consistent view of data by different cores, a problem known as cache
coherence [Hennessy and Patterson, 2007]. Solutions to this problem, known as cache coherence
protocols, are based on keeping track of the state of shared cache blocks. Depending on the
technique used, protocols belong to one of two classes: directory based, in which the sharing
status of a block is kept in one centralized directory, and snooping, in which cache controllers
of each core monitor some broadcast medium connecting caches (a bus or switch) to determine
if they currently have a copy of a block that is being requested by another core [Hennessy and
Patterson, 2007].

As the number of cores and their speed grow, the single bus and single physical memory design
of multi-cores cannot keep up with the increased memory and coherence traffic. Designers have
thus used multiple buses and interconnection networks as well as multiple physical memory banks,
hence increasing memory bandwidth while at the same time retaining the uniform access time to
memory [Hennessy and Patterson, 2007]. In these designs, cores might be grouped in tiles, with
tiles communicating through the interconnection network, sometimes referred to as Network on
Chip (NoC). Moreover, cache coherency might be supported through software protocols rather
than by hardware (see, e.g. [Howard et al., 2010]). Hence, some newer multi-core processors
can also be considered as distributed memory systems or a combination of the latter and an
SMP [Riesen and Maccabe, 2011].

2.8.2 Models for Multi-Core Computation

Multi-cores have become the standard processor architecture with two, four, and eight core pro-
cessors generally available for personal computing, with the latest coprocessor releases for servers
featuring 60 x86-compatible cores [IntelXeonPhi]. As parallel computing pervades general purpose
computing, the software development community must adapt to the new scenario, and parallel
applications should become commonplace. Implementing parallel programs requires developing
parallel algorithms, whose design and analysis require, in turn, a suitable model of computa-
tion. Given the variety of designs and the constant evolution of multi-core architectures, this is
a challenging task. As in any model, some characteristics of the architecture are simplified and
others are emphasized. We now review some of the models that have been proposed recently for
multi-core computing. Most of these focus not only on computational time but also on the cache
complexity of algorithms, either of private caches, shared caches, or both.

43

Memory

Core Core Core Core

B

M/B

Cache Cache Cache Cache

Figure 2.8: The Parallel External Memory model. Figure adapted from [Arge et al., 2008].

Private Cache Models and Applications

Various algorithms have been designed for multi-cores focusing on private cache performance
under different models. These models have in common that they seek algorithms that minimize
the amount of data transferred between higher levels of memory and the private caches of each
core. They differ in the assumptions with respect to algorithms having knowledge of the param-
eters of the underlying architecture (cache and line sizes), and with respect to the mechanism
used to manage data transfer to and from caches (explicitly by the algorithm or by the system’s
scheduler). We now describe some of these models together with the time and cache complexity
bounds of the most important examples of algorithms designed in each model.

Parallel External Memory Extending the External Memory model of Aggarwal and Vitter
[1988] to a multiprocessor setting, the Parallel External Memory model (PEM) by Arge et al.
[2008] models a system with p processors and a two-level memory hierarchy consisting of a large
shared memory and private caches for each core. Each cache is used exclusively by the corre-
sponding processor, with all communication between processors taking place through the shared
memory. All computation by a processor must be on data residing in its private cache. Each
cache has size M , partitioned in blocks of size B. Data is transferred from and to main memory
in blocks of size B. Figure 2.8 depicts the PEM model. As in the PRAM model, the rules with
respect to simultaneous access to shared memory define the CRCW, CREW, and EREW versions
of the model (see Section 2.3.1).

The PEM model combines the classic PRAM model with the external memory model. As in
the PRAM, processors are assumed to be synchronous, and PRAM algorithms can be directly

44

Problem I/O complexity Assumptions

1 -Sorting Θ
(
n
pB log n

B

n
B

)
p ≤ n

B2

2

-Weighted list ranking

Θ(sortp(n))
p ≤ n

B2 logB log(t) n
-Tree contraction
-Expression tree evaluation
-Euler tour p ≤ n

B2

3 -Lowest common ancestor Θ
(
1 + q

nsortp(n)
)

p ≤ n
B2 logB log(t) n

4
-Minimum spanning tree

Θ
(

sortp(|V |) + sortp(|E|) log
(
|V |
pB

))
p ≤ |V |+|E|

B2 logB log(t) n
-Connected and biconnected
components
-Ear decomposition

5 -Line segment intersection
reporting

Θ
(

sortp(n) + k
pB

)
p ≤ min{ n

B2 ,
n

B logn}

Table 2.2: I/O complexity of various problems in the Parallel External Memory model [Arge et al., 2008,
2010; Ajwani et al., 2011]. In the above, n is the input size, p is the number of processors, B is the cache
block size, and sortp(n) = Θ((n/pB) logn/B(n/B)) is the I/O complexity of sorting n elements in the PEM

model with p processors; log(t) n denotes the composition of t log functions, where t is a constant that
arises in a subroutine of the algorithm for weighted list ranking. For the lowest common ancestor problem
q denotes the number of queries. V and E are the set of vertices and edges, respectively, of the input graph
for the minimum spanning tree, connected and biconnected components, and ear decomposition problems.
k denotes the output size in the line segment intersection reporting problem. All results are in the CREW
PEM model and assume that M = BO(1).

simulated in the PEM model. However, the performance measure of the PEM model, known as
the I/O complexity, is not the number of parallel operations but the number of parallel block
transfers between memory and private caches. Thus, direct simulations of PRAM algorithms
might result in inefficient implementations in the PEM model [Arge et al., 2008].

Algorithms for several fundamental problems have been designed in this model. Table 2.2
shows a summary of existing PEM algorithms together with their I/O complexity and required
assumptions on the number of processors. The PEM algorithms for sorting and line segment
intersection reporting are optimal [Arge et al., 2008; Ajwani et al., 2011]. The algorithms on
lists, trees, and graphs (columns 2-4 in Table 2.2) achieve an optimal p-fold speedup over their
external memory model counterparts [Arge et al., 2010].

Ideal Distributed Cache The Parallel External Model [Arge et al., 2008] described above
features algorithms that are responsible for their schedule on multiple processors. Another ap-
proach to the design of parallel algorithms for multi-cores is to rely on an external scheduler that

45

is not controlled by the algorithm itself. We have described such approaches for a private cache
model with work stealing and for a shared cache model with the PDF-scheduler (see Section 2.6.1)
Moreover, algorithms in the PEM model know and explicitly use parameters such as the sizes of
caches and blocks. Other models consider algorithms that are separated from the scheduler and
that are oblivious to some or all parameters of the underlying architecture. One of these models
is the ideal distributed cache model for parallel machines by Frigo and Strumpen [2006]. This
model extends the ideal (sequential) cache model by Frigo et al. [1999], which introduced the
concept of cache oblivious algorithms.

The ideal distributed cache model consists of p asynchronous processors, each with a private
ideal cache, connected to a large shared memory. An ideal cache is fully associative and im-
plements the optimal offline cache replacement policy (see Section 6.2). Each cache has size Z
words, and it is partitioned in lines of L words, which are the units of transfer between memory
and caches. A processor can only access data in its private cache, and it incurs a cache miss when
it requires access to a word not in cache. The cache complexity of a computation is defined as
the number of cache misses starting and ending with an empty cache [Frigo and Strumpen, 2006].
This model assumes that caches are non-interfering, and thus the number of cache misses can
be analyzed independently for each processor. How realistic this assumption is depends on how
cache consistency is maintained. For example, caches are non-interfering in the dag-consistent
model of Blumofe et al. [1996a], in which consistency is implemented by the BACKER algorithm
(see Section 2.6.1). Caches are also non-interfering in the private cache model of Acar et al. [2002]
if the computation is race-free [Frigo and Strumpen, 2006].

Frigo and Strumpen derive a bound on the cache complexity of a parallel computation in this
model in terms of its sequential cache complexity. A trace of a multithreaded computation is a
sequence of the instructions of the computation in an order that is consistent with the partial
order defined by the parallel computation. A segment of a trace is defined to be a subsequence of
consecutive instructions in the trace. A scheduler is assumed to partition a trace into segments
and assign segments to processors respecting the data dependencies of the parallel computation.
For a scheduler that partitions a trace M of a computation into S segments, Frigo and Strumpen
show that the total number of cache misses of a computation in the ideal distributed cache model
satisfies Qp(M) ≤ S · f(|M |/S), where f is a concave function such that Q(A) ≤ f(|A|) for all
segments A of M .

This result can be combined with the cache complexity bounds of Acar et al. [2002] (see
Section 2.6.1) to derive bounds on the cache complexity of Cilk programs with randomized work
stealing. Frigo and Strumpen show that for a program of work W and depth d with memory
consistency maintained by the BACKER protocol [Blumofe et al., 1996a] Qp = O(S ·f(W/S)) and
S = O(pd) with high probability, where, again, f is a concave function such that Q(A) ≤ f(|A|)
holds for all segments A.

Frigo and Strumpen apply these results to Cilk programs for matrix multiplication and one-

46

dimensional stencil computations, obtaining probabilistic upper bounds on the cache complexity
of multithreaded algorithms for these problems. For example, the recursive Cilk program for
multiplying two n×nmatrices in [Blumofe et al., 1996a] has workW = O(n3) and depth d = O(n).
Deriving a concave function f from the cache complexity of sequential matrix multiplication
algorithms [Frigo et al., 1999], the cache complexity Qp of the parallel program is Qp(n,Z, L) =
O(n3/(L

√
Z) + S1/3n2/L + S), where S = O(pn) with high probability [Frigo and Strumpen,

2006]. Note that this bound strictly subsumes the bounds of Qp(n,Z) = O(n3/(
√
Z) + Zpn) of

Blumofe et al. [1996a], though it is not optimal [Frigo and Strumpen, 2006].

Addressing False Sharing False sharing is a consequence of maintaining cache coherency
among multiple caches belonging to different processors. It occurs when two or more processors
access different portions of a common block (thus each has a copy of the block in its private
cache), and at least one of them writes into some location of the block. The cache coherency
protocol invalidates the block for the rest of the processors, which have to fetch an updated copy
the next time they access it [Cole and Ramachandran, 2012]. False sharing can occur due to a
partition of data that does not match block boundaries or to cores working on small tasks and
accessing the same cache block [Cole and Ramachandran, 2012]. Note that false sharing refers to
the case when two or more cores access the same block in cache, but not the same data. Hence,
misses due to false sharing would not occur if block updates did not propagate to other caches.

Cole and Ramachandran [2012] study the effect of false sharing on multi-core computations
on private caches and develop algorithms (some of which are obtained by adapting existing
algorithms) with low false sharing costs for several problems, such as scans, matrix transposition,
matrix multiplication, and fast Fourier transform (FFT), among others. These algorithms are
Hierarchical Balanced Parallel (HBP) computations (introduced in [Cole and Ramachandran,
2010]) that are block-resilient, which establishes that any shared block is accessed O(B) times
and hence incurs O(B) misses due to false sharing (where B is the number of words in a cache
block). Algorithms are oblivious to the parameters of the architecture, and achieve a relatively
low cost due to false sharing misses under most schedulers [Cole and Ramachandran, 2012]. The
cost due to false sharing is measured in terms of block delays, which is measured in units of cache
misses. The block delay incurred by a block β is defined as the number of times β is moved from
one cache to another due to false sharing misses during a time interval, and it is an upper bound
on the delay incurred by a task due to false sharing misses when accessing the block β [Cole and
Ramachandran, 2012]. Specific bounds are shown under a centralized scheduler SC [Chowdhury
and Ramachandran, 2010] and randomized work stealing [Cole and Ramachandran, 2011].

For example, for matrix multiplication of two n × n matrices with the standard recursive
method (recursively multiplying eight n/2× n/2 matrices and performing four matrix additions
to combine the results) and with Strassen’s algorithm [Strassen, 1969] under the SC scheduler
on p processors, the block delay cost is O(Bp log p), which is O(Q(n,M,B)) (the respective

47

sequential cache complexity) if n2 = Ω(B4/λM1/λ(p log p)2/λ), where λ = 3 for standard matrix
multiplication and λ = log2 7 for Strassen’s algorithm [Cole and Ramachandran, 2012].

Shared Cache Models and Applications

In Section 2.6.1 we described the PDF-schedule, a parallel schedule of tasks in a DAG based
on a depth-first sequential schedule. We mentioned the results by Blelloch and Gibbons which
prove bounds on the shared cache complexity of parallel computations when executed with a
PDF-schedule [Blelloch and Gibbons, 2004]. These results apply to the case of machines support-
ing simultaneous multi-threading (SMT), to shared-memory multi-processors (regarding main
memory as a shared cache), as well as to multi-cores [Blelloch and Gibbons, 2004].

Recall from Section 2.6.1 that for a nested-parallel computation with sequential cache com-
plexity Q(n,M,B), where n is the size of the input, M the size of the cache, and B the size
of a line in the cache, the shared cache complexity of a parallel execution with the PDF-
scheduler on p processors is at most the sequential one, provided that the shared cache is an
additive factor pBd larger than M , where d is the depth of the computation. In other words,
Qp(n,M + pBd,B) ≤ Q(n,M,B).

Low Depth Cache Oblivious Algorithms The properties of the PDF-scheduler for shared
caches has inspired the design of algorithms for multi-cores that exhibit good shared cache per-
formance. The overhead above in the cache size depends both on the depth of the computation
and on the number of processors. In the case of multi-cores, the number of processors is relatively
small. Based on these observations, Blelloch et al. [2010] propose an approach to obtain cache-
oblivious parallel algorithms with good parallel cache complexity by designing nested-parallel
algorithms with good sequential cache complexity and low depth.

The same considerations apply to systems with private caches, observing that for a shared
memory machine with private caches using a work-stealing scheduler Qp(n,M,B) < Q(n,M,B)+
O(pMd/B) with high probability [Acar et al., 2002]. In this case the overhead in cache complexity
is also proportional to the depth of the computation.

While there exist many sequential cache-oblivious algorithms with good cache complexity,
several of these do not show natural parallelizations with low depth [Blelloch et al., 2010]. Blelloch
et al. describe cache-oblivious algorithms with optimal work, polylogarithmic depth, and cache
complexities matching those of the best sequential algorithms for a set of important problems.
These results are based on a new sorting algorithm with O(log2 n) depth and optimal cache
complexity O((n/B) logM n). Table 2.3 summarizes the bounds obtained for various problems.

Blelloch et al. extend the cache complexity bounds based on sequential cache complexities
to hierarchies of caches. They consider a Parallel Multi-level Distributed Hierarchy (PMDH), in

48

Problem Depth Cache complexity

1 -Sorting
O(log2 n)

O
(
n
B logM n

)
O(log1.5 n) (randomized, w.h.p.)

2
-List ranking

O(Dsort(n) log n) O(Qsort(n))
-Euler tour on trees

3 -Tree contraction O(Dsort(n) log2 n) O(Qsort(n))
4 -Lowest common ancestor O(Dsort(n) log n) O(dk/neQsort(n))

5
-Minimum spanning forest

O(Dsort(n) log2 n) O
(
Qsort(|E|) log

(
|V |√
M

))
-Connected components

6 -Sparse matrix vector multiply O(log2 n) O
(
m
B + n

M1−ε

)

Table 2.3: Depth and sequential cache complexity of algorithms for various problems. In the above, n
is the input size, M is the cache size, B is the cache line size, Dsort(n) and Qsort(n) are the depth and
cache complexity of the sorting algorithm in row 1. For the lowest common ancestor problem k denotes
the number of queries. V and E are the set of vertices and edges, respectively, of the input graph for
the minimum spanning forest and connected components problems. For the sparse matrix vector multiply
problem, m is the number of nonzero entries in the matrix, which has nε separators. All bounds assume
M = Ω(B2).

which each processor has a private multi-level cache hierarchy, as well a Parallel Multi-level Shared
Hierarchy (PMSH), where all processors share a multi-level cache hierarchy [Blelloch et al., 2010].
In both models, all computation occurs on data in the first level cache. Caches are inclusive, fully
associative, and implement the optimal replacement policy. In addition, for PMDH, as in the
two-level cache hierarchy model of Frigo and Strumpen [2006], caches are assumed to be non-
interfering, with a consistency model that is a variant of the DAG consistency cache model of
Blumofe et al. [1996a].

In the PMDH model, Blelloch et al. show that for a nested-parallel computation of depth
d scheduled with a work-stealing scheduler the cache complexity at each level of the hierarchy
satisfies Qp(n,Mi, Bi) ≤ Q(n,Mi, Bi) +O(pMid/Bi) with probability 1− δ, where Mi and Bi are
the cache and line sizes at level i, respectively, Q(n,Mi, Bi) is the sequential cache complexity
of the computation at each level, and δ is an arbitrarily small positive constant [Blelloch et al.,
2010]. Similarly, when scheduled on a PMSH using a PDF scheduler, the cache at each level i
incurs fewer than Q(p(Mi−Bid′), Bi), and the computation takes at most W ′/p+d′ steps, where
d′ and W ′ are, respectively, the depth and work of the computation including the latencies of
data misses [Blelloch et al., 2010].

Private and Shared Caches

Blelloch et al. [2008] propose a model for multi-cores with both private and shared caches, re-
flecting the reality that multi-core chips feature small private caches per core and a large shared

49

Memory

Core Core Core Core

B

C1/B

B

C2/B

L1 L1 L1 L1

L2

Figure 2.9: The multi-core cache model of Blelloch et al. Figure adapted from [Blelloch et al., 2008].

cache. We now describe this model as well as the results that have been obtained in it for
divide-and-conquer and dynamic programming algorithms.

Scheduling Divide-and-Conquer Algorithms in Multi-Cores The multi-core model de-
scribed by Blelloch et al. [2008] consists of p cores, each with a private L1 cache of size C1, and
with all cores sharing an L2 cache of size C2 ≥ p · C1. All cores share an unbounded memory,
whose data is organized in blocks of size B (see Figure 2.9). Whenever a core wants to access a
block from memory, it must first bring it to its L1 cache if it is not already there. If the access
is a write access and the block is in the L1 cache of other cores, these copies are invalidated,
which is enforced automatically by hardware [Blelloch et al., 2008]. Results in this model assume
a least-recently-used (LRU) cache eviction policy (see Section 6.2).

An important challenge in this model is to design an online scheduler with good performance
both in terms of private and shared caches, which sometimes have competing demands [Blelloch
et al., 2008]. For good private cache performance, it is desirable to have processors working on
disjoint data, whereas for good shared cache performance, processors should be working on the
same data simultaneously. The online scheduler of this multi-core cache model is a Controlled-
PDF scheduler, which presents good cache performance for the class of hierarchical divide-and-
conquer algorithms: algorithms in which the divide and combine steps can in turn be solved by
divide-and-conquer algorithms. Examples of algorithms in this class are mergesort with divide-
and-conquer merge [Akl and Santoro, 1987], recursive matrix addition, cache-oblivious matrix
multiplication [Frigo et al., 1999], and Strassen’s matrix multiplication [Strassen, 1969], among
others.

A Controlled-PDF schedule divides a computational DAG G in L1- and L2-supernodes. L2-
supernodes group nodes in G whose space fits in L2 cache, and L1-supernodes within each L2-

50

supernode correspond to computation that fits in L1 cache. The scheduler then considers each
L2-supernode at a time in a depth-first order and schedules the L1-supernodes within each L2-
supernodes in parallel according to a PDF-schedule (see Section 2.6.1). Each L1-supernode is
scheduled to execute entirely in one core, and only once all L1-supernodes within an L2-supernode
have finished, the scheduler continues with the next L2-supernode (see Figure 2.10).

In order for the scheduler to determine the sizes of supernodes for a particular algorithm,
the user must specify a space function S(n) equal to the space required to solve the problem
sequentially. The space requirements for a hierarchical divide-and-conquer algorithm can be
determined by solving a recurrence that combines the spaces used by the algorithms involved, and
assuming a depth-first execution. For example, for the recursive addition of two n× n matrices,
S(n) = S(n/2) + O(n2), and thus S(n) = O(n2). For Strassen’s matrix multiplication, which
uses the recursive matrix addition, the space S(n) satisfies the same recurrence and therefore
S(n) = O(n2). In addition to the space usage, the user must also specify the ratio r between
the parallel and sequential space usage of the algorithm. In order to achieve the desired cache
bounds of a parallel execution, the model requires this ratio to be constant. This requirement
might not be satisfied by a direct breadth-first parallelization of some algorithms. For example,

the direct parallelization of Strassen’s matrix multiplication requires space p
1− 2

log2 7n2, and hence
the space grows with the number of processors. Therefore, a modified version of the hierarchical
algorithm must be devised [Blelloch et al., 2008].

Given a space function S(n) and ratio r, the scheduler chooses n1 = S−1(C1) and n2 =
S−1

(
α
r S(n1)

)
, where α is such that C2 ≥ α ·C1. Then, n1 and n2 are the input sizes of recursive

calls that form L1- and L2-supernodes, respectively. The scheduler is aware of the particular
cache sizes of the underlying system, but the algorithm need not know about them.

When scheduled with a Controlled-PDF schedule, a hierarchical divide-and-conquer algorithm
will incur a number of cache misses in both L1 and L2 caches that is within a constant factor of
the number of misses of a sequential execution [Blelloch et al., 2008].

Regarding the parallel time, note that the Controlled-PDF scheduler is not a greedy one, as
processors may be idle while waiting for the completion of L2-supernodes, which is due to the
fact that each L1-supernode is executed sequentially in one processor. This is a consequence of
the scheduler favouring cache performance over parallelism. In order to achieve a p-fold speedup
in the parallel time, some assumptions have to be made with respect to the relation between
cache sizes. In turn, these assumptions depend on the inherent parallelism of the algorithm, and
in particular on the inherent parallelism of L2-supernodes, as we explain now.

The Controlled-PDF executes an L2-supernode in time Tp(n2) = T (n2)/p+T∞(n2, n1), where
T (n) is the sequential time of the algorithm and T∞(n2, n1) is the inherent parallelism of the L2-
supernode under the Controlled-PDF schedule (i.e., the execution time with an infinite number
of processors). Then, the schedule will achieve optimal speedup if T (n2)/p = Ω(T∞(n2, n1)).
Parallelism is achieved in the portion of the algorithm that reduces the input from n2 to n1 through

51

𝐿2-supernodes, 1-DF schedule

𝐿1-supernodes, PDF schedule

I

II

III

1 2 3 4 5

Figure 2.10: Example of a controlled-PDF schedule [Blelloch et al., 2008]. L2-supernodes are scheduled
sequentially in depth-first order and L1-supernodes are scheduled with a PDF-scheduler. Roman and
Arabic numerals indicate, respectively, a possible order of execution of L2-supernodes and L1-supernodes
within an L2-supernode.

recursive calls. Since n2 depends on the parameter α, the ability to obtain optimal speedups will
depend on whether α is large enough to satisfy the above condition. The model requires α ≥ p,
but a larger α might be required to satisfy the condition. How large the value of α should be
depends on the parallelism of the algorithm [Blelloch et al., 2008]. For example, for recursive
matrix addition, T (n) = n2, n1 =

√
C1, T∞(n2, n1) = C1 +logα, and α ≥ p. For recursive merge,

T (n) = n, n1 = C1, T∞(n2, n1) = C1 + logα · log(αC1), and α ≥ p
(

1 + logα·log(αC1)
C1

)
[Blelloch

et al., 2008].

Dynamic Programming and Cache Performance Chowdhury and Ramachandran [2008]
present cache-efficient dynamic programming algorithms for the multi-core model described in
[Blelloch et al., 2008] as well as in models with private caches only [Frigo and Strumpen, 2006] and
shared caches only [Blelloch and Gibbons, 2004]. They develop algorithms for three general classes
of dynamic programming (DP) problems: Local Dependency DP (LDDP) (e.g., longest common
subsequence, pairwise sequence alignment with affine gap cost), Gaussian Elimination Paradigm
(GEP) (e.g., all-pairs shortest-paths, LU decomposition), and Parenthesis problems (e.g., matrix
chain multiplication). A combination of LDDP and GEP yields results for a problem in a fourth
category they call RNA secondary structure prediction with simple pseudo-knots.

The general strategy to solve dynamic programming problems used by Chowdhury and Ra-
machandran is to divide DP tables in tiles and recursively solve the problem in each tile. For
each class of DP problems, and for each cache model, they describe a tiling sequence for each
level of the recursion and give a parallel schedule that yields good performance in terms of both
parallel time and cache efficiency [Chowdhury and Ramachandran, 2008].

52

For example, consider the longest common subsequence (LCS) problem:

Definition 2.11 (Longest Common Subsequence (LCS)) Let S = s1s2 . . . sn be a string.
A subsequence of S is a string S′ = si1si2 . . . sik with i1 < i2 < . . . < ik, i.e., a string containing
a subset of not necessarily contiguous characters of S, in the same order they appear in S. Given
two strings S and T , the LCS problem asks for the longest string that is a subsequences of both
S and T .

For a string S, let S[i..j] denote the substring of S containing characters sisi+1 . . . sj . Let
D[i, j] denote the length of the longest common subsequence between S[1..i] and T [1..j]. Then
the length of LCS between S and T can be solved using the following recurrence [Cormen et al.,
2001]:

D[i, j] =

0 if i = 0 or j = 0
D[i− 1, j − 1] if i, j > 0 and si = tj
max{D[i, j − 1], D[i− 1, j]} if i, j > 0 and si 6= tj

(2.8.1)

For an LCS instance with two strings of length n, the two-dimensional table D is divided in
tiles, which are then computed recursively. In each level of the recursion subtables are divided
in τ2 sub-tables of equal size, where τ = t[d] is the parameter of the tiling sequence at recursion
depth d. Sub-tables are then computed recursively in 2τ − 1 parallel steps along the diagonals of
the table. Parameters of the tiling sequence and the schedule are defined as follows for each of
the cache models [Chowdhury and Ramachandran, 2008]:

• If t[d] = 2 for all d, an execution with one processor yields that the cache-oblivious sequential
algorithm in [Chowdhury and Ramachandran, 2006], whose I/O complexity is O(n2/(MB)),
where M is the cache size and B the length of a cache line.

• For a model of private caches, the tiling sequence has parameters t[0] = p and t[d] = 2
for d ≥ 1. That is, the table is initially divided in p2 sub-tables of size (n/p)2 each. The
i-th processor is assigned the i-th column of sub-tables in the first level of the recursion,
after which each sub-table is computed sequentially in each processor. This results in a
diagonal-by-diagonal execution of the table based on the sub-tables. The parallel running
time obtained is Tp(n) = O(n2/p + n), and the number of cache misses is O(n2/(MB))
(under the assumptions that n ≥ pM and B ≤M) [Chowdhury and Ramachandran, 2008].

• For the case of a single shared cache, tiling parameters are t[d] = 2 for d < log(n/p) and
t[log(n/p)] = p. Hence, at level d = log(n/p) each tile corresponds to a (n/p) × (n/p)
sub-table. The schedule is such that all processors work together in single tiles. Once again
the parallel time is Tp(n) = O(n2/p+ n), while the cache complexity is O(n2/(MB)).

53

• Finally, for the multi-core cache model with private L1 caches of size C1 and a shared L2

cache of size C2 the strategy combines the approaches for the private-only and shared-only
models. The tiling parameters are t[r] = p for r = log(n/C2) and t[d] = 2 otherwise. Thus,
this strategy splits the table until the size of subproblems corresponding to a tile equals
the size of L2 caches, after which it applies the strategy for private caches. In this case
the running time is again Tp(n) = O(n2/p+ n), and the L1 and L2 cache complexities are
O(n2/(C1B)) and O(n2/(C2B)), respectively.

Similar results are obtained for the rest of the DP paradigms, resulting in cache-efficient paral-
lel executions up to the critical path length of the dynamic programming algorithms [Chowdhury
and Ramachandran, 2008].

Hierarchical Models

Most of the results that we have described so far focus on settings with private caches to each
core, and possibly a shared cache among all cores. In many multi-core designs, however, caches
may be shared by a subset of all cores, with higher level caches being shared by a larger number
of cores. In this section we describe results that consider more general hierarchical models, in
which the layout of caches and cores follows a tree-like structure: leaves correspond to cores, and
internal nodes to caches, with each cache being shared among all the leaves in their corresponding
subtree.

Multi-BSP: A Bridging Model for Multi-Core Computing The Multi-BSP model pro-
posed by Valiant [2011] is an adaptation of the BSP model [Valiant, 1990a] to multi-cores (see
Section 2.5.3). The model has explicit parameters for various important aspects of parallel com-
putation in multi-cores: number of processors, sizes of memories and caches, and communication
and synchronization costs. The model seeks algorithms that are efficient for any combination of
values of these parameters, and hence that are portable across platforms of varying characteristics.

The Multi-BSP model consists of multiple levels of components and is recursive: each level j
consists of 4 parameters (pj , gj , Lj ,mj), where pj is the number of level (j− 1) components, gj is
the data rate at which the j-th component communicates with the (j+1)-th component, Lj is the
synchronization cost, and mj is the size of the memory. The components at level 0 are the cores
or processors, and the components at higher levels are either caches or memories. An instance of
the model is a tree structure of some depth d, which is the number of levels. Figure 2.11 shows
a generic component of the model at some level j. It is assumed that the last level memory is
sufficient to support the computation. In particular md ≥ n. In addition, it is assumed that
mi ≥ mi−1 for all i, and that gd =∞.

54

level j

level j-1

gj

1 2 pj

mj

gj-1 Lj

Figure 2.11: A component at level j in the Multi-BSP model. It contains pj components at level j − 1,
which synchronize at a cost of Lj , and communicate at a rate gj−1 with the memory of size mj of the
component at level j. Figure adapted from [Valiant, 2011].

For example, an instance with d = 1 and parameters (p1 = 1, g1 = ∞, L1 = 0,m1) is the
von Neumann model, while an instance with parameters (p1 ≥ 1, g1 = ∞, L1 = 0,m1) is the
PRAM, where m1 is the size of the memory [Valiant, 2011]. An attempt to model a more
sophisticated architecture would be that of modeling an instance of p Sun Niagara UltraSparc
T1 multi-cores, connected to an external storage. In this case the instance has 3 levels with the
following parameters: level 1: (p1 = 4, g1 = 1, L1 = 3,m1 = 8 Kb) (each core runs 4 threads and
has an L1 cache of size 8 Kb); level 2: (p2 = 8, g2 = 3, L2 = 23,m2 = 3 Mb) (each chip has 8
cores with a shared L2 cache of size 3 Mb); level 3: (p3 = p, g3 =∞, L1 = 108,m3 = 128 Gb) (p
chips with external memory of size m3 accessible via a network at a rate g2). In this example,
Lj parameters are not exactly synchronization costs but latency parameters given in the chip
specification. In addition, caches are managed implicitly by hardware and not by the algorithm.
Thus, while the relative values of the g and L parameters are meaningful, it is hard to obtain
their exact values [Valiant, 2011].

The notion of optimality of an algorithm A in this model is defined relative to a given baseline
algorithm B in terms of the relation between their computation steps, parallel communication
costs, and synchronization costs. An algorithm A is said to be optimal with respect to algorithm
B if the parallel computation steps, parallel communication costs, and synchronization costs of
A are within multiplicative constant factors of those of B, and the total computation steps are
within additive constant factors of the number of steps of B. The constant factors may depend
on the level d but not on any other parameter of the model.

Valiant gives matching upper and lower bounds for Multi-BSP algorithms for matrix multi-
plication, fast Fourier transform, comparison-based sorting, as well as associative composition.
In the latter problem, given an array A of n elements of a set X, an associative binary operation
∗ on X, and a set of disjoint contiguous subarrays of A, the goal is to compute the composition
of each subarray under ∗, with this being the only operation allowed on elements of X [Valiant,

55

2011].

The main differences between this model and most of the models that we have described is
obviously the large number of parameters, the fact that algorithms are aware of these parame-
ters, and that the scheduling and management of data across components is done explicitly by
the algorithm. While the simplicity in the design and analysis of algorithms suffers from this pro-
liferation of parameters, the goal of the model is that the design of some fundamental algorithms,
although difficult, will result in efficient algorithms that are portable for all machines.

Next, we describe other models that consider hierarchical caches but in which algorithms
and scheduler are separate entities and moreover. Moreover, algorithms in these models have no
notion of the parameters of the architecture.

Oblivious Algorithms in the HM Model Chowdhury et al. [2010] present the HM model,
a multi-level hierarchical multi-core model in which caches at increasing levels have increasing
sizes and are shared by larger groups of cores. The HM model, which had been briefly considered
previously in [Chowdhury and Ramachandran, 2008], consists of p processors, organized in a
hierarchical cache structure of h levels, where at each level 1 ≤ i ≤ h − 1 there are qi Li caches
of size Ci and block size Bi, and with a shared memory of arbitrarily large size at level h. The
number of level-(i− 1) caches that share a given Li cache is denoted by pi. The model assumes
p1 = 1 (i.e., each core has a private L1 cache) and that ph = 1 (i.e., the last level cache is shared
by all cores). Also, the increasing sizes of caches at higher levels satisfy Ci ≥ ci · piCi−1 for all i
and for suitable constants ci [Chowdhury et al., 2010]. Figure 2.12 shows a representation of the
HM model. Note that the multi-core model of Blelloch et al. [2008] corresponds to a 3-level HM
model.

The algorithms described by Chowdhury et al. for the HM model are parameter oblivious
(i.e., they have no notion of the parameters of the underlying model); however, they are allowed
to provide hints to the runtime scheduler. The proposed algorithms use two types of scheduler
hints: coarse-grained contiguous (CGC) and space-bound (SB), plus a combination of both (CCG
⇒ SB). Roughly speaking, CGC is useful for computations with parallel for loops, while SB and
CCG⇒ SB are useful for algorithms that spawn tasks recursively [Chowdhury et al., 2010]. With
CGC scheduling, a series of parallel tasks acting on contiguous data are divided into subtasks
that act on contiguous segments, assigning subtasks to contiguous cores for parallel execution.
In SB scheduling, the algorithm specifies an upper bound on the space used by each task that
is spawned during the computation. Intuitively, this allows the scheduler to execute an entire
task of size s in the cores under the smallest level i cache Li such that s ≤ Ci in a way that
the only cache misses at level i will be those ones related to reading the input and writing the
output [Chowdhury et al., 2010]. With CCG ⇒ SB, a collection of subtasks forked from a task
that was assigned to an Li cache for some level i are distributed evenly across caches at a lower
level, such that the subtasks fits in that level’s cache, and the parallelism is fully exploited. This

56

Memory

Core Core Core Core

B1

C1/B1

B2

C2/B2

Core Core Core Core

B3

C3/B3

L1 L1 L1 L1 L1 L1 L1 L1

L2 L2

L3

Figure 2.12: An example of the Hierarchical Model (HM) with h = 4 and p1 = 1, p2 = 4, p3 = 2, and
p4 = 1. Figure adapted from [Chowdhury et al., 2010].

type of scheduling is useful, for example, for algorithms that fork a large number of parallel
tasks [Chowdhury et al., 2010].

Using the above scheduling strategies, Chowdhury et al. show bounds on the parallel time
and cache complexity at each level i (defined as the maximum number of block transfers between
any Li cache an its corresponding Li+1 cache in any direction) for various multi-core oblivious
algorithms. The problems and bounds obtained are shown in Table 2.4. These bounds are optimal
in this model for prefix sums, matrix transposition, fast Fourier transform, sorting, and Gaussian
Elimination Paradigm (GEP), for the assumed number of processors and assuming tall caches
(i.e., Ci = Ω(B2

i) at each level i, 1 ≤ i ≤ h− 1).

The Parallel Cache Oblivious Model Blelloch et al. [2011] propose the Parallel Cache
Oblivious (PCO) model, a variation of the sequential Cache Oblivious model of Frigo et al.
[1999], to analyze the cache complexity of parallel computations in a hierarchy of caches. This is
another example of a model in which the algorithm and scheduler are separate. The algorithm
specifies its parallelism independently of the architecture, and the scheduler is responsible for
executing the computation on a given architecture satisfying performance bounds. Moreover, the
bounds given by the scheduler are a function of performance bounds of the algorithm that can be
characterized and analyzed also independently of a particular architecture [Blelloch et al., 2011].
The underlying architecture assumed in this work is modeled as a variation of the Parallel Memory
Hierarchy (PMH) model [Alpern et al., 1993], which is similar to the HM model of Chowdhury
et al. [2010] described above.

The PCO model is a cache cost model for parallel computations in which the cache com-
plexity Q∗(n,M,B) is analyzed in terms of a single cache of size M and block size B, as in the

57

Problem Time Cache Assumptions

1 Prefix sum Θ(n/p) Θ(n/(qiBi)) p ≤ n/(B1 log n)
2 Matrix transpo-

sition
Θ(n2/p) Θ(n2/(qiBi)) p ≤ n2/B1

3 Matrix multipli-
cation

Θ(n3/p) Θ(n3/(qiBi
√
Ci)) p ≤ min{n2, Ch−1/(2h−2C1)}

4 GEP Θ(n3/p) Θ(n3/(qiBi
√
Ci)) p ≤ min

{
n2

log2 ,
Ch−1

C1
∏h−1
i=2

(
2 log2

(
Ci
Ci−1

))
}

5 FFT Θ(n log n/p) Θ
(
n logCi n

qiBi

)
p ≤ n/B1

6 Sorting Θ(n log n/p) Θ
(
n logCi n

qiBi

)
p ≤ n/(B1 log log n)

7 List ranking Θ(n log n/p)
Θ(n/(qiBi) logCi n+

p ≤ n/((B1 + log log n) log n log log n)
(log log n)2 log(n/Bi))

Table 2.4: Time and cache complexity bounds for multi-core oblivious algorithms in the Hierarchical
Model (HM) [Chowdhury et al., 2010]. GEP stands for Gaussian Elimination Paradigm [Chowdhury and
Ramachandran, 2006] and FFT for fast Fourier transform.

sequential cache oblivious model. In addition to using the same analysis of the sequential model
for sequential sequences of instructions, the PCO extends the sequential model by considering
the cache complexity during the execution of parallel blocks of a computation.

Blelloch et al. show that space-bounded schedulers can be used to bound the cache complexity
of algorithms in a hierarchical cache machine in terms of their PCO cache complexity. Space-
bounded schedulers were introduced by Chowdhury et al. [2010] in their HM model, which we
described above. A space-bounded scheduler takes into account the space used by tasks to
schedule them in an appropriate cache level, namely the lower level cache in which the task
fits. Blelloch et al. show that a nested-parallel computation executed in a PMH with any space-
bounded scheduler achieves a cache complexity that matches the bounds given by the PCO model,
i.e., the number of cache misses at each level i in the hierarchy is at most Q∗(n,Mi, Bi), where
Mi and Bi are the cache and block size at level i.

However, the running time of the computation achieved might vary with greedy space-bounded
schedulers, performing well only when computations are well balanced [Blelloch et al., 2011]. In
general, since in a hierarchical model caches are associated with a fix set of processors, if the space
and processor requirements of a task differ significantly, this will lead to either idle processors or
excessive cache misses. In fact, Blelloch et al. show that there exist computations with plenty
of parallelism overall and a small cache miss count according to the PCO model, for which any
schedule on a PMH with one shared cache will either execute tasks almost sequentially or incur
a large number of cache misses [Blelloch et al., 2011].

Hence, Blelloch et al. extend the PCO model to account for space-parallelism imbalance.

58

This modification introduces a parameter α to the model which is an estimate of the degree of
parallelism of a computation as a function of its size. Intuitively, a computation of size S should
be able to use O(Sα) processors effectively [Blelloch et al., 2011]. They propose a modified space-
bounded scheduler that enables the mapping of bounds obtained in the modified PCO model to
a PMH machine even for irregular computations. This scheduler allows the execution of parallel
subtasks at different levels of the hierarchy, thus adapting to the imbalance of tasks’ sizes, and
achieves an efficient running time (with cache misses evenly balanced across processors) so long
as the parallelism of the machine is enough compared to that of the algorithm [Blelloch et al.,
2011].

2.8.3 Graphic Processing Units

A Graphic Processing Unit (GPU) is a massively parallel microprocessor designed to acceler-
ate the graphic tasks required by modern computer applications [Garland, 2011]. Graphic tasks
are inherently parallel: graphic scenes typically contain thousands or millions of polygon prim-
itives. Rendering a scene involves the processing of each vertex of every primitive, and every
pixel touched by a primitive. Primitives, vertices, and pixels can be processed independently of
each other, and thus the workload assigned to a GPU consists of millions of independent tasks
that can be processed in parallel [Garland, 2011]. At the same time, computer graphics are
throughput-oriented tasks, since scenes are typically rendered at a fixed frame rate, and thus the
amount of work done per unit of time influences the visual experience of an application. This
throughput-oriented design of GPUs often sacrifices single task performance for throughput of a
set of tasks [Garland, 2011].

The massive power and low cost of GPUs have motivated the development of languages
and tools to enable the programming and use of these devices for general applications beyond
graphic tasks. While initially programmers had to implement programs adhering to the graphic
terminology and express data and operations in terms of graphic primitives, the development of
more general C-like languages and programming environments such as CUDA (Compute Unified
Device Architecture) [Nickolls et al., 2008] by NVIDIA, later followed by the vendor-independent
OpenCL (Open Computing Language) [Stone et al., 2010], has facilitated the development of
general GPU applications, what has become to be known as General Purpose Computing on
GPUs (GPGPU).

The terminology related to a GPU’s architecture and programming model differ across ven-
dors. However, the architectures of both NVIDIA and ATI GPUs are in general similar, and so
are the programming models of their respective most used environment, CUDA and OpenCL. We
describe the programming model and architecture in generic terms, and point out the differences
between environment and vendors when necessary.

59

GPU Architecture

The architecture of a GPU consists of a large array of parallel processors and a set of fixed-function
units for tasks such as work distribution, rasterization, and image processing [Garland, 2011].
The array of parallel processors is composed of several multithreaded Streaming Multiprocessors
(SMs), each of which supports on the order of a thousand coresidents threads [Garland, 2011].
For example, in an NVIDIA GPU “Fermi” architecture, each SM has 32 scalar cores, and it can
support 1,536 coresident threads.

Each SM contains a collection of processing elements (PEs) or cores, each of which provides
fully pipelined integer and floating point arithmetic units [Garland, 2011]. In contrast to CPUs
cores, SM cores do not use techniques to speed-up single thread performance in the form of out-of-
order execution or branch predictions. Given the throughput-oriented design of the architecture,
this allows less area of the chip to be devoted to control logic, leaving more area for functional
units [Garland, 2011].

GPU Programming Model and Thread Scheduling

Before we describe the execution and scheduling of threads, let us describe the GPU programming
model. A platform consists of a host connected to one or more devices [Khronos OpenCL, 2012].
Usually, the host corresponds to a CPU and a device to a GPU. A CUDA or OpenCL program
consists of host programs which manage the execution of kernels on the device. For example,
consider a simple function to multiply two vectors [Hennessy and Patterson, 2011]:

add(float * a, float * b, float * c, int n){

for(int i = 0; i < = n; i++){

c[i] = a[i] * b[i];

}

}

The function above is suitable for a data-parallel SIMD parallelization, as the same operation
is done on different data items, independently of each other. In order to be executed in parallel
on a GPU, the above function must be written as a kernel. A kernel will be executed by multiple
threads, each of them responsible for the multiplication of two entries of the arrays. Each such
thread or instance of a kernel is called a work-item in OpenCL [Khronos OpenCL, 2012], and a
CUDA Thread in CUDA. In general, all work-items execute the same code, but the execution
path they follow and the data on which they operate might differ across work-items. Each work-
item is uniquely identified by a threadID, which can be obtained by the item to enable a specific

60

execution path. In the case of the example, the threadID determines the position in the array on
which the thread will operate on.

The entire set of work-items or threads is known in general as a vectorized loop, a grid
(CUDA), or an index range (OpenCL) [Hennessy and Patterson, 2011]. Threads are grouped in
thread blocks (CUDA) or work-groups (OpenCL). All threads in the same block execute concur-
rently in a single streaming multiprocessor (CUDA) or computing unit (OpenCL). Threads in
the same block are grouped into 32-thread units called warps (CUDA) or wavefronts (OpenCL),
which are the fundamental unit of scheduling in a SM. A warp of threads executes in lockstep,
one instruction at a time. At each timestep, the SM scheduler can execute an instruction of any
ready warp, possibly interleaving the execution of instructions of various wraps. Scalar cores in a
SM are divided in two groups of 16, and each group is associated with a separate warp scheduler,
thus allowing the execution of two warps simultaneously [Garland, 2011].

For example, suppose that in the vector multiplication example n = 8196. The grid is the
GPU code that executes over all these elements. With a block size of 512, there are 16 blocks
in the grid. Each block then contains 16 SIMD threads of 32 threads each (a warp) [Hennessy
and Patterson, 2011]. Thus, all threads corresponding to the first 512 elements of the arrays
will execute in the same SM, with each group of 32 threads operating on consecutive elements
executing concurrently in lock-step.

A SM uses a Single-Instruction-Multiple-Thread (SIMT) architecture, an instance of the SIMD
broader class of architectures. A thread warp executing the same path executes together, effec-
tively realizing a SIMD execution. However, when threads within a warp follow different paths,
for example, because of a divergent conditional, the scheduler executes all paths one after the
other, with threads being activated only when executing the path they followed. While the exe-
cution of such divergent paths is correct, there is a loss of efficiency proportional to the number
of divergent paths [Garland, 2011].

GPU Memory Model

GPUs contain different memory regions. At the lowest level, individual threads or work-items
can have their own dedicated set of registers [Garland, 2011; Hennessy and Patterson, 2011].
In addition, each thread can access a local memory (CUDA) or private memory (OpenCL).
Streaming Multiprocessors are also equipped with a high speed and low latency shared memory,
which is shared by all threads on the same block. This kind of memory (shared by work-items
in the same work-group) is called local memory in OpenCL. A global memory allows access by
work-items in all work-groups. A region of this global memory is known as the constant memory,
and it is used by the host to allocate memory objects in the device [Khronos OpenCL, 2012].
Some architectures also feature an L1/L2 cache hierarchy. For example, in the Fermi architecture
each SM has an L1 cache and there is an L2 cache that is shared across SMs [Garland, 2011].

61

Local memory

Global/Constant Memory Data Cache

PE1

Private
memory

PEM

Private
memory

…

Compute unit 1

Local memory

PE1

Private
memory

PEM

Private
memory

…

Compute unit N

…

Compute device

Global Memory

Constant Memory

Device memory

Figure 2.13: A conceptual depiction of the OpenCL device architecture. Figure adapted from [Khronos
OpenCL, 2012].

A conceptual depiction of an OpenCL device together with its memory regions is shown in
Figure 2.13.

The performance of a GPU application is highly dependent on its memory access patterns. In
general, accesses to local memory are much faster than accesses to global memory. In particular,
programs should seek memory accesses to contiguous data by work-items in the same group,
which are known as coalesced memory operations.

2.9 Bit Parallelism and the Word-RAM

The word-RAM is a variant of the RAM model in which a word has length w bits, and the
contents of the memory are assumed to be integers in the range {0, . . . , 2w−1} [Hagerup, 1998].
This implies that w ≥ log n, where n is the size of an input problem, and that the size of the
memory is at most 2O(w); otherwise a memory cell cannot be addressed using a constant number
of words.

The word-RAM includes the usual load, store and jump instructions of the RAM model,
allowing for immediate operands and for direct and indirect addressing. In this model, arithmetic
operations on two words are modulo 2w, and the instruction set includes left and right shift
operations (equal to multiplication and division by powers of two) and boolean operations. All

62

instructions take constant time to execute. There are different versions of the word-RAM model
depending on the instruction set assumed to be available. The restricted model is limited to
addition, subtraction, left and right shifts, and boolean operations AND, OR, and NOT. These
instructions augmented with multiplication constitute the multiplication model. Finally, the AC0

model assumes that all functions computable by an unbounded fan-in circuit of polynomial size
(in w) and constant depth are available in the instruction set and execute in constant time. This
definition includes all instructions from the restricted model and excludes multiplication. We
refer to the reader to the survey by Hagerup [1998] for a more extended description of the model
and a discussion of its practicality.

Algorithms in the word-RAM model take advantage of the intrinsic parallelism in instructions
that operate on words. The simplest examples are boolean operations: in one instruction we can
compute the AND or OR of w sets of 1 bit each. In general, word-RAM algorithms exploit this
parallelism by operating on various elements in parallel using operations on w-bits words. One
example of such operation that is useful in many word-RAM algorithms is the comparison of
several pairs of elements in parallel. This can be achieved by packing these elements in fields
within one word. We now describe how to implement a fieldwise comparison in constant time.

Comparators Suppose that a w-bit word is divided in f -bit fields, with each field representing
an (f − 1)-bit number. Let G and F be two such words and let Fi and Gi denote the contents of
the i-th field in F and G, respectively. Let us assume that we want to identify all Fi such that
Fi ≥ Gi. Fieldwise comparisons can be done by setting the most significant bit of each field in F
as a test bit and computing H = F −G. The most significant bit of the i-th field in H will be 1
if and only if Fi ≥ Gi [Hagerup, 1998]. Now, if we want to operate only on the values of F that
are greater than or equal to their corresponding values in G, we can mask away the rest of the
values as follows. We first mask away all but the test bits in H. Then, a mask M with ones in
all bits of the relevant fields and zeros everywhere else (including test bits) can be obtained by
computing M = H − (H >> (f − 1)). The result of (M & F) contains then only the values of
fields that pass the test [Hagerup, 1998]. Clearly this operation takes constant time, and it can
be easily adapted to other standard comparisons. Example 2.3 shows the parallel comparison of
8 pairs of values packed in fields of f = 4 bits in words of w = 32 bits.

Example 2.3 Example of a parallel elementwise comparison of tuples F = (1, 5, 0, 4, 7, 4, 5, 2)
and G = (6, 2, 1, 0, 4, 4, 6, 1), using 32-bit words and fields of f = 4 bits (with the most significant
bit at the far left). The resulting word represents a tuple R = (R1, R2, . . . , R8), where Ri = Fi if
Fi ≥ Gi, and Ri = 0 otherwise. I.e., R = (0, 5, 0, 4, 7, 4, 0, 2).

63

F = 1001 1101 1000 1100 1111 1100 1101 1010
G = 0110 0010 0001 0000 0100 0100 0110 0001

H = F −G = 0011 1011 0111 1100 1011 1000 0111 1001
Mask = 1000 1000 1000 1000 1000 1000 1000 1000

H = H & Mask = 0000 1000 0000 1000 1000 1000 0000 1000
H ′ = H >> (f − 1) = 0000 0001 0000 0001 0001 0001 0000 0001

M = H −H ′ = 0000 0111 0000 0111 0111 0111 0000 0111

R = M & F = 0000 0101 0000 0100 0111 0100 0000 0010

In the word-RAM model, word-level parallelism is the only source of increased efficiency
with respect to traditional RAM algorithms, and hence w is the maximum speedup that can be
obtained [Hagerup, 1998].

There are various algorithms for fundamental problems that take advantage of word-level
parallelism or a bounded universe, some of which fit into the word-RAM model, although are not
explicitly designed for it [Arlazarov et al., 1970]. Much attention has been given to sorting and
searching, for which known lower bounds in the comparison model do not carry to the word-RAM
model [Fredman and Willard, 1993]. For example, in a word-RAM model with multiplication,
sorting n words can be done in O(n log log n) time and O(n) space deterministically [Han, 2004],
and in expected O(n

√
log logn) time and O(n) space using randomization [Han and Thorup,

2002]. Word-RAM techniques have also been applied in many different areas, such as succinct
data structures [Jacobson, 1989; Munro, 1996], computational geometry [Chan, 2006; Chan and
Patrascu, 2009], and text indexing [Grossi et al., 2003].

In Chapter 5 we introduce a model that extends the word-RAM model by adding a w2-bit word
Arithmetic Logic Unit (ALU) that implements all operations of the word-RAM model, but keeping
memory accesses at w-bits. We show that many word-RAM algorithms can be implemented in
the new model, achieving speedups comparable to those of multi-threaded computation, while
keeping the simplicity of sequential programming inherent to the RAM model.

64

Chapter 3

LoPRAM: A Model for Low-Degree
Multi-Core Parallel Computation

Modern microprocessor architectures have gradually incorporated a certain degree of parallelism
in the form of advances such as pipelined architectures and SIMD vector extensions. The appear-
ance of multi-cores in 2004 went a step forward, replicating full processing units that could read
and execute instructions in parallel. Microprocessors with 2 and 4 cores became widely available.
While the degree of parallelism provided by any of these solutions was rather small and as such
it was best studied as a constant speedup over the traditional and/or transdichotomous RAM
model, plans of an increasing number of cores by leading manufacturers meant that a constant
speedup would no longer accurately reflect the amount of resources available.

In this Chapter we present the LoPRAM model, a new model of low degree parallelism which
better reflects recent multi-core architectural advances. We argue that in current architectures
the number of processors available can effectively be assumed to be O(log n). This parallels the
development of the transdichotomous-RAM in which the presence of bit-level parallelism went
from being subsumed as a small constant speed-up to the w = O(log n)-bit word model in which
the speedup is a function of w (see Section 2.9).

Theoretical parallel computation was already a well developed field, with the PRAM [Fortune
and Wyllie, 1978] being the dominant model. This model generally assumed Θ(n) or an even
larger number of processors working synchronously with zero communication delay and often
with infinite bandwidth among them (see Section 2.3.1). If the number of processors available in
practice was smaller, the Θ(n) processor solution could be emulated using Brent’s Lemma [Brent,
1974] (see Section 2.3.2). The PRAM model, while fruitful from a theoretical perspective, proved
unrealistic, and various attempts were made to refine it in a way that would better align to what
could effectively be achieved in practice. We describe models that improved upon the PRAM in

65

Section 2.5. In practice, there were various important drawbacks of the PRAM model, such as
the cost of synchronization, the cost of interprocessor communication, the cost-effectiveness of
a massively parallel machine and, more importantly, the enormous difficulty in developing and
implementing work-optimal algorithms (i.e., linear speedup) for a computer with Θ(n) processors.
Even relatively simple tasks such as sorting required considerable thought before a work-optimal
PRAM algorithm could be developed [Cole, 1988]. The state of parallel algorithm research
consequently entered into a dormant state in the second half of the 1990s. Recent developments
in multi-core architectures have brought back the possibility of parallel architectures in practice,
which has revived the study of parallel algorithms. However, to the best of our knowledge, the
assumption of a logarithmic level of parallelism as well as its theoretical implications had yet to
be noted in the literature.

As with the classical RAM model, the LoPRAM supports different degrees of abstraction.
Depending on the intended application and the performance parameters required, the design
and analysis of an algorithm can consider issues such as the memory hierarchy, interprocess
communication, low level parallelism, or high-level thread-based parallelism. Our main focus is
on the higher level, thread-based parallelism. Naturally, the more abstract the model the easier
it is to reason on it at the expense of fidelity in the analysis. As we shall see, the design and
analysis of algorithms at this higher level is often sufficient to achieve optimal speedup. This, of
course, does not preclude the use of low level optimizations when necessary. This parallels the
classical RAM model in which issues such as caching, secondary storage, and other such hardware
characteristics can be incorporated or ignored as it may be deemed most appropriate.

Our results1 We apply the LoPRAM model to the design and analysis of algorithms for multi-
core architectures for a sizable subset of problems and show that we can readily obtain optimal
speedups. This is in contrast to the PRAM model, in which work-optimal algorithms were
often rather challenging research questions. Notable examples of these are sorting [Cole, 1988]
and some fundamental problems on directed graphs, such as determining whether a graph is
acyclic or constructing a topological ordering of an acyclic graph, which are examples of problems
affected by the so called transitive closure bottleneck [Karp and Ramachandran, 1990; Kao and
Klein, 1990]. More explicitly, we show that a large class of divide-and-conquer algorithms can be
parallelized using the high level LoPRAM thread model while achieving optimal speedup. This
leads to a parallel version of the master theorem for divide-and-conquer algorithms [Cormen et al.,
2001], which can be readily applied to any divide-and-conquer algorithm whose complexity can be
obtained with the original theorem. We show that dynamic programming algorithms can also be
easily parallelized in the LoPRAM model by describing a generic strategy that takes a dynamic
programming solution to a problem and generates a suitable schedule to solve it in parallel.

1Results in this chapter appeared in [Dorrigiv et al., 2008] and are joint work with Reza Dorrigiv and Alejandro
López-Ortiz.

66

Interestingly, the assumption that there is a logarithmic bound on the degree of parallelism is key
in the analysis of the techniques given. As well, communication cost remains modest under the
assumption of low-degree parallelism. Indeed, with this bound in place a full processor network
based on the complete graph is realizable. We show experimental results on both divide-and-
conquer and dynamic programming parallelizations in the model, with close to optimal parallel
executions, showing the simplicity and practicality of parallel algorithms in this model.

This chapter is organized as follows. In Section 3.1 we introduce the LoPRAM, a formal model
for multi-core computing. In Section 3.2 we show that under this model a large class of divide-
and-conquer and dynamic programming algorithms can be parallelized to achieve p-fold speedups
in this model in a rather straightforward fashion. We show experimental results in Section 3.3.
Lastly, in Section 3.4 we present concluding remarks and future directions of research.

3.1 Model

The core of a LoPRAM is a PRAM with p = O(log n) processors running asynchronously in
multiple-instruction multiple-data (MIMD) mode. The read and write model, while architecture
dependent, can generally be assumed to be Concurrent-Read Exclusive-Write (CREW) [Gibbons
and Rytter, 1988; JáJá, 1992]. To support this model, semaphores and automatic serialization
on shared variables are available—either hardware or software based—in a transparent form to
the programmer. If an unserialized variable is concurrently written, this has undefined arbitrary
behaviour—including suspension of execution.

The model naturally supports a high level abstraction that simplifies the design and analysis
of parallel programs. The application benefits from parallelism through the use of threads. We
show that in many instances this leads to parallel algorithms with p-fold speedup derived from
simple modifications to sequential algorithms.

3.1.1 Thread Model

Two main types of threads are provided: standard threads and pal-threads (Parallel Algorithmic
Light threads). Standard threads are executed simultaneously and independently of the number of
cores available; they are executed in parallel if enough cores are available or by using multitasking
if the thread count exceeds the degree of parallelism, just as in a regular RAM. pal-threads, on
the other hand, are executed at a rate determined by the scheduler. If there are any pal-threads
pending, at least one of them must be actively executing, while all others remain at the discretion
of the scheduler. They could be assigned resources, if they are available, or they could be made to
wait inactive until resources free over. Once a thread has been activated, it remains active until
it relinquishes control when it either completes, it reaches a synchronization point, or it blocks

67

to wait for an event. Threads are not preempted, which is important to avoid potential deadlock
introduced by the scheduler2.

Pending pal-threads are activated in a manner consistent with order of creation as resources
become available. While primitives can be defined for ad-hoc ordering of pal-threads activation,
by default threads are inserted into an ordered tree. The root of the tree is the main thread with
new threads attached to the node corresponding to the activating parent-thread. The scheduler
activates the nodes in the tree in parent-child order, i.e., first the parent thread is activated,
which issues pal-threads calls for its children. The parent thread is now in a wait state, and child
threads are activated in order of creation. If there are cores available, pal-threads are assigned
to the available cores, otherwise the requests remain pending and the core of the parent thread
is assigned sequentially to the children. If no further children remain pending, then control is
returned to the parent thread. If cores become available, pending requests are activated in the
order given by the preorder traversal of the tree.

Execution concludes when there are no further threads to activate, and the main thread exits.
Consider for example the code for a parallel implementation of the classical sequential mergesort
written using suitable C extensions for the LoPRAM:

void mergeSort(int numbers[], int temp[], int array_size)

{ m_sort(numbers, temp, 0, array_size - 1); }

void m_sort(int numbers[], int temp[], int left, int right) {

int mid = (right + left) / 2;

if (right > left) {

palthreads { // execute in parallel if possible

m_sort(numbers, temp, left, mid);

m_sort(numbers, temp, mid+1, right);

} // implicit join

merge(numbers, temp, left, mid+1, right);

}

}

The semantics of the primitive palthreads are to create a pal-threads call for each of the
function calls within its scope. These threads are created as children of the current thread in
the specific order given. Observe that there is an implicit wait at the end of the palthreads

statement which can be deactivated using a “palthreads { ... } nowait;” construct with an
explicit thread join later on if so needed. Note that we introduce this syntax only for the purposes
of the example and that it is not inherent to the LoPRAM model. An example of the execution
of mergeSort with an input of size 16 and 4 processors is shown in Figure 3.1.

2Still, a deadlock might occur as a result of threads’ actions in an incorrectly designed implementation.

68

1

2 2

3 3 3 3

4 7 4 7 4 7 4 7

5 6 8 9 5 6 8 9 5 6 8 9 5 6 8 9

1

Figure 3.1: Example of an execution tree for mergesort with an input of length n = 16 and p = 4
processors. Black nodes represent active pal-requests, gray nodes represent calls that have been pal-
requested but that are not active yet, while white nodes are calls that have not been pal-requested. The
number by each node indicates the time step in which the call corresponding to that node is pal-requested.
The picture shows the execution at t = 6.

We note that the LoPRAM scheduler resembles the work-stealing scheduler [Burton and
Sleep, 1981] (see Section 2.6.1), and in fact both schedulers result in the same thread execution
order on the mergesort example given above and in regular divide-and-conquer algorithms in
general. However, these schedulers have different implementations: while an implementation
of work stealing is distributed as threads belong to each processor, the LoPRAM scheduler is
centralized, as newly created threads are added to a single pool from which they are dispatched
by the thread scheduler.

3.1.2 Multiprocessing Model

In actuality, the number of cores made available by the operating system may vary as the level
of multiprogramming in the system changes. Hence, in the analysis of the algorithm the number
of processors available is denoted as p, with the assumption that this number is bounded from
above by O(log n), i.e., p is O(log n) but p is not necessarily Θ(log n). The algorithm must execute
properly for any value of p. The running time is then a function of n and p.

3.2 Optimal Algorithm Parallelization

In this section we present two classes of problems which allow for ready parallelization under the
LoPRAM model. Note that these same classes were not, in general, readily parallelizable under

69

the classic PRAM model.

3.2.1 Divide and Conquer

Consider the class of divide-and-conquer algorithms whose time complexity is described by a
recurrence which can be resolved using the master theorem. We show that when these algorithms
are executed in a straightforward parallelization on a LoPRAM, their execution time is given by
a parallel version of the master theorem which reports optimal speedup.

Consider a recursive divide-and-conquer sequential algorithm whose time complexity T (n) is
a recurrence of the form:

T (n) = aT (n/b) + f(n), (3.2.1)

where a > 1 and b > 1 are constants, and f(n) is a nonnegative function. By the master theorem,
T (n) is such that [Cormen et al., 2001]:

T (n) =

Θ(nlogb a), if f(n) = O(nlogb(a)−ε) (Case 1)
Θ(nlogb a log n), if f(n) = Θ(nlogb a) (Case 2)

Θ(f(n)), if f(n) = Ω(nlogb(a)+ε) and
af(n/b) ≤ cf(n), for some c < 1 (Case 3)

In the above, ε > 0 is some constant. We are interested in the time complexity of such algorithms
when p processors are available. We assume that recursive calls can be assigned to different pro-
cessors, which can execute their instances independently of those of others. All of the processors
finish their computations before the results are merged. We denote by Tp(n) the running time of
a parallel algorithm that uses p processors and by T (n) = T1(n) its sequential version.

Sequential Merging We first consider problems for which the merging phase of the algorithm
can only be done sequentially in each instance. Multiple processors can still be used to merge
subproblems of different instances, but only one processor deals with a particular instance. The
following theorem states the bounds for Tp(n).

Theorem 3.1 Let Tp(n) be the time taken by a recursive algorithm that uses p = O(log n)
processors whose sequential version has time complexity given by T (n) = aT (n/b) + f(n), where
a > 1 and b > 1 are constants, and f(n) is a nonnegative function. Then, the time Tp(n) is a
recurrence of the form:

Tp(n) = T
(n

bloga p

)
+

loga(p)−1∑

i=0

f
(n
bi

)
. (3.2.2)

70

. . .
a

...
. . .

...
a2

...
ak = p

. . .

. . . n/bk

1

Figure 3.2: Execution tree of a divide-and-conquer algorithm with p processors: a thread is created for
each recursive call until ak = p calls have been made. At this point, each thread executes the sequential
version of the algorithm on an input of size n/bk. Figure 3.1 shows this tree for an execution of mergesort.

The bounds for Tp(n) are given by:

Tp(n) =

O(T (n)/p), if f(n) = O(nlogb(a)−ε) (Case 1)
O(T (n)/p), if f(n) = Θ(nlogb a) (Case 2)

Θ(f(n)), if f(n) = Ω(nlogb(a)+ε) and
af(n/b) ≤ cf(n), for some c < 1 (Case 3)

Proof: Since there are p processors available, some recursive steps of the algorithm can be
performed in parallel. However, when the number of simultaneous calls exceeds p, we need to
solve the rest sequentially. Since the algorithm divides the problem into a subproblems, at the
k-th level of the recursion tree we will have ak subproblems. Thus, when k = loga p we will have
p subproblems and no more processors are available for the subsequent recursive calls3. Then, at
this point, as there are no more free cores available, the sequential version of the algorithm is used,
with an input of size n/bloga p (see Figure 3.2). Observe that this condition is never explicitly
tested by the scheduling algorithm, rather it is a natural consequence of the proposed order of
execution of the parent child threads. Note that it cannot be the case that all the recursive calls are
performed in parallel and that there is no sequential component to be executed, as it is not hard
to see that this would only happen if bloga p ≥ n, which would mean that p ≥ nlogb a = ω(log n),
but we assume p = O(log n).

3We have assumed that p is a power of a for the sake of simplicity. Note, however, that if this is not the case the
same bounds hold for p′ = abloga pc ≤ p processors, since in this case p/a ≤ p′ ≤ p, and thus T (n)/p′ = Θ(T (n)/p).

71

The cost of merging the solutions of the subproblems using p processors is given by the sum

of the cost at each level of the recursion tree, namely:
∑loga(p)−1

i=0 f
(
n/bi

)
. Hence, we can write

the time of the parallel algorithm as in Equation (3.2.2). Now, as with the standard version of
the master theorem, we prove each case separately.

Case 1 Since f(n) = O(nlogb(a)−ε), by the master theorem, we have T (n) = Θ(nlogb a). Substi-
tuting in Equation (3.2.2) we have

Tp(n) = O

(n

bloga p

)logb a
+

loga(p)−1∑

i=0

(n
bi

)logb(a)−ε

 = O

(
nlogb a

p
+
nlogb(a)−εa

a− bε

)

Since T (n) = Θ(nlogb a), the first term of the sum above is O(T (n)/p), while the second term
is strictly smaller for any p = O(nε). Since we assume p = O(log n), then Tp(n) = O(T (n)/p).

Case 2 Since f(n) = Θ(nlogb a), we have T (n) = Θ(nlogb a log n). Then,

Tp(n) = O

(n

bloga p

)logb a
log
(n

bloga p

)
+

loga(p)−1∑

i=0

(n
bi

)logb a

= O

(
nlogb a

p
(log n− log bloga p) + nlogb a · a

a− 1

)

The first term dominates as (log n)/p = Ω(1). Therefore Tp(n) = O(T (n)/p).

Case 3 In this case we prove that the total time is dominated by the time that it takes to merge
the solutions of the subproblems to produce the final solution in the second level of the recursion
tree. Recall that we assume that this process is done sequentially. Thus, no benefit is gained from
using p processors in this case. Starting with recurrence (3.2.1), we know that af(n/b) ≤ cf(n).
By a simple induction argument, it can be shown that f(n/bi) ≤ (c/a)if(n), 0 ≤ i ≤ logb n. In
addition, we have T (n) = Θ(f(n)). Hence,

Tp(n) = O
(
f
(n

bloga p

))
+

loga p−1∑

i=0

(c
a

)i
f(n) = O

(
f(n) + f(n)

a

a− c

)
= O(f(n)).

On the other hand, T (n) ≥ f(n) and thus we have Tp(n) = Ω(f(n)).

72

Parallel Merging We now consider the special case when we can merge the results of subprob-
lems in parallel optimally. The time complexity of the sequential algorithm is given by Equation
(3.2.1). We claim that the parallel master theorem for this setting is as before with the exception
of case 3 for which we have

Tp(n) = Θ(f(n)/p), if f(n) = Ω(nlogb(a)+ε) and af(n/b) ≤ cf(n), for some c < 1 (3.2.3)

For the merging phase, at the i-th level of the recursion tree we have to merge a total of ai

solutions of subproblems of size n/bi. Each of them takes time f(n/bi), and since we assume they
can be done in parallel, the total time of the merging phase at that level is given by (ai/p)f

(
n/bi

)
.

Thus, we obtain an analogous expression to Equation (3.2.2):

Tp(n) = T
(n

bloga p

)
+

loga(p)−1∑

i=0

ai

p
f
(n
bi

)
. (3.2.4)

For cases 1 and 2 the dominant term is the first summand of the right hand side of this equation,
and hence we obtain the same expression as before. For Case 3, using the arguments analogous
to the previous sequential case be obtain

Tp(n) ≤ O

(
f(n)

(c
a

)loga p)
+
f(n)

p

1

1− c ≤ O
(
f(n)

p

)
+O

(
f(n)

p

)
,

and since we have Tp(n) ≥ f(n)/p, we conclude that Tp = Θ(f(n)/p).

Table 3.1 shows the recurrences and sequential time complexities of important divide-and-
conquer algorithms, together with their parallel complexities given by Theorem 3.1. A similar
result is presented independently in [Blelloch et al., 2008] for a class of hierarchical divide-and-
conquer algorithms, in which the divide and combine phases are in turn divide-and-conquer
algorithms as well. Algorithms presented in [Blelloch et al., 2008] include mergesort with divide-
and-conquer merge [Akl and Santoro, 1987], and matrix multiplication algorithms, among others
(see Section 2.8.2 for a more detailed description of these results). Our results hold for a more
general class of divide-and-conquer algorithms for which the divide and combine phases may not
necessarily be expressed directly as divide-and-conquer procedures with enough parallelism to
achieve optimal speedup.

3.2.2 Dynamic Programming

Dynamic programming is suitable for solving problems that have optimal substructure as well as
overlapping subproblems. The solutions to such subproblems are then combined into the solution
of a larger problem. In many cases these subproblems can be solved in parallel, up to a degree
that depends on the problem itself, and hence a certain degree of parallelism is achievable.

73

Algorithm Recurrence T (n) Tp(n)

Mergesort T (n) = 2T
(
n
2

)
+O(n) O(n log n) O

(
n
p log n

)

Strassen’s matrix mult. [Strassen, 1969] T (n) = 7T
(
n
2

)
+O(n2) O(nlog2 7) O

(
nlog2 7

p

)

Delaunay triangulation [Dwyer, 1987] T (n) = 2T
(
n
2

)
+O(n) O(n log n) O

(
n
p log n

)

Polygon triangulation [Chazelle, 1991] T (n) = 2T
(
n
2

)
+O(

√
n) O(n) O

(
n
p

)

Convex Hull T (n) = 2T
(
n
2

)
+O(n) O(n log n) O

(
n
p log n

)

Closest pair T (n) = 2T
(
n
2

)
+O(n) O(n log n) O

(
n
p log n

)

Table 3.1: Sequential and parallel time complexities for various divide-and-conquer algorithms in the
LoPRAM model.

In the past, parallel versions of certain dynamic programming algorithms have been proposed.
In a seminal paper, Apostolico et al. [1990] studied parallel algorithms for the string editing prob-
lem and other related problems by considering the Directed Acyclic Graph (DAG) corresponding
to the problem and computing this graph in parallel. Galil and Park [1991] studied various dy-
namic programming problems, presenting a unified framework for the parallel computation of
these problems using the closure methods and the matrix product methods as general tools for
developing parallel algorithms. Later, Bradford [1994] developed a characterization that models
dynamic programming tables by graphs, leading to polylogarithmic algorithms for the optimal
matrix chain ordering, the optimal construction of binary trees and the optimal convex polygon
triangulation. Bradford showed how to transform these problems to a minimum cost parenthesiz-
ing on a weighted semigroup, which is then transformed to a shortest path problem on a weighted
directed graph. Most of these studies consider a few dynamic programming problems and provide
parallel algorithms that are specific to those problems. In general, they assume a classical PRAM
model with Θ(n) processors, meaning that the algorithm is designed so that it can take advantage
of that many processors, shall they be available. In our case we restrict ourselves to p = O(log n)
processors.

We show that dynamic programming algorithms can be parallelized by providing a general
procedure that, given the specification of the dynamic programing solution to a problem, generates
a scheduling strategy to solve it in parallel. The idea is similar to the previous work cited above
in that we also reduce the original problem to computing the DAG corresponding to the dynamic
programming specification of the solution.

Our goal is to compute the solution to the dynamic programming problem with as much
parallelism as possible, with a general strategy that works for any problem whose specification
is given in an explicit dynamic programming expression of its solution. Let M be an object

74

which stores partial solutions. Let I and S be the spaces of partial inputs and partial solutions,
respectively. Let h : I → S, g : I → {0, 1}, and f : {Sk ×I} → S be functions, where k ∈ N. We
assume that this solution is of the form:

M [x] =

{
h(x) if g(x) = 0 (base case)
f({M [yi]}yi≺x, x) otherwise

(3.2.5)

For the dynamic programming solution to be effective, we require that the object M which stores
partial solutions remains of reasonable size, that it can be efficiently indexed using a partial input
x as key and that the recursive order yi ≺ x be efficiently constructible in a bottom-up fashion.
Alternatively, if the solution cannot be computed efficiently in a bottom-up fashion, we can use
memoization, which stores the partial solutions as they are required in the top-down expansion
of the recursion. In most cases these two techniques are equivalent, though there are known cases
in which the use of one over the other (for either of them) is provably superior [Cormen et al.,
2001].

Example 3.1 Consider the matrix chain multiplication problem: given a sequence of matrices
(A1, A2, . . . , An) to be multiplied together, we wish to compute their product A1 ·A2 · . . . ·An (using
the natural matrix multiplication algorithm) in a way so that the total number of scalar multiplica-
tions is minimized. The number of scalar multiplications is different for different parenthesizations
of the product. Thus, the goal is to find the parenthesization that minimizes the number of scalar
multiplications overall.

The dynamic programming solution can be defined as follows [Cormen et al., 2001]: Let M [i, j]
be the minimum number of scalar multiplications required to compute the product Ai ·Ai+1 ·. . .·Aj.
The answer to the problem will then be M [1, n]. The best parenthesization of the product of
matrices Ai through Aj involves deciding where to split this products into 2 products, this is,
there exists an index k, i ≤ k < j such that the best choice for the product Ai ·Ai+1 · . . . ·Aj will be
to compute it as (Ai · . . . ·Ak) · (Ak+1 · . . . ·Aj). The cost of multiplying two matrices of dimensions
p1 × p2 and p2 × p3 is p1p2p3. If matrix Ai has dimension pi−1 × pi, then the last product of the
two matrices in parenthesis has cost pi−1pkpj. Hence, we can formulate the following recursion
to compute M [i, j]:

M [i, j] =

{
0 if i = j
mini≤k<j{M [i, k] +M [k + 1, j] + pi−1pkpj} if i < j

(3.2.6)

In general, we cannot expect a generic strategy to find highly parallel (i.e., polylogarithmic
time) solutions for any dynamic program, as it has been shown that simple recurrences can be
used to solve P-complete problems [Ibarra and Trân, 1994], and hence it is unlikely that such
recurrences are in NC. Observe that a recurrence is one form of Equation (3.2.5), hence in prin-
ciple solving the recurrence is equivalent to executing a dynamic programming algorithm. Note,

75

however, that we seek a moderate level of parallelism (i.e., a speedup proportional to log n), and
hence the limitation described above (if P 6= NC) does not apply in our case. Furthermore, it
has been shown that there exist polylogarithmic time parallel algorithms for several formulations
of recurrences that encode many of the most common dynamic programs, including linear re-
currences of any order [Kogge, 1974], and many two dimensional recurrences [Ibarra and Trân,
1994]. For instance, recurrences that can be recast as a shortest path problem can be solved in
O(log2 n) parallel time. Examples of these are recurrences to solve the edit distance problem and
the longest common subsequence problem (see Example 3.2) [Ibarra and Trân, 1994].

Dependency Graph

The recursion described in Equation (3.2.5) can be modeled by a graph G called the dependency
graph. G has a vertex vx corresponding to each subproblem x (or equivalently partial result M [x]).
There is an edge from the vx to vy if and only if subproblem y depends directly on subproblem
x. In this DAG, the source vertices correspond to the base cases. We consider computing this
DAG in parallel. The speedup will be proportional to the amount of parallelism embedded in the
graph. To be more precise, we consider the dependency graph as a partially ordered set (poset)
on the subproblems. Then the subproblems in an antichain of this poset are independent and can
be processed at the same time in parallel. We can partition G into antichains and then process
the subproblems in every antichain in parallel. At each time we find an antichain that does
not have any dependencies on the subproblems that have not yet been processed. We process
subproblems in that antichain in parallel and then move on to the next antichain. A dual of
Dilworth’s theorem states that the size of the largest chain in a poset equals the smallest number
of antichains into which the poset may be partitioned [Dilworth, 1950; Mirsky, 1971]. Suppose
that c1c2 . . . cl is a largest chain in the poset. At step i we process ci together with other elements
in its antichain, i.e., elements that are incomparable with ci.

These antichains capture the degree of parallelism that is readily apparent in the recursive
description of the problem. For example, in the case of most common examples of two dimensional
tables for dynamic programming, antichains take the form of rows, columns, or diagonals, thus
readily exhibiting the inherent parallelism of the graph. In other cases, such as one dimensional
dynamic programs, the DAG is a path and hence the parallelism available is less evident, although
such programs might still admit efficient parallel algorithms. For example, consider a simple linear
recurrence of the form xi = ai · xi−1 + bi, where ai, bi are constants and x0 equals some initial
value. Although the antichains of the corresponding DAG have all length one, the recurrence can
be efficiently solved in parallel with an algorithm based on prefix-sums [Kogge, 1974].

Figure 3.3 shows the dependency graph for an instance of the matrix chain multiplication
problem of size 4. In this case of this problem, each diagonal is an antichain, and hence most
antichains have Θ(n) vertices.

76

1 2 3 4

1 2 3

1 2

1

1

Figure 3.3: Dependency graph of the dynamic programming recurrence for matrix chain multiplication
for n = 4 (see Equation (3.2.6)). The numbers in the vertices indicate the rank of the antichain to which
the vertex belongs, based on the order given by the level of vertices in each antichain.

Computing the Dependency Graph in Parallel

Given the specification D of a dynamic programming solution of the form of Equation (3.2.5)
and an input I, we give a parallel algorithm for solving the problem. Each vertex v has a counter
cv that indicates, at any time, the number of vertices that v depends on directly and that have
not been computed yet. Initially, the value of the counter of each of vertex equals its indegree
in the dependency graph, which is computed based on D. The computation of partial solutions
in the graph begins with the creation of a pal-thread for each base case vertex. After a thread
computes the value corresponding to a vertex v, it determines its outgoing neighbors according
to D and decreases the values of their counters. If this leads to a 0 value for some counters
{cu1 , cu2 , · · · , cuk}, i.e., u1, u2, · · · , uk are ready to be computed, the same thread creates other
pal-threads to compute these vertices and these get executed depending on the availability of
processors. Algorithm 3.1 describes this strategy in pseudocode for a specification D and input
I.

Algorithm 3.1 uses two subroutines: computeCounter and computeOutgoingNeighbours. For a
large class of dynamic programming algorithms, these subroutines can be easily computed using
D and I. Consider the matrix chain multiplication problem described in Example 3.1. Recall the
specification D of the dynamic programming solution:

77

Algorithm 3.1 parallel dp(D, I)

1: V ← ∅
2: for each subproblem u in parallel do
3: cu ← computeCounter(u,D, I)
4: add u to V
5: for each u ∈ V such that cu = 0 do
6: pal-threads { computeVertex(u) } nowait

computeVertex(u)

1: compute u
2: N ← computeOutgoingNeighbors(u,D, I)
3: for each v ∈ N do
4: cv ← cv − 1
5: if cv = 0 then
6: pal-threads { computeVertex(v) } nowait

M [i, j] =

{
0 if i = j
mini≤k<j{M [i, k] +M [k + 1, j] + pi−1pkpj} if i < j

Based on this specification, the subproblem M [i, j] depends on M [i, k] and M [k + 1, j] for i ≤
k < j. Thus computeCounter would initialize the counter of M [i, j] to 2(j − i). The following
subproblems depend on M [i, j]: M [i, k] for j < k ≤ n and M [k, j] for 1 < k ≤ j. These are the
subproblems returned by computeOutgoingNeighbours(M [i, j],D, I).

Example 3.2 Consider the longest common subsequence (LCS) problem which, given two strings
S and T , asks for the longest string that is a subsequences of both S and T (see Definition 2.11
in Section 2.8.2). For a string S, let S[i..j] denote the substring of S containing characters
sisi+1 . . . sj, and let M [i, j] denote the longest common subsequence between S[1..i] and T [1..j].
Recall from Equation 2.8.1 in Section 2.8.2 that M [i, j] can be computed with the following re-
currence:

M [i, j] =

0 if i = 0 or j = 0
M [i− 1, j − 1] if i, j > 0 and si = tj
max{M [i, j − 1],M [i− 1, j]} if i, j > 0 and si 6= tj

(3.2.7)

According to the recurrence above, computeCounter would initialize the counter of M [i, j] to 0 if
i = 0 or j = 0, and to 3 otherwise. Similarly, computeOutgoingNeighbours(M [i, j],D, I) returns
{M [i+ 1, j],M [i, j+ 1],M [i+ 1, j+ 1]} if i < |S| and j < |T |, {M [i+ 1, j]} if i < |S| and j = |T |,
{M [i, j + 1]} if i = |S| and j < |T |, and the empty set if i = |S| and j = |T | (an implementation

78

that also takes into account the contents of the input strings could instead initialize counters and
compute outgoing neighbours differently depending on whether the corresponding characters are
equal or not).

If T (n) is the time that it takes to compute the solution of the problem, our goal is to compute
the solution optimally in time Tp(n) = O(T (n)/p). There are two main aspects that affect the
speedup factor:

1. The amount of parallelism implicit in the DAG. As stated earlier, the dependency
graph of the dynamic programming algorithm can affect the amount of parallelism. If most
antichains have size smaller than p, then our method cannot obtain much parallelism (e.g.,
consider the extreme case of having a path as the dependency graph). For most dynamic
programming algorithms of dimension more than one, antichains are usually large enough
to support parallelism. For the two examples above, the antichains are diagonals and as we
have p = O(log n), most antichains have size larger than p.

2. The slowdown from simultaneous attempts to update a vertex counter. Observe
that updating the counters of the neighbours of a vertex cannot always be done in parallel in
a CREW model. Hence, we use a standard simulation technique to obtain CRCW behaviour
on a CREW PRAM with a log p slowdown factor [Fich et al., 1988].

Ignoring overheads for simultaneous lookups as described above, our strategy achieves a p-fold
speedup over the sequential dynamic programming algorithms for the matrix chain multiplication
and longest common subsequence problems. In the case of matrix chain multiplication, the total
number of vertices in the DAG is Θ(n2) and its depth is Θ(n). Since the value associated with
each vertex can be computed in O(n) time, which is also the time it takes to update counters of
outgoing neighbours, the total work is O(n3) and the critical path of the computation takes O(n2)
time. Since the LoPRAM scheduler is greedy, by Lemma 2.2 the parallel time of Algorithm 3.1
is Tp(n) = O(n3/p + n2), which is for p = O(log n) is O(n3/p), and thus we achieve a p-fold
speedup over the Θ(n3) time sequential dynamic programming algorithm. Note that this parallel
algorithm is not work-optimal, as there exists an O(n log n) time sequential algorithm for this
problem [Hu and Shing, 1982, 1984].

Similarly, the DAG corresponding to Recurrence 3.2.7 for the LCS problem has Θ(n2) vertices
and Θ(n) depth (for two strings of length Θ(n) each). As each vertex can be computed in constant
time, the parallel time of Algorithm 3.1 in this case is Tp(n) = O(n2/p + n) = O(n2/p), which
is a again a p-fold speedup. This is not work-optimal, however, as there exists an O(n2/ log n)
algorithm for LCS [Masek and Paterson, 1980] (in the case in which sequences are drawn from a
set of bounded size [Cormen et al., 2001]). In Section 5.3.4 in Chapter 5 we use ideas of this faster
LCS algorithm to obtain a parallel algorithm for this problem in the Ultra-Wide Word model.

79

Parallel Memoization

Memoization is a strategy to solve problems that have a similar recursive decomposition as in
Equation (3.2.5), but in which the execution of the algorithm is carried out recursively in a top-
down fashion. It differs from usual divide-and-conquer recursive algorithms in that the first time
each subproblem is solved, its result is stored in order to avoid further computations of the same
result. Initially, all the subproblems contain a value that indicates that the solution has not yet
been computed. Before a subproblem is solved, its entry is looked up in the structure. If the
entry has a previously computed value, this value is used and no further computation for this
subproblem is carried out. Otherwise, the subproblem is solved, and the solution is stored in the
structure.

The parallelization of an algorithm that uses memoization is similar to the one introduced
earlier on for divide-and-conquer algorithms: each recursive call is assigned to a different pal-
thread, with the difference that threads might return immediately a previously computed value,
or wait until a value being computed by another thread becomes available. Suppose that a thread
t is created to compute a value M [x]. We have three cases:

• If M [x] has already been computed by another thread, then t returns this value.

• If M [x] has not been computed and its computation has not been initiated by another
thread, then t records M [x] as “in progress” and proceeds to compute the value. If M [x]
corresponds to a base case, then the value is computed and returned. Otherwise, let
M [y1], . . . ,M [yr] be the values that M [x] depends on. Thread t launches a pal-thread
for each of these values and enters a wait state, becoming ready again when all its children
are done.

• If M [x] is not present but recorded as already in progress by another thread, t registers a
notify condition on solution and blocks in non-busy wait, so the processor is now free to
serve another pal-thread. Once the solution is available, the thread is ready and resumes
execution as determined by the scheduler.

Note that with this strategy there is no possibility of deadlock, as dependencies between
threads correspond to dependencies in the computational DAG of the corresponding dynamic
program, which is cycle-free.

Probes to test if a solution of a subproblem is available or in progress can be implemented with
atomic update operations to a shared status variable. Note that, unlike the bottom-up approach
that we described previously, there is no overhead factor due to simultaneous memory accesses,
as once the status of a subproblem is set to available or in progress, the rest of the accesses by
simultaneous threads are read-only.

As before, the speedup factor depends on the inherent parallelism of the dependency graph
of the problem.

80

10

100

1000

10000

100000

100000 1e+06 1e+07 1e+08

tim
e

[s
ec

on
ds

]

n

Mergesort times

1 core
2 core
3 core
4 core

1 core seq
0

0.5

1

1.5

2

2.5

3

3.5

4

100000 1e+06 1e+07 1e+08

sp
ee

du
p

n

Mergesort speedup

1 core
2 core
3 core
4 core

Figure 3.4: Left: mergesort times for randomly generated inputs with sizes from 218 to 227. For each
input size the time shown is the average of 25 runs on different inputs. Right: Speedup with respect to
the sequential execution.

3.3 Experiments

We implemented a parallel scheduler for the LoPRAM model as described in Section 3.1.1 and
tested it with two implementations of divide-and-conquer algorithms: mergesort and Strassen’s
matrix multiplication. The parallel implementations of these algorithms are essentially the se-
quential ones with pal-threads for recursive calls.

The algorithms were implemented in C++ with MFC (Microsoft Foundation Class), and the
experiments were run on an Intel R© CoreTM 2 Extreme CPU Q6850 (4 cores) at 3 GHz, with
8 Mb Cache and 4 Gb RAM running Windows VistaTM Business 64-bit. Figures 3.4 and 3.5 show
the times of the parallel execution of mergesort and matrix multiplication, respectively, with 1,
2, 3, and 4 cores, as well as the times of the sequential recursive implementations. The speedup
with respect to the sequential times are shown on the right. The parallel execution with one core
is an execution with the LoPRAM scheduler with 1 as the parameter for the number of available
processors.

We observe that for matrix multiplication we obtain nearly optimal p-fold speedups over the
sequential implementation, while for mergesort speedups are slightly lower than p. The difference
in performance between the two algorithms can be explained in that as the merging phase of
matrix multiplication is more expensive than the one of mergesort (Θ(n2) vs Θ(n)), the overhead
due to the parallel scheduling of recursive calls is less significant for the first algorithm, leading
to almost optimal speedup in all instances. In addition, the fact that for mergesort the parallel
execution with one core is faster than the sequential execution is explained in that the operating
system schedules the sequential execution across all four cores of the system, incurring in an extra
cost for context switching when the computation is continued in another core (which includes

81

1

10

100

1000

100 1000

tim
e

[s
ec

on
ds

]

n

Matrix Multiplication times

1 core
2 core
3 core
4 core

1 core seq

0

1

2

3

4

5

100 1000

sp
ee

du
p

n

Matrix Multiplication speedup

1 core
2 core
3 core
4 core

Figure 3.5: Left: Matrix multiplication times for randomly generated inputs with sizes from 64 to 4096.
For each input size the time shown is the average of 5 runs on different inputs. Right: Speedup with
respect to the sequential execution.

the cost associated with the reduced reuse of data in private caches). In contrast, the LoPRAM
implementation with p = 1 pins the execution on one physical core.

These experiments show that straightforward modifications to these sequential divide-and-
conquer algorithms are sufficient, at least in principle, to obtain significant and nearly optimal
speedups in the LoPRAM model.

We also implemented the generic dynamic programming strategy as described in Algorithm 3.1
and used it to solve instances of the matrix chain multiplication problem. Recall that according to
the dynamic programming recurrence for this problem (Equation 3.2.6), the outgoing neighbours
of the subproblem M [i, j] in the corresponding dependency graph are the subproblems M [i, k] for
j < k ≤ n and M [k, j] for 1 < k ≤ j. Thus, a vertex can have Θ(n) neighbours, which means that
updating the counters of a vertex’s neighbours in the computeVertex method in Algorithm 3.1
can take Ω(n) time. Moreover, each counter update should be done atomically in order to avoid
concurrency issues when two or more threads try to update the same counter. Since such operation
requires a usually expensive system call, the time spent updating counters of neighbours becomes
significant.

In the case of this particular problem, we can simplify this operation by taking advantage
of the structure of the dependency graph. Consider a vertex v representing the value of the
subproblem M [i, j]. All incoming edges of v originate in vertices corresponding to entries R =
{M [i, k], k < i}, or C = {M [k, j], k < j}. Since this holds as well for any entry in R and C, the
vertices corresponding to each set R and C in the dependency graph form a chain. This implies
that when processing entries M [i, j− 1] and M [i− 1, j], all entries in R and C have already been
processed, and thus after the values of M [i, j− 1] and M [i− 1, j] have been computed, all entries
on which M [i, j] depends have been computed. Therefore, when processing a vertex v in the

82

0

50

100

150

200

250

300

350

400

450

500

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

tim
e

[s
ec

on
ds

]

number of matrices

Matrix Chain Multiplication times

1 core
2 core
3 core
4 core

1 core seq

0

0.5

1

1.5

2

2.5

3

3.5

4

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

sp
ee

du
p

number of matrices

Matrix Chain Multiplication speedup

1 core
2 core
3 core
4 core

Figure 3.6: Left: Matrix chain multiplication times as a function of the number of matrices in the input.
For each input size the time shown is the average of 10 runs on different inputs. Right: Speedup with
respect to the sequential execution.

graph, we do not need to consider all dependencies in the same row or column but only the ones
originating from the vertices in the immediately preceding diagonal antichain. This allows us to
reduce the size of the outgoing neighbours of each vertex to at most 2 (vertices above and to
the right in Figure 3.3), which reduces the time required to update counters. We still require all
values in R and C in order to compute the value of M [i, j], and thus computing each value still
takes Θ(n) time for most cells. However, the reduction in both the number of system calls and
the slowdown due to simultaneous attempts to update counters leads to significant improvements
in running time compared to the original generic solution. The times and speedups obtained for
the simplified dynamic programming solution for this problem are shown in Figure 3.6. Once
again, we obtained nearly optimal speedups with respect to the original dynamic programming
algorithm with a simple strategy applicable to large class of dynamic programming algorithms.

3.4 Conclusions

We introduced the LoPRAM, a new model for parallel computation that is faithful to current
multi-core architectures, avoids many of the pitfalls of the previous PRAM model, namely diffi-
culty of programming and expensive processor communication infrastructure, and allows for sig-
nificant classes of problems to be parallelized with little effort. Our model supports a high level
abstraction that simplifies the design and analysis of parallel programs. We provided LoPRAM
parallel algorithms with optimal speedup for divide-and-conquer and dynamic programming prob-
lems by applying simple modifications of the corresponding sequential algorithms. These serve
as starting examples of algorithm design and analysis in the LoPRAM model and give an insight
of the techniques for parallelization that we seek to apply to a wider set of problems.

83

Future directions of research include refining the model by considering, for example, cache
complexity and processor communication, as well as finding other families of algorithms for which
we can apply general parallelization techniques to obtain simple parallel algorithms with p-fold
speedups. We believe that the assumption p = O(log n) can significantly aid this process which,
given the low degree of parallelism in multi-cores, would contribute to the development of appli-
cations that take full advantage of the parallelism offered by the architecture.

84

Chapter 4

On the Sublinear Processor Gap for
Parallel Architectures

In Chapter 3 we introduced a model of low-degree parallelism in multi-cores, showing the benefits
of assuming a small number of processors. In this chapter we explore the influence of the number
of processors further in parallel computation in general, reporting an observed gap in the behavior
of parallel architectures depending on the number of processors. This gap appears repeatedly
in both empirical cases, when studying practical aspects of architecture design and program
implementation as well as in theoretical instances when studying the behaviour of various parallel
algorithms.

There is a vast experience in the study and development of algorithms for the PRAM archi-
tecture. In this case, the standard assumption (though often unstated) was that the number of
processors p was linear on the size of the input, i.e., p = Θ(n) (see, e.g., [Greenlaw et al., 1995]
for a thorough discussion). Indeed, the definition of the class NC, which is often equated with
the class of problems that can be efficiently parallelized on a PRAM, allows for up to polyno-
mially many processors. Hence, algorithms were designed to handle the case when p = Θ(n) or
p = Θ(nk) for k ≥ 1 and if the actual number of processors available was lower, this could readily
be handled by Brent’s Lemma using a suitable scheduler [Brent, 1974; Bender and Phillips, 2007]
(see Section 2.3.2). A fruitful theory was developed under these assumptions, and papers in which
p = o(n) were relatively rare.

Our results1 We analyze and report on the influence of the assumed number of processors
on several aspects of the performance of various types of parallel architectures. Because of
its current prevalence, we focus especially on multi-core architectures, which actually feature a

1Results in this chapter appeared in [López-Ortiz and Salinger, 2013].

85

Processor count Θ(n) Θ(nα) Θ(log n)

Merge sort 7 7 3

Master theorem
-Case 1 7 3 3

-Case 2 7 3 3

-Case 3 7 7 7

Amdahl’s law 7 3 (if α ≤ 1/2) 3

Collision 7 3 (if α ≤ 1/2) 3

Buffering 7 3 3

Network size 7 3 (if α� 1/2) 3

TM simulation 7 7 3

Table 4.1: Optimal performance for each case according to processor count, with 0 < α < 1.

relatively small number of processors, and hence advantages that can be identified for parallel
systems with a small number of processor count can lead to benefits in parallel computation
in these architectures. However, we also report on aspects of parallel computation that are
relevant in general in other architectures, such as memory collisions, communication in distributed
architectures, and network sizes, as well as in more theoretical aspects like complexity classes and
simulations of other models. Our observations suggest the existence of fundamental differences
in the qualities of parallel systems with sublinear and linear number of processors, and that
exploiting the advantages of the former can lead to more practical and conceptually simpler
designs of both parallel architectures and algorithms, ultimately increasing their adoption and
reducing development costs. We present an overview of arguments and observations in Section 4.1,
followed by the detailed exposition of arguments in Section 4.2. Section 4.3 presents concluding
remarks for this chapter.

4.1 Overview of Arguments

In this section we briefly list the arguments in favour of considering a limited degree of parallelism.
We emphasize that we did not start from the outset with this goal, but rather we sought to develop
algorithms and tools (both practical and theoretical) for current multi-core architectures. The
observations within are derived from both theoretical investigations and practical experiences in
which time and time again we found that there seems to be a qualitative difference between a
model with O(log(n)) processors and one with Θ(n) processors, with, surprisingly, the advantage
being for the weaker, i.e., O(log(n)) model. Table 4.1 shows a summary of our observations
for the considered processor counts. There is strong evidence of a sublinear cliff, beyond which
development and implementation of efficient PRAM algorithms for many problems is substantially

86

harder if not completely impossible, unless P = NC. In several instances among the evidence
observed, the phenomenon had been observed earlier by others [Greenlaw et al., 1995; Kruskal
et al., 1990]. We now list our arguments briefly, before we expand on each of them individually
in the next section.

1. The number of cores in current multi-core processors is nearly a constant, but first, if it
is truly a constant, there is not much we can say about parallel speedups, and second, it
seems to be steadily though slowly growing.

2. In analogous fashion to the word-RAM, the number of bits in a word could be an arbitrary
w but really it is most likely Θ(log n), since it is also an index into memory, and memory
is usually polynomial on n.

3. The probability of collision on a memory access is only acceptably low for up to O(
√
n)

processors.

4. The number of interconnects on a CPU network is prohibitively large for a large number of
processors.

5. Serialization at the network end is too costly, i.e., if more than two processors want to talk
to a single processor at the same time, this processor has to listen to them serially.

6. There are natural log n and nε barriers in the complexity of designing algorithms.

7. Efficient cache performance requires bounded number of processors in terms of cache sizes,
which are always assumed to be below n, and often as well in terms of the ratio of shared
and private cache sizes, which is well below 100.

8. We define the class of problems which can be sped up using a logarithmic number of
processors and show that it contains ENC and EP [Kruskal et al., 1990] and, furthermore,
this containment is strict.

9. For Turing machines we can automatically increase performance when simulating with a
parallel computer using random access memories, with natural constraints limiting the
speedup to a Θ(log n) factor.

10. Amdahl’s law suggests that programs can only noticeably benefit from parallelism if the
number of processors is proportional to the relative difference between the execution time
of the serial and parallel portions of a program.

87

4.2 Exposition

In this section we briefly expand on each of the points above. We aim to keep each argument as
short as possible, since the entirety of the case is more important than any individual point.

4.2.1 Limited Parallelism

In principle, it is possible to build a computer with an arbitrary degree of parallelism. In practice,
PRAMs algorithms and architectures focused on Θ(n)-processor architectures, while relying on
Brent’s Lemma for cases when the number of processors was below that. In contrast, multi-core
processors have aimed for a much smaller number of cores. In principle, this number could be
modeled as a constant. However, this is unrealistic as the number of cores continues to grow—
albeit slowly—with desktop computers having transitioned over the last decade from single core
to dual core to quad core and presently eight cores and sixteen cores already shipping at the higher
end of the spectrum. Additionally, it has been observed that generally speaking larger inputs
justify larger investments in RAM and CPU capacity, so a function of n is much more reflective
of real life constraints. This suggests that the number of cores is a function which grows slowly
on the input size n, since there is a high processor cost. Let P(n) denote this function. Natural
candidates for P(n) are Θ(log n) and Θ(nα) for α < 1, though there are other possibilities. Over
the next subsections we shall consider various candidates for P(n).

4.2.2 Natural Constraints

The ability to index memory using a computer word as an address in a program’s virtual memory
suggests that the size of the word is w = Ω(logM), where M is the memory size, though this
does not necessarily need to be the case2. Memory itself is usually a polynomial function of the
input size, i.e., M = Θ(nk) for some k ≥ 1, with k = 1 being a common value. Substituting
M = Θ(nk) in w = Ω(logM) gives w = Ω(log n). This is assumed in the word-RAM model, in
order for algorithms to be able to refer to any input element. A common assumption in word-
RAM papers is actually w ≈ log n, which enables constant-time lookup-table implementations
of some functions on words while keeping table sizes sublinear (see, e.g., [Munro, 1996]), and
restricts the size of pointers in succinct data structures that could otherwise increase their space
usage (see, e.g., [Bose et al., 2009]).

Hence, the word size, which in the early days of computing was treated as a constant, namely 4
or 8 bits, became better understood as in fact proportional to the logarithm of the input size, that

2In practice, there have been architectures in which the memory size was strictly greater than 2w. Currently, in
the Intel architecture the size w places a limit on the largest addressable space, but this has not always been the
case (e.g., the 8088 processor).

88

is Θ(log n). Similarly, in modern multi-core computers, the number of processors has remained
relatively bounded (in contrast to commercial PRAMs or GPUs which support anywhere from
hundreds to thousands of processors). This relatively slow growth (at least as compared to most
other usually exponential growing performance hardware indices) on the number of processors
can thus be best modeled as log n in similar fashion to the word size.

4.2.3 Write Conflicts

We now analyze memory contention between threads as a function of the number of processors,
when write memory accesses are assumed to be distributed uniformly at random among memory
cells.

Consider a multi-threaded server application receiving requests from several clients simul-
taneously. Assume that these requests are served by parallel threads running on p processors
that share the system’s memory. Such an application is likely to have several portions of the
computation accessing shared data such as database tables, buffers, and other shared data struc-
tures. Write access to shared data involves synchronization to avoid race conditions, usually
implemented by synchronization primitives such as barriers and locks. In general, regardless of
how synchronization is implemented, a simultaneous memory access to the same memory cell
involves an overhead, either due to serialization or data invalidation. Let us call a simultaneous
access by a pair of threads a collision. We define a collision in terms of pairs of threads. Thus, a
simultaneous access to the same memory cell by t threads is counted as

(
t
2

)
collisions.

We are interested in analyzing the influence of the number of processors on the number of
collisions during a period of computation. The uncertainty added by the timing of client requests
suggests that write access to shared memory can be modeled as a random process with a certain
probability of collision. A crude but reasonable approximation is to model the memory accesses
of each process as uniformly distributed over memory cells at each step.

We investigate the expected number of collisions for p threads accessing m memory cells,
uniformly at random at each timestep of a period of service time. Clearly, the smaller the
number of processors the lower the probability of collision. The question is for what value of p
as a function of m does this probability become negligible. Note that in general the size of the
memory is usually modeled as a growing function of a program’s input size, with m = O(nk)
being a common assumption. Thus, it is reasonable to analyze the number of collisions as m
grows.

This reduces to a balls-and-bins scenario (see, e.g., [Feller, 1968]). Let us first consider the
total number of overall collisions in one step. Let C be a random variable denoting this number.
The probability that two memory accesses are to the same cell is 1/m. Since there are

(
p
2

)
pairs

of memory accesses, the expected number of collisions in one step is E[C] = p(p−1)
2m . As m grows,

89

this expression tends to 0 if p = o(
√
m), tends to infinity if p = ω(

√
m), and it converges to a

positive constant for p = Θ(
√
m). Figure 4.1 (left) shows the expected number of collisions as m

grows for various processor counts.

Now we consider an alternative expression for memory access conflicts, namely the number
of cells involved in collisions at each step. Thus, if three or more accesses are to the same cell,
the event counts as one conflict. Let X be a random variable denoting the number of memory
cells which suffer a collision when there are p simultaneous memory accesses. The probability of
a memory cell not being accessed is (1− 1/m)p, and thus the expected number of accessed cells
is m −m(1 − 1/m)p. Then, for p accesses the expected number of cells for which there is more
than one access is E[X] = p−m+m (1− 1/m)p .

Assume that p = mα with α ≤ 1. The expression above is then

E[X] ≈ mα −m+me−m
α−1

.

Using the Taylor expansion of e−m
α−1

we obtain

E[X] ≈ ma −m+m

(
1−mα−1 +

m2(α−1)

2
+ l.o.

)

≈ m2α−1

2
.

Again, when m tends to infinity, the above tends to 0, 1/2, or diverges if α is less, equal, or
greater than 1/2, and thus the threshold again is for p = Θ(

√
m) (see Figure 4.1 (right)). Clearly

the smaller p is, the fewer the expected the collisions.

Case 1. If p = m, then E[X] = m/e, and E[C] = (m− 1)/2. Thus, in each step about 37%
of memory cells have more than one processor trying to access them and about half of the
accesses result in collisions.

Case 2. If p =
√
m, then on average over the execution of the program there is a collision

every two steps.

Case 3. If p = o(
√
m), the expected number of collisions goes to zero as m grows.

Suppose that every instruction takes unit time if there is no collision and s ≥ 1 units of
time otherwise. The expected number of collisions per processor per step is (p−1)

2m , and thus the

expected slowdown in performance due to collisions is s(p−1)
2m , which is negligible for p = o(m/s).

90

2^-30

2^-20

2^-10

2^0

2^10

2^20

2^30

2^40

2^5 2^10 2^15 2^20 2^25 2^30

co
lli

si
on

s

m

Expected collisions per step

p=m
p=m^(3/4)
p=m^(1/2)
p=m^(1/4)
p=log(m)

2^-30

2^-20

2^-10

2^0

2^10

2^20

2^30

2^40

2^5 2^10 2^15 2^20 2^25 2^30

ce
lls

m

Expected cells involved in collisions per step

p=m
p=m^(3/4)
p=m^(1/2)
p=m^(1/4)
p=log(m)

Figure 4.1: Expected number of collisions per step (left) and number of memory cells involved in collisions
(right) for various processor counts as a function of the memory size m (in logarithmic scale).

4.2.4 Processor Communication Network

Traditionally, parallel computers use either shared memory or a processor communication net-
work (or both) to exchange information between the various processing units. The advantage
of shared memory is that no additional hardware is required for it; the disadvantages are issues
of synchronization and memory contention. Hence, a widely explored alternative is the use of
an ad-hoc processor communication network connecting the processors. In general, from the
perspective of performance, a full communication network is the preferable network architecture.
However, when the number of processors is assumed to be very large this is unfeasible. For ex-
ample, for the case of Θ(n)-processors of many commercial PRAM implementations, the number
of interconnects required would have been Θ(n2) which is prohibitive. Thus there was exten-
sive study of alternative network topologies which reduced the complexity of the network while
attempting to minimize the penalty in performance derived from the smaller network. Among
the most successful such architectures we have the hypercube, the butterfly, and the torus (see
Section 2.3.3).

We observe now that full processor communication network becomes a realistic possibility if
the number of processors is O(log n) or even possibly O(nα) for some α� 1/2. For example, for
a modest (by present standards) input size of n = 227 = 134, 217, 728, even n1/2 processors would

require an impossible number of interconnects on the full graph (
(√

n
2

)
≈ 6.7× 107). A complete

network of log n = 27 processors, on the other hand, would require 351 interconnects, which are
well within the realm of current architectures.

91

4.2.5 Buffer Overflow

Aside from issues of network topology, in practice it is natural to assume that each processor in
a communication network can handle at most a small constant number of messages at once. If
more than a constant number of processors send messages to a single processor, said messages
would queue at the receiving end for further processing. In this section we consider a natural
communication model in which in each instruction cycle a processor may send a message to at
most one other processor. In practice, depending on the specific application the probability of
collision may range anywhere from zero for the execution of independent threads to one for,
say, a master processor serializing requests to some shared lock. As a compromise, we model
again this process as if the processors chose their destination uniformly at random. Let p be the
number of processors; then the maximum number of collisions observed at the most loaded buffer
is (ln p/ ln ln p)(1 + o(1)) with high probability [Raab and Steger, 1998]. For input sizes n > 222,
buffer handling with p = n can introduce delays of about twice as many instruction cycles than
with p = log n, with the difference growing unboundedly (albeit slowly) for larger input sizes.

4.2.6 Divide-and-Conquer Algorithms

Divide-and-Conquer algorithms are naturally suited for parallelization. Instances at the same
level of the recursion tree are independent and can be scheduled to be executed in parallel. This
is especially well suited for multi-threaded systems, as each recursive call can simply be handled
by a separate thread. This strategy requires no parallelization of the divide and combine phases
of the recursion, which can be executed by each thread just as in the sequential algorithm. We
showed in Chapter 3 that this easy parallelization yields optimal speedups for a large class of
divide-and-conquer algorithms, but only for a bounded number of processors. Thus, in a system
with a logarithmic or sublinear number of processors, obtaining the maximum possible speedup
for this class of algorithms is simple and can be realized with a general strategy that is independent
of the algorithm itself.

Consider a divide-and-conquer algorithm whose time complexity can be written as T (n) =
aT (n/b)+f(n). The master theorem [Cormen et al., 2001] yields the time bounds for a sequential
execution of such an algorithm. A parallel version of this theorem can be obtained by analyzing
the parallel time Tp(n) of an execution in which recursive calls are executed in parallel and
scheduled with the LoPRAM scheduler or work stealing [Burton and Sleep, 1981] with a bounded
number of processors (see Section 3.2.1):

Tp(n) =

O(T (n)/p), if f(n) = O(nlogb(a)−ε) and p = O(nε) (Case 1)
O(T (n)/p), if f(n) = Θ(nlogb a) and p = O(log n) (Case 2)

Θ(f(n)), if f(n) = Ω(nlogb(a)+ε) and af(n/b) ≤ cf(n), for some c < 1 (Case 3)
(4.2.1)

92

Optimal speedups are achieved in Cases 1 and 2 only for p = O(nε) for ε > 0, and p = O(log n),
respectively. In Case 3, the time is dominated by the sequential divide and conquer time f(n) at
the top of the recursion.

We note that it is possible to obtain optimal speedups with larger numbers of processors for
many divide-and-conquer algorithms. However, this invariably requires parallelizing the divide
and combine phases of the algorithm, as otherwise the sequential time f(n) of the divide and
combine phases dominates the parallel time. In fact, as shown in Section 3.2.1, if an optimal
parallel algorithm for the divide and combination phases is known, then all cases above yield
optimal speedup, and the bounds of the processors can be relaxed. Then Case 3 becomes:

Tp(n) = Θ(f(n)/p), if f(n) = Ω(nlogb(a)+ε) and af(n/b) ≤ cf(n), for some c < 1

Now Case 1 requires p = O
(
nlogb a

logn

)
, Case 2 requires p = O

(
nlogb a

)
, while Case 3 requires

p = O(f(n)/ log n).

The result of Equation (4.2.1) shows that for a system with a small number of processors the
implementation of parallel divide-and-conquer algorithms that achieve the full speedup offered
by the architecture is simple and can be implemented without the unnecessary complexity of
implementing specific parallel algorithms for the divide and combine phases of the algorithms.

When considering cache performance of divide-and-conquer algorithms, a bounded number
of processors can also be advantageous. Blelloch et al. [2008] show that the class of hierar-
chical divide-and-conquer algorithms —algorithms in which the divide and combine phases can
also be implemented as divide-and-conquer algorithms— can be parallelized to obtain optimal
speedups and good cache performance when scheduled with a Controlled-PDF scheduler (see Sec-
tion 2.8.2). While a Brent’s Lemma type of implementation of some of the algorithms in [Blelloch
et al., 2008] can achieve optimal speedups for a large number of processors (e.g., matrix addition
and cache oblivious matrix multiplication algorithms can both be sped up optimally up to n2

processors) [Blelloch et al., 2008], the optimal speedup and cache performance bounds under the
Controlled-PDF scheduler is only achieved for a much smaller number of processors, bounded by
the ratio between shared and private cache sizes, and even smaller in some cases, as we shall see
in the next section.

4.2.7 Cache Imposed Bounds

Cache contention is a key factor in the efficiency of multi-core systems. Various multi-core
cache models have been proposed which focus on algorithms and schedulers with provable cache
performance. We describe some of these models in more detail in Section 2.8.2. Many of the results
involving shared and private caches performance require bounds on the number of processors
related to the size of the input and/or to the relative sizes of private and shared caches.

93

The Parallel External Memory (PEM) model [Arge et al., 2008] models p processors, each
with a private cache of size M , partitioned in blocks of size B. A sorting algorithm given in this
model is asymptotically optimal for the I/O bounds for at most p ≤ n/B2 processors, and it is
actually proven that p ≤ n/(B logB) is an upper bound for optimal processor utilization for any
sorting algorithm in the PEM model [Arge et al., 2008]. This algorithm is used in further results
in the model for graph and geometry problems [Arge et al., 2010; Ajwani et al., 2010, 2011].
Thus the assumption that p ≤ n/B2 is carried on to these results as well, some of which actually
require p ≤ n/(B log n) and even p ≤ n

B2 logB log(t) n
, where log(t) n denotes the composition of t

log functions, and t is a constant.

Shared cache performance is studied in [Blelloch and Gibbons, 2004], which compares the
number of cache misses of a multi-threaded computation running on a system with p processors
and shared cache of size Cp to those of a sequential computation with a private cache of size C1.
It is shown that under the PDF-scheduler [Blelloch et al., 1999], the parallel number of misses
is at most the sequential one if Cp ≥ C1 + pd, where d is the critical path of the computation.
This implies that p ≤ (Cp − C1)/d, which is less than n (as otherwise all the input would fit in
the cache) and is usually sublinear, as d is rarely constant and is Ω(log n) for many algorithms.
Thus, for many algorithms the bound on the parallel misses holds for p = O(n/ log n).

As mentioned in Section 4.2.6, Blelloch et al. [2008] study hierarchical divide-and-conquer
algorithms in a multi-core cache model of p processors with private L1 caches of size C1 and a
shared L2 cache of size C2. An assumption of the model is that p ≤ C2

C1
� n, since the input

size is assumed not to fit in L2. It is shown that under a Controlled-PDF scheduler, parallel
implementations achieve optimal speedup and cache complexity within constant factors of the
sequential cache complexity for a class of hierarchical divide-and-conquer algorithms. Optimality
for some algorithms, such as Strassen’s matrix multiplication and associative matrix inversion

even require p ≤ (C2/C1)
1

1+ε [Blelloch et al., 2008].

Cache efficient dynamic programming algorithms have been designed in this multi-core model
with the same p ≤ C2

C1
assumption [Chowdhury and Ramachandran, 2008], as well as in a shared

cache model with p ≤ C2/B, where B is the block size. Thus, although the time complexity of
parallel dynamic programming allows a large number of processors for optimal speedups (e.g.,
Tp = O(n3/p+n) for Gaussian elimination paradigm problems, which is optimal for p ≤ n2), the
efficiency in cache performance restricts the level of parallelism.

Observe that presently the ratio between L2 shared cache and private L1 cache is in the order
of 4 to 100 depending on the specific processor architecture.

4.2.8 The Class E(p(n))

The class NC can be defined as the class of problems which can be solved in polylogarithmic time
using polynomially many processors (see Section 2.3.6). It is believed that NC 6= P and hence

94

that there are known problems which do not admit a solution in time O(logk n), for any k ≥ 1. In
our case we are interested in the study of problems which can be sped up using O(log n) or O(nα)
processors for α < 1. Kruskal et al. [1990] introduced the classes ENC and EP which encode the
classes of problems that allow optimal speed up (up to constant factors) using polynomially many
processors on a CRCW PRAM. The class ENC has polylogarithmic running time, while the class
EP has polynomial running time. They also define the related classes SNC, ANC, SP , and AP ,
which are analogous to ENC and EP in terms of the required running times but allow for some
inefficiency. In general, one could introduce the class C(p(n), S(n)) as the class of problems that
allow a speedup of S(n) with p(n) processors. Thus, following the notation in [Kruskal et al.,
1990], we define the class E(p(n)) = C(p(n), p(n)), which is the class of problems that can be
solved using O(p(n)) processors in time O(T (n)/p(n)), where T (n) is the running time of the
best sequential solution to the problem. We are particularly interested in the classes E(log n)
and E(nα) for α < 1 3.

The class ENC is a sharpening of the well known class NC. Recall that the class NC requires
maximal speedup down to polylogarithmic time even at the cost of a polynomial amount of
inefficiency (i.e., the ratio between parallel and sequential work). In contrast, ENC requires the
same speedup but bounds the inefficiency to a constant factor.

The class E(log n) bounds the inefficiency to a constant which implies a speed up of Θ(log n)
on the sequential solution to the problem. By Brent’s Lemma we can show that E(log n) includes
the problems in classes ENC and EP . Since we investigate problems that are most worth
parallelizing, we restrict this inclusion to problems with at least sequential linear time.

Theorem 4.1 Let Π be a problem with sequential time t(n) = Ω(n). Then,

1. Π ∈ ENC ⇒ Π ∈ E(log n)

2. Π ∈ EP ⇒ Π ∈ E(log n)

Proof: Since ENC ⊆ EP [Kruskal et al., 1990], statement (2) implies (1). Let us show statement
(2). Let Π ∈ EP be a problem with sequential running time t(n). Let A be an algorithm
that solves Π in time O(t(n)ε) with p processors, where ε < 1 [Kruskal et al., 1990]. Since
A is work-optimal, the total work done by A is O(t(n)). Then, by Brent’s Lemma [Brent,
1974] (see Section 2.3.2), we can simulate A in T ′p(n) = O(t(n)/p′ + t(n)ε) time with p′ ≤ p
processors. The simulation achieves optimal speedup for any p′ = O(t(n)1−ε). Since for E(log n)
we have p′ = O(log n), which is O(t(n)1−ε) for any t(n) = Ω((log n)1/(1−ε)) (and in particular for
t(n) = Ω(n)), then Π ∈ E(log n).

3For consistency in the class comparisons, we assume a CRCW PRAM as in [Kruskal et al., 1990], though
these classes can be defined for other PRAM types (EREW, CREW) as well as for asynchronous models (such as
multi-cores).

95

The reverse is not the case, i.e., not all problems that are in E(log n) are in ENC, unless
P = NC: there are known P -complete problems which allow optimal speedup using a polynomial
number of processors [Fujiwara et al., 2000; Vitter and Simons, 1986], and thus they are in
EP [Kruskal et al., 1990] (and hence in E(log n)). If any such problem is in ENC, this would
imply P = NC. We conjecture that the same is the case for E(log n) and EP .

This gives a theoretical separation between the problems that can be sped up optimally using
polynomially many processors and those that can be sped up using a logarithmic number of
processors.

Similarly, E(nα) bounds the inefficiency to a constant which implies a speed up of Θ(nα) on
the sequential solution to the problem. We show that E(nα) includes most problems (with at
least linear time sequential complexity) in ENC. For the same reasons described above, not all
problems in E(nα) are in ENC, for any α < 1.

Theorem 4.2 Let Π be a problem with sequential time t(n) = Ω(n). Then, Π ∈ ENC ⇒ Π ∈
E(nα).

Proof: The proof is analogous to the proof of Theorem 4.1. Let Π ∈ ENC and let A be an
algorithm that solves Π in time O(logk(t(n))) with p processors, for some k ≥ 1. Since A is
work-optimal the total work done by A is O(t(n)). Then, by Brent’s Lemma, we can simulate A
in T ′p(n) = O(t(n)/p′ + logk(t(n))) time with p′ ≤ p processors. The simulation achieves optimal

speedup for any p′ = O(t(n)/ logk(t(n))). Since this holds for p′ = O(nα) with α < 1 and any
t(n) = Ω(n), it follows that Π ∈ E(nα).

4.2.9 Parallelism in Turing Machine Simulations

In Section 4.2.2 we argued that there are natural constraints in the amount of inherent parallelism
of computing models. In this section we extend these arguments to show the limitations of the
speedup that can be obtained from the Four Russians technique [Arlazarov et al., 1970] when
used for Turing machine simulations4.

Hopcroft et al. [1975] showed that a deterministic Turing machine M running in time T (n)
can be simulated in a RAM in time O(T (n)/ log T (n)) by precomputing and storing the result of
the computations of M for Θ(log T (n)) steps starting from every possible configuration. Then, M
can be simulated Θ(log T (n)) steps at a time by successive lookups to the precomputed table. A
similar technique was used by Dymond and Tompa [1983] to show that a Turing machine running
in T (n) time can be simulated by a PRAM in time O(

√
T (n)) using an exponential number of

processors and memory addressing on words of size O(
√
T (n)). We describe a simulation by a

4See Section 5.3.4 for a brief introduction to the Four Russians technique in the context of dynamic programming.

96

multi-core computer that combines both techniques (table lookups and parallelism), and argue
about its limitations based on realistic assumptions about the number of processors as well as
word and memory sizes.

Outline Let M be a single-tape deterministic Turing machine5 that performs T (n) computation
steps on an input of length n (and hence it always halts). Assume that M ’s alphabet is binary.
The general idea of the simulation is to treat a block of contiguous bits of M ’s tape as a word
in RAM. By precomputing M ’s resulting configuration after b steps when starting with each
possible block, we can then simulate b steps of M at a time by successively looking up the next
configuration of M from the precomputed table. Let g(n) denote the precomputation time. If
each access to the precomputed table takes constant time, then the total time of the simulation
is Tp(n) = T (n)

b(n) + g(n).

Precomputation phase Since in b steps M can only alter the contents of b cells, for a given
position within the tape we need only to consider the content of the b cells to the left and b
cells to the right of the current position in order to compute the resulting configuration after b
steps. A block configuration of M is a tuple (s,B), where s is a state, and B is a (2b + 1)-bit
string representing the contents of a segment of M ’s tape around some position of the head. For
each possible block configuration c, we store in A[c] the resulting configuration when running
M starting from c (i.e., the new state and block contents), plus information about how many
positions the head moved and in which direction. The latter is necessary to determine where the
new block should be centered in M ’s tape. A block configuration c uses |c| = 2b + 1 + d ≤ kb
bits, where d is the constant number of bits required to indicate a state of M and k is a constant.
Then there are at most 2kb starting block configurations. The resulting configuration after b steps
can be computed by direct simulation of M . Since these blocks can be computed independently
in parallel for all possible starting configurations, preprocessing takes g(n) = 2kbb/p steps using
p processors. Note that the precomputation requires M ’s specification but is independent of a
particular input.

Simulation phase Suppose that the configuration table A has already been computed and it
is stored in RAM on the multi-core machine. If the length of each configuration is smaller than
the machine’s word length, then A can be indexed by each configuration and each entry can be
accessed in constant time. In this case A can be stored as an array of configurations, indexed
by initial configuration. Given M and an input x, and starting with the initial configuration c0,
the multi-core simulates M (using one processor) by applying ci+1 = A[ci], and updating the
contents of M ’s tape at each step, until an accepting or rejecting configuration is reached. Thus,

5Although it is straightforward to extend the simulation to a k-tape Turing machine, for simplicity we consider
the single-tape case, which serves our purpose of discussing the limits in the parallelism offered by the approach.

97

the simulation completes M ’s computation in T (n)/b table lookups. The total number of steps
of the simulation, including preprocessing, is

Tp(n) =
T (n)

b
+

2kbb

p
.

Restrictions on parameters There are natural restrictions that limit the speedup that can be
achieved with the above technique: the word size, the size of table A, and the efficiency in terms
of processor use. It is usual to regard memory as a polynomial in the input size. The number
of configurations is 2kb and hence A requires that many words of memory. This implies that, for
a memory of size nr, for some r, b ≤ (r/k) log n = O(log n). Moreover, in order to be able to
access entries of A in constant time using block configurations as addresses, we require bk ≤ w,
where w is the word size. This is consistent with the common assumption w = Θ(log n) (see
Section 4.2.2). Furthermore, assume that in order to enable larger speedups we allow b = ω(log n)
and allow a table of superpolynomial size. Then, in order for the simulation time to dominate
over preprocessing we would require 2kbb/p = O(T (n)/b), and thus p ≥ nω(1)/T (n), which would
be prohibitive for any polynomial time T (n).

Note that the parallelism exploited by this approach is both in terms of the parallel compu-
tation of the table A with multiple processors and in terms of the ability to manipulate various
bits simultaneously to compute a result through a constant time table lookup. As we argue
above, the second form of parallelism can only be exploited up to the manipulation of Θ(log n)
bits. The use of various processors is only for the precomputation phase, which is embarrassingly
parallel. Thus, in principle, we could benefit from the use of a polynomial number of processors
for this approach. In fact, the larger the number of processors, the larger T (n) can be while
still having the simulation phase dominating the total time. However, the maximum speedup
factor to which the approach can lead is the size of the block b. Hence, for optimal processor
utilization, the maximum number of processors that we can use is p = b. In this case we have
that total time is Tp(n) = O(T (n)/p + 2kpp/p). For the simulation time to dominate, we then
require 2kp = O(T (n)/p), and thus p = O(log(T (n))). For any polynomial time Turing machine,
this implies p = O(log n).

We note that the arguments in this section do not preclude the existence of other approaches
that could result in optimal simulation times without the restrictions described above.

Faster recursive precomputation Finally, as a side note, we present an improvement to
the precomputation phase that leads to a smaller precomputation time and hence to a wider
range of values of T (n) for which the simulation time dominates. We achieve this by recursively
applying the same simulation on the computation of each entry of A. Let gi and bi denote the
precomputation time and block length of the i-th level simulation, respectively. Thus gm = g(n) is

98

the total precomputation time and bm = b is the block length of the final simulation as described
above. Since the computation of each entry of A can now be sped up by bm−1, we have

gm =
2kbm

p

bm
bm−1

+ gm−1,

where k is a constant such that for all i, a configuration in level i has size at most kbi. We then
set bm−i = b

2i
for all 0 ≤ i ≤ m = log b Then, bm−i/bm−i−1 = 2, which is the length of the critical

path at each recursive level. Then,

gm−i = max

{
2kbm−i+1

p
, 2

}
+ gm−i−1 = 2 ·max

{
2(2
−ikb)

p
, 1

}
+ gm−i−1

Note that 22
−ibk/p ≤ 1 for i ≥ log b+ log k − log log p. Let i? = log b+ log k − log log p. Since

g0 = 0,

gm =
m−1∑

i=0

gm−i − gm−i−1

=
2

p

i?∑

i=0

2(2
−ikb) +

m−1∑

i=i?+1

2

≤ 2

p
(2kb + i?2kb/2) + 2(log log p− log k − 1)

≤ 2kb+2

p
+ 2 log log p

Therefore, the total simulation time is now Tp(n) = O
(
T (n)
b + 2kb

p + log log p
)

. For example,

if b = (log n)/k, and p = log n, the time is Tp(n) = O
(
T (n)
logn + n

logn

)
. Without the improvement,

we would require T (n) ≥ n log n in order for the simulation to dominate, while now T (n) ≥ n is
enough.

4.2.10 Amdahl’s Law

Consider a program whose execution has a serial part that cannot be parallelized (unless P = NC)
represented by S(n) and a fully parallelizable part denoted by P (n). Then the parallel time with

99

p processors is: Tp(n) = S(n) + P (n)/p and the speedup is represented by

T1(n)

Tp(n)
=

S(n) + P (n)

S(n) + P (n)/p
.

Observe now that for p = Θ(n) we get that the parallel program is noticeably faster only if
S(n) = O(P (n)/n). For p = Θ(nα) we get that the parallel program is noticeably faster only
if S(n) = O(P (n)/nα). Lastly, for p = Θ(logn) we get that the parallel program is noticeable
faster if S(n) = O(P (n)/ log n). Observe that most practical algorithms on large data sets run
in time O(n log n) or less, with the sequential part often corresponding to I/O operations, i.e.,
reading the input. This means that the likeliest value for which one can obtain optimal speedup
corresponds to p = P (n)/S(n) which is often (though not always) log n.

4.3 Conclusions

We presented a list of theoretical arguments and practical evidence as to the existence of a
qualitative difference between the classes of problems that can be sped up with a sublinear
number of processors and those that can be sped up with polynomially many processors.

We also showed that in various specific instances, even though there are optimal algorithms
for either case, it is conceptually and practically much simpler to design an algorithm for a
sublinear number of processors. The benefits of a low processor count extend to issues of processor
communication, buffering, memory access, and cache bounds.

We introduced classes that describe the problems that allow for optimal speed up, up to
constant factors, for logarithmic and sublinear number of processors and show that they contain
a strictly larger class of problems that the PRAM equivalents introduced by Kruskal, Rudolph,
and Snir in 1990 [Kruskal et al., 1990], unless NC = P.

The discontinuities identified in behaviour and performance of parallel systems for logarithmic
and sublinear number of processors make these particular processor count functions theoretically
interesting, practically relevant, and worth of further exploration.

100

Chapter 5

Algorithms in the Ultra-Wide Word
Model

In this chapter we introduce the Ultra-Wide Word architecture and model of computation, an
alternate view of parallelism for a modern architecture in the form of an ultra-wide word processor.
This can be implemented by replacing one or more cores of a multi-core chip with a very wide
word Arithmetic Logic Unit (ALU) that can perform operations on a very large number of bits
in parallel.

The idea of executing operations on a large number of bits simultaneously has been successfully
exploited in different forms. In Very Long Instruction Word (VLIW) architectures [Fisher, 1983],
several instructions can be encoded in one wide word and executed in one single parallel instruc-
tion. Vector processors allow execution of one instruction on multiple elements simultaneously,
implementing Single-Instruction-Multiple-Data (SIMD) parallelism. This form of parallelism led
to the design of supercomputers such as the Cray architecture family [Russell, 1978], and is now
present in Graphics Processing Units (GPUs) as well as in Streaming SIMD Extensions (SSE)
extensions to scalar processors.

As CPU hardware advances, so does the model used in theory to analyze it. The increase in
word size was reflected in the word-RAM model in which algorithm performance is given as a
function of the input size n and the word size w, with the common assumption that w = Θ(log n).
In its simplest version, the word-RAM model allows the same operations of the traditional RAM
model. Algorithms in this model take advantage of bit-level parallelism through packing various
elements in one word and operating on them simultaneously (see Section 2.9). Although similar
to vector processing, the word-RAM provides more flexibility in that the layout of data in a
word depends on the algorithm, and data elements can be packed in an arbitrary way. Unlike
VLIW architectures, the Ultra-Wide Word model we propose is not concerned with the compiler

101

identifying operations which can be done in parallel but rather with achieving large speedups in
implementations of word-RAM algorithms through operations on thousands of bits in parallel.

As multi-core chip designs evolve, chip vendors try to determine the best way to use the
available area on the chip, and the options traditionally are an increased number of cores or
larger caches. We believe that the current stage in processor design allows for the inclusion of
an architecture such as the one we propose. In addition, ease of programming is a major hurdle
to the eventual success of parallel and multi-core architectures. In contrast, bit parallelism as
exploited by the word-RAM model does not suffer from this drawback: there is a large selection of
word-RAM algorithms (see, e.g., [Andersson and Thorup, 2007; Han, 2004; Hagerup, 1998; Chan,
2006]) that readily benefit from bit parallelism without having to deal with the more difficult
aspects of concurrency such as mutual exclusion, synchronization and resource contention. In
this sense, the advantage of an on-chip ultra-wide word architecture is that it would enable word-
RAM algorithms to achieve speedups comparable to those of multi-threaded computations, while
at the same time keeping the simplicity of sequential programming that is inherent to the RAM
model. We argue that this is the case by showing several examples of implementations of word-
RAM algorithms using the wide word, usually with simple modifications to existing algorithms,
and extending the ideas and techniques from the word-RAM model. We also show how the
Ultra-Wide architecture can be used to simulate a non-standard memory layout, which has been
used to sidestep known lower bounds in important data structure problems [Brodnik et al., 2005,
2006].

In terms of the actual architecture, we envision the Ultra-Wide ALU together with multi-cores
on the same chip. Thus, the Ultra-Wide architecture adds to the computing power of current
architectures. The results we present in this chapter, however, do not use multi-core parallelism.

Our results1 We introduce the Ultra-Wide Word architecture and model, which extends the
w-bit word-RAM model by adding an ALU that operates on w2-bit words. We show that several
broad classes of algorithms can be implemented in this model. In particular:

• We describe Ultra-Wide Word implementations of dynamic programming algorithms for
the subset sum problem, the knapsack problem, the longest common subsequence problem,
as well as many generalizations of these problems. Each of these algorithms illustrates a
different technique (or combination of techniques) for translating an implementation of an
algorithm in the word-RAM model to the Ultra-Wide Word model. In all these cases we
obtain a w-fold speedup over word-RAM algorithms.

• We also describe Ultra-Wide Word implementations of popular string searching algorithms:
the Shift-And/Shift-Or algorithms [Baeza-Yates and Gonnet, 1992; Wu and Manber, 1992]

1Results in this chapter are joint work with Arash Farzan, Alejandro López-Ortiz, and Patrick K. Nicholson.

102

and the Boyer-Moore-Horspool algorithm [Horspool, 1980]. Again, we obtain a w-fold
speedup over the original algorithms.

• Finally, we show that the Ultra-Wide Word model is powerful enough to simulate a non-
standard memory architecture in which bytes can overlap, which we shall call FS-RAM [Fred-
man and Saks, 1989]. This allows us to implement data structures and algorithms that
circumvent known lower bounds for the word-RAM model.

The rest of this chapter is organized as follows. In Section 5.1 we describe the Ultra-Wide ar-
chitecture and model of computation. We show in Sections 5.2 how to simulate the FS-RAM mem-
ory architecture. In Sections 5.3 and 5.4 we show examples of UW-RAM implementations of
algorithms for dynamic programming and string searching. We present concluding remarks in
Section 5.5.

5.1 The Ultra-Wide Word-RAM Model

The Ultra-Wide word-RAM model (UW-RAM) we propose is an extension of the word-RAM
model. The word-RAM model is a variant of the RAM model in which a word has length w bits,
and the contents of memory are integers in the range {0, . . . , 2w−1} [Hagerup, 1998]. This implies
that w ≥ log n, where n is the size of the input, and a common assumption is w = Θ(log n) (see
Section 4.2.2). Algorithms in this model take advantage of the intrinsic parallelism of operations
on w-bit long words. We provide a more detailed introduction to the word-RAM model in
Section 2.9.

The UW-RAM extends the word-RAM model by introducing an Ultra-Wide ALU with w2-bit
wide words, where w is number of bits in a word-RAM model. The Ultra-Wide Arithmetic Logic
Unit (ALU) supports the basic operations available in a word-RAM model with multiplication
on the entire word at once. Thus, the supported operations are: addition, subtraction, left and
right shift, bitwise boolean operations, and multiplication. In principle, we allow multiplication,
although the results of this chapter require only two multiplications by constants, which can be
replaced by straightforward AC0 operations. The model maintains the standard w-bit ALU as
well as w-bit memory addressing. In general, we will use the parameter w for the word size in the
description and analysis of algorithms, although in some cases we explicitly assume w = Θ(log n).
In terms of real world parameters, the wide word in the Ultra-Wide ALU would presently have
between 1,000 and 10,000 bits and could increase even further in the future.

In reality, the addition of an ALU that supports operations on thousands on bits would
require appropriate adjustments to the data and instruction caches of a processor as well as to
the instruction pipeline implementation. Similarly to the abstractions made by the RAM and
word-RAM models, the UW-RAM model ignores the effects of these and other architectural

103

W1W0 W2 Ww−1

lsb msb

Figure 5.1: A wide word in the Ultra-Wide Word architecture. The wide word is divided in w blocks of
w bits each, shown here in increasing number of block from left to right.

features and assumes that the execution of instructions on ultra-wide words is as efficient as the
execution of operations on regular w-bit words, up to constant factors.

Provided that the UW-RAM supports the same operations as the word-RAM, the techniques
to achieve bit-level parallelism in the word-RAM extend directly to the UW-RAM. However, since
the word-RAM assumes that a word can be read from memory in constant time, many operations
in word-RAM algorithms can be implemented through table lookups. For example, counting the
number of one bits in a word of w = log n bits can be implemented through two table lookups
to a precomputed table that stores the number of set bits for each number of log n/2 bits. The
space used by the table is

√
n words. We cannot expect to achieve the same constant time lookup

operation with words of w2 bits since the size of the lookup tables would be prohibitive. However,
the memory access operations of our model allow for the implementation of simultaneous table
lookups of several w-bit words within a wide word, as we shall explain below.

Before describing the memory access operations supported by the UW-RAM, we introduce
some notation. Let W denote a w2-bit word. Let W [i] denote the i-th bit of W , and let W [i..j]
denote the contiguous block of W from bit i to bit j > i, inclusive. The least significant bit of W

is at W [0], and thus W =
∑w2−1

i=0 W [i]× 2i. For the sake of memory access operations, we divide
W into w-bit blocks that can access different w-bit words in memory. Let Wj denote the j-th
contiguous block of w bits in W , for 0 ≤ j ≤ w − 1, and let Wj [i] denote the i-th bit within Wj .
Thus, Wj = W [jw..(j + 1)w− 1] and W =

∑w−1
j=0 2j × (

∑w−1
i=0 Wj [i]× 2i). The division of a wide

word in blocks is solely intended for certain memory access operations, but basic operations of
the model have no notion of block boundaries. Figure 5.1 shows a representation of a wide word,
which depicts bits with increasing significance from left to right. Thus, shifts to the left (right)
by i are equivalent to division (multiplication) by 2i. In the description of operations with wide
words we generally refer to variables with uppercase letters and to regular variables that use one
w-bit word with lower case. In addition, we use ~0 to denote a wide word with value 0. We use
standard C-like notation for operations AND (‘&’), OR (‘|’), NOT (‘∼’) and shifts (‘<<’,‘>>’).

Memory access operations In this architecture, w (not necessarily contiguous) words from
memory can be transferred into the w blocks of a wide word W in constant parallel time. These
blocks can be written to memory in parallel as well. The memory access operations provided by
the model that involve wide words are of three types: block, word, and content. Let us describe

104

Name Input Semantics

read block W , j, base Wj ←MEM[base+j]

read word W , base for all j in parallel: Wj ←MEM[base+j]

read content W , base for all j in parallel: Wj ←MEM[base+Wj]

write block W , j, base MEM[base+j]←Wj

write word W , base for all j in parallel: MEM[base+j]←Wj

write content W , V , base for all j in parallel: MEM[base+Vj]←Wj

Table 5.1: Wide word memory access operations supported by the UW-RAM. In the above, MEM denotes
regular RAM memory, which is indexed by addresses to words2, and base is some base address.

read accesses (write accesses are analogous). A block access reads a single w-bit word from
memory to a given block of a wide word. A word access reads w contiguous w-bit words from
memory to an entire wide word in constant time. Finally, a content access uses the contents of
a wide word W as addresses to read (possibly non-contiguous) words of memory simultaneously:
for each block Wj within W , this operation reads from memory the w-bit word located at Wj

(plus possibly a base address). The specifics of these operations are shown in Table 5.1.

Note that reading several (possibly non-contiguous) words from memory simultaneously is
an assumption that is already made by any shared memory multiprocessing model. While, in
reality, simultaneous access to all addresses in actual physical memory (e.g., DRAM) might not
be possible, in shared memory systems, such as multi-core processors, the slowdown is mitigated
by truly parallel access to private and shared caches, and thus the assumption is reasonable.
We therefore follow this assumption in the same spirit. Furthermore, under the assumption
that w = Θ(log n), the UW-RAM supports the parallel memory access of Θ(log n) words, which
matches the amount of parallelism in memory accesses assumed in the multi-core models of this
thesis (Chapters 3 and 7).

5.1.1 UW-RAM Subroutines

We now describe some operations that will be used throughout the UW-RAM implementations
that we describe in later sections. A procedure we call transpose serves to bring together bits
from all blocks into one block in constant time, while a procedure called reverse transpose is the
inverse function. We will also use parallel comparators, a standard technique used in word-RAM
algorithms, which we describe in Section 2.9.

2A more sophisticated version of the model could consider accessing half-words and individual bytes as well,
which would contribute to space savings for some algorithms.

105

W1W0 W2 Ww−1
W

X

Figure 5.2: The transpose operation takes a wide word W whose set bits are restricted to the first bit of
each block and compresses them to the first block of a wide word.

Algorithm 5.1 transpose(W)

X ←W × 2w
2−2w

2w−1−1 {brings bits to contiguous positions in X[(w − 1)w + 1..w2]}
X ← (X << (w − 1)w + 1) & (2w − 1) {shifts bits to X0 and cleans the rest of X}
return X

Transpose Let W be a wide word in which all bits are zero except possibly for the first bit of
each block. The transpose operation copies the first bit of each block of a word W to the first
block of a word X. I.e., if X = transpose(W), then X[j]← Wj [0] for 0 ≤ j < w, and the rest of
the bits of X are zero (see Figure 5.2).

The transpose operation can be implemented by using the compression operation described
by Brodnik [1995, Algorithm 4.4]. This operation takes a (regular size) word x whose bits are all
zeros but possibly for the bits in t blocks of k bits each that can have set bits (not necessarily equal
across blocks). These blocks start at regular intervals of s bits3. The operation returns a word y
with the contents of all blocks of x concatenated at the beginning of the word, and zeros in the
rest of the word. More specifically, y[i+ j · k]← x[i+ j · s] for 0 ≤ i < k and 0 ≤ j < t [Brodnik,
1995]. This operation can be implemented in constant time by first multiplying x by the constant

c = 2ts−2tk
2s−k−1 (which moves bits to contiguous positions in x[(t−1)s+k..(t−1)s+ tk+k−1]), then

shifting the result to the left by (t−1)s+k, and finally doing a bitwise AND with 2tk−1 [Brodnik,
1995]4.

In the case of the transpose operation we have t = s = w and k = 1. The pseudocode for
the transpose procedure is shown in Algorithm 5.1. Note that the three constants used in the
procedure are fixed for any call to transpose, and thus they can be hardwired in the procedure.
Note as well that the multiplication in the compression operation moves bits toX[(w−1)w+1..w2],
with the last bit at position w2. In order to accommodate this operation, we assume that the
wide word has a constant number of extra bits after the (w2 − 1)-th bit.

3This is called an (s, k)-sparse register in [Brodnik, 1995].
4The constant c is an integer whose derivation is described in [Brodnik, 1995].

106

Algorithm 5.2 reverse transpose(W)

C ← 2w
2−1

2w−1 {Cj = 1 for all j}
X ←W × C {Xj = W0 for all j}
D ← 2(w+1)w−1

2w+1−1 {Dj = 2j for all j}
X ← X & D {Xj [j] = W [j]}
M ← C >> (w − 1) {Mj = 2w−1 for all j}
X ′ ←M −X {for all j, X ′j [w − 1] = 0⇔ Xj [j] = 1}
X ← (∼ X ′ & M) << (w − 1) {Xj [0] = W [j] for all j}
return X

Reverse Transpose This operation is the inverse of the transpose operation. It takes a word
W whose set bits are all in the first block and spreads them across blocks of a word X so that
Xj [0]←W [j] for 0 ≤ j < w. We implement this operation by modifying the spreading operation
in [Brodnik, 1995, Algorithm 4.3] to avoid reversing the order of the bits, and to end with all bits
at the beginning of each block. We first replicate the contents of the first block in all blocks and
then extract the j-th bit of each block j. We then move this bit to the first bit of the block via
four constant time operations. Algorithm 5.2 describes the details of this procedure. Again, the
constants involved are fixed and can be hardwired in the procedure.

The transpose and reverse transpose operations require one multiplication by a constant each,
and these are all the wide word multiplications that we use in our results. Our model allows
multiplications on wide words in order to enable the implementation of a more general class of
operations and algorithms. However, if a simpler underlying hardware design is desired, transpose
and reverse transpose can also be implemented with straightforward circuits of constant depth. In
this case, our model can be regarded as a restricted model with two non-standard AC0 operations
(see Section 2.9).

Comparators Many word-RAM algorithms perform operations on pairs of elements in par-
allel by packing these elements in fields within one word. In Section 2.9 we described how to
implement fieldwise comparisons in constant time, a useful operation in word-RAM algorithms.
This operation can be directly implemented on wide words in constant time. We shall assume
that direct comparisons as well as operations that build on these (such as taking the fieldwise
maximum between two words) are available and take constant time [Hagerup, 1998].

5.2 Simulation of FS-RAM

The FS-RAM is a model of computation first introduced by Fredman and Saks [1989] and further
described by Brodnik [1995]. In the standard RAM model of computation, memory is organized

107

B4

B8 B9

B5

B10 B11

B6

B12 B13

B7

B!4 B15

B2 B3

B1

Register 0 1 2 3 4 5 6 7

Bit
0

1

2

3

Figure 5.3: Yggdrasil memory layout: each node in a complete binary tree is an FS-RAM bit, and
registers are defined as paths from a leaf to the root. For example, register 3 contains bits B11,B5,B2, and
B1 (shaded nodes). Figure adapted from [Brodnik et al., 2005].

in registers or words, each word containing a set of bits. Any bit in a word belongs to that
word only. In contrast, in the FS-RAM model words can overlap, that is, a single bit of memory
can belong to several words5. The topology of the memory, i.e., a specification of which bits
are contained in which words, defines a particular variant of the FS-RAM model. Variants of
this model have been used to sidestep lower bounds for important data structure problems. For
example, Brodnik et al. [2005] use a variant of FS-RAM called Yggdrasil in a data structure
that achieves constant time for the operations insert, delete, membership, min, max, deletemin,
deletemax, predecessor, and successor over a bounded universe of integers (known as the discrete
extended priority queue problem [van Emde Boas et al., 1977]). In the Yggdrasil variant of FS-
RAM, words in memory are organized as paths from leaves to the root in a complete binary tree.
Thus, bits might belong to several paths. Figure 5.3 shows an example of this FS-RAM layout.

We show how the UW-RAM can be used to implement memory access operations for any
given FS-RAM of word size at most w bits in constant time. Thus, the time bounds of any
algorithm in the FS-RAM model carry directly to the UW-RAM.

5.2.1 Implementing FS-RAM Operations in the UW-RAM

Let B1, . . . ,BB denote the bits of FS-RAM memory. A particular FS-RAM memory layout can
be defined by its appearance sets, this is, the locations of each bit Bi in the FS-RAM mem-
ory [Brodnik, 1995]. For example, in the Yggdrasil model depicted in Figure 5.3, the appearance
set of B1 is {reg[i].bit[3]|i = 0, . . . , 7}, the one of B4 is {reg[0].bit[1],reg[1].bit[1]}, and the one

5The original name chosen by Fredman and Saks is Random Access Machine with Byte Overlap (RAMBO),
reflecting the nature of the memory model.

108

Algorithm 5.3 fs-ram read(t)

1: read word(W,R[t]) {Wj ← R[t, j]}
2: read content(W,A) {Wj ← A[R[t, j]]}
3: W ← transpose(W)
4: write block(W, 0,&ret) {ret←W0}
5: return ret

of B12 is {reg[4].bit[0]}. Equivalently, the layout can be specified by the registers and the bits
contained in them. In the example above, reg[0]=B8B4B2B1, and in general reg[i].bit[j]= Bk,
where k = bi/2jc+ 2m−j−1 (m = 4 in the example) [Brodnik et al., 2005].

In order to implement memory access operations on a given FS-RAM using the UW-RAM,
we need to represent the memory layout of FS-RAM in standard RAM. We assume that the
FS-RAM memory layout is given as a table R that stores, for each register and bit within the
register, the number of the corresponding FS-RAM bit. Thus, if reg[i].bit[j]= Bk, for some k, then
R[i, j] = k. This is without loss of generality, as this representation can be easily precomputed
from the appearance sets. We assume that R is stored in row major order.

Given an FS-RAM memory of r registers of b ≤ w bits each and B ≤ br distinct appearance
sets, we want to store its contents in RAM. For this, we simply store each bit Bi in a different
word. Thus, A[i] stores the value of Bi, where A is an array of integers in RAM. The total space
used by this representation is then Bw bits, where w is the number of bits in a RAM word.
Naturally, we could store more than one bit in each word of A; however, this representation
allows us to avoid concurrent writes to a same word.

Given an index t of a register of an FS-RAM represented by R, we can read the values of each
bit of reg[t] from RAM and return the b bits in a word. Doing this sequentially for each bit might
take O(b) time. Using the wide word we can take advantage of parallel reading and the transpose
operation to retrieve the contents of reg[t] in constant time. Let reg[t]= Bi0 . . .Bib−1

. The read
operation first reads the value of a bit Bij into block Wj of W by assigning Wj = A[R[t, j]].
The second step consists of one transpose operation, after which the b bits are stored in W0.
Algorithm 5.3 shows the read operation, which takes constant time.

In order to implement the write operation reg[t]= Bi0 . . .Bib−1
of FS-RAM, we first set W0 =

Bi0 . . .Bib−1
and perform a reverse transpose operation to place each bit Bj in block Wj . We

then write the contents of each Wj in A[R[t, j]]. Algorithm 5.4 shows this operation, which takes
constant time as well.

Since the read and write operations described above are sufficient to implement any operation
that uses FS-RAM memory (any other operation is implemented in RAM), we have the following
result:

Theorem 5.1 Let R be any FS-RAM memory layout of r registers of at most b bits each and B

109

Algorithm 5.4 fs-ram write(t,B = Bi0 . . .Bib−1
)

1: read block(W, 0,B) {W0 ← B}
2: W ← reverse transpose(W)
3: read word(V,R[t]) {Vj ← R[t, j]}
4: write content(W,V,A) {A[R[t, j]]←Wj}

distinct appearance sets, with b ≤ w and logB ≤ w. Let A be any FS-RAM algorithm that uses
R and runs in time T . Algorithm A can be implemented in the UW-RAM to run in time O(T),
using rb+B additional words of RAM.

Proof: Table R indicating the FS-RAM bit identifier for each register and bit within register
can be stored in rb words of RAM, while the values of each bit can be stored in B words of RAM.
Since both fs-ram read and fs-ram write are constant time operations, any t-time operation that
uses FS-RAM memory can be implemented in UW-RAM in the same time t. In the case that R
is not given, it can be computed from the appearance sets in O(rb) time. This translation from
appearance sets to R is fixed for the same FS-RAM layout and needs only to be precomputed
once.

By Theorem 5.1 we can implement any arbitrary FS-RAM memory layout and word-RAM
algorithm with a moderate space overhead. Note that since any FS-RAM implementation re-
quires at least B bits of FS-RAM memory, the relative overhead in space is reduced. The space
overheads above are stated for a generic implementation of FS-RAM. However, for particular
FS-RAM memory layouts one can save space by storing more than one FS-RAM bit per RAM
register, or by replacing table R with a constant time calculation of appearance set indices
from the indices of FS-RAM registers and bits within registers (and adjusting fs-ram read and
fs-ram write appropriately).

5.2.2 Constant Time Priority Queue

Brodnik et al. [2005] use the Yggdrasil FS-RAM memory layout to implement priority queue
operations in constant time using 3M bits of space (2M of ordinary memory and M of FS-
RAM memory), where M is the size of the universe. This problem has non-constant lower bound

for several models, including an Ω
(

min
(

lg lgM
lg lg lgM ,

√
lgN

lg lgN

))
lower bound in the RAM model

when the memory is restricted to NO(1), where N is the number of elements in the set to be
maintained [Beame and Fich, 2002].

For a universe of size M = 2m, for some m, the Yggdrasil FS-RAM layout consists of r = M/2
registers of b = logM bits each, and B = M − 1 distinct appearance sets (see Figure 5.3 for an
example with M = 16). Thus, applying Theorem 5.1 we obtain the following result:

110

Corollary 5.1 The discrete extended priority queue problem can be solved in the UW-RAM model
in O(1) worst case time per operation using 2M + ((M + 1)/2) logMw+ (M − 1)w bits, and thus
in O(M logM) words of RAM.

5.2.3 Constant Time Dynamic Prefix Sums

Brodnik et al. [2006] use a modified version of the Yggdrasil FS-RAM to solve the dynamic prefix
sums problem in constant time. The dynamic prefix sums problem consists of maintaining an ar-
ray A of size N , supporting the operations update(j, d) which sets A[j] to A[j]⊕d, and retrieve(j),
which returns ⊕ji=0A[i] [Fredman, 1982; Brodnik et al., 2006], where ⊕ is any associative binary
operation. This FS-RAM implementation sidesteps various lower bounds for dynamic prefix sums
on different models: there is an Ω(logN) algebraic complexity lower bound [Fredman, 1982] as
well as under the semi-group model of computation [Hampapuram and Fredman, 1998], and a
Ω(logN/ log logN) information-theoretic lower bound [Fredman, 1982].

The result of Brodnik et al. [2006] uses a complete binary tree on top of array A as leaves. The
tree is similar to the one used in the priority queue problem, but it differs in that only internal
nodes store any information, and that there are m = dlogMe bits stored in each node, where
M is the size of the universe. This tree is stored in a variant of the Yggdrasil memory called
m-Yggdrasil, in which each register correspond again to a path from a leaf to the root, but this
time each node stores not only one bit but the m bits containing the sum of all leaves in the left
subtree of that node [Brodnik et al., 2006]. It is assumed that nm ≤ w, where n = dlogNe and
w is the size of the word in bits. Thus, an entire path from leaf to root fits in a word and can be
accessed in constant time. An update or retrieve operation consists of retrieving the values along
a path in the tree and processing them in constant time using bit-parallelism and table lookup
operations. The space used by the lookup table can be reduced at the expense of an increased
time for the retrieve operation. In general, both operations can be supported in time O(ι + 1)
with (N − 1)m bits of m-Yggdrasil memory and O(Mn/2ι ·m+m) bits of RAM [Brodnik et al.,
2006].

In order to represent the m-Yggdrasil memory in our model, we treat each bit of a node in
the tree as a separate FS-RAM bit. Thus, the FS-RAM memory has r = N registers of b = nm
bits each, and there are B = (N − 1)m distinct bits to be stored. Hence, by Theorem 5.1 we
have:

Corollary 5.2 The operations update and retrieve of the dynamic prefix sums problem can be
supported in the UW-RAM model in O(ι + 1) time with O(Mn/2ι · m + Nmnw) bits of RAM.
For constant time operations (ι = 1) the space is dominated by the first term, i.e., the space is
O(M

√
logN) bits. For ι = log logN , the time is O(log logN) and the space is O(Nmnw) bits.

111

5.3 Dynamic Programming

In this section we show how to speed up various dynamic programming algorithms in the UW-
RAM. We show that an existing word-RAM algorithm for the subset sum problem can be directly
translated to the UW-RAM. We also show how to adapt an existing algorithm for the knapsack
problem. We note that these problems have many generalizations that can be solved using the
same techniques. Based on similar techniques, we describe a word-RAM algorithm (and UW-
RAM implementation) for the longest common subsequence (LCS) problem. The implementation
for subset sum as well as the first solution to LCS are examples of pure bit parallelism, while the
knapsack implementation and the second algorithm for LCS use the parallel lookup power of the
UW-RAM.

5.3.1 Subset Sum

Given a set S = {x1, x2, . . . , xn} of nonnegative integers (weights) and an integer t (capacity),
the subset sum problem is to find S′ ⊆ S such that

∑
ai∈S′ ai = t. The optimization version asks

for the solution of maximum weight which does not exceed t [Cormen et al., 2001]. This problem
is NP-hard, but it can solved in pseudopolynomial time via dynamic programming in O(nt) time,
using the following recursion by Bellman [1957]: for each 0 ≤ i ≤ n and 0 ≤ j ≤ t, Ci,j is true if
there is a subset of elements {a1, . . . , ai} that adds up to j. Thus, C0,0 is true, C0,j is false for
all j > 0, and value Ci,j is true if Ci−1,j is true or Ci−1,j−ai is true (Ci,j is false for any j < 0).
The problem admits a solution if Cn,t is true.

Pisinger [2003] gives an algorithm that implements this recursion in the word-RAM model
with word size w by representing up to w values of a row of C. Using bit parallelism, w bits of a
row can be updated simultaneously in constant time from the values of the previous row: row Ci is
updated by computing Ci = (Ci−1 | (Ci−1 >> ai)) (which might require shifting words containing
Ci−1 first by bai/wc words and then by ai − bai/wc) [Pisinger, 2003]. Assuming w = Θ(log t),
this approach leads to an O(nt/ log t) time solution in O(t log t) space. The actual values in S′

that compose the solution can be then recovered with the same space and time bounds with a
recursive technique by Pferschy [1999].

Pisinger’s algorithm can be implemented directly in the UW-RAM: entries of a row Ci are
stored contiguously in memory; thus, we can load and operate on w2 bits simultaneously when
updating each row. Hence, UW-RAM implementation runs in O(nt/ log2 t) time using the same
O(t log t) space.

112

5.3.2 Knapsack

Given a set S of n elements with weights and values, the knapsack problem asks for a subset of S of
maximum value such that the total weight is below a given capacity bound b. Let S = {(wi, vi)}ni=1

where wi and vi are the weight and value of the i-th element. Just like the subset sum problem, this
problem is NP-hard but can be solved in pseudopolynomial time using the following recurrence
by Bellman [1957]. Let Ci,j be the maximum value of a solution containing elements in the
subset Si = {(wk, vk)}ik=1 with maximum capacity j. Then, C0,j = 0 for all 0 ≤ j ≤ b, and
Ci,j = max{Ci−1,j , Ci−1,j−wi + vi}. The value of the optimal solution is Cn,b. This leads to a
dynamic program that runs in O(nb) time.

The word-RAM algorithm by Pisinger [2003] represents partial solutions of the dynamic pro-
gramming table with two binary tables g and h and operates on the O(w) entries at a time. More
specifically, gi,w = 1 and hi,v = 1 if and only if there is a solution with weight w and value v that
is not dominated by another solution in Ci,∗ (i.e., there is no entry Ci,w′ such that w′ < w and
Ci,w′ ≥ v). Pisinger shows how to update each entry of g and h with a constant time procedure,
which can be encoded as a constant size lookup table. By composing this table α = w/10 times,
α entries of the tables can be computed in constant time, so an entire row can be computed in
O(m/w) time and O(m/ logm) space, where m is the maximum of the capacity b and the value
of the optimal solution6. The optimal solution can then be computed in O(nm/w) time [Pisinger,
2003].

Compared to the subset sum algorithm, which relies mainly on bit-parallel operations, this
word-RAM algorithm for knapsack relies on table precomputation and lookup to achieve a w-fold
speedup. In this sense, the UW-RAM implementation of the knapsack algorithm is a good exam-
ple of the parallel lookup power of the architecture. While we cannot precompute a composition
of Θ(w2) lookup tables to compute Θ(w2) entries of g and h at a time, we can use the same
tables with α = w/10 as in Pisinger’s algorithm and use the block of the wide word to make w
simultaneous lookups to the table. Since the values in a row i of h and g depend only on row
i− 1 of these tables, then there are no dependencies between values in the same row.

One difficulty, however, is that in order to compute the values in row i in parallel we must
first preprocess row i − 1 in both h and g, such that we can return the number of one bits in
both gi−1,0, ..., gi−1,j and hi−1,0, ..., hi−1,j in O(1) time for any column j ∈ {0,m − 1}. That is,
the prefix sums of the one bits in the row i − 1 up to column j. Note that since we are only
required to compute the prefix sums of row i− 1 one time, this is not the same as the dynamic
problem described in Section 5.2.3, i.e., it is a static problem. Furthermore, since the algorithm
is the same for both g and h, we describe the computation for g alone7.

6This value is not known in advance, though an upper bound of at most twice the optimal value can be
used [Pisinger, 2003; Dantzig, 1957].

7We note that it is possible to simulate the standard parallel prefix sums algorithm (for w processors in this

113

Static Prefix Sums: We divide gi−1 in blocks of w contiguous bits and compute the number
of ones in each block gi−1,k, ..., gi−1,k+w−1 for k ∈ {0, w, 2w, ..., bm/wcw} using a lookup table.
We store the results in an array A of length dm/we. Next, we compute the prefix sums A′ of A
in two steps. We divide A in sets of w consecutive entries. The first step is to compute the prefix
sums of each set by computing

A′[k] = A[bk/wcw] +A[bk/wcw + 1] + ...+A[k] ,

for each k ∈ {0, ..., bm/wc}. Using the w blocks of a wide word, this can be done for w array
indices at a time, k0, ..., kw−1, where k` = k′ + `w, and k′ iterates over the sequence

0, 1, ..., w − 1, w2, w2 + 1, ..., w2 + w − 1, 2w2, 2w2 + 2,

Note that we can compute all w array entries in constant time, for each k′ in the previous sequence,
since

A′[k′ + `w] =

{
A′[k′ + `w − 1] +A[k′ + `w] if k 6= 0 mod w,

A[k′ + `w] otherwise.

The second step is to update each set of A′ from left to right by adding to each entry in the
set the last entry of the previous set. I.e., we set A′[k] = A′[k] + A′[bk/wcw − 1], for k ∈
{w,w + 1, ..., bm/wc}. This can also be done for w values at once, k0, ..., kw−1, where k` =
k′ + `, and k′ ∈ {w, 2w, ..., bm/wc}. At this point, A′ contains the prefix sums of A, and took
O(|A|/w) = O(m/w2) time to compute, by exploiting the parallel read and write operations of
the UW-RAM.

Let f be the number of ones in gi−1,bj/wc, ..., gi−1,j , which can be computed using the lookup
table. To compute gi−1,0, ..., gi−1,j we return f + A′[bj/wc]. Since each row of g and h requires
O(m/w2) to compute, and there are n rows, the total time to compute g and h (and thus to
compute the optimal solution) on the UW-RAM is O(nm/w2). This achieves a w-fold speedup
over Pisinger’s word-RAM solution.

5.3.3 Generalizations of Subset Sum and Knapsack Problems

Pisinger [2003] uses the techniques of the word-RAM algorithm for subset sum and knapsack
to obtain a word-RAM algorithm for computing a path in a layered network: given a graph
G = (V,E), a source s ∈ V and a terminal t ∈ V , and a weight for each edge, is there a path of
weight b from s to t? Again, this algorithm translates directly to a UW-RAM algorithm, thus
yielding a w-fold speedup over the word-RAM algorithm. Pisinger further uses the algorithms
for the above problems to implement word-RAM solutions for other generalizations of subset

case) [JáJá, 1992] using the UW-RAM, though we believe the algorithm described in what follows to be more
straightforward.

114

sum and knapsack problems, such as: the bounded subset sum and knapsack problems (each
element can be chosen a bounded number of times), the multiple choice subset sum and knapsack
problems (the set of numbers is divided in classes and the target sum must be matched with one
number of each class), the unbounded subset sum and knapsack problems (each element can be
chosen an arbitrary number of times), the change-making problem, and, finally, the two-partition
problem. UW-RAM implementations for all these generalizations are direct and yield a w-fold
speedup over the word-RAM algorithms (recall that w = Ω(log n)).

5.3.4 Longest Common Subsequence

The final dynamic programming problem we examine is that of computing the Longest Common
Subsequence (LCS) of two string sequences (see Definition 2.11 in Section 2.8.2). Let Σ be a finite
alphabet of symbols, where σ = |Σ|. Given two sequences X = x1x2 . . . xm and Y = y1y2 . . . yn,
where xi, yj ∈ Σ, the LCS problem asks for a sequence Z = z1z2 . . . zk of maximum length
such that Z is a subsequence of both X and Y . This problem can be solved via a classic
dynamic programming algorithm in O(nm) time [Cormen et al., 2001]. In what follows, we show
how to combine techniques used for subset sum and knapsack, as well as the Four Russians
technique, in order to achieve further speedups in the UW-RAM model. The first algorithm
presented runs in O(nm

w2 log σ +m+ n) time, while the second is more involved and runs in time

O(n2 log2 σ/w3 + n log σ/w), assuming m = n for simplicity.

Let ci,j denote the length of the LCS of X[1..i] = x1x2 . . . xi and Y [1..j] = y1y2 . . . yj , then
the following recurrence allows us to compute the length of the LCS of X and Y [Cormen et al.,
2001]:

ci,j =

0, if i = 0 or j = 0
ci−1,j−1 + 1, if xi = yj
max{ci,j−1, ci−1,j}, otherwise

(5.3.1)

The length of the LCS is cm,n, which can be computed in O(mn) time. Consider an (m +
1) × (n + 1) table C storing the values ci,j . The idea of the UW-RAM algorithm is to compute
various entries of this table in parallel. We assume w = Θ(max{log n, logm}).

Let dk denote the values in the k-th diagonal of table C, this is dk = {ci,j |i+ j = k}. Since a
value in a cell i, j > 0 depends only on the values of cells (i− 1, j), (i− 1, j− 1) and (i, j − 1), all
values in the same diagonal dk are independent of each other and can be computed in parallel.
Thus, we use the wide word to compute various entries of a diagonal in constant time. Since
each value in the cell might use up to min{log n, logm} bits, each value might use up to an entire
block of the wide word (if logm = Θ(log n)); thus, w cells can be computed in parallel. Since
the total number of cells is O(mn) and the critical path of the table is m + n + 2 cells, this

115

approach requires O(mn/w+m+n) parallel time, resulting in a speedup of w. However, we can
obtain better speedups by using fewer bits per entry of the table, which enables us to operate on
more values in parallel. For this sake, instead of storing the actual values of the partial longest
common subsequences, we store differences between consecutive values as described in [Masek
and Paterson, 1980] for the related string edit distance problem.

Let V andH denote the tables of vertical and horizontal differences of values in C, respectively.
Entries in these tables are defined as Vi,j = ci,j − ci−1,j and Hi,j = ci,j − ci,j−1 for 1 ≤ i ≤ m and
1 ≤ j ≤ n. Figure 5.4 shows the tables C, V , and H for an example pair of input sequences. We
adapt Corollary 1 in [Masek and Paterson, 1980] for the computation of V and H:

Proposition 5.1 Let [xi = yj] = 1 if xi = yj and 0 otherwise. Then, Vi,j = max{[xi =
yj]−Hi−1,j , 0, Vi,j−1 −Hi−1,j} and Hi,j = max{[xi = yj]− Vi,j−1, 0, Hi−1,j − Vi,j−1}.

Proof: Directly from Recurrence 5.3.1 we obtain Vi,j = 1 − Hi−1,j if xi = yj and Vi,j =
max{0, Vi,j−1−Hi−1,j} otherwise. Similarly, Hi,j = 1−Vi,j−1 if xi = yj andHi,j = max{0, Hi−1,j−
Vi,j−1} otherwise. It is easy to verify from the definition of longest common subsequence and
Recurrence 5.3.1 that 0 ≤ Hi,j ≤ 1 and 0 ≤ Vi,j ≤ 1 for all i, j, which implies that the maximum
in max{[xi = yj]−Hi−1,j , 0, Vi,j−1−Hi−1,j} and max{[xi = yj]−Vi,j−1, 0, Hi−1,j−Vi,j−1} is equal
to the first term if xi = yj and to the second or third terms otherwise.

We compute tables H and V according to Proposition 5.1 diagonal by diagonal using bit
parallelism in the wide word. Assume an alphabet Σ = {0, 1, 2, . . . , σ − 1} with dlog σe ≤ w − 1.
Although all entries in tables H and V are either 0 or 1, we will use fields of O(log σ) bits to store
these values, since we can only compare at most w2/ log σ symbols simultaneously in the wide
word. We divide the wide word W in f -bit fields with f = max(dlog σe, 2) + 1. Each field will be
used to store both symbols and intermediate results for the computation of the diagonals of H
and V , plus an additional bit to serve as a test bit in order to implement fieldwise comparisons as
described in Section 2.9. We require at least 3 bits because although all entries in tables H and
V use one bit, intermediate results in calculations can result in values of -1. Thus, we require 2
bits to represent values -1, 0, and 1, and a test or sentinel bit to prevent carry bits resulting from
subtractions to interfere with neighbouring fields. We represent -1 in two’s complement. It is not
hard to extend the techniques for comparisons and maxima to the case of positive and negative
numbers [Hagerup, 1998].

Let Hk and Vk denote the k-th diagonal of H and V , respectively, i.e., Hk = {Hi,j |i+ j = k}
and Vk = {Vi,j |i + j = k}. Consider table H. We will operate with each diagonal Hk using
d|Hk|/`e words, where ` = w2/f . Let f0, . . . , f`−1 denote the fields within W , in increasing order
of bit significance within W . In each wide word, cells of Hk will be stored in increasing order
of column, i.e., if Hi,j is stored in field fr, then fr+1 stores Hi−1,j+1. In order to compute each
diagonal we must compare the relevant entries of strings X and Y . We assume that each symbol

116

of X and Y is stored using dlog σe+ 1 bits (including the test bit) and that X is stored in reverse
order. X and Y can be preprocessed in O(m+n) to arrange this representation, which will allow
us to do constant-time parallel comparisons of symbols for each diagonal loading contiguous words
of memory in wide words.

Consider a diagonal Hk. Assume that the entire diagonal fits in a word W . This will not
be the case for most diagonals, but we describe the former case for simplicity. The latter case
is implemented as a sequence of steps updating portions of the diagonal that fit in a wide word.
We update the entries of Hk as follows:

1. We load the symbols of the relevant substrings of X and Y into words WX and WY , with the
substring of X in reverse order. More specifically, for a diagonal k, WY = yj1yj1+1 . . . yj2 ,
where j1 = k − min(|X|, k − 1) and j2 = min(|Y |, k), and WX = xi2xi2−1 . . . xi1 with
i2 = k − j1 and i1 = k − j2. We subtract WY from WX , mask out all non-zero results
and write a 1 in each field that resulted in 0. We store the resulting word in Weq, where
each field corresponding to a cell (i, j) stores a 1 if xi = yj and a 0 otherwise (this can be
implemented through comparisons as described in Section 2.9).

2. We load Vk−1 into a word WV and subtract it from Weq to obtain [ai = bj]− Vi,j−1 for all
i, j in Hk simultaneously and store the result in W1.

3. We load Hk−1 into a word WH and subtract WV to it to obtain Hi−1,j − Vi,j−1 for all i, j
in Hk, storing the result in W2.

4. Finally, using fieldwise comparisons, we obtain the fieldwise maximum of W1,W2 and the
word ~0. The resulting word is Hk.

All the operations described above can be implemented in constant time. The procedure to
compute Vk is analogous. Note that the entries corresponding to base cases in the first row and
column in the LCS table correspond to the base cases of the horizontal and vertical vectors,
respectively. When computing diagonals Hk with k ≤ n+ 1 and Vk with k ≤ m+ 1, the entries
corresponding to base cases are not computed from previous diagonals but should be added
appropriately at the end of Hk and beginning of Vk.

Example 5.1 Let X = abbab and Y = aabbba be two strings. Figure 5.4 shows the entries of
the dynamic programming table for computing the LCS of X and Y , as well as the values of
horizontal and vertical differences.

In this example σ = 2, thus we use one bit for each symbol (‘a’=0, ‘b’=1), but we use f = 3
bits per field. Consider the diagonal H6 in table H (in dark gray). We now illustrate how to
obtain H6 from H5 and V5 (in light gray). In what follows we represent the number in each field
in decimal and do not include the details of fieldwise comparison and maxima.

117

j 1 2 3 4 5 6
LCS a a b b b a
i 0 0 0 0 0 0 0
1 a 0 1 1 1 1 1 1
2 b 0 1 1 2 2 2 2
3 b 0 1 1 2 3 3 3
4 a 0 1 2 2 3 3 4
5 b 0 1 2 3 3 4 4

j 1 2 3 4 5 6
H a a b b b a

i 0 0 0 0 0 0
1 a 1 0 0 0 0 0
2 b 1 0 1 0 0 0
3 b 1 0 1 1 0 0
4 a 1 1 0 1 0 1
5 b 1 1 1 0 1 0

j 1 2 3 4 5 6
V a a b b b a

i
1 a 0 1 1 1 1 1 1
2 b 0 0 0 1 1 1 1
3 b 0 0 0 0 1 1 1
4 a 0 0 1 0 0 0 1
5 b 0 0 0 1 0 1 0

Figure 5.4: Dynamic programming tables for the longest common subsequence and vector differences for
X = abbab and Y = aabbba.

WX = 1 0 1 1 0 (=x5x4x3x2x1)
WY = 0 0 1 1 1 (=y1y2y3y4y5)
Weq = 0 1 1 1 0 (Weq[f · (j − 1)] = 1⇔ x|H5|−j = yj)

V5 = 0 0 0 1 1
W1 = Weq − V5 = 0 0 1 0 -1

H5 = 1 0 1 0 0
W2 = H5 − V5 = 1 0 1 -1 -1

max{W1,W2,~0} = 1 1 1 0 0
H6 = 1 1 1 0 0 0 (last 0 is the base case)

Once all diagonals are computed, the final length of the longest common subsequence of X
and Y can be simply computed by (sequentially) adding the values of the last row of H or the
values of last column of V (which can be done while computing H and V). The entire procedure
is described in Algorithm 5.5 and leads to the following theorem.

Theorem 5.2 Let Σ be an alphabet of size σ. Given two strings X and Y over Σ of lengths m
and n, respectively, the length of the longest common subsequence of X and Y can be computed in
the UW-RAM in O(nm

w2 log σ+m+n) time and O(min(n,m)w/ log σ) memory words in addition
to the input.

Proof: A diagonal of H and V of length ` entries can be computed in time O(` log σ/w2 + 1).
Adding this time over all m + n diagonals yields the total time. For the space, each diagonal is
represented in d`f/w2e wide words, where f = O(log σ) is the number of bits per field. Since
we can compute each diagonal Hk and Vk using only Hk−1 and Vk−1, we only need to store 4
diagonals at any given time. Since the maximum length of a diagonal is min(n,m) + 1 and each
wide word can be stored in w regular words of memory, the result follows.

118

Algorithm 5.5 LCS-length(X,Y,m = |X|, n = |Y |, σ)

1: f ← max(dlog σe, 2) + 1 {field length in bits}
2: H1

1 ← ~0 {H0,1 = 0}
3: V 1

1 ← ~0 {V1,0 = 0}
4: length← 0 {length of longest common subsequence}
5: for k = 2 to m+ n do
6: `← min(n, k − 1) + min(m, k − 1)− k + 1 {length of diagonal}
7: j1 ← k −min(m, k − 1) {indices of relevant substrings of X and Y }
8: j2 ← min(n, k)
9: i2 ← k − j1

10: i1 ← k − j2
11: j ← j1
12: i← i2
13: s← d`f/w2e {number of wide words per diagonal}
14: for t = 1 to s do
15: j′ ← min(j + s− 1, j2)
16: i′ ← max(i+ s− 1, i1)
17: WY ← Y [j..j′]
18: WX ← X[i..i′] {substring of X is in reverse order}
19: Weq ←equal(WX ,WY)
20: W1 ←Weq − V tk−1
21: W2 ← Ht

k−1 − V tk−1
22: Ht

k ← max(W1,W2,~0) {base case is implicitly added at rightmost field}
23: W1 ←Weq −Ht

k−1
24: W2 ← V tk−1 −Ht

k−1
25: V tk ← max(W1,W2,~0)
26: if t = 1 AND k ≤ m+ 1 then
27: V tk ← V tk >> f {add 0 in the first field for the base case}
28: i← i′ + 1
29: j ← j′ + 1
30: if t = 1 AND k ≥ m+ 1 then
31: length← length +H1

k [0..f − 1] {length = length +Hm,k−m}
32: return length

Recovering a Longest Common Subsequence

It is known that given a dynamic programming table storing the values of the LCS between
strings X and Y , one can recover the actual subsequence by starting from cm,n and following the
path through the cells corresponding to the values used when computing each value ci,j according
to Recurrence (5.3.1): if xi = yj , then we add xi to the LCS and continue with cell (i− 1, j − 1);
otherwise the path follows the cell corresponding to the maximum of ci−1,j or ci,j−1. Although
Algorithm 5.5 does not compute the actual LCS table, a path of an LCS can be easily computed

119

using tables H and V . The path starts at cell (m,n) (of either table). Then, to continue from a
cell (i, j), if xi = yj , then xi is part of the LCS, and we continue with cell (i−1, j−1); otherwise,
if Hi,j = 1 and Vi,j = 0, then we continue with cell (i − 1, j), and if Hi,j = 0 and Vi,j = 1, we
continue with cell (i, j − 1) (and with any of the two if Hi,j = Vi,j = 0). This can be easily done
in O(m + n) time if all diagonals of tables V and H are kept in memory while computing the
LCS length in Algorithm 5.5. This would require Algorithm 5.5 to use O(nmw/ log σ) words of
memory to store all diagonals.

Four Russians Technique

The computation of the longest common subsequence in the UW-RAM can be made even faster by
combining the diagonal-by-diagonal order of computation described above with the Four Russians
technique. The Four Russians technique [Arlazarov et al., 1970] was used by Masek and Paterson
to speedup the computation of the string edit problem (and also the LCS) in a RAM with
indirect addressing [Masek and Paterson, 1980]. The technique consists of dividing the dynamic
programming table in blocks of size t× t cells. In a precomputation phase, all possible blocks are
computed and stored as a data structure indexed by the first row and column of each block. The
LCS can be then computed by looking up relevant values of the table one block at a time using
the data structure. In a RAM with indirect addressing and under a suitable value of t, the last
row and column of a block can be obtained by looking up the entry corresponding to the first
row and column of that block in constant time. This technique yields a speedup of O(t2) with
respect to computing all cells in the table, for a total time of O(n2/t2) (for two strings of length
n) plus the time for the precomputation of all blocks. By setting t = O(log n) and encoding the
table with difference vectors, the precomputation time can be absorbed by the time to compute
the main table (see [Masek and Paterson, 1980; Gusfield, 1997] for a more detailed description of
the technique).

We can use the power of parallel memory accesses of the UW-RAM to speedup the com-
putation of the LCS even further by looking up blocks in parallel, in a similar fashion to the
diagonal-by-diagonal approach described above. For simplicity, assume m = n. Using the same
encoding for H and V , we first precompute all possible blocks of H and V of size t× t. Since a
block is completely determined by its first column and row, whose values are in {0, 1}, and the
two substrings of length t (over an alphabet of size σ), there are O((2σ)2t) possible blocks. Note
that we can encode each cell now with one bit, since we do not need to do symbol comparisons in
parallel. Each block can be computed in O(t2) time with the standard sequential algorithm, so
the precomputation time is O((2σ)2tt2). We set t = log2σ n/2, and thus the precomputation time
is O(n log2 n) [Gusfield, 1997]. Since t ≤ w/2, we can use each block of the wide word to lookup
the entry for each block by using a parallel lookup operation. Thus, as described previously, we
can compute tables H and V in diagonals of blocks, computing min(`, w) blocks simultaneously
in a diagonal of length ` blocks. There are (n/t)2 blocks to compute and the critical path of the

120

table has length n/t blocks. Therefore, the computation of H and V can be carried out in time
O(n2/(t2w) + n/t) = O(n2 log2 σ/w3 + n log σ/w), since t = Θ(w/ log σ). We summarize this
result in the following theorem:

Theorem 5.3 Let Σ be an alphabet of size σ. Given two strings X and Y of length n over Σ,
the length of the longest common subsequence of X and Y can be computed in the UW-RAM in
O(n2 log2 σ/w3 + n log σ/w) time. For a constant alphabet size and w = Θ(log n) this time is
O(n2/ log3 n).

5.4 String Searching

Another example of a problem where a large class of algorithms can be sped up in the UW-RAM
is string searching. Given a text T of length n and a pattern P of length m, both over an alphabet
Σ, the string matching problem consists of reporting all the occurrences of P in T . We focus
here on on-line searching, this is, with no preprocessing of the text (though preprocessing of the
pattern is allowed), and we assume in general that n � m. We use two classic algorithms for
this problem to illustrate different ways of obtaining speedups via parallel operations in the wide
word. More specifically, we obtain speedups of w = Ω(log n) for UW-RAM implementations of
the Shift-And and Shift-Or algorithms [Baeza-Yates and Gonnet, 1992; Wu and Manber, 1992],
and the Boyer-Moore-Horspool algorithm [Horspool, 1980]. For a string S, let S[i] denote the
i-th character of S, and let S[i..j] denote the substring of S starting at position i and ending at
position j. Indices start at 1.

5.4.1 Shift-And and Shift-Or

The Shift-And and Shift-Or algorithms keep a sliding window of length m over the text T . On
a window at positions at substring T [i−m+ 1..i], the algorithms keep track of all prefixes of P
that match a suffix of T [i−m+ 1..i]. Thus, if at any time there is one such prefix of length |P |,
then an occurrence is reported at T [i −m + 1]. This is equivalent to running the (m + 1)-state
non-deterministic automaton that recognizes P starting from every position of T . For a window
T [i−m+1..i] in T , the j-th state of the automaton is active if and only if P [0..j] = T [i−j+1..i].
These algorithms represent the automaton as a bit vector and update the active states using
bit-parallelism. More specifically, the Shift-And algorithm keeps a bit vector ~v = b0b1 . . . bm−1,
where bj = 1 whenever the j-th state is active. If ~vi represents the automaton for the window
ending at T [i], then ~vi+1 = ((~vi >> 1) | 1) & Y [T [i]], where Y [σ] is a bit vector with set bits in
the positions of the occurrences of σ in P . The OR with a 1 corresponds to the first state always
being active to allow a match to start at any position. The Shift-Or algorithm is similar but it
saves this operation by representing active states with zeros instead of ones.

121

Algorithm 5.6 Shift-And(T, P, n = |T |,m = |P |,Σ)

1: {Preprocessing}
2: for each σ ∈ Σ do
3: Y [σ]← ~0
4: for j = 1 to m do
5: Y [P [j]]← Y [P [j]] | (1 >> (j − 1))
6: {Search}
7: V ← ~0
8: C ← 1 >> (m− 1)
9: for i = 1 to n do

10: V = ((V >> 1) | 1) & Y [T [i]]
11: if V & C 6= 0 then
12: report an occurrence at i−m+ 1

We describe two UW-RAM algorithms for Shift-And that illustrate different techniques, noting
that the UW-RAM implementation of Shift-Or is analogous. The running times of the UW-RAM
algorithms are O(nm/w2 + n) and O(nm/w2 + n/w), which are O(n) and O(n/w), respectively,
for m = O(w2).

w2-bit Automata

The straightforward way of taking advantage of the wide word when implementing Shift-And is
to use the entire wide word for bit vectors. We first compute the mask array Y [σ] for each σ ∈ Σ
and store each w2-bit vector in contiguous words of memory starting at address Y + σ. Then
the code of the UW-RAM is essentially the same as the original code, replacing all references
to the array Y with memory access operations for the wide word: assuming m ≤ w2, reading
and writing to Y [σ] implemented with by read word(W,Y + σ) and write word(W,Y + σ), for
some word W . Otherwise, bit vectors are represented in dm/w2e wide words (and stored in
memory in dm/w2ew words). The rest of the operations are done on registers, and constants
are part of the precomputation. The pseudocode for this algorithm is shown in Algorithm 5.6,
which assumes m ≤ w2 and is based on the pseudocode for Shift-And given in [Navarro and
Raffinot, 2002, Chapter 2.2.2]. Since we can now update ~v in O(m/w2 + 1) time, the running
time of Algorithm 5.6 is O(nm/w2+n). Thus, compared to the original algorithm, the UW-RAM
algorithm achieves a speedup of w when m ≥ w2, and a speedup of dm/we otherwise (no speedup
is achieved for m ≤ w).

Lemma 5.1 When implemented in the UW-RAM, the Shift-And and Shift-Or algorithms for
searching a pattern of length m in a text of length n have a running time of O(nm/w2 + n),
achieving a w-fold speedup over word-RAM implementations when m ≥ w2.

122

Algorithm 5.7 Parallel Shift-And(T, P, n = |T |,m = |P |,Σ). For technical reasons, assume that

T [n+ j] = $ for j = 1, . . . ,m−1, with $ /∈ Σ, and that w ≥ log(n+m). In order to report matches at each

step in time proportional to the number of matches (and not the number of blocks), we move directly to

blocks with matching positions by using a function that for every word of length w returns an array A with

the positions of set bits. For example, for w = 5 and x = 01011, A = {1, 3, 4}. We do this by table look

up to a table with (w/2)-bit entries, whose space is O(2w/2w) words, which for w = log n is O(
√
n log n).

1: {Preprocessing}
2: for each σ ∈ Σ do
3: Y [σ]← 0 {|Y [σ]| = w}
4: for j = 1 to m do
5: Y [P [j]]← Y [P [j]] | (1 >> (j − 1))
6: Y [$]← 0
7: V ← ~0

8: ONES← 2w
2−1

2w−1 {ONESj = 1 for all j}
9: C ← ONES >> (w − 1) {Cj = 2w−1 for all j}

10: {Search}
11: n′ ← n/w
12: POSNS← ~0 {current positions in text}
13: for j = 0 to w do
14: POSNS← POSNS | ((jn′ + 1) >> wj)
15: for i = 1 to n′ +m− 1 do
16: V 1← (V >> 1) | ONES
17: V 2← POSNS
18: read content(V 2, T) {load characters in each position (V 2j = T [POSNSj])}
19: read content(V 2, Y) {lookup masks in array Y (V 2j = Y [T [POSNSj]])}
20: V ← V 1 & V 2
21: W ← V & C {check for matches at each block}
22: W ← transpose(W << w − 1)
23: matches←W0 {matches[j] = 1 if there was a match at block j}
24: write word(POSNS,matching positions) {write all current positions in array matching positions}
25: A← lookup(matches) {position in T of k-th matching block is at matching positions[A[k]]}
26: for k = 1 to |A| do
27: report match at matching positions[A[k]]
28: V ← V & ∼ C {clear most significant bit in each block}
29: POSNS← POSNS + ONES {update positions in T (POSNSj ≤ n+m− 1 for all j, thus there is no

carry across blocks)}

w-bit Parallel Automata

Another way of using the wide word to speedup the Shift-And algorithm is to take advantage of
the parallel memory access operations of the UW-RAM to perform w parallel searches on disjoint
portions of the text. This is done by using each block of a wide word to represent the automata

123

in each search: block j is used to search P in T [jn/w..(j + 1)n/w − 1], for 0 ≤ j ≤ w − 1 (we
assume w divides n). Since the operations involved in updating the automata are the same across
blocks, an update to all w automata can be done with a constant number of single wide word
operations. All bit vectors of the precomputed table Y are now again w-bit long, as in the original
algorithm. In each step of the search, w entries of Y are read in parallel to each block according
to the current character in T in the search in each portion. The pseudocode for this procedure is
shown in Algorithm 5.7. The code assumes m ≤ w, though it is straightforward to modify it for
the m > w case. The running time of this algorithm is now O(nm/w2 +n/w+ occ), where occ is
the number of occurrences found. This is always faster than the first version above, and it leads
to the following theorem:

Theorem 5.4 Given a text T of length n and a pattern P of length m, we can find the occ
occurrences of P in T in the UW-RAM in time O(nm/w2 + n/w + occ).

5.4.2 Boyer-Moore-Horspool (BMH)

We give one more example of how to use the wide word to speed up string searching by describing a
UW-RAM implementation of the BMH [Horspool, 1980] algorithm. BMH keeps a sliding window
of length m over the text T and searches backwards in the window for matching suffixes of both
the window and the pattern. More specifically, for a window T [i..i+m−1], the algorithm checks
if T [i+ j−1] = P [j] starting with j = m and decrementing j until either j = 0 (there is a match)
or a mismatch is found. Either way, the window is then shifted so that T [i+m−1] is aligned with
the last occurrence of this character in P (not counting P [m]). The worst case running time of
BMH is O(nm) (when the entire window is checked for all window positions) but on average the
window can be shifted by more than one character, making the running time O(n) [Baeza-Yates
and Régnier, 1992]. In the UW-RAM, we can take advantage of the wide word to make several
character comparisons in parallel, thus achieving a w-fold speedup over the worst case behaviour
of the standard algorithm.

First, we divide each wide word in f -bit fields so that each field contains one character, thus
f = dlog σe. At each position of the window, we do a field-wise comparison between a wide word
containing the characters of the text and one containing the characters of the pattern. We do this
simply by subtracting both words. Since we only care if all symbols in the words match, we only
need to check if the result is zero, without having to worry about carries crossing fields (and hence
we do not need a test bit). We shift the window to the next position if the result is not zero. Note
that this check can be done in constant time, and it is quite simple as we do not need to identify
where there was a mismatch. Thus in each window we can compare up to w2/f symbols in
parallel, and hence the running time in the worst case becomes O(mn log σ/w2 +1). We show the
pseudocode in Algorithm 5.8 which, again, is based on the pseudocode of this algorithm presented
in [Navarro and Raffinot, 2002, Chapter 2.3.2]. Note that for a given input the distance of the

124

Algorithm 5.8 BMH(T, P, n = |T |,m = |P |,Σ). For simplicity, we assume that w divides m log σ.

We assume also that T and P are represented with log σ bits per symbol. We still use T [i] to denote one

character, which can be easily obtained from the packed representation in constant time (the same applies

to the actual address of starting characters of substrings).

1: {Preprocessing}
2: for each σ ∈ Σ do
3: jump[σ]← m
4: for j = 1 to m− 1 do
5: jump[P [j]]← m− j
6: m′ ← w2/ log σ {characters per wide word}
7: {Search}
8: i = 0
9: while i ≤ n−m do

10: k ← m′/m {number of window segment}
11: while k > 0 do
12: W ← T [i+ (k − 1)m′ + 1..i+ km′] {W contains the substring of T of k-th window segment}
13: V ← P [(k − 1)m′ + 1..km′] {V contains the substring of P of k-th window segment}
14: if W − V 6= 0 then
15: break
16: else if k = 1 then
17: report occurrence at i+ 1
18: k ← k − 1
19: i← i+ jump[T [i+m]]

shifts is exactly the same as in the original version of the algorithm, and therefore the average
running time remains the same. Note as well that the average running time can be reduced by
using each block to search in disjoint parts of the text at the expense of increasing the worst
case time to O(mn log σ/w + 1) due to the reduction in the number of characters that can be
compared simultaneously.

Theorem 5.5 Given a text T of length n and a pattern P of length m, both over an alphabet of
size σ, we can find the occurrences of P in T with a UW-RAM implementation of Boyer-Moore-
Horspool in O(mn log σ/w2 + 1) time in the worst-case and O(n) time on average.

5.5 Conclusions

We have introduced the Ultra-Wide Word architecture and model, and showed that several classes
of algorithms can be readily implemented in this model to achieve a speedup of Ω(log n) over
traditional word-RAM algorithms. The examples described in this chapter already show the
potential of this model to enable parallel implementations of existing algorithms with speedups

125

comparable to those of multi-core computations. We believe that this architecture could serve as
well to simplify many existing word-RAM algorithms that in practice do not perform well due to
large constant factors. We conjecture as well that this model will lead to new efficient algorithms
and data structures that can sidestep existing lower bounds.

For future work, it would be interesting to extend the algorithmic techniques that can be used
in this model as well as to describe UW-RAM implementations of other word-RAM algorithms and
for other classes of problems. Finally, another interesting research direction would be to formalize
the relation between the UW-RAM and other models of computation in terms of simulations and
their efficiency.

126

Chapter 6

Paging and Online Algorithms

Consider a team of Internet service provider (ISP) technicians visiting the residences of customers
that need technical support. Imagine that the quality of service standards of the ISP require that
every request for technical support be served the day after the call is made. Thus, once all calls
for one day are in, the manager of this team must decide which worker to send to each residence
the next day and at what time. Due to the high cost of gas, she would like to come up with a
schedule that minimizes the total time travelled by her workers. She then computes a schedule
and makes it available to the rest of the team. Contrast this scenario with one in which the quality
of service standard is higher, and the ISP guarantees that every request will be served during
the same business day, provided that the call is made at least two hours before closing hours.
Moreover, while still on the phone, the customer receives confirmation of an accurate estimation
of the time in which a technician will arrive. Now, the manager, still trying to minimize travel
time, must decide which worker to send to each residence based on the requests that she has
received so far during the day, and without knowing either when she will receive the next request
or where the service should be delivered. Furthermore, once a commitment with a customer has
been made, it cannot be modified.

It is clear that achieving the goal of serving all requests with minimum travel time is a different
challenge in each scenario. While the first scenario presents a typical optimization problem which
can be solved with an algorithm that has full information of the entire input before it attempts
a solution, the latter scenario requires a strategy in which decisions must be made as the input
is revealed; it is a simple example of an online problem.

Online computation deals with problems in which decisions must be made with incomplete
information. An online algorithm must process a sequence of events, after each of which it must
take an action based only on the information provided by past events. One of the most notable
representatives of online problems is paging, a problem that models the management of data in
computer memory hierarchies. In Chapters 7 and 8 we study variants of the paging problem

127

that are relevant in multi-core computation. This chapter provides the necessary background on
online algorithms and paging as well as relevant related work.

6.1 Online Algorithms

Let R = {r1, r2, r3, . . . , rn} be a sequence of events or requests which is the input to an online
problem P . An online algorithm solving P must produce a sequence of responses or actions
S = {s1, s2, . . . , sn}, where each si depends only on {r1, r2, . . . , ri}. In other words, each action
si is produced after receiving request ri and depends only on requests seen so far, and cannot be
changed. Furthermore, the algorithm has no knowledge of even the number of total requests in
the input. In the example given at the beginning of this section, each request is the address of
each residence, and the action is the decision of which worker should go to that address. This
problem is an application of the k-server problem, in which servers must be assigned to requests
in an online fashion, with the goal of minimizing a cost measure.

Measuring the performance of an online algorithm is not straightforward, and much of the
research in online algorithms has dealt with the problem of finding the right measure of perfor-
mance. It should be easy to see that a simple worst-case performance analysis would not be
very useful to measure the quality of online solutions, as adversarial sequences based on each
algorithm’s decision would result in quite negative results for any possible algorithm.

6.1.1 Competitive Analysis

The traditional way of assessing the quality of online algorithms is to compare their performance to
that of an algorithm that knows the future, known as the optimal offline. This way of analyzing
online computation is called competitive analysis and was introduced in 1985 by Sleator and
Tarjan [1985]. In competitive analysis, the quality of an algorithm is expressed in terms of their
competitive ratio, defined as follows.

Definition 6.1 (Competitive ratio [Borodin and El-Yaniv, 1998]) Let A be an online al-
gorithm for a minimization problem Π and let OPT denote an optimal offline algorithm for this
problem. Let A(R) and OPT (R) denote the cost of A and OPT on a request sequence R. For
any c ≥ 1, we say that A is c-competitive if for all request sequences R,

A(R) ≤ c ·OPT (R) + β, (6.1.1)

where β is a constant that does not depend on R. We say that A is strictly c-competitive if β = 0.
The competitive ratio of A is defined as the infimum of all such values of c.

128

If Π is a maximization problem, then the definition is analogous, with Inequality (6.1.1) be-
coming A(R) ≥ c · OPT (R) − β. The competitive ratio c is effectively an approximation ratio.
Note, however, that online algorithms settle for approximations to overcome not knowing the
entire input and not in order to achieve a better running time performance than the optimal al-
gorithm. In fact, the running time of an online algorithm is normally not a concern, and the focus
is on its competitiveness. The running time performance is obviously important in practical ap-
plications. In addition, unlike the study of approximation algorithms, which allows non-constant
approximation ratios, the competitive ratio is usually thought of as a constant. Thus, the term
competitive online algorithm is used to refer to an algorithm with constant competitive ratio.

While competitive analysis is arguably the most utilized measure of performance for online
algorithms, it has often been criticized for being too pessimistic and for not reflecting the influ-
ence of important practical considerations in algorithms and input sequences. There exist other
measures of performance, some of them tailored to particular problems. Next, we review the
online paging problem and mention other measures of performance in that context.

6.2 Paging

A computer memory system is designed as a hierarchy of storage devices which higher capacity
but slower access cost as the distance to the processors increases. After processors’ registers, the
fastest and smallest storage devices are caches, of which there are normally three levels, and that
are usually on the processor chip, although sometimes the last level is outside the chip. The next
levels in the memory hierarchy are the computer’s RAM, one or more hard drives or disks, and
external or network accessed storage.

Efficiently managing data across this hierarchy is fundamental to the performance of modern
computers, and it is a problem of active research across several areas of Computer Science. An
important aspect of this problem is to decide what data is maintained in the faster lower levels of
the hierarchy. The paging problem addresses this issue by modeling a two-level memory system
consisting of a slow memory of infinite size and a fast memory of size k, usually known as the
cache. The input to an instance of paging is a sequence of page requests. Upon a request to a
page σ, if σ is in the cache, known as a hit, no action is required. Otherwise, a page fault has
occurred, and σ must be brought from slow to fast memory, possibly requiring the eviction of
another page in the cache. A paging algorithm must decide which pages to maintain in the cache
at all times so as to minimize the number of faults. This cost model is known as the page fault
cost model, in which a page fault has cost of one, and a hit has no cost.

The name paging stems from the virtual memory management systems implemented in mod-
ern operating systems. While all processes running simultaneously on a computer share the
physical memory space, each of them operates on its own virtual address space, which is divided

129

in contiguous blocks of addresses known as pages. When a process accesses a memory location,
this corresponds to a request to the page that contains this location, which can either reside in
the physical memory, or have been swapped to disk. Thus, the paging problem refers to the
management of pages in memory and disk. The name paging is also used, however, to model
the same process in any level of the hierarchy, although sometimes it is referred to as caching
when explicitly being considered for the management of data between caches and main memory.
In the latter case, the relevant unit of data storage is known as a cache block or line, and the
equivalent of a page fault is known as a cache miss. In the paging problems studied in this thesis,
we focus on the management of cache vs. memory systems, however, the results are general and
applicable to any two-level memory system. We use the generic terminology related to the paging
problem; thus, we refer to pages as the relevant data organization unit and as hits and faults for
the aforementioned events. We refer to the fast memory as the cache, and to the slow memory
simply as memory.

6.2.1 Paging Algorithms

Given a sequence of page requests, a paging algorithm must decide, upon each request that results
in a page fault when the cache is full, which page to evict from the cache in order to make space
for the new page. In this sense, paging algorithms are also known as cache eviction policies. In
general, the decision should not only be which pages must be evicted from the cache, but which
pages to keep in cache at all times. In the classic cost model, in which we are interested in
minimizing the number of faults, both are equivalent. In other words, there is no disadvantage
in keeping the cache full at all times and only evicting a page when it is required. An algorithm
with this property is known as a demand paging or lazy algorithm. More specifically,

Definition 6.2 (Demand paging algorithm [Borodin and El-Yaniv, 1998]) An algorithm
is said to be demand paging if it never evicts a page unless there is a page fault and the cache is
full.

Any paging algorithm can be made demand paging without increasing its cost [Borodin and
El-Yaniv, 1998]. While this is true in the traditional page fault model, we shall see that for other
costs models it might be desirable for algorithms to evict pages even if there is no need to make
space for a new page in the cache (see Chapter 8).

The following well known paging algorithms are defined by the actions they take when there
is a page fault and the cache is full [Borodin and El-Yaniv, 1998]:

• Least-Recently-Used (LRU): evict the page in the cache whose last access is the least recent.

• First-In-First-Out (FIFO): evict the page in the cache that was brought into the cache
earliest.

130

• Flush-When-Full (FWF): evicts all pages in the cache.

• Least-Recently-Used-2 (LRU-2): evict the page whose second to last access is the least
recent; evict the least recently used page if all pages in the cache have only been requested
once.

• Last-In-First-Out (LIFO): evict the page in the cache that was last brought into the cache.

• Least-Frequently-Used (LFU): evict the page in the cache that has been requested the least
since it was brought into the cache.

• Clock: associates a bit with each page that is set every time the page is accessed. Pages in
the cache are kept in a circular list, with a pointer to the most recently added page. When
an eviction is required, the list is traversed from the pointer unsetting the bits of paging it
visits and stopping at and evicting the first encountered page with an unset bit.

• Furthest-In-The-Future (FITF): evict the page in the cache whose next request will be
furthest in the future.

The last policy in the list above differs from the rest in that it needs knowledge of future
requests to make decisions. This strategy, known also as Longest-Forward-Distance (LFD) or
Belady’s algorithm [Belady, 1966], is an optimal offline strategy.

From the strategies above, LRU, FIFO, FWF, and Clock are k-competitive. This is optimal,
as no deterministic online algorithm can have a competitive ratio better than k [Borodin and
El-Yaniv, 1998]. The competitive ratio of LRU-2 is 2k [Boyar et al., 2006], while LIFO and LFU
are not competitive (i.e., their competitive ratio is not bounded by a constant independent of the
length of the sequence). LRU and FWF are instances of a more general class of algorithms called
marking algorithms.

Definition 6.3 (Marking algorithm) A marking algorithm associates a mark with each page
in its cache (either explicitly or implicitly) and marks a page when it is brought to cache or if it
is unmarked and requested. Upon a fault with a full cache, it only evicts unmarked pages if there
are any, and unmarks all pages in cache otherwise.

The execution of a marking algorithm over a sequence R defines a partition of the sequence in
phases: a new phase starts on the request which requires unmarking all pages in the cache. Since
the definition is dependent on the cache size, we denote it as k-phase partition. The following is
an equivalent definition of a k-phase partition.

Definition 6.4 (k-phase partition) The k-phase partition of a sequence R is a partition of R
into contiguous subsequences of requests or phases such that the first phase starts with the first

131

request, and each subsequent phase starts when (k + 1) different pages have been requested since
the beginning of the previous phase.

In the k-phase partition of a sequence, every phase but the last one has requests for exactly
k distinct pages, while the last phase might have requests for fewer distinct pages. The following
fundamental property of marking algorithms will be repeatedly used in the proofs in Chapters 7
and 8.

Proposition 6.1 ([Borodin and El-Yaniv, 1998]) A marking algorithm incurs at most k
faults within a phase.

All marking algorithms are k-competitive, which can be shown using the property above. This
property can be generalized to any consecutive subsequence of k distinct pages, which yields the
definition of conservative algorithms.

Definition 6.5 (Conservative algorithms [Borodin and El-Yaniv, 1998]) An algorithm
is conservative if it incurs at most k faults on any consecutive subsequence of requests that con-
tains at most k distinct pages.

Conservative algorithms are also k-competitive. LRU, FIFO, and Clock are examples of conser-
vative algorithms [Borodin and El-Yaniv, 1998].

Randomized Paging Algorithms

The lower bound of k on the competitiveness of any deterministic algorithm can be bypassed
using randomization, though it is important to note that the randomized competitive ratio of an
algorithm is most closely related to the average competitive ratio rather than its worst case. The
following algorithms are well-known randomized paging algorithms:

• Random: evict a page chosen uniformly at random.

• Mark: mark pages when accessed as in the definition of marking algorithms (Definition 6.3),
and evict a page chosen uniformly at random among all unmarked pages.

In the context of randomized online algorithms, special attention must be placed into the
definition of the adversary used in the analysis of algorithms’ competitiveness. An oblivious
adversary can only choose the request sequence in advance (and not depending on the online
algorithm’s random decisions) and serve the sequence offline. In the other extreme, an adaptive
offline adversary can choose each request after the decision of the online algorithm and can serve

132

the sequence offline. In between the two, the adaptive online adversary can adapt the sequence to
the actions of the online algorithm but must also serve the sequence online, i.e., it must serve each
request right after presenting it to the online algorithm. If an algorithm is c1-competitive against
an oblivious algorithm, c2-competitive against an adaptive online algorithm, and c3-competitive
against an adaptive offline algorithm, then c1 ≤ c2 ≤ c3 [Borodin and El-Yaniv, 1998].

The simple Random algorithm is still k-competitive against an adaptive online algorithm,
while Mark is 2Hk competitive against an oblivious adversary, where Hk is the k-th Harmonic
number. Hk is defined as Hk =

∑k
i=1 1/i, which is Θ(log k). Hk is actually a lower bound

for randomized algorithms against an oblivious adversary, and thus it carries to more powerful
adversaries [Borodin and El-Yaniv, 1998]. This competitive ratio is attained by the optimal
algorithms Partition [McGeoch and Sleator, 1991] and Equitable [Achlioptas et al., 2000].

6.2.2 Other Cost Models

While in the classic model all pages have the same size and cost, models motivated by web-
caching consider pages of varying sizes. In the fault model [Irani, 1997] pages have varying
sizes but uniform fault cost; in the bit model [Irani, 1997] the fault cost of each page equals its
size, thus the problem of minimizing fault cost is equivalent to minimizing the amount of data
brought into the cache. In these models, and assuming pages can bypass the cache if desired,
LRU is (k + 1)-competitive. The cost model or weighted caching problem [Chrobak et al., 1991]
considers pages with varying fault costs but uniform page sizes. Finally, a general model allows
arbitrary sizes and costs [Young, 1998], for which k-competitive deterministic algorithms are
known [Cao and Irani, 1997; Young, 1998]. Bansal et al. [2008] showed an O(log2 k)-competitive
randomized algorithm for the general model and an O(log k)-competitive randomized algorithms
for the fault and bit models. While a polynomial time algorithm for the offline weighted cache
problem exists [Chrobak et al., 1991], the offline problem in the bit, fault, and general models
was recently shown to be strongly NP-complete [Chrobak et al., 2012].

Unlike these models, which consider only the cost of faults, the full access cost model [Torng,
1998] charges a cost of 1 for a hit, and a cost of s ≥ 1 for a fault. In this model, marking

algorithms achieve a competitive ratio of 1 + (k−1)s
L+s , where L is the average phase length in the

k-phase partition of a sequence. In the worst case, L = k and the ratio is k(s+ 1)/(k+ s), which
is optimal. The model coincides with the classic model when s → ∞, but can yield competitive
ratios that are significantly smaller if s is small or if a sequence has high locality [Borodin and El-
Yaniv, 1998]. As we shall see, the model of paging with cache usage that we present in Chapter 8
is also amenable to an analysis of algorithm performance in terms of locality of reference, yielding
small competitive ratios for sequences with high locality for the proposed online algorithms.

133

6.2.3 Alternative Performance Measures

The competitive analysis framework has been criticized for not properly reflecting the practical
performance of algorithms in some problems, one of which is paging. For example, according
to competitive analysis LRU, FIFO and FWF are all optimal. While it is well known that in
practice LRU outperforms FIFO and FWF, pure competitive analysis cannot distinguish between
the performance of these algorithms. It also fails to reflect performance gains in the presence of
lookahead. A paging algorithm with lookahead of ` is allowed to make decisions based on past
requests as well as on ` requests to the future. Intuitively, this should give such an algorithm an
effective theoretical advantage over algorithms without lookahead. Unfortunately, competitive
analysis cannot distinguish between the two classes of algorithms, and the lower bound of k
applies as well to any algorithm with finite lookahead.

To overcome the shortcomings of competitive analysis, several alternative measures of perfor-
mance for online algorithms have been proposed. Some of these are generic to all online algorithms
while others are specific to some problems. Among the former, there are several measures that
shift away from comparisons to an offline optimal algorithm and compare the performance of
two online algorithms directly. Examples of these measures are bijective and average analy-
sis [Angelopoulos et al., 2007], and relative interval analysis [Dorrigiv et al., 2009]. In relative
interval analysis, two online algorithms A and B are compared directly as follows. Let A(R)
denote the cost of A on a request sequence R of a minimization problem, and let Min(A,B) =
lim infn→∞(min|R|=n{A(R)−B(R)}) and Max(A,B) = lim supn→∞(max|R|=n{A(R)−B(R)}).
Thus Min(A,B) and Max(A,B) represent the minimum and maximum difference in cost between
the two algorithms, respectively. Then the relative interval of A and B is defined as

I(A,B) = [Min(A,B),Max(A,B)].

We say that an interval [α, β] approximates the relative interval of A and B, denoted as [α, β] ⊆
I(A,B) if Min(A,B) ≤ α and β ≤Max(A,B). The relative interval of A and B represents the
maximum and minimum difference in performance betweenA andB. Thus, if I(A,B) ⊆ [0, β > 0]
we say that B dominates A, since on any sequence B is no worse than A, and there is at least
one sequence for which B is better than A. In general, B has better performance than A in
this model if Max(A,B) > |Min(A,B)|. It can be shown that under this performance measure
LRU and FIFO have better performance than FWF, and that the model reflects the advantage
of lookahead [Dorrigiv et al., 2009].

In Chapter 8 we use a variant of relative interval analysis to compare two online algorithms
by considering the cost ratios instead of differences. We also take a similar approach in Chapter 7
to directly compare the performance of various strategies to manage shared caches.

There exist several other ways of measuring the performance of online algorithms. We refer
the reader to [Dorrigiv and López-Ortiz, 2005, 2009; Dorrigiv, 2010] for a survey and discussion.

134

6.2.4 Paging with Multiple Request Sequences

Various models have been proposed to analyze the performance of paging algorithms in the
presence of multiple request sequences, either modeling multiple applications or multiple threads.
In what follows, we briefly review some of these models, which differ mainly in the assumptions
they make with respect to the knowledge of future requests by each process and the abilities of
the paging algorithm to schedule page requests. In the following, p denotes the number of request
sequences and k the size of the cache.

Multipointer Paging in the Access Graph Model

Fiat and Karlin [1995] study paging algorithms in the access graph model, in which request
sequences are restricted to paths in a given graph [Borodin et al., 1995]. They study the multi-
pointer case, in which several paths through an access graph might be performed simultaneously,
modeling both different applications (the graph could be disconnected) or multithreaded compu-
tations (having several paths in one same connected component). They describe a deterministic
algorithm in this model and show that it is optimal up to constant factors.

Application-Controlled Caching

Cao et al. [1994] study a scenario in which various applications share a cache. A global kernel
manages a dynamic allocation of cache blocks to each application, while each application is
responsible for managing its assigned blocks. It is assumed for the latter that each application
has knowledge of its cache access patterns, i.e., each application knows its entire sequence of
requests. However, the global allocation policy has no knowledge of the future. This work presents
a two-level block replacement approach which experimentally achieves an improvement in global
performance over a global LRU policy. Barve et al. [2000] showed that the competitive ratio of the
algorithm of Cao et al. is 2p+ 2, where p is the number of applications. They name the problem
multiapplication caching and show that no deterministic online algorithm can have a competitive
ratio better than p + 1 for this problem. They propose a randomized strategy that achieves a
competitive ratio of 2Hp + 2, which is approximately 2 ln p, and show that min{Hp−1, Hk} is a
lower bound for any application-controlled algorithm. The bounds are given with respect to a
worst possible interleaving of the request sequences. Note that the upper bounds do not depend
on the cache size and might be smaller than the lower bound Hk for traditional paging, which is
due to the fact that each application knows future page requests.

Recently, Katti and Ramachandran [2012] extended the results on the application-controlled
caching setting, which they term full knowledge model. Unlike the work in [Cao et al., 1994; Barve
et al., 2000], Katti and Ramachandran consider the case in which pages might be shared between

135

processes. They show a lower bound of p
2 log 4(k+1)

3p for any deterministic online algorithm, and a

lower bound of log(k+1)
2 for randomized algorithms. The latter establishes that Partition [McGeoch

and Sleator, 1991] is optimal in this case (up to constant factors). They describe a deterministic
algorithm that achieves a competitive ratio of 2(p ln(ek/p) + 1). For the disjoint case studied
in [Cao et al., 1994; Barve et al., 2000], they present a deterministic online algorithm with
competitive ratio max(10, p + 1), which is optimal for p ≥ 9 (recall that p + 1 is a lower bound
in this setting). This work also considers paging in memory hierarchies, establishing upper and
lower bounds on the competitive ratio of algorithms for the last level of cache.

Multi-Threaded Paging

Feuerstein and Strejilevich de Loma [2002] introduced Multi-Threaded Paging (MTP). In this
problem, given a set of page requests, an algorithm must decide at each step which request to
serve next and how to serve it. They study the settings with finite and infinite request sequences,
and both with and without fairness restrictions, providing lower and upper bounds for online
algorithms. In the case when no fairness restrictions are imposed, they show that there exist
algorithms with competitive ratio pk for the infinite and finite settings. On the other hand, they
show that when general fairness restrictions are imposed, there are no competitive algorithms.
Results in this model were further extended in [Strejilevich de Loma, 1998] and [Seiden, 1999].
In this model, a paging algorithm has the capability to schedule requests, and thus the order in
which requests are served is algorithm dependent.

Cache Replacements for Multi-Cores

Hassidim [2010] introduced a model for cache replacement policies specific to multi-core caches
in which requests are served in parallel. This model considers the fetching time of pages from
memory: if there is a fault on a request of one sequence, the rest of the sequences continue to be
served while the faulting sequence’s page is fetched from memory. This work studies the perfor-
mance of algorithms in the competitive analysis framework with makespan as the performance
measure, and not the number of faults. It shows that the competitive ratio of LRU with a cache
of size k is Ω(τ/α), where τ is the ratio between miss and hit times, and the offline optimal has
a cache of size k/α. For a constant resource augmentation factor α, LRU has competitive ratio
Ω(τ). This result is significant since a competitive ratio of τ can be achieved by an algorithm
that does not use the cache at all: the makespan of a strategy that incurs faults only is at most
a factor of τ larger than that one of the optimal offline. Hassidim also shows that computing the
optimal offline schedule is NP-complete and presents a Polynomial Time Approximation Scheme
(PTAS) for constants p and τ .

Note that in both the MTP model of Feuerstein and Strejilevich de Loma and Hassidim’s
model the order of requests depends on the decisions of the algorithms, while in previous models

136

for multi-application caching [Cao et al., 1994; Barve et al., 2000] and multi-pointer paging [Fiat
and Karlin, 1995] the order of requests is the same for all algorithms.

As in the MTP model, Hassidim’s model assumes that the paging strategy can choose to serve
requests of some sequences and delay others. In particular, the offline strategy is able to modify
the schedule of requests, and hence is more powerful than a regular cache eviction algorithm.
Building on Hassidim’s model, in Chapter 7 we describe a model for multi-core paging that
discards this possibility, assuming that the order in which requests of different processors arrive
to the cache is given by a scheduler over which the caching strategy has no influence. Hence, our
model is different from previous models in that we assume no explicit scheduling capabilities of
the paging strategy, while at the same time faults introduce delays in sequences, thus changing
the order of requests.

137

Chapter 7

Paging for Multi-Core Shared Caches

Multi-core processors are equipped with at least two and sometimes three cache levels, with
at least one cache level shared by some or all cores. The performance of multi-core programs
depends crucially on how efficiently cores can access data in their caches. In fact, many of the
multi-core models and algorithms that have been proposed place cache performance at the same
level or above parallel computation times (see Section 2.8.2). The efficient management of data
in caches during the execution of a multi-core program, either explicitly by an algorithm or by
the operating system, becomes a key aspect of the computation in these architectures. In this
context, a primary component of cache data management is cache eviction policies.

Cache eviction policies have been widely studied both in theory and in practice for sequential
processors. From a theoretical perspective, the efficient management of data in a cache is modeled
by the paging problem: given a fast memory of size k and a sequence of page requests, the goal is
to serve the sequence while minimizing the number of cache misses or faults (see Chapter 6). In
reality it is often the case that the fast memory is a shared resource among multiple processes or
multiple threads of the same process. A few models were proposed to reflect this scenario (prior to
multi-cores), extending the classical paging problem to a setting in which several sequences must
be served simultaneously with a shared fast memory (see Section 6.2.4). The case of multiple
threads sharing a cache in multi-cores falls under this scenario as well. However, multi-core
threads execute concurrently in parallel, and hence requests can be served in parallel. This
implies that when a sequence suffers a cache miss, other sequences can continue to be served.

In order to reflect the parallel execution of threads, Hassidim [2010] proposed a model specific
to multi-core shared caches (see Section 6.2.4). In a multi-core system with p cores, a shared cache
might receive up to p page requests simultaneously. Hassidim’s model is somewhat unconventional
in that paging strategies not only decide which pages to evict from the cache but can also schedule
the execution of threads. While in principle there is no reason why this cannot be so, historically,
the operating system has kept the scheduling of execution and the paging tasks separate. Within

139

the operating system, the scheduler concentrates on fairness and throughput considerations to
determine which task should be executed while the paging algorithm focuses on which of the
pages currently in the cache should be evicted upon a fault.

In this chapter we propose a more conservative and conventional model for multi-core paging,
in which paging algorithms are not allowed to make any scheduling decisions but must serve all
active requests. In this model, a paging strategy serves a set R of p request sequences using a
shared cache of size k. Requests can be served in parallel, thus various pages can be read from
cache or fetched from memory simultaneously, and a page fault delays the remaining requests
of the corresponding sequence by τ units of time. We define as final-total-faults (ftf) the
problem of minimizing the total number of faults, and as partial-individual-faults (pif) the
problem of deciding, given a request sequence R, a time t, and a bound vector ~b ∈ Np, whether
R can be served such that at time t the number of faults on each of the sequences Ri is at most
bi.

Our results1 Without loss of generality, we define a paging strategy as a combination of a
possible partition policy and an eviction policy and compare the performance of natural strategies
for ftf within this framework. We show that when restricted to static partition strategies, the
choice of the partition has larger impact than the choice of an eviction policy. We also show,
however, that partition strategies cannot be competitive with respect to shared strategies if they
do not update the partition sufficiently often, even for disjoint request sequences. We show as
well that shared strategies with traditional eviction policies (LRU, FIFO, Clock, and FWF) have
competitive ratios that are arbitrarily large in the worst case.

We then study the offline cache problem and show properties of optimal offline algorithms.
An algorithm that knows future requests can benefit from delaying one or more sequences with
respect to others in order to balance the demands of different sequences. This could be achieved
by evicting pages even if not triggered by a fault in order to force faults on pages that would
otherwise result in hits. We show, however, that forcing faults in this manner is not beneficial.
More specifically, we show that any offline algorithm for ftf that forces faults can be transformed
into a lazy algorithm that never evicts a page unless triggered by a fault, and which incurs no
more faults than the original algorithm. In particular, there exists an optimal offline algorithm
that does not force faults. We show hardness results for pif, showing that pif is NP-complete
and that a natural optimization version is APX-hard. Interestingly, pif is NP-complete even in a
simplified model with τ = 0, i.e., when faults do not delay the remaining requests of a sequence.
This result immediately implies that this offline problem is hard in the multiapplication caching
model [Barve et al., 2000; Cao et al., 1994]. Finally, we present optimal offline algorithms for
both ftf and pif that run in polynomial time in the length of the sequences (and exponential
in the number of processors, which for multi-cores is much smaller than the problem size n (see

1Results in this chapter appeared in [López-Ortiz and Salinger, 2011; López-Ortiz and Salinger, 2012].

140

Chapters 3 and 4 for arguments about assumptions on the number of processors as a function of
the input size)).

This chapter is organized as follows. In Section 7.1 we describe the multi-core cache model
and formally define the problems we address. In Section 7.2 we derive bounds on the performance
of natural strategies to minimize the number of faults. We study the offline problem in Section
7.3. We provide concluding remarks and future directions of research in Section 7.4.

7.1 The Cache Model

The model we use in this work is broadly based on Hassidim’s model [Hassidim, 2010] (see
Section 6.2.4 for a description of this and other models for paging for multiple sequences). We
have a multi-core processor with p cores {1, . . . , p} and a shared cache of size k pages. The
input is a multiset of request sequences R = {R1, . . . , Rp}, where Rj = σjs1 . . . σ

j
snj

is the request

sequence of core j of length nj . σ
j
si is the page identifier of the i-th request in the sequence, with

1 ≤ si ≤ N , where N is the size of the universe of pages. The total number of page requests is
n =

∑p
j=1 nj . We assume k � p and nj � k, for all 1 ≤ j ≤ p. In particular, we assume that

k ≥ p2, which can be regarded as a multi-core variant of the tall cache assumption2. We say that
a request R is disjoint if ∀i, j, i 6= j, Ri ∩Rj = ∅ and non-disjoint otherwise. In practice, a single
instruction of a core can involve more than one page. We treat each request as a request for one
page, which models the case of separate data and instruction caches on a RISC architecture.

Page requests arrive at discrete timesteps. At any timestep, the cache might receive up to
p page requests, each one from a different core, and these are served in one parallel step. This
assumes that requested pages from different cores can be read in parallel from the cache. We
assume as well that fetching can be done in parallel, i.e., pages from memory corresponding to
requests of different cores can be brought simultaneously from memory to the cache.

Serving a request that results in a hit takes one timestep, while serving a request from memory
takes τ + 1 steps3. A fault delays the remaining requests of the corresponding processor by an
additive term τ . In other words, if a request σjsi∗ is a fault, then for all i > i∗, the earliest time

at which σjsi can be served increases by τ . In terms of real world latencies, τ + 1 corresponds
to the ratio between miss and hit times of the shared cache. For instance, for the Intel Pentium
M processor, the ratio between memory and L2 cache latencies is estimated to be 17 [Hassidim,
2010; Drepper, 2007].

In our model, when a page request arrives, it must be serviced. The only choice the paging
algorithm has is in which page to evict shall the request be a fault. To be consistent with

2A cache of size Z words with lines of L words is said to be tall if Z = Ω(L2) [Frigo et al., 1999].
3Note that in Hassidim’s model the time to serve a fault is τ .

141

[Hassidim, 2010], we adhere to the convention that when a page needs to be evicted to make
space, first the page is evicted and the cache cell is unused until the fetching of the new page is
finished. For non-disjoint requests we use the convention that when there is a request by processor
j of a page that is currently in the process of being fetched, then the sequence of processor j is
only delayed until the page is fetched into the cache τ units of time after the initial request. We
also assume that cache coherency is provided at no cost to the algorithms. Finally, we adopt the
convention that simultaneous requests are served logically in a fixed order (e.g., by increasing
number of processor).

Under this model, various natural choices of objective functions may be considered. We define
and address the following problems:

Definition 7.1 final-total-faults (ftf) Given a set of requests R = {R1, . . . , Rp}, a cache
size k, and an integer τ ≥ 0, minimize the total number of faults when serving R with a cache of
size k.

Definition 7.2 partial-individual-faults (pif) Given a set of requests R = {R1, . . . , Rp}, a

cache size k, a time t, an integer τ ≥ 0, and ~b ∈ Np, can R be served with a cache of size k such
that at time t the number of faults on each sequence Ri is at most bi?

Intuitively, the decision problem pif is harder than the optimization problem ftf, since the
former poses more restrictions on feasible solutions. Posing a bound on individual faults might
be required to ensure fairness, and furthermore, doing so at arbitrary times can be used to ensure
fairness throughout the execution of an algorithm.

7.2 Bounds of Online Strategies for Minimizing Faults

Natural strategies to manage the cache in the multi-core cache model can be classified in two
families: shared and partitioned. In the first one, the entire cache is shared by all processors,
and a cache cell can hold a page corresponding to any processor. In the second one, the cache
is partitioned in p parts, with each part destined exclusively to store pages of requests from one
processor, throughout. A partitioned strategy is static if the sizes of all parts remain constant
during an execution and dynamic otherwise.

Both shared and partitioned strategies are accompanied by an eviction policy A. We use SA
to denote the algorithm that uses a shared cache with eviction policy A, and PBA to denote a
partitioned strategy with partition function B and eviction policy A in each part. A partition
function B is static if the size of all parts remain constant during an execution and is dynamic
otherwise. For the latter, when the reduction of the size of a part involves page evictions, these
are carried out according to the eviction policy. We make the restriction that all partitions must

142

assign at least one unit of cache to all processors whose requests are active. For example, SLRU
evicts the least recently used page in the entire cache and POPTLRU performs LRU on each part of
the partition, which is determined offline so as to minimize the total number of faults. Figure 7.1
shows an example of the execution of a shared strategy and a static partition strategy.

In the remainder of this section we compare the performance of partitioned and shared strate-
gies for ftf. We denote the number of faults of a strategy Alg on a sequence R as Alg(R). Also,
for a sequence of page requests σ = σs1 . . . σsm , we use (σ)` to denote the concatenation of σ with
itself ` times.

Partitioning the cache may be desirable to avoid costs of managing concurrency issues that
arise when different threads access a shared page. In addition, a static partition allows for the
execution of regular paging algorithms in each part, oblivious to the presence of other threads,
and thus provides performance guarantees based on individual threads or processes. In fact, if we
restrict paging strategies to a fixed static partition, any marking or conservative algorithm (e.g.,
LRU, FIFO) has a competitive ratio of at most k, as in the sequential setting (see Section 6.2.1
for the definitions of marking and conservative algorithms). Formally:

Lemma 7.1 (Online vs. offline eviction policies with a fixed static partition) Let A be
any deterministic online eviction algorithm and let B = {k1, k2, ..., kp} be any online static par-
tition. There exists a sequence R such that PBA (R)/PBOPT (R) = Ω(maxj{kj}). When A is
any marking or conservative algorithm (e.g., LRU), there is a matching upper bound, i.e., ∀ R,
PBA (R)/PBOPT (R) ≤ maxj{kj}.

Proof: Lower bound. Let j∗ = argmaxj{kj}. The sequence R is such that for j 6= j∗,

Rj = (σj1)
n/p, i.e., the same page is requested n/p times, while Rj consists of requesting, among

pages {σ1, σ2, ..., σkj∗+1}, the page just evicted by A, where σi1 6= σi2 for i1 6= i2, and all sequences

are disjoint. PBA (R) = n/p+ p− 1, since it faults on every request of Rj∗ and once on each of the
other sequences. On the other hand, since PBOPT only evicts a page of sequence Rj∗ if it is not
requested in the following kj∗ requests, we have PBOPT (R) ≤ (n/p)/kj∗ + p− 1 and the first part
of the lemma follows.

Upper bound. Divide sequence Rj in phases such that a new phase starts every time there
is a request for the (kj+1)-th distinct page since the beginning of the previous phase, and the first
phase begins at the first page of Rj . P

B
LRU faults at most kj times in each phase of Rj , while any

algorithm must fault at least once in each phase. Let φj denote the number of phases of sequence
Rj , then PBLRU (R) ≤∑p

j=1 φjkj ≤ maxj{kj}
∑p

j=1 φj . On the other hand, PBOPT (R) ≥∑p
j=1 φj ,

and thus PBLRU (R)/PBOPT (R) ≤ maxj{kj}.

Using a recent result of Peserico [2013], we can derive a similar upper bound to the one in

143

SLRU PBLRU
t Remaining sequence Cache Remaining sequence Cache

0
σ1σ2σ4σ2σ3σ4 σ1σ2σ3σ5σ6 σ1σ2σ4σ2σ3σ4 σ1σ2σ3
σ5σ6σ2σ4σ5σ5 σ5σ6σ2σ4σ5σ5 σ5σ6

1
σ2σ4σ2σ3σ4 σ5σ1σ2σ3σ6 σ2σ4σ2σ3σ4 σ1σ2σ3
σ6σ2σ4σ5σ5 σ6σ2σ4σ5σ5 σ5σ6

2
σ4σ2σ3σ4 σ6σ2σ5σ1σ3 σ4σ2σ3σ4 σ2σ1σ3
σ2σ4σ5σ5 σ2σ4σ5σ5 σ6σ5

3
σ2σ3σ4 σ2σ6σ5σ1∗ σ2σ3σ4 σ2σ1∗

σ4σ5σ5 σ4σ5σ5 σ6∗
4

σ2σ3σ4 σ2σ6σ5σ1∗ σ2σ3σ4 σ2σ1∗
σ5σ5 σ4σ5σ5 σ6∗

5
σ2σ3σ4 σ4σ2σ6σ5σ1 σ2σ3σ4 σ4σ2σ1
σ5σ5 σ4σ5σ5 σ2σ6

6
σ3σ4 σ5σ2σ4σ6σ1 σ3σ4 σ2σ4σ1
σ5 σ5σ5 σ2∗

7
σ4 σ5σ2σ4σ6∗ σ4 σ2σ4∗

σ5σ5 σ2∗
8

σ4 σ5σ2σ4σ6∗ σ4 σ2σ4∗
σ5σ5 σ4σ2

9
σ4 σ3σ5σ2σ4σ6 σ4 σ3σ2σ4

σ5 σ4∗
10

σ4σ3σ5σ2σ6 σ4σ3σ2
σ5 σ4∗

11
σ4σ3σ2

σ5 σ5σ4

12
σ4σ3σ2
σ5σ4

Figure 7.1: Example of execution of shared LRU and a static partition strategy with LRU and partition
B = {3, 2} on the input R = {R1, R2}, with R1 = σ1σ2σ4σ2σ3σ4 and R2 = σ5σ6σ2σ4σ5σ5. The cache size
is k = 5 and τ = 2. Pages in bold denote faults, and a ‘ ’ indicates a timestep in which a page is being
fetched. Pages in the caches are shown from left to right in order of most recent use, and a ‘∗’ in the cache
indicates that the cell will be used by a page currently being fetched. The number of faults incurred by
SLRU and PBLRU are 3 and 5, respectively.

144

Lemma 7.1 for marking and dynamically conservative algorithms4 for dynamic partitions as well.
Peserico studies the performance of cache eviction policies (for one request sequence) when the
cache size can vary from 1 to a maximum size k. In this setting, he shows that marking and
dynamically conservative algorithms are at most k competitive [Peserico, 2013]. This result leads
to the following lemma:

Lemma 7.2 (Online vs. offline eviction policies with a fixed dynamic partition) Let
D be any online dynamic partition and let A be any marking or dynamically conservative
algorithm. Then, ∀ R, PDA (R)/PDOPT (R) ≤ pk.

Proof: The dynamic partition D defines p instances of paging with varying cache size in which
the online and offline eviction policies have equal cache sizes at each timestep. Let PDA (Ri) denote
the number of faults of A on sequence Ri under partition D. By Theorem 4 in [Peserico, 2013],
PDA (Ri) ≤ kPDOPT (Ri) for all 1 ≤ i ≤ p. Adding the number of faults in all sequences yields the
lemma.

Lemmas 7.1 and 7.2 show that if the cache partition is determined externally and indepen-
dently of the eviction policy (e.g., by a scheduler or the operating system), then traditional
eviction policies that have are competitive in the sequential setting are also competitive in the
multi-core scenario.

We now consider both partition and eviction policy as part of the cache management strategy.
In this setting, we show that the choice of a good partition has more influence on the performance
of static partition strategies than the eviction policy. In fact, if the partition function can be
computed offline, then no online static partition strategy is competitive, even with an offline
eviction policy.

Lemma 7.3 (Online static partition strategies are not competitive) Let B = {k1, ..., kp}
be any online static partition. Let k∗ = minj{kj |kj ≥ 2}. Then there exists a sequence R such
that for all eviction policies A, PBA (R)/POPTLRU (R) ≥ min{k∗ − 1, p− 1} · n

k2p
= Ω(n).

Proof: Consider first A=LRU. Let j∗ = argminj{kj |kj ≥ 2} (i.e., kj∗ = k∗). Let P denote
the set of the first (kj∗ − 1) processors, not including j∗, in decreasing order by size of part
of the cache according to B. Note that if kj∗ ≥ p, then P ∪ {j∗} is equal to the set of all

processors. Let Rj = (σj1σ
j
2...σ

j
kj+1)

xj with xj such that xj(kj + 1) = n/p for all j ∈ P , and let

Rj = (σj1σ
j
2...σ

j
kj

)xj j /∈ P and j 6= j∗, where xj is such that xjkj = n/p. Let Rj∗ = (σj
∗

1)n/p.

4Dynamically conservative algorithms form a subset of conservative algorithms (see Definition 6.5) that still
includes LRU, FIFO, and Clock [Peserico, 2013].

145

PBLRU faults on every request of |P | processors and faults only on the first request of processor
j∗. Hence, PBLRU (R) ≥ min{kj∗ − 1, p− 1} · n/p.

On the other hand, an optimal partition for R would be one such that all different pages of
each request Rj fit in the cache. Intuitively, an optimal partition takes units of cache from j∗ and
assigns them to other processors. Let kOPTj denote the size of the cache for processor j according

to the optimal partition, then kOPTj = kj + 1 if j ∈ P , kOPTj = min{1, kj − (p − 1)} for j = j∗,

and kOPTj = kj otherwise. The number of faults of POPTLRU on R is k, since it only faults on the

first request to each different page. Hence, PBLRU (R)/POPTLRU (R) ≥ min{kj∗ − 1, p − 1} · n/(kp).
We have shown a bound for an online static partition using LRU. Now, by Lemma 7.1, for any

eviction policy A, PBA (R) ≥ PBLRU (R)
k , and the lemma follows.

Although strategies that partition the cache only once or even allow a small number of changes
during the execution might be simpler to manage as compared to general strategies, the perfor-
mance of these strategies is not competitive when shared strategies are allowed. While this is
perhaps to be expected for non-disjoint sequences, interestingly, this holds even for disjoint se-
quences. Theorem 7.1 shows that shared strategies are preferable over static partitions —even if
the partition is computed offline— as well as dynamic partitions that do not change often.

Theorem 7.1 Let A be any deterministic online cache eviction policy, let sOPT be an optimal
static partition, and let D be any online dynamic partition strategy that changes the sizes of the
parts o(n) times. The following statements hold:

1. There exists a sequence R such that
P sOPTOPT (R)

SLRU (R) = Ω(n).

2. For all sequences R, SLRU (R)/P sOPTOPT (R) ≤ k.

3. There exists a sequence R such that PDA (R)/SLRU (R) = ω(1). Furthermore, if D varies
the partition a constant number of times, PDA (R)/SLRU (R) = Ω(n).

Proof: 1. Consider a sequence of requests R, in which processor j requests the following
pages, for all j simultaneously:

(σj1)
αj (σj1σ

j
2 . . . σ

j
k/p+1)

x(σj1)
βj

where σji1 6= σji2 for all i1 6= i2, αj = (j−1)(k/p+1)(τ +x), βj = (k+p− j(k/p+1))(τ +x),
and x is a parameter. In other words, processor j requests the same page for a while,
then repeatedly requests k/p + 1 distinct pages (call this the distinct period), and then
goes back to requesting the same page again. All processors do the same, taking turns

146

to be the processor currently in the distinct period: when one processor is in the distinct
period, all other processors request repeatedly the same page. Given the request sequence,
an optimal partition assigns k/p + 1 units of cache to p − 1 processors, and the rest to
one processor: assigning more than k/p+ 1 units of cache to any processor does not result
in fewer faults, and assigning less than k/p + 1 to more than one processor increases the
number of faults. Let j∗ be the processor whose partition is kj∗ = k/p− (p− 1). Consider
the distinct period of this processor. Let A be any eviction policy. No matter what the
eviction policy A is, even the optimal offline, P sOPTA will fault at least once every kj∗

requests. Hence, P sOPTA (R) ≥ x(k/p + 1)/kj∗ . On the other hand, SLRU (R) faults only
on the first k/p + 1 requests of the distinct period of each processor, for a total of k + p
faults. Hence, P sOPTA (R)/SLRU (R) ≥ x/(pkj∗). x can be made arbitrarily large, in fact,
n = τ(k+ p)(p− 1) +xp(k+ p), and thus x = n/(p(k+ p)) + τ(p− 1)/p. Hence, x/(pkj∗) =
Ω(n).

2. Divide a sequence Rj of processor j in phases such that in a sequential traversal of pages,
a new phase begins either on the first page or at the (kj + 1)-th different page since the
beginning of the current phase, where kj is the size of the cache assigned by sOPT to
processor j. Define a shared phase equivalently for the cache size k and the sequence R′
containing the pages of R in the order in which they are requested during the execution
of SLRU (with simultaneous requests sorted by increasing number of processor). We claim
that a shared phase cannot start and end without at least one sequence changing phase.
In other words, the phase of at least one sequence must end before the end of a shared
phase. If this was not the case, within the shared phase, the number of different pages in
the sequence of each processor j would be at most kj , and therefore the total number of
different pages in the shared phase would be at most k, which is a contradiction. Let φ
denote the number of shared phases of sequence R and φj denote the number of phases of
sequence Rj . The above claim implies that φ ≤∑p

j=1 φj . Assuming that SLRU timestamps
each page at the moment of request, it is not difficult to see that the fact that SLRU faults
at most k times per phase in the sequential setting extends to the above definition of shared
phases. Since any cache eviction algorithm must fault at least once per phase, it follows
that SLRU (R) ≤ kφ ≤ k∑p

j=1 φj ≤ kP sOPTOPT (R).

3. Let a stage of D denote a period in which the sizes of the partition are constant. If the
number of stages of D is o(n), then at least one stage has non-constant length ` = ω(1)
(in number of parallel page requests). We then apply the same argument as in the proof
of statement 1. Let R in this stage consist of a sequence in the form of the sequence in
that proof: each processor’s sequence has three periods: (1) only one page σj1 is requested
repeatedly, (2) the page requested is any page not in the cache of processor j (the distinct
period), and (3) again only one page σj1 is requested. The length of period (2) is m pages,
and each processor takes turns to be in the distinct period. Hence, the total number of

147

requests in the stage is mp2 = `p. Let t be the time where the long stage begins. During
the distinct period of processor j, Rj consists of repeatedly requesting the page not in j’s

cache, among pages {σj1, ..., σk(j,t)+1}, where k(j, t) is the size of the cache of processor j

at time t. PDA faults on every request of the distinct period of all processors, and hence in
this stage PDA (R) = pm = `. On the other hand, in this stage, SLRU faults only on the first
request to a distinct page in the distinct period of each processor, and thus in this stage
SLRU (R) = k+p (recall we assume kj ≥ 1 for all 1 ≤ j ≤ p at all times). Let the rest ofR be
such that neither algorithm faults. Then PDA (R)/SLRU (R) ≥ `/(k+p) = ω(1). Note that if
partitions are allowed only a constant number of stages, then PDA (R)/SLRU (R) = Ω(n).

Theorem 7.1 suggests that competitive strategies must either be shared or have a partition that
changes often. In fact, both types of strategies are equivalent for disjoint sequences. Although a
dynamic partition strategy executes an eviction policy in each part separately, if the variation in
the partition can be determined globally, then shared strategies can be simulated by a dynamic
partition on disjoint sequences by reducing the part of the cache holding the page to be evicted.
This implies that a dynamic partition strategy can be as effective as any other strategy. In fact,
Hassidim [2010] showed in his model that there exists an optimal dynamic partition strategy that
upon a fault reduces the part of some processor, evicting the page that is furthest in the future
in that processor’s sequence. We show in Section 7.3 that the same result holds in our model.

Multi-core paging differs from sequential paging in that the actions of algorithms modify the
order of future requests. Hence, paging strategies must decide which page to evict not only with
the goal of delaying further faults, but at the same time trying to properly align the demand
periods of future requests. An online strategy, however, is oblivious to future requests and hence
in general it cannot work toward the second goal. In this sense, in multi-core paging an optimal
offline strategy has significantly more advantages over an online strategy than in sequential paging.
While in the latter setting any online marking algorithm has a bounded competitive ratio of k

k−h+1
when the offline algorithm has a cache of size h ≤ k [Karlin et al., 1988; Torng, 1998], in multi-
core paging the competitive ratio of traditional algorithms such as LRU, FIFO, Clock, and FWF
can be arbitrarily large. Although an optimal offline strategy cannot explicitly schedule requests,
it can increase the fault rate of a process thus effectively delaying that sequence in order to align
periods of high demand with periods of low demands of other processors. The following theorem
shows that the competitive ratio of SLRU can grow proportionally to the square root of the length
of the sequences, even when the offline strategy has a cache of about half the size. The theorem
also applies to FIFO, Clock, and FWF.

Theorem 7.2 Lower bound on the competitive ratio of LRU. Assume p ≥ 4 and τ >
0. There exists a sequence R and an offline eviction policy A such that SLRU (R)/SA(R) =
Ω(
√
nτ/k) when A’s cache size is h ≥ k/2 + 3p/2.

148

` ` ` `

new phase

Figure 7.2: Top: A request with 4 sequences that alternates phases of low and high demand. For each
sequence, green (light) phases consist of alternating requests to two pages, while red (dark) phases are
consecutive requests of k/p + 1 pages. Bottom: sequence after being served by the offline strategy SA.
White periods denote faults. After the initial faults each new phase has at most h distinct pages, and k+p
faults are necessary in each new phase to keep future alignments.

Proof: The request sequence R consists of two alternating phases which we call easy and hard,
respectively (see Figure 7.2, top). In an easy phase, each sequence requests only 2 different
pages, while in a hard phase, the total number of different pages requested is greater than k.
More specifically, let

Rj =
(

(σjaσ
j
b)
`/2(σj1σ

j
2 . . . σ

j
k/p+1)

`/(k/p+1)
)φ

The length of each phase is ` pages and there are 2φ phases. The number of pages in a hard
phase is k + p, and since every request is to the least recently used page, SLRU faults on every
request of a hard phase. Thus, SLRU (R) ≥ n/2, where n is the total number of pages.

An offline algorithm A can benefit from aligning hard phases of some sequences with easy
phases of others in order to keep the total number of requested pages below h in the aligned
periods. A does this by initially assigning only one cache cell to each sequence in a group
R1 = {R1, . . . , Rp/2}. Hence, every request in these sequences is a fault. Since A will fault only
on the first two requests of the rest of the sequences R2 = {Rp/2+1, . . . , Rp}, sequences in R1 will
be delayed with respect to sequences in R2. A will delay sequences in R1 so that the last page
of their easy phase is aligned with the last page of the hard phase of sequences in R2. Consider
a sequence Ri ∈ R2. The total number of pages requested during the first hard phase of Ri is
(p/2)(k/p + 1) + p ≤ h, and thus A faults only on the first k/p + 1 requests of Ri in its first
hard phase. Since A also faults twice in the first easy phase of Ri, the first hard phase of Ri is
completed at time t = 2τ + ` + τ(k/p + 1) + ` = 2` + τ(3 + k/p). Therefore, A needs to incur
`/τ + k/p+ 3 faults in each of the sequences in R1 in order for their `-th request to be served at
time t.

After the initial faults, easy phases of sequences in R1 are aligned with hard phases of se-
quences in R2 and vice versa (see Figure 7.2, bottom). Call each of these `-page phases a new

149

phase. Since each new phase has at most h different pages, A faults only at the beginning of these
phases. A keeps the alignment of sequences by partitioning the cache so that the first k/p + 1
requests of all sequences are faults. Since any one sequence has at most k/p+ 1 distinct pages in
a new phase, p(k/p+ 1) ≤ 2k faults are enough to maintain the alignment. These faults, plus the
initial faults to arrange the alignment, add up to A(R) ≤ 4kφ+ (p/2)(`/τ + k/p+ 3). The total
number of pages is n = φ`p, and thus ` = n/(φp). Substituting ` in the number of faults and
minimizing for φ yields φ =

√
n/(8kτ), and hence A(R) ≤ 4

√
nk/3τ + k/2 + 3p/2 = O(

√
nk/τ).

Since SLRU (R) ≥ n/2, it follows that SLRU (R)/SA(R) = Ω(
√
nτ/k).

Note that if the offline algorithm has a cache of size k, the lower bound in Theorem 7.2 can
be made even larger: the offline algorithm delays only two sequences, and the competitive ratio
becomes Ω(

√
nτp/k). The proof of Theorem 7.2 can be used to show that not only Furthest-In-

The-Future (FITF) [Belady, 1966] —an optimal algorithm in classical paging— is not optimal in
multi-core paging, but that it performs badly compared to the true optimal.

Corollary 7.1 Assume p ≥ 4 and τ > 0. There exists a sequence R and an offline eviction
policy A such that SFITF (R)/SA(R) = Ω(

√
nτ/k3/2) when A’s cache size is h ≥ k/2 + 3p/2.

Proof: Let R be the sequence given in the proof of Theorem 7.2. The number of faults of FITF
is at least n/2k, and thus SFITF (R)/SOPT (R) = Ω(

√
nτ/k3/2).

7.3 The Offline Problem

In reality, requests sequences are not known in advance, and thus paging is an online problem. In
general, however, in any online problem setting deriving efficient optimal offline solutions is both of
theoretical interest as well as useful in evaluating online algorithms in practice in the competitive
analysis framework. Furthermore, an online solution can be designed based on properties of the
offline solution. For example, in traditional paging, LRU approximates FITF using the past as
the best approximation of the future. An example of an inherently online problem for which the
offline problem has been extensively studied is the list update problem (see, e.g., [Reingold and
Westbrook, 1996; Munro, 2000; Ambühl, 2000; Hagerup, 2007]).

In this section we study the offline version of the multi-core paging problem. We first show
hardness results for partial-individual-faults and its optimization version. We then show
properties of optimal offline algorithms for final-total-faults. Finally, we present polynomial
time algorithms for both pif and ftf when the number of sequences and cache size are constants.

150

Ri1 a b ababa babababa b a b a b a b b . . .
Ri2 c d c d c d c dcdc dcd. c dcdc d d e c . . .
Ri3 e f e f e f e f e f ef ef ef ef ef ef . . .

si1(τ + 1) + 1 si2(τ + 1) + 1 si3(τ + 1) + 1

B(τ + 1) + 4τ + 5

Figure 7.3: Sequences Ri1 , Ri2 , Ri3 share 4 cells of the cache. In the example, a, b, c, d, e, f are all
different pages, τ = 3, and the fetching period is represented by τ consecutive underscore characters ().
Each sequence Ri holds the extra cell continuously so that it incurs si(τ + 1) hits. The number of faults
of each Ri in the group is B − si + 4 at time t = B(τ + 1) + 4τ + 5 if and only if si1 + si2 + si3 = B.

7.3.1 Hardness of Multi-Core Paging

In this section we show that even if the sequence of requests is known in advance multi-core paging
is hard when we are required to satisfy sequences’ individual fault bounds. More specifically, we
show that partial-individual-faults (pif, see Definition 7.2) is NP-complete and that there
is no Polynomial Time Approximation Scheme (PTAS) for its optimization version. This is in
contrast to sequential paging: if there is only one processor, both ftf and pif are solvable
by FITF. As in the proof of Hassidim’s makespan problem [Hassidim, 2010], the proof of NP-
completeness of pif uses a reduction from 3-partition. However, since our model disallows
explicit scheduling, the reduction is quite different.

Definition 7.3 (3-partition [Garey and Johnson, 1979]) Given a set of integers S =
{s1, . . . , sn}, and a bound B, such that B/4 < si < B/2 for all 1 ≤ i ≤ n, the problem is
to determine if S can be partitioned into n/3 sets A1, . . . , An/3 such that for all 1 ≤ j ≤ n/3,∑

i∈Aj si = B. The restrictions of the problem imply that each subset Ai must have exactly 3
elements.

3-partition is NP-complete in the strong sense; it remains NP-complete if all integers in S are
bounded by a polynomial in the size of the instance or, equivalently, if the input is encoded in
unary [Garey and Johnson, 1978].

Theorem 7.3 PARTIAL-INDIVIDUAL-FAULTS is NP-complete.

Proof: It is easy to see that the problem is in NP: given an instance I = {R, k, t, τ,~b} with a
“yes” answer and a certificate consisting of the pages to be evicted after each fault, it can be
verified in time O(tp) that the number of faults in each sequence Ri is at most bi. Note that
t ≤ maxi{|Ri|}(τ + 1), and τ is a constant, therefore, the verifier runs in time polynomial in the
size of the input.

151

In order to show that the problem is NP-complete, we build a reduction from 3-partition (us-
ing the terminology in Definition 7.3). Let J = {S,B} be an instance of 3-partition. We build
an instance I of partial-individual-faults as follows. There are p = |S| sequences. Each
sequence Ri consists of alternating requests to 2 pages αi and βi, where αi 6= βi, and αi 6= αj and
βi 6= βj for all i 6= j, and αi 6= βj for all i, j. In other words, Ri = αiβiαiβi . . ., and all sequences
are disjoint. The length of Ri is |Ri| = B(τ + 1) + 4τ + 5, where τ ≥ 0 is any integer. The size
of the cache is k = (4/3)p, and we want to know if the number of faults in each sequence Ri is
at most bi = B − si + 4 at time t = B(τ + 1) + 4τ + 5. Note that since 3-partition is strongly
NP-complete, the reduction can be done from an instance encoded in unary, and hence it can be
done in time polynomial in the size of J .

We show now that there exists a solution for J if and only if we can serve each Ri with at
most bi faults.

(⇒) We show first that if J admits a solution, then we can serve each Ri with at most bi
faults. Let A1, . . . , An/3 be the partition for J . Divide the sequences in groups according to the
partition, so that the sequences corresponding to Aj will share a group of 4 cells of the cache.
Let Ri1 , Ri2 , and Ri3 be the sequences in group j. Each of these sequences will be assigned one
cell for some time and two at other times. In other words, the three sequences will have one
dedicated cell at least until time t and will share the extra cell of the group. Sequence Ri will
use the extra cell continuously for enough time so it incurs exactly hi = si(τ + 1) + 1 hits (see
Figure 7.3).

Say Ri1 , Ri2 , and Ri3 use the extra cell in that order. The first request to each sequence
results in a fault, and it is fetched to the dedicated cell of the corresponding sequence. The
second request of Ri1 (also a fault) is fetched to the extra cell. Now, both pages of Ri1 are in
the cache, and they are kept there for the next hi1 requests of Ri1 . Meanwhile, every request of
Ri2 and Ri3 results in a fault and the eviction of the page in their corresponding dedicated cell.
The last hit of Ri1 occurs at time (2 + si1)(τ + 1) + 1, which coincides with a new request σ for
Ri2 , since all pages have been faults for Ri2 . Instead of fetching σ to this sequence’s dedicated
cell, σ is fetched into the extra cell or Ri1 ’s dedicated cell, depending on which page can be
evicted at the time (if σ is fetched into Ri1 ’s dedicated cell, then this cell becomes the shared
cell, and the former shared cell becomes Ri1 ’s dedicated cell). Now, Ri2 has the extra cell, and
the remaining requests of Ri1 will result in faults. After hi2 hits of Ri2 , the extra cell is now
passed to Ri3 (again the last hit of Ri2 coincides with a request of Ri3), and this sequences keeps
this cell until it completes hi3 hits. At this point, the time elapsed is the sum of the hits of each
sequence, plus 2τ for the transitions of the extra cell from Ri1 to Ri2 and from Ri2 to Ri3 , plus
the initial 2(τ + 1) time corresponding to the first 2 faults of the three sequences. Hence, the
time is t = hi1 + hi2 + hi3 + 4τ + 2 = (si1 + si2 + si3)(τ + 1) + 4τ + 5 = B(τ + 1) + 4τ + 5. The
same strategy is used for each group in the partition, and the number of faults of sequence Ri is
exactly (t−hi)/(τ + 1) = B− si + 4. Thus, if there is a solution to J , R can be served such that
at time t = B(τ + 1) + 4τ + 5, each sequence has incurred bi = B − si + 4 faults.

152

(⇐) We show now that a solution to the instance I of pif gives a solution to the instance J
of 3-partition. If R can be served so that each sequence faults at most B− si+ 4 times by time
t, then at least hi = si(τ + 1) + 1 of Ri’s requests must be hits. Note that for all i, |Ri| = t, and
hence each sequence uses at least one cell until time at least t. A request can only be a hit if a
sequence has two cells of the cache for consecutive timesteps. Since there are only (4/3)p cells,
and each sequence uses at least one cell, there are only p/3 extra cells which can be used to store
the second page of a sequence, and hence there can be at most p/3 hits in one timestep.

In addition, any change in the partition that removes one cell from a sequence that had 2 cells
and gives one more cell to another sequence implies at least τ time without hits for the sequences
involved. To see this, let Ri and Rj be two sequences such that k(i, t1) = 2 and k(j, t1) = 1,
respectively, and k(i, t1 + 1) = 1 and k(j, t1 + 1) = 2 (where k(i, t1) is the size of the cache of
processor i at time t1), for some t1 < t. Say page αi was a hit in Ri. Then, at t1 + 1, βi and αj

are requested in Ri and Rj , respectively6. αi is evicted from the cache, and αj is fetched in to
the cell previously used by αi. Sequence Rj must wait τ more timesteps before having its first
hit, while sequence Rj ’s next request (αi) will result in a fault. Hence, there are no hits in these
two sequences in the period [t1 + 2, t1 + 1 + τ], i.e., τ timesteps without hits.

Let C denote the number of all such changes in partition between a pair of sequences. C does
not count the initial assignment of 2 cells to a sequence when starting to serve R, but only when
a sequence acquires an extra cell that held a page of another sequence. Note that no hits can
happen until time 2(τ + 1) + 1, and hence the total number of possible hits before time t can be
at most H1 = (p/3)(t−2(τ + 1))−Cτ = (p/3)((B−2)(τ + 1) + 4τ + 5)−Cτ . On the other hand,
the minimum number of required hits is H2 =

∑p
i=1 hi =

∑p
i=1 si(τ + 1) + 1 = (p/3)B(τ + 1) + p.

We require H1 ≥ H2, which implies that C ≤ 2p/3, i.e., we can have at most 2p/3 changes in
partitions. Note that since the total number of cells is 4p/3, and every sequence is assigned at
least one cell, initially at most p/3 sequences can be assigned two cells. Therefore, in order for
each sequence to be assigned two cells at least once, every sequence must have 2 cells during a
continuous period of time. We call this period the hit period of a sequence.

Consider a group of sequences whose hit periods are consecutive, i.e., a group I = {i1, i2, ...i`}
of the sequences such that a request in sequence ij+1 evicts a page from sequence ij to start its
hit period. These sequences can be served using a minimum of ` + 1 cells: one cell is dedicated
for each sequence, while the other extra cell is used to assign 2 cells to some sequence during
its hit period (this extra cell need not to be the same one during the entire execution). We
claim that ` ≤ 3. Too see this, assume ` > 3; then, since hit periods have no interruptions, the
total time to serve these sequences is at least the total number of hits, plus the time for each
change in partition, plus 2 initial faults, for a total of T =

(∑
i∈I hi

)
+ (` − 1)τ + 2(τ + 1) =(∑

i∈I si(τ + 1) + 1
)

+ (` + 1)τ + 2 > (`/4)B(τ + 1) + ` + (` + 1)τ + 2, since si > B/4 for all

6Note that Rj might be fetching a page instead, but the case when a new request comes is the one that minimizes
the time that elapses from t1 until Rj ’s next hit.

153

1 ≤ i ≤ p. Taking ` = 4, T > B(τ + 1) + 5τ + 6, which is strictly greater than t, and thus one
sequence will not have all its required hits before t and hence it will exceed the allowed number
of faults. Therefore, ` ≤ 3. Furthermore, we argue that ` is exactly 3. Assume, otherwise, that
sequences are served in groups of 1, 2, and 3 sequences. Let n` be the number of groups of `
sequences, for ` ∈ {1, 2, 3}. In order to satisfy the minimum number of hits for each sequence, it
must be the case that a group of ` sequences must use at least ` + 1 cells. Hence, the following
must be satisfied: n1 + 2n2 + 3n3 = p, and 2n1 + 3n2 + 4n3 ≤ (4/3)p, with n1, n2, n3 ≥ 0. It is
not difficult to see that a feasible solution must have n1 = n2 = 0, and R must be served only
with groups of 3 sequences.

Finally, it must be the case that every group of sequences I = i1, i2, i3 must satisfy si1 + si2 +
si3 = B. Suppose that a group I1 is such that

∑
i∈I1 si < B. Then, since B = (3/p)

∑p
i=1 si,

there must exist another group I2 such that
∑

i∈I2 si > B. Then, since the minimum number of

hits per sequence is hi = si(τ + 1), the total time to serve the group would be T =
(∑

i∈I2 hi
)

+
2τ + 2(τ + 1) > B(τ + 1) + 4τ + 5 = t, and thus at least one sequence in the group would have
to fault more than its maximum number of allowed faults by time t. Therefore, the only possible
way to serve the requests satisfying the faults requirement for each sequence is to divide them in
groups of 3 sequences I1, . . . , Ip/3 such that

∑
i∈Ij si = B for all 1 ≤ j ≤ p/3, which is a solution

to the instance of 3-partition.

Observe that pif remains NP-complete even when τ = 0, i.e., when sequences are not delayed
due to faults. The case τ = 0 has been referred to as the fixed interleaving case by Katti and
Ramachandran [2012], to contrast it with the free interleaving case that we consider here and that
was introduced by Hassidim [2010]. Fixed interleaving was also considered in the multiapplication
model studied by Cao et al. [1994] and Barve et al. [2000] (see Section 6.2.4). Hence, pif is NP-
complete in this model as well. Note that this is not the case for final-total-faults, for which
FITF is optimal when τ = 0, as in this case this problem reduces to sequential paging.

Recall that τ models the difference between the latencies of a cache miss and hit, whose
ratio is approximately 17 for main memory and L2 cache [Hassidim, 2010]. This difference in
latencies is also present in sequential paging; in fact, the traditional page fault model considers
τ as infinite. However, the fact that after a cache miss the execution of the underlying program
must wait until the page is fetched does not have implications in the analysis of the paging
problem abstraction, as the order of page requests is not altered. The same considerations apply
for the case in which various sequences share a cache, but requests are served sequentially, thus
all sequences must wait until a page of any one sequence is fetched after a cache miss, which is the
case of the multiapplication cache model [Cao et al., 1994; Barve et al., 2000]. In the case of our
model for multi-cores, we generally think of τ being a constant greater than zero, as otherwise
the parallelism offered by the architecture would be greatly diminished if threads on all cores
were paused each time a single thread incurs a cache miss.

154

The fact that pif remains NP-complete even in the intuitively simpler case of τ = 0, while
ftf admits a simple offline algorithm, provides evidence that achieving a fair distribution of
faults is more difficult than merely minimizing the number of overall faults. It remains open
to determine whether ftf can be solved in polynomial time when τ > 0. As we shall see in
Section 7.3.3, both ftf and pif can be solved in polynomial time in the length of the sequences
when the number of sequences is constant.

We show now that pif is also hard to approximate. We define as max-partial-individual-
faults (max-pif) the problem of, given an instance of pif, maximizing the number of sequences
whose number of faults at a given time is within the given bound. We show that max-pif is
APX-hard, i.e., there is no polynomial time algorithm that can approximate this problem within
a factor of (1 − ε) for every ε, unless P = NP. In order to show this, we describe a gap-
preserving reduction from max-4-partition (shown to be APX-hard by Cieliebak et al. [2003]).
Therefore, unless P = NP, there is no efficient way of serving the request sequences ensuring that
an arbitrarily large part of them will fault within the allowed bounds.

Theorem 7.4 MAX-PARTIAL-INDIVIDUAL-FAULTS is APX-hard.

Proof: We describe a gap preserving reduction from max-4-partition to max-pif. Let us
first define the 4-partition problem. 4-partition is an analog of 3-partition in which the
goal is to partition a set S = {s1, . . . , sn} into subsets A1, . . . , An/4 such that for all 1 ≤ j ≤
n/4,

∑
i∈Aj si = B, where B = (4/n)

∑n
i=1 si [Garey and Johnson, 1979]. Each element si

satisfies B/5 < si < B/3, and thus each subset must have 4 elements. 4-partition is also
NP-complete [Garey and Johnson, 1979], and a reduction to pif can be built by modifying the
proof of Theorem 7.3 in a straightforward way: the cache size is now k = (5/4)p, the length of
each sequence is B(τ + 1) + 5τ + 6, and the goal is to serve the sequences such that at time
t = B(τ + 1) + 5τ + 6 sequence i has incurred at most bi = B − si + 5. It is not hard to
see that the same arguments in the proof of Theorem 7.3 apply to argue that an instance of
4-partition admits a solution if and only if the instance of pif admits a solution.

The max-4-partition problem (as defined in [Cieliebak et al., 2003]) is: given a set S andB as
in the 4-partition problem, find a maximum number of disjoint subsets whose elements add up to
B. This problem is APX-hard, i.e., it does not admit a PTAS (assuming P 6= NP)[Cieliebak et al.,
2003]. For an instance J (I) of max-4-partition (max-pif), let OPT4PART (J) (OPTPIF (I))
denote the value of the optimal solution to J (I). Let n = |S| in J . In order to show that
max-pif is APX-hard, we build a reduction from a given instance J of max-4-partition to an
instance I of max-pif and show:

1. OPT4PART (J) ≥ n/4⇒ OPTPIF (I) ≥ n

2. OPT4PART (J) < (1− ε)n/4⇒ OPTPIF (I) < (1− ε/4)n

155

The reduction from an instance J of max-4-partition to an instance I of max-pif is exactly
the same as the reduction from 4-partition described above. Since a solution to J gives a
solution to I, if OPT4PART (J) ≥ n/4 (and thus equal to n/4), then all sequences of I can be
served with a number of faults within the given bounds, proving statement (1).

For statement (2), note that in the reduction from 4-partition to pif (adapted from the proof
of Theorem 7.3) the only way of serving all sequences within the fault bounds is by partitioning
them in groups of 4 that share 5 cells of cache. Furthermore, the 4 sequences in a group can
be served within the faults bounds if and only if the corresponding elements in S add up to B.
Otherwise, at least one of the sequences will have to incur more faults than the allowed bound.
Therefore, OPTPIF (I) ≤ 4OPT4PART (J) + 3(n/4 − OPT4PART (J)) = OPT4PART (J) + 3n/4.
Since OPT4PART (J) < (1− ε)n/4, we have OPTPIF (I) < (1− ε)n/4 + 3n/4 = (1− ε/4)n. Thus,
the reduction is gap-preserving, proving the theorem.

7.3.2 Properties of Offline Algorithms for FTF

The changes in the relative alignment of sequences can significantly affect the performance of an
algorithm (see the proof of Theorem 7.2 for an example). Offline algorithms can benefit from
properly aligning the demand periods of future requests by means of faults and their corresponding
delays. For this purpose, an algorithm could evict a page voluntarily (i.e., not forced by a page
fault) before it is requested in order to force a fault. In contrast, a demand paging or lazy
algorithm only evicts pages when there is a fault and the cache is full (see Definition 6.2 in
Section 6.2.1). In traditional sequential paging any paging algorithm can be made lazy without
increasing its cost [Borodin and El-Yaniv, 1998]. We show an equivalent result for final-total-
faults in our multi-core model. While in the sequential case it is easy to show that an algorithm
does not benefit from evicting pages early, in the parallel case we need to consider the possible
effects of changing sequence alignments.

Consider a non-lazy paging algorithm A in the sequential setting. Suppose that A evicts a
page σ that was in a cache cell c that will not be immediately filled with another page. A can
be made to a lazy version A′ that, instead of evicting σ, marks it as “ready to evict”, and delays
its eviction. Suppose that before σ is requested again, there is a fault on a request for a page σ′

that is fetched to cell c. If only then A′ evicts σ, then clearly A′ and A incurred the same cost.
Moreover, if σ is requested before there is a fault on another page, then A′ incurs a hit, while A
incurs an extra fault.

While the argument for the case when another request leads to A′ evicting σ can also be
applied to the multi-core setting, the second scenario has consequences that are not present in
the sequential case. In the multi-core setting, if A incurs a fault on σ, this leads to a delay in
the corresponding sequence. This delay is not suffered by A′, which incurs a hit on this page.
Although A has incurred an extra fault, it has also changed the alignment of sequences, which

156

𝜎1 𝜎5 𝜎4 _ _ _ 𝜎5 𝜎1 𝜎4 𝜎6 𝜎9 …

𝛼2 𝛼3 𝛼3 𝛼2 𝛼8 𝛼8 𝛼3 𝛼10 𝛼7 …

𝜎1 _ _ _ 𝜎5 𝜎4 _ _ _ 𝜎5 𝜎1 𝜎4 𝜎6 𝜎9

𝛼2 𝛼3 𝛼3 𝛼2 𝛼8 𝛼8 𝛼3 𝛼10 𝛼7 …

A

B

Figure 7.4: Example of forcing a fault. Algorithms A and B are serving the same sequences both starting
with cache C = {σ1, σ5, σ9, α2, α3, α8}. Algorithm B forces a fault on σ1 and A does not. When serving
σ4 (a fault for both, in red in the figure), A must evict a page that will later result in a fault (e.g., σ9).
Algorithm B can evict α2, which will not be requested again, thus saving a future fault (although it had
to pay for the forced fault on σ1).

could lead to future benefits. This scenario is equivalent to one in which both A and A′ keep σ
in their caches (as if both were lazy algorithms), but upon the next request to σ, A decides to
fetch this page again from memory (thus incurring a fault and delaying the sequence). In this
case, we say that A forces a fault on σ. We henceforth focus on this scenario. Forcing a fault and
changing sequence alignments could lead to future fault savings. Figure 7.4 shows an example of
this situation. We show, however, that forcing faults for the purpose of changing the alignments
is not beneficial for minimizing the number of faults. We do this by showing that there exists an
optimal lazy algorithm that does not force faults.

Theorem 7.5 Let Alg be an offline optimal algorithm that forces faults. There exists an offline
algorithm Alg′ that is lazy such that for all disjoint requests R, Alg′(R) = Alg(R).

Proof: We follow an inductive argument similar to the proof of optimality of Furthest-In-The-
Future in the traditional (sequential) setting [Borodin and El-Yaniv, 1998]. The proof relies on
the following claim: let Alg be any paging algorithm and R be any request sequence. Then, for
all timesteps i it is possible to construct an algorithm Algi such that (i) for all t = 1, . . . , i − 1,
it behaves exactly like Alg, (ii) if Alg forces a fault on t = i, Algi does not, and (iii) Algi(R) ≤
Alg(R).

If the claim is true, then it is possible to obtain an optimal algorithm that does not force
faults: for a given sequence R, start from any optimal algorithm OPT and apply the claim with
i = 1 to obtain OPT1, then apply the claim with i = 2 to OPT1 to obtain OPT2, and so on

157

and so forth. OPTt′ is an optimal algorithm that does not force faults, where t′ is the maximum
timestep of the execution of the algorithm on R.

Let us prove the claim. Both algorithms start with an empty cache, and hence Algi can do
exactly as Alg does up to step i−1. If at timestep i Alg does not force a fault, then Algi continues
behaving like Alg until the end of the request, and the number of faults of both algorithms is the
same. Now, assume that Algi forces a fault on t = i on a page σ1 on sequence Rs. Let CAlg(t)
and CAlgi(t) denote the caches of Alg and Algi right before serving R(t). Since both algorithms
behaved exactly the same up to t = i − 1, we have CAlg(i) = CAlgi(i). Also, let A(R, t) denote
the number of faults of algorithm A right before serving request R(t).

We argue that from that point on, Algi can be such that both algorithms will fault on exactly
the same pages in the rest of the sequences (and hence keeping the same relative alignment in both
algorithms), and that their caches will differ by at most one page. Furthermore, Algi(R) ≤ Alg(R)
at all times. We show this by defining a set of states that describe the differences between the
algorithms sequences, caches, and number of faults for each subsequent request in Rs for Alg.
We define the following states at time t:

A. All sequences in both algorithms have the same alignment, CAlg(t) = CAlgi(t), and
Alg(R, t) = Algi(R, t).

B. All sequences other than Rs have the same alignment in both algorithms, CAlg(t) = CAlgi(t),
and Alg(R, t) = Algi(R, t) + 1.

C. All sequences other than Rs have the same alignment in both algorithms, CAlg(t) =
CAlgi(t) ∪ {σ}, and Alg(R, t) = Algi(R, t), where σ is a page previously requested in
Rs, and the remaining cell of Algi cache is fetching a page σ′ 6= σ.

D. All sequences other than Rs have the same alignment in both algorithms, CAlg(t) =
(CAlgi(t) ∪ {σ}) \ {α}, and Alg(R, t) = Algi(R, t) + 1, where σ is a page previously re-
quested in Rs, and α is a page from a sequence other than Rs.

E. All sequences other than Rs have the same alignment in both algorithms, CAlg(t) =
CAlgi(t) ∪ {σ}, and Alg(R, t) = Algi(R, t), where σ is a page previously requested in
Rs, and the remaining cell of Algi cache is fetching σ.

Let σ2, σ3, . . . be the pages in Rs after σ1. We define the request period of each page σj ∈ Rs
as the timesteps that include its request and possible fetching for algorithm Alg, i.e., if σj is
requested at time tj by Alg, then its request period is [tj , tj + τ] if σj is a fault, and just tj if it
is a hit. We will now show that the above are all the possible states that describe the algorithms
in each period. We will prove this by induction on the request periods of pages in Rs.

158

CAlg(t) = CAlgi(t)
Alg(R, t) = Algi(R, t)

A

CAlg(t) = CAlgi(t) ∪ {σ}
Alg(R, t) = Algi(R, t)
σ ∈ Rs

Algi is fetching σ

E

CAlg(t) = CAlgi(t)
Alg(R, t) = Algi(R, t) + 1

B

CAlg(t) = CAlgi(t) ∪ {σ}
Alg(R, t) = Algi(R, t)
σ ∈ Rs

Algi is fetching σ
′ 6= σ

C

CAlg(t) = (CAlgi(t) ∪ {σ}) \ {α}
Alg(R, t) = Algi(R, t) + 1
σ ∈ Rs, α /∈ Rs

D

Figure 7.5: For any algorithm Alg that forces a fault on a page of a sequence Rs at time t = i, we can
build an algorithm Algi that does not force faults and incurs no more faults than Alg does. The differences
between Alg and Algi’s number of faults and cache contents at each time define the five states depicted.
Alg(R, t) and CAlg(t) denote, respectively, the number of faults and cache contents of Alg at time t. We
show that Algi can maintain the execution in one of these states, and hence Algi(R, t) ≤ Algi(R, t) at all
times.

Before σ1, the algorithms are in state (A). Consider the request period for σ1. Recall that
CAlg(t1) = CAlgi(t1). Alg forces a fault on σ1, and hence the cell corresponding to σ1 in the
cache is being used to fetch this page until the end of the period. Upon any request σ during
the period, if Alg evicts α, Algi evicts α as well. In this period, up to τ pages σ2, ..., σ1+τ after
σ1 might be requested for Algi in Rs. If none of these are faults, then at the end of the period
Alg(R, t2) = Algi(R, t2) + 1, and the caches of both algorithms are equal, hence the algorithms
are in state (B)7. On the other hand, if any of the pages σ2, ..., σ1+τ is a fault for Algi, then
Algi evicts any of the previous hit pages in Rs (there is a least one, σ1). Hence, at the end of
the period, the number of faults of both algorithms is the same, and both caches have the same
pages, but for the evicted page by Algi, thus arriving at state (C).

For the request period of a page σj , j > 1, let sj be the corresponding state of Alg and Algi.

7We assume here and for the rest of the analysis that Algi lets Alg run ahead at least until its next fault in Rs,
so that if Alg evicts a page σj after the time a request for this page was served by Algi, Algi forces the fault on
this page as well. In other words, if σj is a hit for Algi at time t, it will be a hit for Alg at time t+ τ .

159

𝜎1 _ _ _ 𝜎2 𝜎3 𝜎4 𝜎5 𝜎6 _ _ _ 𝜎7 𝜎8 𝜎2 𝜎9 _ _ _ 𝜎3 𝜎4 …

𝜎1 𝜎2 𝜎3 𝜎4 𝜎5 𝜎6 _ _ _ 𝜎7 𝜎8 𝜎2 𝜎9 _ _ _ 𝜎3 _ _ _ 𝜎4 …

A B B C C C D C C C E A

𝐴𝑙𝑔

𝐴𝑙𝑔𝑖

𝐶𝐴𝑙𝑔 = 𝐶𝐴𝑙𝑔𝑖 𝜎3

𝛼1

𝛼1

𝛼2

𝛼2

Figure 7.6: Example of an execution of Alg and Algi. Alg initially forces a fault on σ1 in sequence
Rs, while Algi does not. The figure shows the differences in alignments between the execution of both
algorithms on Rs (other sequences are not depicted, since alignments are the same in both algorithms),
as well as the periods of pages in Alg’s execution and the states at the beginning of each period. Evicted
pages for each fault are shown by arrows next to each fault. Algi’s actions manage to bring the execution
back to state A (with equal caches and number of faults), after which both algorithms behave exactly the
same.

Assume that sj is one of the states in S = {A,B,C,D,E}. We show now that Algi is able to
reach a state sj+1 ∈ S in the next period when sj = s, for each s ∈ S, by describing all possible
transitions between states, as depicted in Figure 7.5. Figure 7.6 shows an example of a possible
sequence of state transitions, illustrating an instance of the arguments that follow.

[sj = A] Suppose we have reached state (A). Since Algi cannot force faults only on request i,
but it can do so on later requests, it just behaves exactly like Alg for the rest of the sequence,
maintaining state (A).

[sj = B] We can only arrive to state (B) if Algi had no faults for requests in Rs in the previous
period. Since σj was requested for Algi in the previous period (sequences Rs in both algorithms
are misaligned by τ at most), σj is a hit for Alg. If there is any fault on a request of another
sequence, Algi evicts whatever Alg evicts. At time tj the request for Algi is σj+τ . If this page is
a hit, then we stay in state (B). If this page is a fault, Algi evicts some page σj′ with j′ < j + τ .
At least one page of Rs is in Algi’s cache since they were all hits in the previous period (and
we assume they are not evicted during this period by Alg). Hence, at the end of the period
Alg(R, tj+1) = Algi(R, tj+1) and CAlg(tj+1) = CAlgi(tj+1) ∪ {σ}, for some σ ∈ Rs, arriving at
state (C).

[sj = C] At the beginning of this period the next page in the request ordering of Alg is σj
and Algi is fetching some page σj′ that resulted in a fault in the previous period. This is the

160

case if we arrive from states (A), (B), and we will see that it holds if we stay in (C), or arrive
from (D) or (E) as well. For all faults in sequences other than Rs, Algi evicts the same page that
Alg evicts, unless Alg evicts σ, in which case Algi evicts another page in Rs. If σj is a hit for
Alg then nothing changes and we stay in (C) as well. If σj is a fault, then Alg evicts a page α.
Recall that CAlg(tj+1) = CAlgi(tj+1) ∪ {σ}. Assume first that α 6= σ. Then, if all the subsequent
requests of Rs in the request ordering of Algi are hits and α is not requested during this period,
then we have one more fault for Alg and at the end of the period Alg’s cache still has σ but not
α, while Algi does not have σ but has α, hence reaching state (D). If α is requested during the
period, then Algi forces a fault on this page and hence we remain in state (C). Now, if one of
the requests from Rs for Algi results in a fault, say σj′ , then, again if α was not requested before
σj′ , then Algi evicts α for this request. If α is requested before σj′ , Algi forces a fault on α and
evicts for σj′ whatever Alg evicted for α (or some page σ′ ∈ Rs if Alg evicts σ). At the end of
the period the difference in number of faults remains the same. Now, if σj′ 6= σ, then we stay in
state (C). However, if σj′ = σ, i.e., Algi faulted in the page that it did not have but that Alg
had, then we reach state (E).

Now, we analyze the case α = σ. The next page request in Rs in the ordering of Algi is σj+1.
If this page is a fault, then Algi evicts another page σ′ ∈ Rs, for example σj . In this case the
number of faults increases by 1 for both algorithms and we remain in state (C). If on the other
hand, σj+1 is in Algi’s cache (and hence in Alg’s cache), Algi forces a fault on this page, reaching
state (E).

[sj = D] We could only reach this state if σj is a hit. Let σj′ be the next page of Rs in
the request ordering of Algi. Suppose α is not requested in R(tj). If σj′ is a hit, then nothing
changes, and we remain in state (D). If σj′ is a fault, Algi evicts α and we reach state (C). If α
is requested, since α /∈ CAlg(tj), Alg evicts a page α′. Algi forces a fault on α. If σj′ is a hit,
then we remain in state (D). If σj′ is a fault, Algi evicts α′ if α′ 6= σ, or another page σ′ ∈ Rs if
α′ = σ, reaching state (C).

[sj = E] This state is reached when the number of faults of both algorithms is the same and
Algi is fetching the page σ that is missing with respect to Alg’s cache. Suppose first that σj 6= σ
(i.e., this is not the timestep in which Algi finishes fetching σ8) σj is a hit for Alg (this is the
case in the two cases that we can arrive to this state from (C), and the one from (E)). Upon any
fault on another sequence Algi evicts whatever Alg evicts (with the assumption that Alg will not
evict a page of Rs that was a hit in the previous period for Algi). If one of these evictions is for
page σ, then Algi evicts another page σ′ ∈ Rs and we reach state (C). If σ was not evicted, then
we remain in state (E). Now, if σj = σ, this page is in Alg’s cache. Again, Algi evicts what Alg
evicts for other requests. If, however, in any of these evictions the page evicted is σ9, Algi evicts

8Since sequences Rs in the execution of Alg and Algi are either aligned or Alg’s sequence is behind by exactly
τ , if the current request to Alg is to the same page σj that is being fetched by Algi then this is the timestep in
which Algi finishes fetching σj .

9Alg could evict σ prior to its request according to the logical order of simultaneous requests.

161

another page σ′ ∈ Rs. In this case Alg faults in σj and we are back in state (C). On the other
hand, if σj = σ is a hit, Algi finishes at the same time to fetch σ, therefore both caches are equal,
sequences Rs in both algorithms are aligned, and the number of faults of both algorithms is the
same, reaching state (A).

Hence, Algi can keep the execution in these states until the end. Since Algi(R) ≤ Alg(R) in
each of these states, this holds until the end of the sequence, proving the claim.

Hassidim [2010] shows in his model that there is an optimal solution for minimizing the
makespan that, on each fault, evicts the page that is furthest in the future for some core. In
other words, if the sequence whose page should be evicted is known, the page to be evicted is
the furthest in the future in that sequence. We show that the same result holds in our model for
minimizing the number of faults.

Theorem 7.6 There exists an optimal offline algorithm for ftf on disjoint sequences that upon
each fault evicts a page σ ∈ Rj whose next request time is maximal in Rj, for some j.

Proof: As in the proof of Theorem 7.5, we claim that for any algorithm Alg there exists an
algorithm Algi that behaves exactly like Alg until time i− 1. If at time i Alg evicts a page from
sequence Rj , Algi evicts the page from the same sequence that is furthest in the future, and
Algi(R) ≤ Alg(R). Applying this claim on an optimal algorithm successively at each timestep
gives an optimal algorithm.

We now prove the claim. Suppose that at time t = i Alg evicts a page σ1 ∈ Rj . Algi behaves
exactly like Alg until t = i− 1 but at t = i it evicts a page σ2 ∈ Rj , which is the page furthest in
the future in this sequence. Assume σ1 6= σ2 as otherwise the claim is trivially true. Let CAlg(t)
and Alg(R, t) denote the contents of Alg’s cache and the number of faults before serving R(t).
We have CAlg(t) = CAlgi(t) and CAlg(t + τ) = (CAlgi(t + τ) ∪ {σ2}) \ {σ1}, and the sequences
have the same alignment in both algorithms.

Before the request for σ1, if upon a fault Alg evicts σ2, Algi evicts σ1, then the caches are
equal and from then on Algi behaves exactly like Alg, thus Algi(R) ≤ Alg(R). If Alg instead
evicts a page α 6= σ2, Algi evicts the same page.

If σ2 was not evicted, when σ1 is requested Alg faults and evicts a page α from some sequence.
σ1 is a hit for Algi and thus Alg(R, t) = Algi(R, t) + 1, CAlg(t) = (CAlgi(t) ∪ {σ2}) \ {α}, and
Algi is ahead in Rj by τ timesteps. Assume first that σ2 is not evicted by Alg before its request.
Suppose Algi gets to σ2 with this configuration (for some α). σ2 is a fault for Algi and a hit
for Alg. Algi evicts α and now Alg(R, t) = Algi(R, t), CAlg(t) = CAlgi and the sequences are
aligned equally. From then on both algorithms are equivalent and the claim is true. After the
request for σ1, Algi evicts whatever Alg evicts (assume σ2 is not evicted by Alg during this
period). If α is requested (a fault for Alg but a hit for Algi), Algi forces a fault and hence

162

Alg(R, t) = Algi(R, t) + 1 and CAlg(t) = (CAlgi(t) ∪ {σ2}) \ {α′} still holds, with α′ being the
page evicted by Alg. By Theorem 7.5, we can build another algorithm Alg′i with the same number
of faults that does not force faults, and hence the claim is true in this case. Now, if Alg evicts σ2
before getting to its request Algi evicts α, and both caches are the same. When σ2 is requested
both algorithms will fault and Alg(R, t) = Algi(R, t) + 1 holds. However, sequences Rj in both
algorithms do not have the same alignment with respect to the rest of the sequences, with Algi’s
sequence being ahead by τ timesteps. This setting is the same as the one in the proof of Theorem
7.5 after Alg has forced a fault. Applying the theorem’s proof we can show that Algi can keep
the execution within the 5 states defined in the proof, and hence Algi(R) ≤ Alg(R) at the end of
the execution. Again, if at any point Algi forces a fault, then by the same Theorem 7.5 we can
obtain an algorithm that does not force faults and that does not exceed Algi’s faults. Since in
all cases the claim is true, this proves the theorem.

7.3.3 Optimal Algorithms for FTF and PIF

Theorem 7.6 implies an O(pn) time optimal algorithm for ftf that upon each fault chooses
the sequence to evict from optimally by trying all possibilities. Using dynamic programming,
however, we can obtain a faster algorithm that is exponential in the number of sequences, but
polynomial in the length of the sequences (recall we assume n� p; in particular, we have observed
in Chapter 3 that p can be effectively assumed to be O(log n)). We show that this algorithm
can be extended to solve pif as well. Hence, if the number of sequences is constant, then both
ftf and pif admit polynomial time algorithms10.

Minimizing the number of faults

We describe a dynamic program to compute the minimum number of faults to serve a request R
of p sequences. Subproblems are defined based on the different alignments of request sequences
and contents of the cache. More specifically, each subproblem consists of computing the minimum
number of faults required to serve certain prefixes of the request sequences finishing with a certain
set of pages in the cache. We store partial solutions in a table, and compute solutions for larger
prefixes based on the combination of prefixes and cache contents that are reachable from each
partial solution. Thus, the program explores all possible ways to advance in each sequence for all
possible cache configurations.

We specify the prefixes of sequences using indices to requests within the sequence. In order
to take into account fetching times, we extend the index space to include the periods in which

10Note that this does not contradict Theorem 7.3: we can think of pif as having two input sizes, the length of
the sequences n, and the number of sequences p, which is the number of cores. pif is NP-hard when the number
of sequences is not fixed, but can be solved in polynomial time in n when p and k are constants.

163

sequences might be waiting for pages being fetched. Let ~x = (x1, . . . , xp), where each xi is an
index of a place in sequence i when serving it, either at a page, or at a time when a page is being
fetched, with 1 ≤ xi ≤ ni(τ+1)+1. If xi is of the form xi = (j−1)(τ+1)+1, then xi is the index
of the j-th page in Ri. In this case, we say xi points to a page (denoted as Ri(xi)). Otherwise,
xi points to the fetching period of page dxi/(τ + 1)e, and Ri(xi) denotes the page being fetched.
Let R(~x) denote the set of pages p indexed by ~x, including pages in the fetching period.

Given a request R we want to compute, for each possible cache configuration C and possible
vector of positions ~x, the minimum number of faults required to serve R up to ~x, and arriving at
a cache configuration C. If xi is in a page, this cost does not include serving Ri(xi). If xi points
to a fetching period, this cost includes the fault on Ri(xi). We compute and store these values in
a (p+ 1)-dimensional table storing the minimum cost for each configuration and position. A cell
F [C, x1, . . . , xp] can contribute to a cell F [C ′, x′1, . . . , x

′
p], where C ′ is any configuration that can

be obtained by removing |R(~x)\C| pages from C and adding the ones in R(~x), and x′i > xi is the
next index on sequence i. If xi points to a page and Ri(xi) is a hit, then x′i = xi + τ + 1, i.e., the
index jumps to the next page. If Ri(xi) is being fetched or is a miss, then x′i = xi + 1, unless the
page Ri(xi) finished fetching in this timestep for another sequence, in which case the index also
jumps to the next page and thus x′i = dxi/(τ+1)e(τ+1)+1 (this case only applies to non-disjoint
sequences). We fill the table in a bottom up fashion, updating from each cell c only the cells to
which c can contribute with a lower number of faults. The total minimum number of faults is
then the minimum among all cache configurations C of F [C, n1(τ + 1) + 1, . . . , np(τ + 1) + 1].
Algorithm 7.1 shows this procedure in pseudocode.

Theorem 7.7 Given a set R of p sequences of total length n, a cache size k, and τ ≥ 0,
with p = O(1) and k = O(1), the minimum number of faults to serve R can be determined
in O(nk+p(τ + 1)p) time.

Proof: Let w be the total number of different pages requested in an instance. The number of
possible cache configurations is

∑k
i=0

(
w
i

)
≤ (w + 1)k. Hence, the total number of cells in table

F is O((w + 1)k(n(τ + 1) + 1)p). Counting the faults in R(~x) for each ~x takes time O(p2). Since
|R(~x)| ≤ p, at most

(
k
p

)
= O(kp) cache configurations can be reached from any configuration C,

thus the time to process each cell and update the cells that it can contribute to is O(p2 + kp).
Since w ≤ n, when k and p are constants, the total running time is O(nk+p(τ + 1)p).

Deciding PARTIAL-INDIVIDUAL-FAULTS

Recall that the pif problem asks for the feasibility of serving a request sequence R such that at
a given checkpoint time the number of faults on each sequence Ri is at most a given bound bi.

164

Algorithm 7.1 Minimum Final Total Faults(R, k)

for all configurations C do
F [C, 1, . . . , 1] = 0
for each (x1, . . . , xp) ∈ {2, . . . , ni(τ + 1) + 1}p do
F [C, x1, . . . , xp] =∞

for each (x1, . . . , xp) ∈ {1, . . . , ni(τ + 1)}p do
for all configurations C do

if F [C, x1, . . . , xp] 6=∞ then
f = 0 {faults in R(~x)}
for i = 1 to p do

if xi = (j − 1)(τ + 1) + 1 for some j, and Ri(xi) ∈ C then {Ri(xi) is a hit}
x′i = xi + τ + 1

else {Ri(xi) is being fetched or it is a fault}
if Ri(xi) /∈ C then {Ri(xi) is a fault}
f = f + 1

if Ri(xi) = R`(x`) and x` = (j′−1)(τ +1) for some j′ and some ` 6= i then {Ri(xi)
was fetched for another sequence}
x′i = dxi/(τ + 1)e(τ + 1) + 1

else
x′i = xi + 1

for all C ′ s.t. R(~x) ⊆ C ′ and (C ′ \ R(~x)) ⊆ C do
if F [C, x1, . . . , xp] + f < F [C ′, x′1, . . . , x

′
p] then

F [C ′, x′1, . . . , x
′
p] = F [C, x1, . . . , xp] + f

return minC{F [C, n1(τ + 1) + 1, . . . , np(τ + 1) + 1]}

We now describe how to extend Algorithm 7.1 for ftf to solve pif. Once again, we keep a table
of partial solutions for each combination of positions within sequences and cache configurations.
However, for the case of pif not only we care about the total number of faults for each subproblem,
but also about the individual number of faults in each sequence prefix and the time in which the
configuration is reached. In order to keep track of this, for each cache configuration C and
positions (x1, . . . , xp) we store a set of pairs (~f, t), where ~f = (f1, f2, . . . , fp) specifies the faults

on each sequence when reaching configuration (C, x1, . . . , xp) at time t. Thus, each pair (~f, t)
associated with F [C, x1, . . . , xp] represents the number of faults in each sequence for a possible
way of serving sequence R up to time t. The algorithm proceeds similarly to the one for ftf.
This time, however, we are not minimizing an objective but we are determining the feasibility of
a given solution. Starting bottom-up, for each cell F [C, x1, . . . , xp] we adjust the indices xi based
on the contents of C and the current request, just like we did in Algorithm 7.1. We then update
the fault vectors associated with the cell. For each of the current valid (~f, t) pairs, we update

165

the number of current faults fi in each sequence Ri based on the contents of C and the current
request Ri(xi). If any of the components of ~f exceeds the given bound on allowed faults, then
we discard the pair. Otherwise, and if we have not yet reached the checkpoint time, we include
the updated pair in the cells that can be reached from F [C, x1, . . . , xp]. If we have reached the
checkpoint time or the end of all sequences with a valid vector, then we have found a feasible
solution and we return true. Finally, if we have reached the end of the table with no surviving
valid vector-time pairs, we return false. Algorithm 7.2 shows the algorithm in pseudocode.

Theorem 7.8 Given a set R of p sequences of total length n, a cache size k, τ ≥ 0, a checkpoint
time t, and a vector ~b = {b1, . . . , bp}, with p = O(1) and k = O(1), it can be decided if R can be
served such that at time t each sequence Ri has incurred at most bi faults in O(nk+2p+1(τ + 1)p+1)
time.

Proof: The number of entries of table F in Algorithm 7.2 is O(nk+p(τ + 1)p) as in the algorithm
for ftf. However, now each entry stores a list of pairs of fault vectors and time. Since at any
time the number of faults in a sequence is at most n, the total number of different fault vectors is
O((n+ 1)p). The time component of each pair can have at most n(τ + 1) values, and hence each
entry can have at most O(np+1(τ + 1)) pairs. For each entry in F we have to go through the list
of pairs and compute the new vectors, and hence processing an entry takes O(pnp+1(τ +1)) time.
Once the new vectors are computed, these might have to be added to at most at most O(kp)
other entries. Hence the total time to process one entry is O(pnp+1(τ + 1) + kp), and therefore
the total time is O(nk+2p+1(τ + 1)p+1).

While the running times of Algorithms 7.1 and 7.2 are not practical for realistic values of k,
the results in Theorems 7.7 and 7.8 are important in that they show that the complexity of multi-
core paging stems from the number of sequences and not their length, placing the problem—in
both of its versions— in P when p is constant.

7.4 Conclusions

We have proposed a model for multi-core paging that extends classical paging to a setting in which
various sequences must be served simultaneously with a shared cache. The presence of multiple
sequences and the fact that faults delay future requests make this problem significantly more
difficult than classical paging. Neither traditional online algorithms nor the optimal strategy for
sequential paging are competitive for this problem. Moreover, we have shown that serving a set
of requests while limiting the number of faults in each sequence is NP-complete for an unbounded
number of sequences. We showed, on the other hand, that multi-core paging admits algorithms
that run in polynomial time in the length of the sequences, thus the problem is in P when the

166

Algorithm 7.2 Partial Individual Faults(R, k, checkpoint, τ,~b)

for all configurations C do
F [C, 1, . . . , 1] = {({0}p, 0)}
for each (x1, . . . , xp) ∈ {2, . . . , ni(τ + 1) + 1}p do
F [C, x1, . . . , xp] = ∅

for each (x1, . . . , xp) ∈ {1, . . . , ni(τ + 1)}p do
for all configurations C do

if F [C, x1, . . . , xp] 6= ∅ then
for i = 1 to p do

if xi = (j − 1)(τ + 1) + 1 for some j, and Ri(xi) ∈ C then {Ri(xi) is a hit}
x′i = xi + τ + 1

else if Ri(xi) = R`(x`) and x` = (j′ − 1)(τ + 1) for some j′ and some ` 6= i then
{Ri(xi) was fetched for another sequence}
x′i = dxi/(τ + 1)e(τ + 1) + 1

else
x′i = xi + 1

P = ∅ {P is the list of updated fault vectors}
for each (~f, t) in F [C, x1, . . . , xp] do

validVector = true
for i = 1 to p do
f ′i = fi {fi is the i-th element of ~f}
if Ri(xi) /∈ C then {Ri(xi) is a fault}
f ′i = f ′i + 1

if f ′i > bi then {this path exceeded the maximum faults for sequence i}
validVector = false

if validVector and t+ 1 ≤ checkpoint then
P = P ∪ (~f ′, t+ 1)
if t + 1 = checkpoint or x′i = ni(τ + 1) + 1 for all i = 1..p then {we reached the
checkpoint time or the end of all sequences}

return TRUE
for all C ′ s.t. R(~x) ⊆ C ′ and (C ′ \ R(~x)) ⊆ C do
F [C ′, x′1, . . . , x

′
p] = F [C ′, x′1, . . . , x

′
p] ∪ P

{we reached the end without finding a feasible solution}
return FALSE

number of sequences is constant. Given the unfeasible running time of the proposed algorithms
it would be desirable to obtain more efficient exact or approximate offline algorithms.

Other directions of research include determining the complexity of final-total-faults and

167

obtaining competitive online algorithms. Given the apparent excessive advantage of an offline
algorithm over an online strategy that cannot do anything about future alignments, perhaps
comparing online strategies to an optimal offline algorithm that can align sequences to its ad-
vantage might not lead to interesting online strategies. Hence the definition of a good evaluation
framework for online strategies is open for debate.

One possibility to reduce the power of the optimal offline algorithm is to restrict algorithms
to ensure that the relative progress of sequences follows a measure of fairness that considers each
sequence’s cache demands. For example, we could restrict the number of faults fp incurred by a
sequence on a shared cache of size k to satisfy that the ratio fp/f1 is bounded, where f1 is the
number of faults that the sequence would incur if served alone with a cache of size k/p. The idea
of this and other similar fairness restrictions is to eliminate worst-case artificial schedules that
would not be acceptable in reality.

It would be interesting to extend the model to include practical considerations such as limited
parallelism in memory and cache accesses. Our multi-core model allows for all requests to be
served in parallel, both when fetching pages from cache or memory. In reality, the limited
bandwidth of buses together with restrictions on parallel access to memory banks limit both the
number of lines that can be fetched from memory to cache and the data that can be moved
from cache to cores simultaneously. Thus, it would be interesting to study a model in which
only a subset of pages can be fetched from memory or cache in parallel. This can be realized
by adding two parameters c and m with 1 ≤ c ≤ p and 1 ≤ m ≤ p such that at each timestep,
at most c pages can be served from cache, and at most m pages can simultaneously be fetched
from memory. This would result in a parameterized generalization of the original model. Finally,
another interesting extension would be to include synchronization between sequences, reflecting
the scenario in which threads running in multiple cores belong to the same application, and thus
page requests might have dependencies.

168

Chapter 8

Minimizing Cache Usage in Paging

A paging algorithm must decide which pages to maintain in the cache at each time in order
to minimize a defined cost measure. In the classic page fault model the cost of an algorithm is
measured in terms of its number of faults and hits have no cost, reflecting the fact that an access to
slow memory is orders of magnitude slower than an access to cache. As computer architectures and
applications evolve, other cost models have arisen to reflect, for example, varying fetching costs
and sizes in web-caches [Chrobak et al., 1991; Irani, 1997; Young, 1998], or multiple applications
or threads sharing a cache (see Section 6.2.4 and Chapter 7).

In this chapter we consider a generalization of the classic page fault model whose performance
objective function is a combination of both the number of faults and the amount of cache used
by an algorithm. Thus in addition to the fault cost, at each step we charge a cost proportional to
the number of pages in cache. In general, the model seeks algorithms with good performance in
terms of number of faults while at the same time using available resources efficiently. Naturally,
minimizing the number of faults and the cache usage of a paging algorithm are conflicting goals.

Paging strategies that minimize cache usage are relevant in multi-core architectures where
multiple cores share some level of cache. In this context, multiple request sequences compete
for the use of this shared resource. While traditional models of paging encourage algorithms
to use the entire cache so as to minimize the faults incurred, a model that charges for cache
usage can make a paging algorithm in a shared cache scenario be “context aware”. Varying the
parameters of the model for each sequence can be used to achieve a cooperative global strategy
with better overall performance. Another example of a scenario in which the cache is shared is
in the context of cloud-based applications. In many cloud infrastructures a scalable in-memory
cache layer provides low latency for data access for various concurrent client applications [Wolfe
Gordon and Lu, 2011], possibly involving a cost for customers based on cache usage. The model
we present can thus be useful for the design of paging strategies that trade-off performance and
monetary cost.

169

The cache usage model can also be used as an energy efficient paging model. Several ap-
plications use caches implemented with Content-Addressable Memories (CAMs), most notably
networking routers and switches, and Translation Lookaside Buffers (TLBs). CAMs provide a
single clock cycle throughput, making them faster than other hardware alternatives [Pagiamtzis
and Sheikholeslami, 2006]. However, speed comes at a cost of increased power consumption,
mainly due to the comparison circuitry. Reducing this power without sacrificing capacity or
speed is an important goal of research in circuit design [Pagiamtzis and Sheikholeslami, 2006].
Power consumption could be reduced if inactive cache lines are turned off, thus our model can
provide a framework for paging strategies that achieve good performance in terms of faults while
contributing to energy savings.

Our results1 We introduce the minimum cache usage problem, a generalization to the paging
problem with a cost model that combines both the number of faults and the amount of cache
that algorithms use.

We show that traditional optimal paging algorithms are still k competitive in this model, but
that this ratio does not adapt to the differences in relative costs of faults and cache. We then
define a family of online algorithms that combine the eviction policies of traditional marking
or conservative algorithms with cache saving policies. We show that algorithms in this family
achieve a competitive ratio of 2 if α < k, where α = f/c is the ratio between fault and cache cost,

and min
{
k, α(k+1)

α+k−1

}
if α ≥ k, thus matching the performance of classical algorithms when f � c.

We further parametrize the analysis by considering the locality of reference of the sequence, and
show that for sequences with high locality of reference the competitive ratio of our algorithms
is at most 2. Simulations on real-world input sequences show that our algorithms are close to
optimal in practice.

We also present a polynomial time optimal offline algorithm for the minimum cache usage
problem, which we obtain via a reduction to Weighted Interval Scheduling on Identical Machines.

In the next section we introduce the minimum cache usage model and problem. We mention
some of its applications, as well as related cost models. We then present an optimal offline
algorithm for this problem in Section 8.2. In Section 8.3 we study and analyze online algorithms,
while we present the results of our simulations in Section 8.4. We present concluding remarks in
Section 8.5.

8.1 Paging with Cache Usage

The paging model we consider in this work extends classic paging to a model in which the cost
of a paging algorithm on a request sequence is a weighted function of the number of faults and

1Results in this chapter appeared in [López-Ortiz and Salinger, 2012].

170

the total amount of cache used by the algorithm. An instance of paging with minimum cache
consists of a sequence R = {r1, r2, . . . , rn} of page requests and a maximum cache size k. Each
request ri is associated with a page σj , for 1 ≤ j ≤ N , where N is the size of the universe of
pages that can be requested. We denote by page(ri) the page associated with request ri. Thus,
if the i-th request of R is for page σj , then page(ri) = σj . A paging algorithm can hold at most
k pages in its cache, but can also choose to hold fewer pages, in order to reduce its cache usage.

Definition 8.1 (Total cache usage) Let A be a paging algorithm and R a request sequence.
Let k(i) ≤ k denote the number of pages in A’s cache immediately before request ri, where k is the
maximum cache size. The total cache usage of A when serving R is defined as CA(R) =

∑
i k(i).

Definition 8.2 (Minimum Cache Usage Problem) Given a request sequence R and maxi-
mum cache size k, the cost of an algorithm A on R is defined as A(R) = f · FA(R) + c ·CA(R),
where FA(R) and CA(R) are the number of faults and total cache usage of A when serving R,
respectively, and f ≥ 0 and c ≥ 0 are parameters. The Minimum Cache Usage problem is then
the problem of serving a request sequence with minimum cost.

In reality a request sequence is revealed in an online fashion, thus our focus is on the per-
formance of online algorithms in terms of their competitive ratio (see Section 6.1.1). An online
algorithm has competitive ratio r if, given a maximum cache size k, and parameters f and c, for
all request sequences A(R) ≤ r ·OPT (R) + β, where OPT is the optimal offline, r is a function
of k, f and c, and β is a constant that does not depend on R. As in classic paging, the steps
involved in serving a request ri are as follows: the page associated with the request is revealed to
the algorithm, after which the algorithm acts by possibly evicting one or more pages, and finally
the request is served. Thus, all pages evicted in cache in step i were held in cache up to time
i − 1. Recall from Section 6.2.1 that a paging algorithm is said to be lazy or demand paging if
it only evicts a page when a page fault occurs. Observe that unlike classic paging, in which any
algorithm can be made demand paging without sacrificing performance [Borodin and El-Yaniv,
1998], in our model algorithms can benefit from evicting pages even when there is no page fault.

The relation between the parameters f and c can vary according to the application to em-
phasize the importance of minimizing faults or using the cache efficiently, or a combination of
both. Naturally, an instance with c = 0 and f > 0 is an instance of the classical model, in which
the cost of an algorithm is its number of faults. On the other hand, if f < c then the problem is
trivial: an optimal algorithm always evicts the page of each request immediately after serving it.
We assume in general that f ≥ c > 0.

171

8.1.1 Applications

The cost model described above provides incentives for an eviction policy to be efficient not only
in terms of its faults but also with respect to the use of the resources that are available to it.
Thus, the model can be used in any environment where the latter has significance. We mention
the following applications.

Shared Cache Multiprocessors Multi-core processors are equipped with both private and
shared caches, with threads running in each core usually competing for the latter type. While
there are schedulers that seek to achieve cooperative use of a shared cache, in general paging
strategies for individual threads do not act cooperatively but use as much of the available cache
as possible. The cost model we propose provides incentives for paging algorithms to balance their
own benefits—a fast execution due to a small number of faults—and the benefits they can provide
to concurrently running threads. Depending on the values of f and c, an algorithm will favour
one or the other.

Energy Efficient Caching Content Addressable Memories (CAMs) are used in many applica-
tions that require high speed searches, and whose primary applications are in network routers [Pa-
giamtzis and Sheikholeslami, 2006]. CAMs are indexed by stored data words instead of memory
addresses, as it is the case in regular caches. Each cell has a matchline that indicates if the stored
word in the cell and the searched word match. A search for an input data word first precharges
all matchlines, then each cell compares its bits against the searched bits, and matchlines corre-
sponding to non-matching entries are discharged. The overall missing matchline dynamic power
consumption for a system with w matchlines can be modeled as P = wCV 2f , where C is the
matchline capacitance, V is the supply of a matchline and f is the frequency of misses (the
power associated with a matchline in a match is small and can be neglected) [Pagiamtzis and
Sheikholeslami, 2006]. The power involved in this operation can be therefore reduced if match-
line precharging is controlled based on the valid bit status of each entry [Miyatake et al., 2001]:
on a search, only valid entries require the precharging of matchlines, thus the power cost of a
search can be proportional to the number of valid entries in the cache. In this scenario, a paging
algorithm that uses its cache efficiently will contribute to power savings.

Caching in Cloud-Based Applications Cloud computing is a form of computing that makes
use of a shared pool of computing resources that are accessed on-demand through a network [Mell
and Grance, 2009]. The services provided by a cloud infrastructure might be the use of a provider’s
application (Software as a Service), the deployment of client’s applications that use languages,
libraries, and services supported by the provider (Platform as a Service), or the deployment of
arbitrary software (e.g, operating systems and applications) that use resources such as storage

172

and networks (Infrastructure as a Service) [Mell and Grance, 2009]. In general, cloud computing
enables the scaling of services by automatic allocation of resources based on demands [Wolfe
Gordon and Lu, 2011].

Many web applications are implemented in the cloud and are backed by a data-store such as
databases or NoSQL storage engines [Wolfe Gordon and Lu, 2011]. Applications usually use a
caching layer in order to reduce the latency of data access. An important example of a cache layer
implementation in cloud computing is memcached [Fitzpatrick, 2004]. Memcached is implemented
in a distributed way with the main memories of servers combined acting as the fast memory, thus
effectively increasing the total capacity of the cache compared to application-level caching [Wolfe
Gordon and Lu, 2011]. In this way, various applications and processes within applications can
share this cache. A provider can charge a previously agreed cost for the amount of cache that each
application uses. In this context, applications using paging algorithms that take into account the
amount of cache used can trade performance for cost and vice versa.

8.1.2 Related Cost Models

The performance of paging algorithms has been traditionally measured using competitive anal-
ysis [Sleator and Tarjan, 1985] and the most used cost model is the page fault model, where a
fault has unit cost and hits have no cost (see Section 6.2.2 for a brief description of other cost
models with applications in web caching). A related paging model that also includes the amount
of cache used in the cost of algorithms was proposed by Csirik et al. [2001]. In this model an
algorithm can purchase cache slots, and the overall cost of the algorithm is the number of faults
plus the cost of purchased cache. As cache may only be bought, the cache size can only increase
(with no bound on the maximum size). In our model, however, an algorithm is charged for the
number of pages it has in the cache at every step, which can both increase or decrease. In this
sense our model charges algorithms for renting cache, while keeping the upper bound k on the
maximum cache available. We note as well that the idea of memory renting for reducing RAM
power consumption was previously mentioned in [Chrobak, 2010].

8.2 Offline Optimum

In the next section we describe a simple family of online algorithms for the cache usage problem
and analyze their competitiveness. In order to provide a better intuition for that analysis we first
describe a solution to the offline problem. We recast a paging instance as an instance of weighted
interval scheduling on identical machines, and use an algorithm for this problem to obtain an
optimal polynomial time paging algorithm.

An instance of weighted interval scheduling on identical machines consists of a set J of jobs
and a number m of available identical machines. Each job has a starting time, a duration, and a

173

weight. In order to be processed, a job must be assigned to a machine immediately after its start
time and cannot be interrupted. A machine can process only one job at a time. The goal is to
process a subset J ′ ⊆ J of jobs such that the total weight of jobs in J ′ is maximized. Equivalently,
each job corresponds to an interval in the real line, and we seek to schedule the maximum weight
subset of intervals such that at most m intervals overlap at any time. This problem can be solved
in polynomial time by reduction to Minimum Cost Flow [Arkin and Silverberg, 1987; Bouzina
and Emmons, 1996].

An instance of the paging problem can be regarded as an instance of interval scheduling on
identical machines: each pair of consecutive requests to the same page defines an interval whose
start and end times are the times of the requests. In each pair of requests, the second request
results in a hit if and only if the corresponding page is kept in the cache since the previous request,
or equivalently, if the interval is scheduled.

The connection between interval scheduling and paging has been noted before in [Wagner,
2001; Brehob et al., 2004] where it is used to study cache policies in non-standard caches. It
is assumed, however, that the reduction applies only when bypassing is allowed. More re-
cently, Chrobak et al. [2012] used this connection to show that offline paging in the fault and
bit models is NP-hard by reducing interval packing problems to paging. Unlike our model, these
models consider pages (and hence intervals) of different sizes. The reduction we introduce in this
work is from paging to interval scheduling, and it is defined as follows.

Definition 8.3 (Interval representation of a sequence) An interval representation of a re-
quest R of length n is a set of intervals I(R) = {I1, I2, . . . , In} where each interval Ii corresponds
to request ri in R. The starting time of each interval Ii is s(Ii) = i + 1 and the end time is
e(Ii) = j − 1, where j > i is the smallest index such that page(rj) = page(ri), or e(Ii) = n if no
such j exists. We say that an interval Ii is feasible if e(Ii) < n and unfinished otherwise. Thus,
the length of interval Ii is |Ii| = e(Ii)− s(Ii) + 1.

An example of a sequence and its interval representation is shown in Figure 8.1. Intuitively,
an interval corresponding to request rj represents the time interval in which page(rj) must reside
in the cache in order for the next request to this page to result in a hit. Note that each first
request to a page has no preceding interval and thus cannot be a hit. Similarly, a page that is
requested for the last time in a sequence can be held in cache, but as the interval does not finish
in the corresponding page, it cannot result in a hit. Note that intervals do not overlap with the
times in which their corresponding pages are requested, thus using this reduction there is no need
to assume that bypassing is allowed. All requests are served, but only the ones whose interval was
scheduled will result in hits. Note as well that two consecutive requests to the same page define
an interval of length 0 that does not overlap any other interval, and thus it is always scheduled.
The following lemma formalizes the reduction.

174

σ1 σ2 σ3 σ1σ4 σ3 σ5 σ2 σ3 σ4 σ5 σ1 σ2
1 2 3 4 5 6 7 8 9 10 11 12 13

I1

I2

σ1
14

I3

I4

I6

I7

I8

I10

I9

I11

I12

I133 6 1

6 4

3

3

2 4

3

2

6

Figure 8.1: A request sequence and its interval representation. The length of each interval is shown
below the interval (I5 of length 0 is not shown). Feasible intervals are {I1, I2, I3, I4, I5, I6, I7, I8, I9} while
{I10, I11, I12, I13} are unfinished. The request can be served with a cache of size 3 with 8 faults and a
cache usage of 29 by scheduling intervals {I1, I3, I5, I7, I8, I9} on 2 machines (shown as thick lines), and
thus requests 5, 6, 7, 10, 12, 14 are hits and the rest are faults. This yields the optimal cache cost for the
minimum number of faults.

Lemma 8.1 Let R be a request sequence. Let I ′ = I(R)\{Ii : Ii is unfinished}. Let S ⊂ I ′ be a
feasible schedule of I ′ on k− 1 machines. Then R can be served with a cache of size k such that
all requests rj with Ii ∈ S and j = i+ |Ii|+1 are hits, with a total cache usage of |R|+∑Ii∈S |Ii|.

Proof: Given a feasible schedule S, R can be served, at each request ri, by bringing page(ri)
to the cache, and evicting it before serving request ri+1 if and only if Ii /∈ S. Thus, a page σ
requested in ri that is not evicted before serving ri+1 will remain in cache at least until the next
request to σ, resulting in a hit. Since S is a valid schedule on k − 1 machines, there are at most
k−1 overlapping intervals at any time, and thus there are enough cells to keep the corresponding
pages in cache. Moreover, since there are k cells in cache and at most k − 1 pages being held in
cache, there is always one cell to store the page of the current request at each step, including all
requests that result in faults. Note as well that S does not contain any unfinished intervals and
thus for all Ii ∈ S, page(re(Ii)+1) exists and is equal to page(ri). Since all pages that correspond
to requests that result in hits are kept in cache for the duration of their intervals, and an extra
cell is used for the page of each request, the cache usage is |R|+∑Ii∈S |Ii|.

In light of Lemma 8.1, when describing the actions of an algorithm while serving a request R,
we sometimes use the terminology related to interval scheduling. Thus we say that an algorithm
schedules an interval Ii to mean that it keeps a page page(ri) in cache until request rj with
j = i+ |Ii|+ 1 (and page(rj) = page(ri)). We define the cache cost of a request rj as the number
of requests that page(rj) was kept in cache for after ri, which equals |Ii| if rj is a hit, and is
smaller otherwise.

175

If we are only interested in minimizing faults then the problem corresponds to Maximal
Interval Scheduling. This problem can be solved by sorting intervals in increasing order of end
time, and then greedily scheduling intervals while there are available machines. Minimizing the
number of faults while at the same time using the least possible cache can be solved instead by
computing the maximum weight schedule in the corresponding interval representation. Weighted
interval scheduling on identical machines can in turn be solved by formulating the problem as a
minimum cost flow problem [Arkin and Silverberg, 1987; Bouzina and Emmons, 1996]. Since we
are interested in minimizing cache usage (equivalently, minimizing processing time in the interval
schedule), for a given instance R we assign weights to intervals using the following corollary
from [Bouzina and Emmons, 1996]:

Corollary 8.1 [Bouzina and Emmons, 1996, Corollary 2] For each interval Ij ∈ I(R) with
processing time |Ij |, define a weight wj = M − |Ij | + 1 2, where M is a positive real number
such that M ≥∑ |Ij |. Then a solution to maximum weight interval scheduling gives an optimal
solution to maximal interval scheduling with minimum total processing time.

Using the above weight assignment and a maximum weight scheduling algorithm we obtain a
way of serving request R with the minimum number of faults, and with minimum cache usage.
Recall that in general we seek to minimize the total cost of serving a sequence R, defined as
fF (R) + cC(R), which does not necessarily imply minimizing the number of faults F . However,
we can still use the same reduction to interval scheduling and subsequently to minimum cost
flow by first eliminating from I(R) all intervals whose length multiplied by c is greater than the
fault cost. It is easy to see that any solution that includes an interval Ii such that c|Ii| > f
could be modified to obtain a smaller cost by not scheduling that interval and paying for the
fault instead. Hence, an optimal algorithm does not schedule any interval whose cost is higher
than that of the fault cost. The resulting optimal offline algorithm is shown in Algorithm 8.1,
where MaxWeightSchedule is an algorithm for maximum weight interval scheduling. Clearly,
computing the interval representation of a request R of n pages (lines 2-17) takes O(n) time,
while MaxWeightSchedule takes time O(m2 logm) [Arkin and Silverberg, 1987], where m is the
number of intervals of the weighted interval scheduling problem. Naturally, m = O(n), which
yields an O(n2 log n) total running time. However, in general m might be much smaller than n,
depending on the number of different pages in R and the number of intervals whose length is
greater than f/c.

Theorem 8.1 Given a request sequence R of length n, a cache size k, and constants f ≥ 0 and
c > 0, we can compute in O(n2 log n) time a way of serving R with F (R) faults and cache usage
C(R), such that f · F (R) + c · C(R) is minimized.

2We add 1 to the weight of each interval so that intervals have non-zero weight if all intervals have length 0.

176

Algorithm 8.1 Minimum Cache Usage Cost(R, k, f, c)
1: {Compute interval representation of R without unfinished intervals}
2: I = ∅ {I is the set of unfinished intervals}
3: M ← 0 {M is the positive number such that M ≥∑Ij∈I |Ij | that is used to define the weights of each

interval in line 17}
4: for j = 1 to |R| do
5: lastRequest[page(rj)] = −1 {lastRequest keeps track of the last time each page was requested}
6: for j = 1 to |R| do
7: σ ← page(rj)
8: i←lastRequest[σ]
9: if i 6= −1 then {This is not the first request to σ}

10: s(Ii)← i+ 1 {Set the start and end of the interval. Recall that |Ii| = e(Ii)− s(Ii) + 1}
11: e(Ii)← j − 1
12: if c · |Ii| ≤ f then {Only consider intervals that are not too costly}
13: add Ii to I
14: M ←M + |Ii|
15: lastRequest[σ] = j {Set the last request to σ to the current request}
16: for i = 1 to |I| do
17: w(Ii) = M − |Ii|+ 1 {Set the weight of each interval}
18: S ←MaxWeightSchedule(I, k − 1) {Compute the maximum weight schedule of I on k − 1 identical

machines}
19: return f(|R| − |S|) + c(

∑
Ii∈S |Ii|+ |R|) {Requests in R corresponding to intervals in S are hits}

8.3 Online Algorithms

In this section we present a family of online algorithms that adapt to the relative cost of a fault
versus the cache cost. These algorithms are k-competitive in the worst case (when f � c), but can
achieve significant cache savings and smaller cost when the cache cost is closer to the fault cost.
As a warm-up, we show that while classical optimal paging algorithms are also k-competitive,
this ratio does not improve when the cache cost is high relative to the fault cost.

Lemma 8.2 Let A be any marking or conservative paging algorithm. The competitive ratio of A
is at most k.

Proof: Let R be any sequence and consider its k-phase partition. Since A is marking or con-
servative, it faults at most k times per phase. In addition, for a sequence of n requests any
algorithm has a cache cost of at most cnk. On the other hand, any algorithm must fault at least
once per phase and must pay at least cn for the cache. Let φ be the number of phases in R.
Then, A(R)/OPT (R) ≤ (fkφ+ cnk)/(fφ+ cn) = k.

Lemma 8.3 Let A be any lazy paging algorithm. Then the competitive ratio of A is at least k.

177

Proof: Let α = f/c (recall we assume c > 0). Suppose that α is finite. Let R be the request
sequence {σ1, σ2, . . . , σk−1, (σk)x}, with σi 6= σj for all i 6= j, where (σ)x denotes a sequence of
x consecutive requests to σ. Since A is a lazy algorithm, it will not evict any page from the
cache, thus only faulting in the first k requests but using the entire cache until the end of the
sequence. Hence, A(R) ≥ fk + xkc. An optimal algorithm can use only one cell of cache for a
cost of OPT (R) = fk+xc. Since x can be made arbitrarily large and f/c is bounded, the result
follows. In the case of an unbounded α, the same sequence used in the classic lower bound of k
applies: request the page in {σ1, . . . , σk+1} not currently in the cache. Thus, A(R) ≥ n(f + c)
and OPT (R) ≤ (n/k)f + nkc and the ratio approaches k as α→∞.

8.3.1 A Family of Cost-Sensitive Online Algorithms

Definition 8.4 For any online paging algorithm A, we define Ad as the algorithm that acts like
A, except that for each ri, it evicts page(ri) at time i + d if this page has not been requested by
that time and is still in the cache. In this case, we say that page(ri) expires at time i + d. We
say that a page suffers an early eviction if it is evicted as a result of a capacity miss, according
to A’s eviction policy. Thus, if page(ri) is not requested or evicted early within [i, i + d], it will
reside in cache for d+ 1 requests.

We restrict our choice of online algorithms in the definition above to marking and conservative
algorithms and set d = bαc = bf/cc. Consider A=LRU. For some instances LRU could have a
better cost than LRUα

3. We now show, however, that the cost of LRUα is always at most twice
the cost of LRU, while there exists a sequence for which the cost of LRU is k times worse than the
cost of LRUα, which is the worst possible ratio for a marking algorithm. This direct comparison
of two algorithms can be seen as a variant of relative interval analysis [Dorrigiv et al., 2009] (see
Section 6.2.3) that uses the cost ratio instead of the cost difference.

Definition 8.5 (Relative ratio interval) Let A,B be two online algorithms and let A(R) and
B(R) denote their cost on a request R of a minimization problem, respectively. Let Min(A,B) =
lim infn→∞(min|R|=n{A(R)/B(R)}) and Max(A,B) = lim supn→∞(max|R|=n{A(R)/B(R)}).
Then the relative ratio interval of A and B is

I(A,B) = [Min(A,B),Max(A,B)].

An interval [γ, δ] approximates I(A,B), denoted as I(A,B) ⊆ [γ, δ], if γ ≤ Min(A,B) and
Max(A,B) ≤ δ.

Thus, if I(A,B) ⊆ [γ ≥ 1, δ > 1] we say that B dominates A, since on any sequence B is
no worse than A and there is at least one sequence for which B is better than A. Lemma 8.5

3To keep notation simple, we refer to Abαc as Aα.

178

and Theorem 8.2 show that I(LRU, LRUα) ⊆ [1/2, k]. Thus, although LRU does not properly
dominate LRUα, the latter is generally preferable to the former.

Throughout the proofs in this section we use the following lemma:

Lemma 8.4 [Panagiotou and Souza, 2006, Corollary 11] Let two vectors ~x = (x1, . . . , xn) ≥ ~0
and ~y = (y1, . . . , yn) > ~0 be given. Let π denote a permutation of (1, . . . , n). Then

∑n
i=1 xi∑n
i=1 yi

≤ min
π

max

{
xi
yπ(i)

: 1 ≤ i ≤ n
}
≤ max

{
xi
yπ(i)

: 1 ≤ i ≤ n, and fixed π

}

Lemma 8.5 Let α = f/c be finite. Then Max(LRU,LRUα) = k.

Proof: Note that since LRU is k-competitive, then for all R, LRU(R)/LRUα(R) ≤ k. Consider
the sequence R = {σ1, σ2, . . . , σk−1, (σk)x} used in the proof of Lemma 8.3. The cost of LRU
is at least fk + xkc, while LRUα keeps the first k − 1 pages only for bαc requests, incurring a
cost of fk + c(bαc(k − 1) + x). Since x can be made arbitrarily large and α = f/c is bounded,
LRU(R)/LRUα(R) ≥ k, and the results follows.

Theorem 8.2 Assume k ≥ 2. Then, for all request sequences R, LRUα(R) ≤ 2 · LRU(R), and
therefore Min(LRU,LRUα) ≥ 1/2.

Proof: Let R be any sequence. Let F and C denote the faults and cache cost of LRU on R and
let Fα and Cα denote the corresponding costs for LRUα. Let Cα = Cfh + Chh + Cff + Chf + γ,
where Cfh is the cache cost of requests that are faults for LRUα and hits for LRU, and Cff ,
Chh, and Chf are defined analogously. γ is the cost of keeping unfinished intervals. We will use
the following properties: (1) every page of a request sequence is kept in LRU’s cache for at least
as long as in LRUα’s cache; and (2) any request that is a fault for LRUα and is a hit for LRU
corresponds to a page that expired in LRUα’s cache.

To see that Property (1) holds, note that if LRU evicts a page σ upon request ri, then either
σ has expired in LRUα’s cache, or it is evicted at this point on request ri as well. The latter
holds because if σ was evicted from LRU’s cache, then there are k distinct requests since the last
request to σ, and since σ has not expired in LRUα’s cache, there are k− 1 pages in LRUα’s cache
that have not expired either and are younger than σ. Hence upon request ri, LRUα evicts σ as
well. Property (1) implies that every request that is a hit for LRUα is a hit for LRU, and thus
Fα ≥ F and Chf = 0 . Property (2) follows from the fact if LRUα evicts a page σ due a capacity
miss, then its cache is full and since all pages stay longer in LRU’s cache, then LRU’s cache holds
the same pages and evicts σ as well, hence the next request to σ is also a fault for LRU.

179

Property (1) implies as well that LRU’s cache cost is C ≥ Cfh + Fα − F + Cff + Chh + γ.
Moreover, both properties imply that Cfh = bαc(Fα − F). Hence,

LRUα(R)

LRU(R)
≤ fFα + c(bαc(Fα − F) + Chh + Cff + γ)

fF + c(bαc(Fα − F) + Fα − F + Cff + Chh + γ)

≤ fFα + cbαc(Fα − F)

fF + c(bαc(Fα − F) + Fα − F)
(by Lemma 8.4)

=
αFα + bαc(Fα − F)

αF + bαc(Fα − F) + Fα − F

We now show that the above expression is bounded by 2. Let δ = α−bαc < 1. Since Fα ≥ F ,

0 ≤ αF + (Fα − F)(2− δ)
0 ≤ αF + 2(Fα − F) + bαc(Fα − F) + α(F − Fα)

αFα + bαc(Fα − F) ≤ 2αF + 2bαc(Fα − F) + 2(Fα − F)

αFα + bαc(Fα − F)

αF + bαc(Fα − F) + Fα − F
≤ 2

8.3.2 Bounds on the Competitive Ratio of Aα

We now show that for any marking or conservative algorithm A, the competitive ratio of Aα
adapts to the relative costs of faults and hits, being at most 2 when the cost of faults is relatively
small, and matching the competitiveness of traditional paging algorithms when the cache cost is
negligible.

Theorem 8.3 Let A be any marking or conservative algorithm and let α = f/c. Assume k ≥ 2.

The competitive ratio of Aα is at most 2− 1+α−bαc
α+1 if α < k and min

{
k, α(k+1)

k+α−1

}
if α ≥ k.

Proof: Let R be any request sequence. Let us assume first that α < k. Since Aα keeps each page
for no more than bαc+ 1 ≤ k requests (including the request to the page itself), there can be at
most k pages in the cache at any given time. Thus, Aα does not incur early evictions. Let I(R)
be the interval representation of R. Aα will incur a hit on every request following an interval
Ii ∈ I(R) such that |Ii| ≤ bαc, and it will fault on any request following a longer interval. Let
w be the number of distinct pages in R. Aα will incur an extra cost of at most w(f + cbαc),
since it will fault on each first request to a page, and will hold the page corresponding to their
last request for at most bαc requests. Thus, Aα(R) ≤ c(

∑
|Ii|≤α |Ii| + n) + (F + w)(f + cbαc),

180

where F is the number of feasible intervals that are longer than α. Since f < ck, OPT can
schedule all intervals of length at most f/c and will not schedule longer intervals. In addition,
OPT will fault in every first request to a page but will not schedule any unfinished intervals.
Thus, OPT (R) ≥ c(∑|Ii|≤α |Ii|+ n) + f(F + w). Therefore,

Aα(R)

OPT (R)
≤
c(
∑
|Ii|≤α |Ii|+ n) + (F + w)(f + cbαc)
c(
∑
|Ii|≤α |Ii|+ n) + f(F + w)

The above ratio is maximum when F = n−w, and thus Aα(R)
OPT (R) ≤

α+bαc+1
α+1 = 2− 1+α−bαc

α+1 ≤
2− 1

α+1 .

Assume now α ≥ k. Consider a phase j in the k-phase partition of R that is not the last
phase. Although A is marking or conservative, Aα might incur more than k faults in a phase,
since it might evict a marked page during the phase. However, a marked page will be evicted
only when it expires, and not due to capacity misses. Let m be the number of requests in the
phase. Call a request external if it is the first request to a page in the phase (i.e., this is the first
request to this page in R, or the request is the end of an interval that started in an earlier phase),
and internal otherwise (i.e., the interval ending in the request started in phase j). Let E and
I denote the sets of intervals ending in external and internal requests, respectively, and let FI
and FE be the number of faults of Aα on internal and external requests in phase j, respectively.
Let HI =

∑
Ii∈I,|Ii|≤α |Ii| be the cache cost of hits on internal requests. Let HE =

∑
Ii∈E′ |Ii|,

where E′ ⊆ E is the set of intervals ending in external requests that result in hits and let
G =

∑
Ii∈E\E′ |Ii|. The total cost of Aα in phase j for these requests is

Aα = f(FI + FE) + c(HI +HE +m+G+ bαcFI)

Note that we must add the cost of unfinished intervals to the total cost of Aα. These corre-
spond to last requests to certain pages in R. Instead of charging the cost of each of these requests
to the phase when they are requested, we charge it to the phase in which the corresponding page
was first requested in R. Let uj be the number of first requests to a page during phase j. Aα
pays at most ujα for keeping these pages in the cache after they are last requested. The faults
on these uj requests are included in FE . Thus, the cost of Aα in phase j becomes

Ajα = f(FI + FE) + c(HI +HE +m+G+ bαc(FI + uj))

On internal requests, an optimal algorithm will fault exactly on the same requests as Aα, since
OPT does not schedule intervals longer than α and it can certainly schedule all other internal
intervals. Note that this implies an upper bound of k on the cost ratio in each phase: the total
cache cost of Aα in the phase is at most mk, and the number of external faults is FE ≤ k. Since

181

OPT incurs at least one external fault in the phase and incurs a cache cost of at least m, we have
Ajα/OPTj ≤ (f(FI + FE) + cmk)/(f(FI + 1) + cm) ≤ k.

We can provide a more refined analysis by taking into account the actual use of cache of Aα.
Since OPT faults on the same pages as Aα on internal requests, OPT pays fFI + cHI for these
requests. However, OPT might incur hits on external requests that resulted in faults for Aα.
Observe first that all external requests that result in hits for Aα are also hits for OPT. To see
this, note that any hits for Aα on external requests must be to pages that were requested in phase
j − 1. Otherwise, the page should have been evicted due to a capacity miss or it expired during
phase j − 1. In particular, the first request in phase j must be a fault for Aα. Hence, the cache
cost of every external hit for Aα is smaller than the cache cost of this first request. Therefore,
OPT can schedule all intervals corresponding to Aα’s external hits (because there are at most
k− 1 such intervals) and it will schedule them because their length is at most α. The cache cost
of these hits for OPT is then cHE .

Consider now the external requests that result in faults for Aα. The cost of these intervals for
Aα is G = Eh + Ef , where Eh and Ef are the cache costs paid by Aα on external intervals that
end in requests resulting in hits and faults for OPT, respectively. Let hOPT be the number of
such hits. The cost of these hits for OPT is at least Eh+hOPT . In addition, the cost for external
faults is FOPT f , where FOPT = k − hOPT − k + FE = FE − hOPT ≥ u′j , where u′j = max{uj , 1},
since OPT faults in any first request during the phase and it must incur at least one external
fault in the phase. Thus, the cost of OPT in phase j is at least

OPT j ≥ f(FI + FOPT) + c(HI +HE +m+ Eh + hOPT)

Therefore,

Ajα
OPT j

≤ f(FI + FE) + c(HI +HE +m+G+ bαc(FI + uj))

f(FI + FOPT) + c(HI +HE +m+ Eh + hOPT)
(8.3.1)

≤ α(2FI + FE + uj) +HI +HE +m+ Eh + Ef
α(FI + FOPT) +HI +HE +m+ Eh + hOPT

(8.3.2)

≤ α(2FI + FE + FOPT) +HI +HE +m+ Eh
α(FI + FOPT) +HI +HE +m+ Eh + hOPT

(as Ef ≤ α(FOPT − uj))(8.3.3)

≤ max

{
2,
α(FE + FOPT)

αFOPT + hOPT

}
(by Lemma 8.4) (8.3.4)

= max

{
2,

α(FE + FOPT)

αFOPT + FE − FOPT

}
(8.3.5)

Note that the second expression in (8.3.5) is an increasing function in FE and decreases with

182

FOPT (since α ≥ k ≥ 2 and FOPT ≥ u′j), and since u′j ≤ FOPT ≤ FE ≤ k,

Ajα
OPT j

≤ max

{
2,

α(k + u′j)

u′j(α− 1) + k

}

Finally, the right expression above is maximum when u′j is minimum, hence

Ajα
OPT j

≤ max

{
2,
α(k + 1)

k + α− 1

}

=
α(k + 1)

k + α− 1
(since α ≥ 2)

Thus, the cost ratio of each phase is r = min
{
k, α(k+1)

k+α−1

}
. Adding up all the costs for all

phases but the last one we have
∑

j A
j
α/
∑

j OPT
j ≤ r, and since the cost of Aα in the last phase

is at most 2fk, we have A(R) ≤ rOPT (R) + 2fk.

Lemma 8.6 gives a lower bound on the competitive ratio for Aα, which matches the upper
bound for α < k − 1. For larger values of α the gap between upper and lower bounds is reduced
as α grows. Lemma 8.7 gives a straightforward smaller lower bound for any online algorithm.

Lemma 8.6 For A marking or conservative, the competitive ratio of Aα is at least 2− 1+α−bαc
α+1

if α < k − 1 and αk+k2/2
α+k2

otherwise.

Proof: Assume that α < k−1 and let R be the sequence such that each request is for a page not
in Aα’s cache among pages {σ1, σ2, . . . , σbαc+2}. A page not in cache always exists since Aα keeps
each page for at most bαc requests and thus there are at most bαc + 1 < k pages in the cache
at any give time. Since the cache is never full Aα keeps each page for exactly bαc requests and
thus it pays f + c(bαc+ 1) per request. Since the interval length of each request is bαc+ 1 > α,
an optimal strategy will evict each page after it is served, and thus its cost per request is f + c.
Therefore, Aα(R)/OPT (R) ≥ (α+ bαc+ 1)/(α+ 1) = 2− 1+α−bαc

α+1 > 2− 2
α+1 .

For the case α ≥ k− 1, let R again be the sequence that requests the page not in Aα’s cache,
but now among {σ1, σ2, . . . , σk+1}. Consider a phase in the k-phase partition of R. Since Aα is
marking or conservative, it does not evict any pages that are requested in the same phase unless
they expire. However, since bαc ≥ k − 1, and each phase has length k, a page could expire only
after the last request of the phase. Thus, no pages that were requested during the phase are
evicted and at the end of the phase the cache will necessary be full. Hence, in each phase Aα
incurs k faults and uses at least

∑k
i=1 i = k(k + 1)/2 cache, for a cost of fk + ck(k + 1)/2. In

turn, and optimal algorithm can keep k pages in cache at all times an incur at most one fault in
the phase, for a cost of at most f + ck2. Thus, Aα(R)/OPT (R) ≥ (αk + k2/2)/(α+ k2).

183

Lemma 8.7 The competitive ratio of any online deterministic algorithm is at least k(α+1)
α+k2

.

Proof: Let R be the sequence that request the page not in A’s cache among {σ1, σ2, . . . , σk+1}.
Since A faults on every request and uses at least one cell per request A(R) ≥ fn + cn. OPT
can fault at most once every k requests and uses at most kn cache. Thus A(R)/OPT (R) ≥
n(f + c)/((n/k)f + knc) = k(α+ 1)/(α+ k2).

Locality of Reference

The classic paging cost model has been criticized for not being able to capture the benefit of
online algorithms on sequences with high locality of reference [Borodin and El-Yaniv, 1998]. Var-
ious studies have analyzed the competitiveness of paging algorithms in a parameterized manner,
attempting to capture relevant characteristics of sequences such as, for example, locality and typ-
ical memory accesses [Panagiotou and Souza, 2006], and attack rate [Moruz and Negoescu, 2012].
Similarly to the full access cost model [Torng, 1998] (see Section 6.2.2), our cache usage model
is amenable to the analysis of algorithms in terms of the locality of reference of input sequences.
We now give a parameterized competitive ratio for Aα that varies with the locality of reference
of the input sequence, for which we use the definition in terms of the average phase length in its
k-phase partition.

Theorem 8.4 Let A be any marking or conservative algorithm, let α = f/c, and let k ≥ 2.
Let R be any request sequence and let φ be the number of phases in R’s k-phase partition. Let
L(R) = |R|/φ. Then Aα(R)/OPT (R) ≤ 2 if L(R) > kα(α− 2), and Aα(R)

OPT (R) ≤ 1 + αk+1−α
α+k−1+L(R)

otherwise.

Proof: From the proof of Theorem 8.3, Equation (8.3.3), the cost of Aα in the j-th phase is
Ajα ≤ c(α(2FI +FE +FOPT) +HI +HE +m+Eh), where FI and FE are the number of internal
and external faults, respectively, HI and HE the cache cost of intervals that result in internal and
external hits, respectively, m is the number of requests in the phase, and Eh is the cache cost of
requests that are faults for LRUα and hits for OPT. The cost of OPT in this phase is at least
OPT j ≥ f(FI + FOPT) + c(HI +HE +m+ Eh + hOPT). Summing over j we obtain

∑
Ajα∑

OPT j
≤ α(2

∑
FI +

∑
FE +

∑
FOPT) + n+

∑
HI +

∑
HE +

∑
Eh

α(FI +
∑
FOPT) +

∑
HI +

∑
HE + n+

∑
Eh +

∑
hOPT

(8.3.6)

≤ max

{
2,

α(
∑
FE +

∑
FOPT) + n

(α− 1)
∑
FOPT +

∑
FE + n

}
(8.3.7)

Suppose α ≥ 2. Then the above expression is an increasing function of FE , and thus the ratio
is maximal for

∑
FE = φk. Let L = L(R) = n/φ. Suppose that L ≤ k(α2 − 2α). Then it is not

184

hard to verify that the above expression decreases with FOPT . Since
∑
FOPT ≥ φ, and φ = n/L,

Aα(R)

OPT (R)
≤ max

{
2,

α((n/L)k + (n/L)) + n

(α− 1)(n/L) + k(n/L) + n

}

= max

{
2,
α(k + 1) + L

α+ k − 1 + L

}

= max

{
2, 1 +

k(α− 1) + 1

α+ k − 1 + L

}

Now, if L > k(α2 − 2α), then the ratio is maximized when
∑
FOPT = φk. Substituting∑

FOPT in (8.3.7) above we obtain Aα(R)
OPT (R) ≤ max

{
2, 1 + αk

αk+L

}
= 2. Finally, by Theorem 8.3,

if α < 2 the upper bound is 2 as well.

8.4 Real World Sequences

We measured the performance of various algorithms on real world cache traces collected from
4 applications using VMTrace (for Linux) and the Etch tool (on Windows NT) [Kaplan et al.,
2003]. We obtained the traces from [Kaplan] and truncated them to 3 × 106 entries. Table 8.1
shows a description of the sequences. We simulated LRU, LRUα, FWF, FWFα, FIFO, FIFOα,
and OPT on these sequences. For each sequence, we used the size of cache that would yield a
fault rate of 1% and 0.1% for LRU. Figures 8.2, 8.3, 8.4, and 8.5 show the cost ratio compared
to OPT, fault rate, and average cache usage for the test input sequences for two cache sizes. For
the total cost we set c = 1 and f = α. We implemented the optimal offline (Algorithm 8.1) using
the reduction to minimum cost flow in [Bouzina and Emmons, 1996], and solved the minimum
cost flow instances using the implementation of the cost scaling algorithm in the LEMON C++
library [LEMON]. Results in these practical instances show that the cost of Aα algorithms adapt
nicely to the value of α, and that their fault rate and cache usage approaches those ones of the
optimal offline. In fact, the ratio Aα/OPT is never more than 2 and in most cases is close to 1.
As suggested by Theorem 8.4, the cost ratio of Aα algorithms improves for sequences with higher
locality. Note as well that as α grows, the performance of the traditional marking algorithms
gets closer to that of its cost-sensitive counterpart, which is more noticeable for instances with
smaller caches.

8.5 Conclusions

We introduced a model for paging with minimum cache usage and presented a cost-sensitive
family of online algorithms whose performance adapts to the relative costs of cache and faults.

185

Application Description Length Avg. phase length
acroread (Windows NT) Acrobat Reader 3× 106 722 (k=15) 19108 (k=20)
espresso (Linux) circuit simulator 3× 106 196 (k=5) 1502 (k=7)
gs (Linux) GhostScript 3.33 3× 106 542 (k=16) 18405 (k=40)
grobner (Linux) Grobner basis functions 3× 106 330 (k=8) 9918 (k=22)

Table 8.1: Description of input sequences used in simulations.

The cost model that we propose is able to capture locality of reference, yielding a competitive
ratio of at most 2 for inputs with high locality. Experiments on request sequences collected from
actual programs agree with the theoretical results.

It would be interesting to show a better lower bound for online algorithms, and to propose
and analyze other online algorithms, including randomized ones. A natural direction of research
would be to evaluate the model in an application, either in theory or in practice. For example, it
would be interesting to study and design a global shared caching strategy that varies the relative
cache and fault cost for various threads so that the cooperative execution leads to an advantage
in overall performance.

186

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80

ra
tio

alpha

Ratio espresso k=5

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

ra
tio

alpha

Ratio espresso k=7

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 10 20 30 40 50 60 70 80

fa
ul

t r
at

e

alpha

Faults espresso k=5

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 20 40 60 80 100

fa
ul

t r
at

e

alpha

Faults espresso k=7

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 10 20 30 40 50 60 70 80

av
g.

 c
ac

he

alpha

Cache espresso k=5

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

av
g.

 c
ac

he

alpha

Cache espresso k=7

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

Figure 8.2: Cost ratio, fault rate, and average cache used by LRU, LRUd, FWF, FWFd, FIFO, FIFOd,
and OPT (with d = α) on sequence “espresso” of length 3 × 106 with cache sizes k = 5 (average phase
length 196) and k = 7 (average phase length 1502).

187

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200

ra
tio

alpha

Ratio gs k=16

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350 400

ra
tio

alpha

Ratio gs k=40

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 50 100 150 200

fa
ul

t r
at

e

alpha

Faults gs k=16

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 50 100 150 200 250 300 350 400

fa
ul

t r
at

e

alpha

Faults gs k=40

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200

av
g.

 c
ac

he

alpha

Cache gs k=16

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400

av
g.

 c
ac

he

alpha

Cache gs k=40

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

Figure 8.3: Cost ratio, fault rate, and average cache used by LRU, LRUd, FWF, FWFd, FIFO, FIFOd,
and OPT (with d = α) on sequence “gs” of length 3× 106 with cache sizes k = 16 (average phase length
542) and k = 40 (average phase length 18405).

188

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400 450 500

ra
tio

alpha

Ratio acroread k=15

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400

ra
tio

alpha

Ratio acroread k=45

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 100 200 300 400 500 600 700 800 900 1000

fa
ul

t r
at

e

alpha

Faults acroread k=15

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 50 100 150 200 250 300 350 400

fa
ul

t r
at

e

alpha

Faults acroread k=45

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500 600 700 800 900 1000

av
g.

 c
ac

he

alpha

Cache acroread k=15

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400

av
g.

 c
ac

he

alpha

Cache acroread k=45

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

Figure 8.4: Cost ratio, fault rate, and average cache used by LRU, LRUd, FWF, FWFd, FIFO, FIFOd,
and OPT (with d = α) on sequence “acroread” of length 3 × 106 with cache sizes k = 15 (average phase
length 722) and k = 20 (average phase length 19108).

189

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100 120

ra
tio

alpha

Ratio grobner k=8

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250

ra
tio

alpha

Ratio grobner k=22

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 20 40 60 80 100 120 140 160

fa
ul

t r
at

e

alpha

Faults grobner k=8

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 50 100 150 200 250

fa
ul

t r
at

e

alpha

Faults grobner k=22

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120 140 160

av
g.

 c
ac

he

alpha

Cache grobner k=8

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 5

 10

 15

 20

 0 50 100 150 200 250

av
g.

 c
ac

he

alpha

Cache grobner k=22

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

Figure 8.5: Cost ratio, fault rate, and average cache used by LRU, LRUd, FWF, FWFd, FIFO, FIFOd,
and OPT (with d = α) on sequence “grobner” of length 3 × 106 with cache sizes k = 8 (average phase
length 330) and k = 22 (average phase length 9118).

190

Chapter 9

Toward a Generic Hybrid CPU-GPU
Parallelization of
Divide-and-Conquer Algorithms

In this chapter we address the design of algorithms for heterogeneous architectures that feature
multi-core processors together with Graphic Processor Units (GPUs) (see Chapter 2.8.3 for a
description of the GPU architecture and programming model). We propose a model for hybrid
computation in these architectures and describe a generic strategy to translate sequential im-
plementations of divide-and-conquer algorithms to a program that runs both in CPU and GPU,
with a schedule that balances the workload of both processing units.

Since the appearance of multi-core architectures we have witnessed an increase in algorithms
and applications designed to take advantage of the parallel processing capabilities of these now
ubiquitous processors. At the same time, there exists a vast collection of graphic applications
for optimized performance on GPUs. Originally designed as specialized processors for graphic
operations, the development of accessible programming languages such as CUDA and OpenCL has
enabled the use of GPUs for general purpose programming, known as General Purpose computing
on GPUs (GPGPU). Consequently, researchers and practitioners have developed algorithms for
this architecture for various classes of problems, most notably for problems that allow for data-
parallel algorithms, many of which fall under the category of the so-called embarrassingly parallel
problems. In the last few years, the increasing power and low cost of GPUs has transformed
common computers into heterogeneous architectures with tremendous computing power. While
for most applications capable of parallel execution there exist implementations either for multi-
cores or GPUs, the vast majority of existing applications and algorithms do not yet take full
advantage of the available computing power, thus leaving the current processing resources of
even middle-end commodity computers largely underutilized. This scenario has motivated the

191

development of projects in several areas, from the proposal of new operating systems [Baumann
et al., 2009; Nightingale et al., 2009] to the continuous development of tools and languages to
enable an easy transition from traditional CPU code to heterogeneous platforms [Surhone et al.,
2010; McCool et al., 2006; Nickolls et al., 2008; Stone et al., 2010].

Since the vector processing nature of GPUs is suitable for problems that allow efficient data-
parallel algorithms, many of the existing GPU algorithms fall into this category. However, many
problems allow for parallel algorithms that are task-parallel, or a combination of both task-parallel
and data-parallel [Chakrabarti et al., 1995]. Thus, such problems can benefit from the use of
CPU cores for non-data-parallel tasks. In fact, plans for the convergence of CPUs and GPUs into
one platform by the largest microprocessor manufacturers are becoming a reality [Seiler et al.,
2009; AMD, 2008], which confirms the relevance of algorithms that can be sped-up using the
power of both architectures together [Barlas et al., 2011]. Many algorithms for hybrid CPU-
GPU architectures have been designed in the last years, most notably for fundamental linear
algebra problems [Tomov et al., 2009; Humphrey et al., 2010; Ezzatti et al., 2011], among many
others. The design of efficient hybrid algorithms encompasses many challenges. A careful task
division must be done so that each portion of the algorithm can run on the platform that suits
best its characteristics. In addition, it is desirable that algorithms and schedulers adapt to the
characteristics and current availability of the computing devices.

Our results1 We describe a generic approach to develop algorithms for a hybrid CPU-GPU ar-
chitecture, which we term Hybrid Processing Unit or HPU. We focus on algorithms for a large
class of problems suitable for divide-and-conquer solutions. Starting from a sequential recursive
implementation of a divide-and-conquer algorithm, we translate this implementation to parallel
code that is suitable for running on both CPU and GPU, with a generic translation that can be
applied with little knowledge of the particular algorithm. We propose a model for the HPU plat-
form and analyze the optimal division of work for parallel divide-and-conquer under this model.
While the analysis presented applies to divide-and-conquer algorithms, the ideas behind it are
applicable to other classes of algorithms with structured dependencies between a large number
of independent tasks. We then present a case study for the application of our framework using
mergesort as a sample algorithm. The simplicity of our implementations confirms the practicality
of our approach, while at the same time leading to significant improvements in performance over
sequential implementations.

The rest of this chapter is organized as follows. We review related work in Section 9.1. We
then describe the hybrid CPU-GPU model in Section 9.2. In Section 9.3 we describe the generic
parallelization of divide-and-conquer algorithms for hybrid computation, and we analyze the work
division and scheduling in Section 9.4. We then present a case study of our model using mergesort

1Results in this chapter appeared in [López-Ortiz et al., 2013] and are joint work with Alejandro López-Ortiz
and Robert Suderman.

192

in Section 9.5 together with experimental results in Section 9.5.4. We conclude the chapter in
Section 9.6 with conclusions and future research directions.

9.1 Related Work

Several researchers have developed algorithms for heterogeneous architectures. An important set
of hybrid algorithm implementations are grouped in the Matrix Algebra on GPU and Multicore
Architectures (MAGMA) library [Tomov et al., 2010a, 2009]. MAGMA provides hybrid imple-
mentations of several linear algebra algorithms to enable execution in both multi-core and GPUs,
thus extending and adapting the LAPACK [Anderson et al., 1992] and ScaLAPACK [Black-
ford et al., 1997] libraries to heterogeneous architectures. Examples of these algorithms are
Cholesky [Agullo et al., 2010], LU [Agullo et al., 2011a; Baboulin et al., 2012], and QR factoriza-
tions [Agullo et al., 2011b; Kurzak et al., 2012], and Hessenberg reduction [Tomov et al., 2010b].
In general, the approach for implementing hybrid CPU-GPU code in MAGMA is to schedule
tasks in each computing unit according to their nature: tasks which exhibit small parallelism and
that are often on the critical path are scheduled on the CPU while sets of independent tasks are
scheduled in the GPU [Tomov et al., 2010a, 2009]. A recent work implements a hybrid divide-
and-conquer strategy for dense symmetric and Hermitian eigenproblems [Vömel et al., 2012]. The
divide-and-conquer approach is specific to these problems, in contrast to our generic approach.

Another library of high-performance linear algebra CPU-GPU hybrid implementations is
CULA [Humphrey et al., 2010], which divides computation to enable the CPU and GPU to
execute the tasks that each is best suited for, while at the same time carefully overlapping oper-
ations in both units.

Hybrid algorithms have been recently developed for other types of problems such as ray
tracing [Budge et al., 2008], encryption and decryption of block cyphers [Barlas et al., 2011],
and stencil computations [Venkatasubramanian et al., 2009], as well as to accelerate domain
decomposition methods [Papadrakakis et al., 2011].

An important part of computation on heterogeneous architectures is the proper load balanc-
ing between computing units. While some implementations follow analytically determined static
schedules [Barlas et al., 2011], others rely on dynamic schedules by runtime systems. StarPU
was proposed as a runtime layer to facilitate the dynamic scheduling of parallel tasks in het-
erogeneous architectures [Augonnet et al., 2011]. The programmer is responsible for the imple-
mentation of tasks for each computing unit and to declare data dependencies between them,
while the runtime system is responsible for handling data movements and efficient scheduling of
tasks. The programmer can provide hints for the latter, and thus StarPU provides a high-level
framework for the design of scheduling policies. StarPU has been incorporated into MAGMA
for dynamic scheduling of routines on multi-gpu environments [Agullo et al., 2011a,b]. Other

193

runtime systems for heterogeneous CPU-GPU architectures are Anthill [Teodoro et al., 2009] and
SuperMatrix [Quintana-Ort́ı et al., 2009].

In this work we target problems with known dependencies, and thus a tailored static division
of work suits our purpose. In addition, unlike most of the works described above, which target
High Performance Computing applications and solutions, the primary focus of our framework is
on generality and ease of programming, and secondly on performance. While in many cases it is
possible to design and implement parallel algorithms for specific problems that will likely exhibit
better performance than the general solutions provided by our approach, we emphasize that our
main goal is to provide a simple strategy to develop algorithms that can take advantage of the
computing power available in commodity computers, rather than extracting the last ounce of
performance from a given hardware architecture.

9.2 A Hybrid CPU-GPU Model

We propose a hybrid CPU-GPU model which we term Hybrid Processing Unit (HPU) and describe
a balancing scheme which shares the load optimally in a near automatic fashion for certain well
known families of problems.

The HPU consists of a multi-core CPU processor with p cores and a GPU device with g
processing elements, which for simplicity we call GPU cores. Given that the true parallelism
provided by a GPU varies significantly depending on execution aspects such as scheduling and
memory accesses, we do not think about the number of GPU cores as exactly matching the number
of physical processing elements but rather as a measure of the empiric degree of parallelism
observed when running a suitable test program2. In turn, in general the number of CPU cores p
might not be equal to the number of physical cores but to a parameter indicating the number of
cores available for processing tasks (e.g., one or more cores can handle thread launching or other
scheduling tasks).

To account for the different characteristics (and in particular speed) of CPU and GPU cores,
we denote as γc and γg the number of operations per unit of time that a single CPU and GPU core
can complete, respectively, with γc > γg. For simplicity, we normalize these factors, setting γc = 1
and γg = γ < 1. We assume that these architectures are balanced in the sense that the ratio γ of
operations per unit hold for any kind of operations (logic or memory access), similarly to what is
assumed, for example, in [Rosenberg and Chiang, 2010]. We also assume that γg > p, and thus
the raw computational power of the GPU is higher than that of the CPU.

The focus in this work is on the most common scenario of one multi-core CPU unit along with
one GPU card (which we call processing units), although the model could easily be extended to
the case of multiple GPU cards.

2We defer the details about how to estimate g to Section 9.5.4.

194

In terms of communication, transmitting w words between CPU and GPU takes time λ+ δw,
where λ is a fixed latency cost, and δ is the variable cost per word. For the kind of application
that we consider in this work we do not explicitly take this cost into account, but we limit the
number of data transfers between processing units to the minimum possible. Similarly, we do not
explicitly consider scheduling costs, as preliminary experiments showed that the overhead was
negligible.

9.3 Generic Divide-and-Conquer Parallelization

The standard approach to a divide-and-conquer (DC) algorithm involves dividing the problem
into smaller subproblems, recursively solving these subproblems, and combining the solutions of
the subproblems into a final solution (see Algorithm 9.1). We consider DC algorithms whose time
complexity can be expressed by:

T (n) = aT (n/b) + f(n), T (1) = Θ(1)

Naturally, the algorithm works by dividing the problem in a subproblems of size n/b each
and combining their solutions to obtain the final solution to the problem. The division and
combination portion of the algorithm takes time f(n). A DC algorithm can be parallelized in a
straightforward manner by executing recursive calls in parallel, leading to a simple thread-based
implementation suitable for multi-cores. Nevertheless, practical issues such as the efficient use of
private and shared caches might hinder the ideal parallel performance of such implementation,
with the chosen thread schedule playing a major role in this aspect.

In general, a strategy in which each recursive call launches a thread does not suit the
GPU multi-processing model, since at least in some architectures GPU threads are unable to
launch additional threads during execution3. Instead, they are designed to run hundreds of par-
allel threads executing one same kernel launched by the CPU host. In this sense, a breadth first
execution of a DC algorithm can suit this execution mode better: the independent tasks on one
level of the recursion tree can be seen as the same task being executed on different parts of the
input. Given enough independent tasks, one kernel can be launched to execute an entire level of
the tree in parallel.

3CUDA 5 does implement dynamic parallelism, enabling kernels to launch other kernels without involvement
of the host. However, currently the depth of the nested computation can be at most 24 and is limited by the
availability of resources in the GPU [NVIDIA, 2012]. While this might change in the future allowing for a more
suitable strategy for divide-and-conquer implementations, our breadth-first strategy remains valid and applicable
to a wider range of architectures which are not CUDA-enabled.

195

Algorithm 9.1 Generic divide-and-conquer implementation

Recursive(param)

1: if endCondition(param) then
2: return BaseCase(param)
3: {paramj} ← Divide(param)
4: for j = 1 to |{paramj}| do
5: Sj ← Recursive(paramj)
6: S← Combine({Sj},param)
7: return S

Algorithm 9.2 Breadth-first divide-and-conquer

BreadthFirst(params)

1: split params into basecases and recursions
2: if recursions is empty then
3: for each param in basecases do
4: BaseCase(param)
5: return
6: add basecases to next params
7: for each param in recursions do
8: {paramj} ← Divide(param)
9: for j = 1 to |{paramj}| do

10: add paramj to next params
11: BreadthFirst(next params)
12: for each param in recursions do
13: Combine(param)

9.3.1 Breadth-First Structure

The first step of our strategy to obtain a hybrid implementation of a DC algorithm is to convert
the sequential code from the form in Algorithm 9.1 to one that will execute in breadth-first
order. We do this by replacing multiple recursive calls with one recursive call that represents
multiple subproblems, encoded in the parameters of the recursive call. Algorithm 9.2 shows the
modified pseudocode. At each level of the recursion, parameters for all subproblems are encoded
in params, some of which correspond to base cases. The rest of the parameters (recursions)
are divided according to the algorithm’s divide procedure (line 7) and grouped in one list of
parameters (next params) to be passed on to the one recursive call in line 11. After the recursive
call, the results of subproblems in each group in the level are combined according to the combine
procedure (line 12). Note that at each level subproblems corresponding to base cases are passed
on to the next recursive call, and their execution is delayed until no more recursive calls remain.

196

Algorithm 9.3 Pseudo-code for functionGPU

functionGPU(parameters,base)

1: id← get global id()
2: param← parameters[id]
3: memory = base + fn(id,param)
4: thread function(param,memory)

Algorithm 9.4 Pseudo-code for Sum

sum(array, size)

1: if size > 1 then
2: sum(array, size/2)
3: sum(array + size/2, size/2)
4: array[0]← array[0] + array[size/2] {array[0] stores the result}

9.3.2 Conversion to GPU Code

In order to modify the existing code for GPU execution, the thread launching system and the
base-case, division, and combination steps must be suitably adapted. Each subproblem will
have a separate thread. As GPU threads have a relatively small overhead for launching more
threads than available cores, the advantage of processing as many tasks in parallel will take
priority over launching only as many threads as can be run in parallel. Then, during execution,
each GPU thread is provided a unique thread id that can be used to load its unique set of
parameters and to determine any (previously allocated) memory blocks on which it will operate.
This generic description is shown in Algorithm 9.3, where fn is a function on the thread’s id and
parameters that determines the thread’s relevant memory blocks, and thread function denotes
the operations performed by the GPU thread.

9.3.3 Example: Divide-and-Conquer Sum

We show an example of the code translation described above for a simple divide-and-conquer
procedure that computes the sum of elements in an array (see Algorithm 9.4). The pseudocode
of the resulting GPU program is shown in Algorithm 9.5. This program is executed at each level
of the recursion, with numSubProblems indicating the number of subproblems at the current level.
For a level with b subproblems, the i-th thread computes the sum of elements i and i+ b in the
array. The final result is stored in array[0]. In this case, the relevant parameter to the thread
is only numSubProblems, and the relevant memory blocks for the thread are given by its id and
numSubProblems. Lines 2-3 in Algorithm 9.5 correspond to thread function in Algorithm 9.3.

197

Algorithm 9.5 Pseudo-code for GPU Sum

sum(numSubProblems, array)

1: id← get global id()
2: if id < numSubProblems then
3: array[id]← array[id] + array[id + numSubProblems]

9.4 Work Division and Scheduling Strategies

A proper work division and scheduling is key to an efficient implementation. In a heterogeneous
architecture, tasks in an algorithm should be assigned to each processing unit according to the
tasks’ nature and dependencies. Implementations on CPU-GPU architectures generally assign to
the CPU tasks with many dependencies [Ezzatti et al., 2011] or tasks in the critical path [Tomov
et al., 2010a]. In the case of the regular DC algorithms that we consider in this work, what we
regard as tasks are the division and combination portions of the algorithm. Hence, all tasks are
similar to each other in nature. On the other hand, in regular DC algorithms all paths from the
root of the tree to a leaf have approximately equal lengths, and in this sense there are several
critical paths, thus they cannot all be assigned to CPU cores. Instead, we assign tasks to the
CPU or GPU according to the availability of parallel independent tasks at each level of the
recursion tree. Note that although at each level of the recursion there are several subproblems
whose division and combination functions are independent and can execute in parallel, the division
and combine functions of each subproblem remain sequential. In other words, the only source of
parallelism is in the recursive calls, and we do not consider parallelizations of divide and combine
functions of particular algorithms. Recall that our main goal is to provide a generic approach for
translating recursive DC algorithms to hybrid code with little effort.

It is desirable that the task division involves minimal communication costs. With this goal
in mind, we design two division and scheduling strategies, which we call basic and advanced. We
explain next these strategies and analyze the conditions for scheduling tasks in each computing
unit for each strategy.

9.4.1 Basic Hybrid Work Division

Consider the recursion tree of a DC algorithm as depicted in Figure 9.1. Each level of the recursion
tree consists of division and combination tasks that are independent of each other and can thus
be executed in parallel. The basic work division strategy schedules each level on the CPU or
GPU depending on where it is more efficient to execute the entire level. There is an advantage
to schedule a level in the GPU when the number of independent subproblems allows the use of
enough cores to overcome their comparatively slower speed.

198

i = loga(p/γ)

i = logb n

i = 0

GPU

CPU

Figure 9.1: Basic hybrid work division. Each level of the recursion tree is executed in the platform
in which it runs faster according to the characteristics of the architectures and the divide-and-conquer
problem. Thus, levels above i = loga(p/γ) are executed in the CPU (while the GPU is idle), whereas levels
below i are executed in the GPU (while the CPU is idle).

Consider the execution time of each processing unit for a given level i in the recursion tree,
where 0 ≤ i ≤ logb(n)− 1, the 0-th level being the top of the tree. Recall that the DC algorithm
solves a subproblems of size b and that the division and combination steps take time f(n).

1. 0 ≤ i < loga(p): TCPU (n, i) = f(n/bi), TGPU (n, i) = f(n/bi)/γ. Since γ < 1, it is faster to
run the level on the CPU.

2. loga(p) ≤ i < loga(g): TCPU (n, i) = (ai/p)f(n/bi), TGPU (n, i) = f(n/bi)/γ. It becomes
faster to run the level on the GPU when ai/p ≥ 1/γ, i.e., i ≥ loga(p/γ).

3. loga(g) ≤ i < logb(n): TCPU (n, i) = (ai/p)f(n/bi), TGPU (n, i) = (ai/(γg))f(n/bi). Since
we assume gγ ≥ p, it is faster to run the level on the GPU.

4. leaves: TCPU (n) = nlogb a/p, TGPU (n) = nlogb a/(γg). Again it is faster to run the leaves on
the GPU.

Hence there is only one transfer at level i = loga(p/γ). Note that if gγ < p then at every level
it is faster to execute on the CPU and there is no transfer to the GPU at any point with this
strategy. As only a single data synchronization point occurs when work is transferred from the
CPU to the GPU and back, transfer time is minimized and accounts for only a small part of the
overall processing time.

199

αnlogb a (1− α)nlogb a

i = y

i = logb n

i = loga
(
p
α

)

i = 0

GPUCPU

CPU

i = loga p

Figure 9.2: Advanced hybrid work division. The GPU will execute so long as the CPU has enough tasks
to keep all cores busy (until it reaches level loga(p/α) in a bottom up execution of the left part of the tree
in the figure), while keeping only one transfer between processing units. The goal is to find the value of α
that maximizes the total work executed by the GPU. In the figure, dark blue and light blue subproblems
are executed by the CPU and GPU, respectively.

A drawback of this strategy is that at any point only one of the computing units (i.e., CPU or
GPU) is active. We now describe a strategy that builds on this basic strategy while minimizing
idle periods.

9.4.2 Advanced Hybrid Work Division

The new strategy that we propose for dividing the work among CPU and GPU aims to minimize
idle periods and communication between units. If all tasks could be executed in parallel the
division would be straightforward: we should divide the work so that both processing units take
the same time in their assigned portions. However, in general in DC algorithms there is not enough
parallelism at all levels of the trees to maintain a uniform division of work. For example, when
the number of available subproblems is less than p, any fraction of them assigned to the GPU will
leave at least one CPU core idle. Since CPU cores are faster than GPU cores, it is preferable to
execute these serial tasks in the CPU. Therefore, all tasks at levels of the recursion tree where
there is at most p subproblems (0 ≤ i ≤ loga p) are assigned to the CPU (see Figure 9.2).

For lower level of the trees, we can execute some tasks on the GPU while keeping all CPU cores

200

busy. Consider the recursion tree depicted in Figure 9.2. When there are more than p subprob-
lems, there is an advantage in running some subproblems in the CPU and some in the GPU.
The idea is to run subproblems in the GPU so long as no CPU core is idle. At the same time,
we want to keep communication and synchronization costs low. Toward this end, we restrict the
number of data transfer between CPU and GPU to two points during the execution. Let y be
a parameter denoting the level in the tree (from the top) at which we offload any computation
to the GPU, and let α be the parameter denoting the fraction of subproblems that are assigned
to the CPU. Thus, at level y, the CPU is assigned αay subproblems, while the GPU is assigned
(1− α)ay. Note that once a level has been divided in this way, lower levels of the tree will keep
the same fraction of subproblems for each processing unit, and hence no further synchronization
or data transfer is required until the GPU has solved all subproblems. The choice of y and α
determines the amount of work that the GPU will do. Our strategy maximizes the work that the
GPU does with two data transfers while avoiding idle CPU cores. In the rest of this section we
show how to determine the parameters y and α that maximize GPU work.

Parameter Optimization

For the sake of analysis, consider a bottom up execution of the recursion tree in Figure 9.2.
Starting from the bottom level, both CPU and GPU execute with a work ratio of α. Since we
want to avoid idle CPU cores, we run both CPU and GPU until the CPU portion reaches p
subproblems. We only consider α ≥ p/n, so that the CPU starts at the bottom level with at least
p tasks. Then, the CPU portion reaches p subproblems at level loga(p/α). At this point, we stop
the GPU execution and let the CPU compute all the unfinished portions of the tree. The time
that it takes to the CPU to reach level loga(p/α) from the bottom is

Tc(n) =
α

p

nlogb a +

logb(n)−1∑

i=loga(p/α)

aif
(n
bi

)

During this time, the GPU executes bottom up and reaches level y in the tree. The value of
y can be determined by making the GPU and CPU times equal. We have 3 cases, depending on
whether the GPU is never saturated or always saturated throughout, or a combination of both.
Let Tmaxg (n) denote the maximum time the GPU can execute while using all its cores (i.e., before
it reaches g subproblems). Thus,

Tmaxg (n) =
(1− α)

γg

nlogb a +

logb(n)−1∑

i=loga(g/(1−α))

aif
(n
bi

)

(i) (1 − α)nlogb a < g. In this case, the GPU is never saturated and thus Tg(n) = (1/γ)(1 +∑logb(n)−1
i=y f(n/bi)).

201

(ii) Tc(n) ≤ Tmaxg (n). In this case, the GPU is always saturated and thus Tg(n) = ((1 −
α)/γg)(nlogb a +

∑logb(n)−1
i=y aif(n/bi)).

(iii) Tc(n) > Tmaxg (n). In this case, Tg(n) = Tmaxg (n) + (1/γ)
∑loga(g/(1−α))−1

i=y f(n/bi).

The goal is to determine the value of α that maximizes the work done by the GPU from the
bottom until level y. We first determine y by solving the equation Tg(n) = Tc(n) for each of the
3 cases above. This yields a piecewise function y = y(α). The work done by the GPU in this
period is given by

Wg(n) = (1− α)

nlogb a +

logb(n)−1∑

i=y(α)

aif
(n
bi

)

 .

Maximizing for α yields the optimal work ratio value.

After the GPU reaches level y, it transfers the results back to the CPU, which finishes the
computation. Note that it could still be advantageous to continue execution on the GPU for
levels above y. However, this would invariably imply either having idle CPU cores or a new work
ratio α, which would in turn imply further synchronization and data transfer between processing
units.

Example

We illustrate this procedure using the characteristics of a sample architecture and a divide-
and-conquer algorithm whose division and combination function takes time Θ(nlogb a) (and thus
T (n) = Θ(nlogb a log n)). Mergesort is an example of such algorithm. We assume that the imple-
mentation of the combination and division function is the same both in the CPU and GPU, and
thus the constants hidden in the complexities are the same and will cancel out when solving for
the level y.

The time that the CPU takes to reach p problems from the bottom is

Tc(n) =
αnlogb a

p

(
logb n− loga

p

α
+ 1
)
.

The maximum time the GPU can be fully saturated is

Tmaxg (n) =
(1− α)nlogb a

γg

(
logb n− loga

g

1− α + 1

)
.

202

Algorithm 9.6 Pseudo-code for Mergesort

mergesort(array, size)

1: if size > 1 then
2: mergesort(array, size/2)
3: mergesort(array + size/2, size/2)
4: merge(array, array + size/2, size/2)

Thus, we have the following function for the GPU time:

Tg(n) =

(1/γ)(nlogb a a
a−1a

−y − 1
a−1), if (1− α)nlogb a < g

(1−α)nlogb a

γg (logb n− y + 1), if (1− α)nlogb a ≥ g and Tmaxg (n) ≥ Tc(n)

Tmaxg (n) + nlogb a a
γ(a−1)

(
a−y − 1−α

g

)
, if (1− α)nlogb a ≥ g and Tmaxg (n) < Tc(n)

We now solve Tc(n) = Tg(n) for y for each of the cases above, obtaining a piecewise function
y(α) that depends on each case. The work done by the GPU is then

Wg(n) = (1− α)nlogb a(logb n− y(α) + 1).

By replacing in this equation the parameters of a divide-and-conquer algorithm, of a partic-
ular architecture, and the input size, we can maximize the work using numeric methods. For
example, using mergesort as the divide-and-conquer algorithm and the parameters of one of our
architectures4 (i.e., a = b = 2, f(n) = Θ(n), p = 4, g = 212, γ = 1/160) and an input size n = 224,
we obtain the y function and the fraction of GPU work over total work function depicted in Fig-
ure 9.3. In this case the total work is nlogb a(logb n + 1). The work ratio that maximizes the
GPU work is α∗ ≈ 0.16, for which the GPU does approximately 52% of the total work. The level
reached by the GPU with α∗ is approximately 10. Since log2 g = 12, this means that for the
GPU is both saturated and non-saturated during its execution for α = α∗. Figure 9.4 depicts the
work division for this example.

9.5 Case Study: Mergesort

The ideas of our method are applicable in general to algorithms whose parallel structure can be
specified by directed acyclic graphs. In this section we use mergesort as a test case for the gains
of our general framework for divide-and-conquer algorithms. We particularly chose mergesort as
an example of a task-parallel algorithm that is not readily made for execution on a GPU, but
that nevertheless is amenable to the kind of hybrid parallelization that we propose.

4The architectures and parameters are described in Section 9.5.4.

203

Figure 9.3: For mergesort (a = b = 2, f(n) = Θ(n)) and parameters p = 4, g = 212, γ−1 = 160 and
n = 224, (left) level reached by the GPU while the CPU has at least p tasks at the same level as a function
of the work ratio α, and (right) the percentage of work done by the GPU as a function of α.

GPU

CPU

i=0

i = 10

i = 24
0.16n 0.84n

Figure 9.4: Advanced hybrid work division for mergesort. The figure represents the recursion tree
shown in Figure 9.2 with the height and width of the rectangles representing the height and work of the
computation. For the parameters in the example (p = 4, g = 212, γ−1 = 160 and n = 224) the work ratio
that maximizes the GPU work is α ≈ 0.16 and the transfer level is 10.

204

Algorithm 9.7 Pseudo-code for Breadth-first Mergesort

mergesort bf(array, totalSize, size,numSublists)

1: if size > 1 then
2: mergesort bf(array, totalSize, size/2, 2 · numSublists)
3: for i = 0 to numSublists− 1 do
4: offset← i · size
5: merge(array + offset, array + offset + size/2, size)

Consider the classic recursive mergesort implementation as shown in Algorithm 9.6. As de-
scribed in Section 9.3.1, we first convert the recursive divide-and-conquer implementation to a
breadth-first one. Compared to the pseudocode in Algorithm 9.2, a breadth-first execution of
mergesort is somewhat simplified as the division into subproblems and condition for basecases are
data independent. Thus, a single recursion is performed with parameters indicating the sublists
to be sorted. A sublist can be specified by an offset with respect to the beginning of the entire
list and the size of the sublist. The offset for the i-th sublist is simply offset = i · size. This limits
the parameters to the array being sorted, the total array size, and the number of sublists, which
are the same for each sublist. Furthermore, determining when only base cases remains becomes
trivial: once the number of current sublists equals or exceeds the total length of the array, the
maximum number of elements in a sublist is one, and therefore only base cases remain. To finish
the conversion, the base-case, division, and combination steps must be performed for each sublist.
For mergesort, as no division and base case exist, these parts are removed entirely and only the
combine step must be performed, which corresponds to merging pair of sublists. Algorithm 9.7
shows the breadth-first mergesort implementation5.

9.5.1 Basic Hybrid Implementation

The merge operations for each sublist in line 5 in Algorithm 9.7 are independent of each other
and can potentially be executed in parallel. For the basic hybrid work division as described in
Section 9.4.1, these operations are executed either on the GPU or on one or more CPU cores.
For each recursion level in which merge operations are executed on the GPU, a program running
in the host launches a GPU kernel with parameters indicating the size and number of sublists
to be merged. Based on its id, each GPU thread identifies the sublist on which it will operate.
Similarly, when merge operations are executed on the CPU, depending on the recursion and
number of cores available, multiple threads are created to merge sublists in parallel (with each
thread merging a pair of sublists sequentially).

5In order to keep the description of the approach simpler, we assume that the input size is a power of 2. The
same general approach is applicable in general, although some adjustments to the implementation are required.

205

Algorithm 9.8 Pseudo-code for Advanced Hybrid Mergesort

HybridMergesort(array, totalSize, size, numSublists)

1: if size > 1 then
2: if numSublists > threshold then
3: cpuLists← α · numSublists
4: gpuLists← numSublists− cpuLists
5: mergesort bf cpu(array, size · cpuLists, size, cpuLists)
6: mergesort bf hybrid(array + size · cpuLists, size · gpuLists, size, gpuLists)
7: else
8: HybridMergesort(array, totalSize, size/2, 2 · numSublists)
9: for i = 0 to numSublists− 1 do

10: offset← i · size
11: merge(array + offset, array + offset + size/2, size)

9.5.2 Advanced Hybrid Implementation

The advanced work-division strategy as described in Section 9.4.2 is implemented by, when reach-
ing certain threshold level in the recursion tree, launching two simultaneous CPU threads, one
that executes the basic hybrid strategy, and another one that executes a CPU implementation
(see Figure 9.2). For these threads, the input is divided according to the division ratio α. Since
this ratio remains constant across levels, when the hybrid thread switches to execution on the
GPU (level y in Figure 9.2), the number of subproblems executed in each processing unit will
respect the chosen ratio. This implementation is shown in Algorithm 9.8. In this algorithm, the
methods mergesort bf cpu and mergesort bf hybrid correspond, respectively, to implemen-
tations of Algorithm 9.7 to be executed exclusively on the CPU, and in a hybrid fashion according
to the basic model.

9.5.3 GPU Optimizations

So far, the hybrid implementation of mergesort described above is oblivious to the characteris-
tics of the particular divide and combine functions. In the case of the merge method, certain
optimizations to the implementation are possible and have a significant impact on performance.
In order to achieve coalesced memory accesses, prior to executing a parallel merge operation on
the GPU, we permute the input so that the set of i-th elements in all sublists are in contiguous
locations. Thus, various parallel threads operating on different sublists will access contiguous
memory segments. To adapt the GPU kernel to use this method, sublists are iterated using the
thread id as the initial position, and increasing this value by the total number of sublists. As the
CPU cache benefits from reading from sequential blocks, before transferring the array to the CPU,
the array is permuted back to the original arrangement. Thus this optimization is transparent
to the CPU implementation. We note that by incorporating this optimization, which is specific

206

Platform CPU GPU

HPU1 Intel R© CoreTM 2 ATI RadeonTM HD 5970
Extreme CPU Q6850

HPU2 AMD A6 3650 ATI RadeonTM HD 6530D

Table 9.1: Specification of hybrid platforms used in experiments.

Platform p g γ−1

HPU1 4 4096 160

HPU2 4 1200 65

Table 9.2: Platforms parameters (p: number of CPU cores, g: number of GPU cores, γ: CPU-GPU scalar
performance ratio).

to the application, we have chosen to improve performance at the cost of some minor generality.
Similar considerations could be applied to other applications, and one can choose whether to
incorporate them or not, depending on their difficulty of implementation and the performance
gains they may lead to.

9.5.4 Experimental Results

We implemented the hybrid mergesort algorithm and tested its performance on two OpenCL
platforms: an Intel R© CoreTM 2 Extreme CPU Q6850 (4 cores at 3.00 GHz, 8 Mb cache) with an
ATI RadeonTM HD59706 GPU card (which we call HPU1), and an AMD Accelerated Processing
Unit A6 3650 (4 cores at 2.6 GHz, 4 Mb Cache) with an integrated ATI RadeonTM HD 6530D
card (called HPU2) (see Table 9.1). The algorithms were implemented with OpenCL 1.1 AT-
Stream-v2.3 in Ubuntu 10.04.4 64-bit (HPU1), and OpenCL 1.2 AMD-APP in Ubuntu 12.04
64-bit (HPU2).

We estimated the parameters γ (ratio between CPU and GPU scalar performance) and g
(number of GPU cores) for each platform as shown in Table 9.2. Recall that g does not actually
correspond to the physical number of cores or processing elements of the GPU but rather to an
approximation of the number of threads that fully saturates the device when running a suitable
procedure. In this case, in order to estimate g, we ran an implementation of an elementwise
sum of two arrays in which all threads worked in consecutive array segments. We measured the

6The HD5970 is a Dual GPU card, but only one card was used in the experiments, as the parallelism available in
the application could only saturate both cards at the lowest levels of the recursion tree, not justifying the overhead
of additional data transfers.

207

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
xe

cu
tio

n
T

im
e

(s
)

Number of Threads

Execution time vs Parallel Threads

GPU inter

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0 500 1000 1500 2000 2500

E
xe

cu
tio

n
T

im
e

(s
)

Number of Threads

Execution time vs Parallel Threads

GPU inter

Figure 9.5: Running time as a function of the number of GPU threads used in an elementwise sum of
two arrays for platform HPU1 (left) and HPU2 (right). The size of each array is 224.

running time as the number of threads used increased, and set g to the value after which no
improvement in performance was detected7. Figure 9.5 shows the running times as a function
of the number of threads for each platform. The parameters were set to g = 4096 for HPU1
and g = 1200 for HPU2. In order to estimate γ, a 1-thread merge operation over two lists was
executed on both CPU and GPU. Figure 9.6 shows the running time for different input sizes. As
expected, the time ratio remains relatively constant. These parameters were set to γ−1 = 160 for
HPU1 and γ−1 = 65 for HPU2.

We measured the performance of the advanced hybrid mergesort implementations for various
transfer levels and ratios. Figure 9.7 shows the speedups of the hybrid implementation on HPU1
(using 4-CPU cores) with respect to a 1-core CPU recursive implementation, as a function of the
ratio α for various transfer levels for an input of size n = 224 (elements in all input sequences were
chosen uniformly at random between 0 and 2n−1). Recall from the example in Section 9.4.2 that
for this input size the estimated optimal ratio and transfer levels were α ≈ 0.16 and y = 10. We
observe that the speedups do not differ too much across transfer levels, although speedups increase
from level 7 and start decreasing with level 11, in accordance with the estimation. Similarly, the
performance is slightly better for transfer ratios that are close to the estimated one.

Figure 9.8 shows the speedups obtained in both platforms with the values of transfer level and
ratio that resulted in the best speedups (in red). The green lines in the figures show the speedup

7The sum of two arrays used to estimate g shares the characteristics of the merge with optimization for memory
coalesced access of our application, and thus it provides a good approximation of the degree of parallelism of the
architecture in this case. Another option would have been to use the same merge function, and in general, the same
divide or combine function of the application can be used for this purpose. Note that the parameter estimation is
done only once.

208

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

T
im

e
G

P
U

/T
im

e
C

P
U

Test Size

Merge scalar GPU-CPU ratio HPU1

GPU/CPU

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

T
im

e
G

P
U

/T
im

e
C

P
U

Test Size

Merge scalar GPU-CPU ratio HPU2

GPU/CPU

Figure 9.6: Ratio between scalar performance of single GPU and CPU cores when executing a merge
operation on HPU1 (left) and HPU2 (right).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

S
pe

ed
up

 o
ve

r
1-

C
P

U

Transfer ratio (alpha)

CPU(4)-GPU Mergesort Speedups

7
8
9

10
11
12

Figure 9.7: Speedup of hybrid mergesort implementation on HPU1 with an instance of size n = 224 as
a function of the transfer ratio α. Each curve corresponds to a different transfer level between processing
units (parameter y in Figure 9.2).

estimated in the advanced model analysis for the parameters of the platforms. The maximum
speedups achieved were 4.54x for HPU1 and 4.35x for HPU2, which are close to the estimated
5.47x and 5.7x by the analysis for the corresponding input size, respectively. Recall that the

209

 0

 1

 2

 3

 4

 5

 6

 7

 1000 10000 100000 1e+06 1e+07 1e+08

S
pe

ed
up

Input size

Hybrid Mergesort Speedups

time(CPU(1))/time(hybrid)
predicted

GPU/CPU

 0

 1

 2

 3

 4

 5

 6

 7

 1000 10000 100000 1e+06 1e+07 1e+08

S
pe

ed
up

Input size

Hybrid Mergesort Speedups

time(CPU(1))/time(hybrid)
predicted

GPU/CPU

Figure 9.8: Speedup of hybrid mergesort implementation (red) as a function of the input size for HPU1
(left) and HPU2 (right). The green line depicts the estimated speedups in the analytical model. The blue
line shows the ratio between the time of execution of GPU and the time while the CPU is fully utilized
(see Section 9.4.2).

overall gains in performance are limited by the sequential execution of the merge methods on
large input sizes at the top levels of the recursion tree, which also limits the performance of a
similar multi-core only implementation to 2.5x-3x speedups on 4 cores (see Section 3.3). In this
sense, the performance gains obtained through the hybrid implementation are considerable, as
we should take into account that according to the analysis the GPU does about 50% of the total
work, which in the best case could lead to a 2x speedup over a 4-core execution. Recall as well
from the advanced hybrid model description in Section 9.4.2 that the GPU should execute so
long as the CPU has enough tasks to keep cores busy (as shown in the bottom of the triangle
in Figure 9.2). The blue line in Figure 9.8 shows the ratio between these parallel GPU and
CPU times. Observe that the ratio is in general close to one and that the best speedup points
coincide with the instances in which this ratio is closest to one.

We observe as well that as the input size grows, the obtained speedups (red) decrease and
do not keep up with estimated ones (green). We believe that as the input size increases, poor
cache utilization hurts the performance of the multi-core portion of the execution. Speedups
start to decrease around an input size of n = 220. The space used by the algorithm is roughly
2n · sizeof(int), i.e., 223 = 8 Mb. The sizes of the last level CPU caches in HPU1 and HPU2 are
8 Mb and 4 Mb, respectively. Thus, for larger input sizes multiple cores will compete for cache
use.

For the sake of comparison with a fully parallel solution, we show the times and speedups
of a mergesort GPU implementation that implements a parallel algorithm for the merge phase.
Like the implementation with sequential merge, the parallel GPU implementation executes the

210

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1000 10000 100000 1e+06 1e+07 1e+08

T
im

e
[s

]

Input size

Mergesort Times

time(GPU) sort
time(GPU) sort + transfer

time(CPU)

 0

 5

 10

 15

 20

 25

 1000 10000 100000 1e+06 1e+07 1e+08

S
pe

ed
up

Input size

Parallel GPU Mergesort Speedups

time(CPU)/time(GPU) sort
time(CPU)/time(GPU) sort + transfer

Figure 9.9: Times (left) and speedups (right) of a GPU only implementation of mergesort with parallel
merge compared to a sequential CPU recursive implementation as a function of the input size running on
HPU1. Red lines correspond to the times and speedups for sorting only on the GPU while the green lines
include the time of data transfers.

recursion tree in breadth-first order as well, merging pairs of sublists in each level. Merging two
sublist is implemented by performing a binary search for each element in parallel in order to find
its position in the merged list. Figure 9.9 shows the times and speedups compared to a recursive
divide-and-conquer execution on one CPU core on HPU1. We observe that speedups are only
significantly larger than those of our solution for large input sizes, reaching 18x-20x speedups for
sorting only and being reduced to about 12x when considering the overhead of data transfers.

Finally, to see how the resulting best parameters compare to the predicted ones by the ad-
vanced hybrid model, Figure 9.10 shows the ratio α and transfer level y that resulted in the
smallest running times for each input size compared to the ones predicted by the model for
HPU1. Note that resulting parameter values are closer to the predicted ones as the input size
grows, which coincides with higher speedups. Observe as well that in the case of the optimal
transfer level, the obtained values essentially coincide with the predicted ones for larger values of
the input size, as the fractional numbers shown in the figure can only take integer values in an
actual execution.

9.6 Conclusions

In this chapter we presented the Hybrid Processing Unit, a model for hybrid computation on
heterogeneous CPU-GPU architectures. In this model, we describe a generic framework to imple-
ment hybrid divide-and-conquer algorithms and provide a work-division strategy that minimizes
idle times and communication between processing units.

211

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1000 10000 100000 1e+06 1e+07 1e+08

R
at

io

Input size

Hybrid Mergesort Optimal Ratio

obtained ratio
predicted

 8

 9

 10

 11

 12

 13

 14

 15

 1000 10000 100000 1e+06 1e+07 1e+08

Le
ve

l

Input size

Hybrid Mergesort Optimal Transfer Level

obtained level
predicted

Figure 9.10: Red points show the work ratio α (left) and transfer levels y (right) between CPU and
GPU that resulted in the smallest running times for each input size (for HPU1). Green points correspond
to the optimal values as predicted by the model.

Experimental results on a mergesort example confirm the accuracy of the model at predicting
speedups and parameters that yield the best performance, thus suggesting that a model based
on traditional approaches to the design and analysis of parallel computation can be useful in a
heterogeneous scenario.

For future work, we plan to refine the model by considering cache, communication, and
scheduling costs explicitly, as well as to extend its applicability to other classes of problems that
are suitable for obtaining performance gains in heterogeneous architectures.

212

Chapter 10

Conclusions

The advent of multi-core processors has changed the landscape of computing, bringing parallel
computation to the foreground of the field for both researchers and practitioners. Parallelism is
no longer exclusive of high performance computing but is a pervasive feature in desktops, laptops,
and embedded systems. While multi-cores provide a moderate level of parallelism, highly parallel
Graphic Processing Units (GPUs) have converted commodity computers into powerful compu-
tational devices. This renewed relevance of parallelism has prompted researchers in theoretical
Computer Science to revisit the models and algorithms that were developed for both practical and
theoretical parallel machines in the past decades. As a consequence, new and adapted solutions
for the reality of multiple resource-sharing processors have started to emerge.

This thesis is an example of theoretical developments for modern parallelism. We have studied
several problems related to the modeling of computation in the mentioned architectures. Within
multi-cores, we have focused in the implications of the reality of a small number of processors in
the aid of the analysis and design of algorithms. In Chapter 3 we develop a model for multi-core
computing in which we assume that the number of processors is bounded by a logarithmic function
on the input size. We have shown that this assumption simplifies the design of a large class
of divide-and-conquer and dynamic programming algorithms, while attaining optimal parallel
performance with respect to the corresponding sequential algorithms. The assumption of a small
number of processors is key to the optimality results. In Chapter 4 we argue that, in general,
parallel systems with a small number of processors (logarithmic or sublinear in the input size)
exhibit significant differences compared to systems with a linear number of processors, as it
was often assumed in the past. These differences appear in several aspects related to parallel
computation such as memory access conflicts, the feasible size of communication networks, and
the attainable cache performance in multi-threaded computations, among others. Furthermore,
we have defined complexity classes to capture how efficiently problems can be solved in parallel
and have shown that the class of problems that can be optimally sped up with a logarithmic

213

number of processors strictly contains the analogous polynomial processor class. The results in
these two chapters are evidence of the advantages that parallel architectures and algorithms can
achieve when designed explicitly towards a moderate level of parallelism.

Chapter 5 presents the Ultra-Wide Word model and architecture (UW-RAM). This model
explores an alternative form of parallelism in the form of a wide-word ALU that can operate on
thousands of bits in parallel. We describe algorithms for this architecture for various problems
solvable by dynamic programming as well as for text searching. We also show how the Ultra-
Wide Word can simulate a non-standard memory architecture, thus enabling the implementation
of efficient data structures for priority queues and dynamic prefix sums. Many of the algorithms
described are simple modifications to word-RAM algorithms. In fact, the goal of this model
is to enable word-RAM algorithms to achieve speedups compared to those of multi-threaded
computations, while avoiding the more difficult aspects of parallel programming, thus retaining
the simplicity of sequential algorithm design.

Chapters 7 and 8 study the paging problem in shared cache environments. In Chapter 7 we
propose a model for paging in multi-core shared caches and analyze the performance of various
strategies. We show that traditional paging algorithms such as LRU and FIFO are not competitive
in the multi-core setting, while we argue that any competitive strategy must dynamically adjust
a cache partition among cores. We also study the offline paging problem and show that achieving
a fair distribution of faults is NP-complete and hard to approximate. We show, however, that
this problem admits a polynomial time algorithm when the number of sequences is constant, thus
suggesting that the difficulty of multi-core paging stems from the number of sequences rather
than their length.

In Chapter 8 we propose a model for paging in which algorithms must account for the amount
of cache they use, in addition to the number of faults. This model seeks paging strategies that
efficiently use the available cache, and it can be used in settings in which the cache is a shared
resource —such as multi-cores or caching in the cloud—, as well as in scenarios in which partial use
of the cache can lead to energy savings —such as in caching with Content Addressable Memories
(CAMs). We present a family of cache-aware online algorithms that achieve a competitive ratio
that adapts to the relative costs of cache and faults, and that are 2-competitive for sequences
with high locality of reference. We experimentally show that these algorithms are nearly optimal
for real-world memory traces.

Finally, we turn our attention to computation in heterogeneous architectures with multi-cores
and GPUs. The vector nature of GPUs makes it suitable for data-parallel algorithms. We argue
that many parallel solutions allow for a task-parallel component, which can be handled by scalar
CPUs, leading to a hybrid solution. Chapter 9 presents a model for heterogeneous computing
in an CPU-GPU architecture. We focus on the design of divide-and-conquer algorithms for
this architecture, describing a generic translation of a recursive sequential implementation to a
parallel algorithm that is scheduled automatically to execute in both the GPU and CPU. The

214

main advantage of our approach is the simplicity of the implementation, which is independent
of the parameters of the architecture. The scheduler is responsible for an efficient task partition
among computing units, which is achieved based on a simple model of the underlying architecture.

Each of the developments described above left interesting open questions. We mention sev-
eral specific directions of future work in the conclusions of each chapter. In general, it would
be interesting to extend the applicability of the models we propose, thus expanding the set of
algorithms that can be effortlessly translated into implementations that take advantage of the
parallelism provided by multi-cores and GPUs, the classes of problems that can be parallelized
with bit-parallelism in the UW-RAM, as well as the classes of problems that can be sped up
optimally with a small number of processors. It would be particularly interesting to exactly
characterize the class of problems that can be parallelized optimally with a logarithmic num-
ber of processors. Furthermore, showing that this class contains most, if not all problems in P,
would be extremely interesting, and it would be a breakthrough to do so by devising a generic
strategy to parallelize any algorithm with a logarithmic number of processors, even if allowing a
sublogarithmic inefficiency factor.

Multi-core computing has brought attention not only to the design of algorithms that can per-
form as many of their operations as possible in parallel, but it has also emphasized the importance
of data locality in computation. Multi-core shared caches provide a low-latency, high-bandwidth
communication medium for cores which enables the efficient collaboration of threads in a tightly
coupled implementation. At the same time, however, the competition for this shared resource can
hurt the performance of otherwise efficient programs. The management of data in multi-cores
caches, whether it is from the point of view of the algorithm, the schedule, or cache eviction
policies, is of utmost relevance for the performance of applications in these architectures.

For sequential computation the RAM model provides, in most cases, a sufficiently appropri-
ate abstraction of the underlying architecture without considering the memory hierarchy. Hence,
traditional algorithm design is focused primarily on the number of operations performed. In
contrast, in parallel multi-core computation the cache complexity of algorithms and execution
schedules is crucial, and is thus becoming a primary performance measure in theoretical models.
Given the prevalence of parallel architectures in computing, we can only expect that both par-
allelism and locality will become even more relevant considerations in the design of algorithms,
and more generally in our notion of computational efficiency.

Given the myriad of parallel architectures designs and paradigms, it seems unlikely that one
model of computation will ever become the standard model under which be base our notion of
efficiency. Instead, several models will be used when most appropriate. Incorporating the most
relevant characteristics of the underlying hardware for the intended scope of each model, while
providing a simple framework for the design and analysis of algorithms with accurate performance
predictions, remains as one of the most important challenges in theoretical parallel computation.

215

References

U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of work stealing. Theory
Comput. Syst., 35(3):321–347, 2002. 36, 46, 48

D. Achlioptas, M. Chrobak, and J. Noga. Competitive analysis of randomized paging algo-
rithms. Theoretical Computer Science, 234(1 - 2):203 – 218, 2000. ISSN 0304-3975. doi:
10.1016/S0304-3975(98)00116-9. URL http://www.sciencedirect.com/science/article/

pii/S0304397598001169. 133

A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Commun. ACM, 31(9):1116–1127, Sept. 1988. ISSN 0001-0782. doi: 10.1145/48529.48535.
URL http://doi.acm.org/10.1145/48529.48535. 44

A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A model for hierarchical memory. In STOC
’87: Proceedings of the Nineteenth Annual ACM Conference on Theory of Computing, pages
305–314, New York, NY, USA, 1987a. ACM. ISBN 0-89791-221-7. doi: http://doi.acm.org/
10.1145/28395.28428. 31

A. Aggarwal, A. Chandra, and M. Snir. Hierarchical memory with block transfer. In 28th An-
nual Symposium on Foundations of Computer Science, pages 204–216, Los Angeles, California,
October 1987b. 31

A. Aggarwal, A. K. Chandra, and M. Snir. On communication latency in PRAM computations.
In SPAA ’89: Proceedings of the First Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 11–21, New York, NY, USA, 1989. ACM. ISBN 0-89791-323-X. doi:
http://doi.acm.org/10.1145S/72935.72937. 30

A. Aggarwal, A. K. Chandra, and M. Snir. Communication complexity of PRAMs. Theor.
Comput. Sci., 71(1):3–28, 1990. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/0304-3975(90)
90188-N. 29, 30

E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault, and S. Tomov. Faster,
cheaper, better a hybridization methodology to develop linear algebra software for, 2010. 193

217

http://www.sciencedirect.com/science/article/pii/S0304397598001169
http://www.sciencedirect.com/science/article/pii/S0304397598001169
http://doi.acm.org/10.1145/48529.48535

E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, J. Langou, H. Ltaief, and S. Tomov. LU
factorization for accelerator-based systems. In Computer Systems and Applications (AICCSA),
2011 9th IEEE/ACS International Conference on, pages 217 –224, dec. 2011a. doi: 10.1109/
AICCSA.2011.6126599. 193

E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief, S. Thibault, and S. Tomov. QR
factorization on a multicore node enhanced with multiple GPU accelerators. In 25th IEEE
International Symposium on Parallel and Distributed Processing, IPDPS’11, pages 932 –943,
may 2011b. doi: 10.1109/IPDPS.2011.90. 193

D. Ajwani, N. Sitchinava, and N. Zeh. Geometric algorithms for private-cache chip multiproces-
sors. In M. de Berg and U. Meyer, editors, Proceedings of the 18th Annual European Symposium
(ESA 2010), volume 6347 of LNCS, pages 75–86. Springer, 2010. ISBN 978-3-642-15780-6. 94

D. Ajwani, N. Sitchinava, and N. Zeh. I/O-optimal distribution sweeping on private-cache chip
multiprocessors. In 25th IEEE International Symposium on Parallel and Distributed Processing,
pages 1114–1123. IEEE, 2011. ISBN 978-1-61284-372-8. 45, 94

S. G. Akl and N. Santoro. Optimal parallel merging and sorting without memory conflicts. IEEE
Trans. Comput., 36(11):1367–1369, Nov. 1987. ISSN 0018-9340. doi: 10.1109/TC.1987.5009478.
URL http://dx.doi.org/10.1109/TC.1987.5009478. 50, 73

A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP: incorporating long
messages into the LogP model –one step closer towards a realistic model for parallel computa-
tion. In SPAA ’95: Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 95–105, New York, NY, USA, 1995. ACM. ISBN 0-89791-717-0. doi:
http://doi.acm.org/10.1145/215399.215427. 32

B. Alpern, L. Carter, and J. Ferrante. Modeling parallel computers as memory hierarchies. In In
Proc. Programming Models for Massively Parallel Computers, pages 116–123. IEEE Computer
Society Press, 1993. 57

C. Ambühl. Offline list update is NP-hard. In Proceedings of the 8th Annual European Symposium
(ESA 2000), volume 1879 of LNCS, pages 42–51. Springer, 2000. 150

AMD. The industry-changing impact of accelerated computing. AMD Whitepaper, Advance
Micro Devices, 2008. URL http://sites.amd.com/jp/Documents/AMD_fusion_Whitepaper.

pdf. 09/04/2011. 192

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK’s user’s guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992. ISBN 0-89871-294-7. 193

218

http://dx.doi.org/10.1109/TC.1987.5009478
http://sites.amd.com/jp/Documents/AMD_fusion_Whitepaper.pdf
http://sites.amd.com/jp/Documents/AMD_fusion_Whitepaper.pdf

A. Andersson and M. Thorup. Dynamic ordered sets with exponential search trees. J. ACM, 54
(3):13, 2007. 102

S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz. On the separation and equivalence of paging
strategies. In N. Bansal, K. Pruhs, and C. Stein, editors, SODA, pages 229–237. SIAM, 2007.
ISBN 978-0-898716-24-5. 134

A. Apostolico, M. J. Atallah, L. L. Larmore, and S. McFaddin. Efficient parallel algorithms for
string editing and related problems. SIAM J. Comput., 19(5):968–988, 1990. ISSN 0097-5397.
doi: http://dx.doi.org/10.1137/0219066. 74

L. Arge, M. T. Goodrich, M. J. Nelson, and N. Sitchinava. Fundamental parallel algorithms
for private-cache chip multiprocessors. In SPAA 2008: Proceedings of the 20th Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 197–206. ACM, 2008. ISBN 978-
1-59593-973-9. 44, 45, 94

L. Arge, M. T. Goodrich, and N. Sitchinava. Parallel external memory graph algorithms. In
Proceedings of the 24th IEEE International Symposium on Parallel and Distributed Processing,
pages 1–11. IEEE, 2010. 45, 94

E. M. Arkin and E. B. Silverberg. Scheduling jobs with fixed start and end times. Discrete Appl.
Math., 18(1):1–8, 1987. ISSN 0166-218X. doi: 10.1016/0166-218X(87)90037-0. 174, 176

V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev. On economic construction of the transitive
closure of a directed graph. Dokl. Akad. Nauk SSSR, 194:487–488, 1970. (In Russian). English
translation in Soviet Math. Dokl., 11,1209-1210, 1975. 64, 96, 120

S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, New York, NY, USA, 1st edition, 2009. ISBN 0521424267, 9780521424264. 9, 25

C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: a unified platform for task
scheduling on heterogeneous multicore architectures. Concurrency and Computation: Practice
and Experience, 23(2):187–198, 2011. ISSN 1532-0634. doi: 10.1002/cpe.1631. URL http:

//dx.doi.org/10.1002/cpe.1631. 193

M. Baboulin, S. Donfack, J. Dongarra, L. Grigori, A. Rémy, and S. Tomov. A class of
communication-avoiding algorithms for solving general dense linear systems on CPU/GPU
parallel machines. Procedia CS, 9:17–26, 2012. 193

R. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Commun. ACM, 35(10):
74–82, Oct. 1992. ISSN 0001-0782. doi: 10.1145/135239.135243. URL http://doi.acm.org/

10.1145/135239.135243. 102, 121

219

http://dx.doi.org/10.1002/cpe.1631
http://dx.doi.org/10.1002/cpe.1631
http://doi.acm.org/10.1145/135239.135243
http://doi.acm.org/10.1145/135239.135243

R. A. Baeza-Yates and M. Régnier. Average running time of the Boyer-Moore-Horspool
algorithm. Theoretical Computer Science, 92(1):19 – 31, 1992. ISSN 0304-3975. doi:
10.1016/0304-3975(92)90133-Z. URL http://www.sciencedirect.com/science/article/

pii/030439759290133Z. 124

N. Bansal, N. Buchbinder, and J. S. Naor. Randomized competitive algorithms for generalized
caching. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC
’08, pages 235–244, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-047-0. doi: 10.1145/
1374376.1374412. URL http://doi.acm.org/10.1145/1374376.1374412. 133

G. Barlas, A. Hassan, and Y. A. Jundi. An analytical approach to the design of parallel block
cipher encryption/decryption: A CPU/GPU case study. In Proceedings of the 2011 19th Inter-
national Euromicro Conference on Parallel, Distributed and Network-Based Processing, PDP
’11, pages 247–251, Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-0-7695-
4328-4. 192, 193

R. D. Barve, E. F. Grove, and J. S. Vitter. Application-controlled paging for a shared cache.
SIAM J. Comput., 29:1290–1303, 2000. ISSN 0097-5397. 135, 136, 137, 140, 154

A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach,
and A. Singhania. The multikernel: a new OS architecture for scalable multicore systems. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP ’09,
pages 29–44, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-752-3. doi: http://doi.acm.
org/10.1145/1629575.1629579. URL http://doi.acm.org/10.1145/1629575.1629579. 192

P. Beame and F. Fich. Optimal bounds for the predecessor problem and related problems. Journal
of Computer and System Sciences, 65:2002, 2002. 110

L. A. Belady. A study of replacement algorithms for virtual-storage computer. IBM Systems
Journal, 5(2):78–101, 1966. 131, 150

R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1 edition,
1957. 112, 113

M. A. Bender and C. A. Phillips. Scheduling DAGs on asynchronous processors. In Proceedings
of the Nineteenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
’07, pages 35–45, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-667-7. doi: 10.1145/
1248377.1248384. URL http://doi.acm.org/10.1145/1248377.1248384. 85

L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel, I. Dhillon, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK user’s guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1997. ISBN 0-89871-
397-8. 193

220

http://www.sciencedirect.com/science/article/pii/030439759290133Z
http://www.sciencedirect.com/science/article/pii/030439759290133Z
http://doi.acm.org/10.1145/1374376.1374412
http://doi.acm.org/10.1145/1629575.1629579
http://doi.acm.org/10.1145/1248377.1248384

G. E. Blelloch. Scans as primitive parallel operations. IEEE Trans. Computers, 38(11):1526–1538,
1989. 37

G. E. Blelloch. Programming parallel algorithms. Commun. ACM, 39(3):85–97, Mar. 1996.
ISSN 0001-0782. doi: 10.1145/227234.227246. URL http://doi.acm.org/10.1145/227234.

227246. 36

G. E. Blelloch and P. B. Gibbons. Effectively sharing a cache among threads. In SPAA
2004: Proceedings of the 16th Annual ACM Symposium on Parallelism in Algorithms and
Architectures, pages 235–244, New York, NY, USA, 2004. ACM. ISBN 1-58113-840-7. doi:
http://doi.acm.org/10.1145/1007912.1007948. 38, 48, 52, 94

G. E. Blelloch, P. B. Gibbons, G. J. Narlikar, and Y. Matias. Space-efficient scheduling of
parallelism with synchronization variables. In SPAA, pages 12–23, 1997. 37

G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably efficient scheduling for languages with
fine-grained parallelism. J. ACM, 46:281–321, March 1999. ISSN 0004-5411. doi: http://doi.
acm.org/10.1145/301970.301974. URL http://doi.acm.org/10.1145/301970.301974. 19,
20, 34, 37, 94

G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramachandrana, S. Chen, and M. Kozuch.
Provably good multicore cache performance for divide-and-conquer algorithms. In Proceedings
of the 2008 ACM-SIAM Symposium on Discrete Algorithms, January 2008. 49, 50, 51, 52, 56,
73, 93, 94

G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low depth cache-oblivious algorithms. In
SPAA 2010: Proceedings of the 22nd Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 189–199. ACM, 2010. ISBN 978-1-4503-0079-7. 48, 49

G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V. Simhadri. Scheduling irregular parallel
computations on hierarchical caches. In Proceedings of the 23rd ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’11, pages 355–366, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0743-7. doi: 10.1145/1989493.1989553. URL http://doi.acm.org/10.1145/

1989493.1989553. 57, 58, 59

R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of multithreaded computations. In
Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC ’93,
pages 362–371, New York, NY, USA, 1993. ACM. ISBN 0-89791-591-7. doi: 10.1145/167088.
167196. URL http://doi.acm.org/10.1145/167088.167196. 20, 35

R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing.
J. ACM, 46(5):720–748, Sept. 1999. ISSN 0004-5411. doi: 10.1145/324133.324234. URL
http://doi.acm.org/10.1145/324133.324234. 20, 35, 36

221

http://doi.acm.org/10.1145/227234.227246
http://doi.acm.org/10.1145/227234.227246
http://doi.acm.org/10.1145/301970.301974
http://doi.acm.org/10.1145/1989493.1989553
http://doi.acm.org/10.1145/1989493.1989553
http://doi.acm.org/10.1145/167088.167196
http://doi.acm.org/10.1145/324133.324234

R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall. Dag-consistent
distributed shared memory. In Proceedings of the 10th International Parallel Processing Sym-
posium, IPPS ’96, pages 132–141, Washington, DC, USA, 1996a. IEEE Computer Society.
ISBN 0-8186-7255-2. URL http://dl.acm.org/citation.cfm?id=645606.661333. 36, 46,
47, 49

R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall. An analysis of
dag-consistent distributed shared-memory algorithms. In SPAA 1996: Proceedings of the 8th
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 297–308, 1996b. 35,
36

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou. Cilk:
An efficient multithreaded runtime system. Journal of Parallel and Distributed Computing, 37
(1):55–69, 1996c. 36

A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge University
Press, New York, NY, USA, 1998. ISBN 0-521-56392-5. 128, 130, 131, 132, 133, 156, 157, 171,
184

A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with locality of reference.
J. Comput. Syst. Sci., 50:244–258, April 1995. ISSN 0022-0000. doi: 10.1006/jcss.1995.1021.
URL http://portal.acm.org/citation.cfm?id=207371.207379. 135

P. Bose, E. Y. Chen, M. He, A. Maheshwari, and P. Morin. Succinct geometric indexes supporting
point location queries. In Proceedings of the twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’09, pages 635–644, Philadelphia, PA, USA, 2009. Society for
Industrial and Applied Mathematics. URL http://dl.acm.org/citation.cfm?id=1496770.

1496840. 88

K. I. Bouzina and H. Emmons. Interval scheduling on identical machines. Journal of Global
Optimization, 9:379–393, 1996. ISSN 0925-5001. 174, 176, 185

J. Boyar, M. R. Ehmsen, and K. S. Larsen. Theoretical evidence for the superiority of LRU-
2 over LRU for the paging problem. In Proceedings of the 4th International Conference on
Approximation and Online Algorithms, WAOA’06, pages 95–107, Berlin, Heidelberg, 2006.
Springer-Verlag. ISBN 3-540-69513-3, 978-3-540-69513-4. doi: 10.1007/11970125 8. URL
http://dx.doi.org/10.1007/11970125_8. 131

P. G. Bradford. Parallel dynamic programming. Technical Report #352, Indiana University,
Department of Computer Science, 1994. URL citeseer.ist.psu.edu/bradford94parallel.

html. 74

M. Brehob, S. Wagner, E. Torng, and R. J. Enbody. Optimal replacement is NP-hard for non-
standard caches. IEEE Trans. Computers, 53(1):73–76, 2004. 174

222

http://dl.acm.org/citation.cfm?id=645606.661333
http://portal.acm.org/citation.cfm?id=207371.207379
http://dl.acm.org/citation.cfm?id=1496770.1496840
http://dl.acm.org/citation.cfm?id=1496770.1496840
http://dx.doi.org/10.1007/11970125_8
citeseer.ist.psu.edu/bradford94parallel.html
citeseer.ist.psu.edu/bradford94parallel.html

R. P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21(2):201–206,
1974. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/321812.321815. 14, 65, 85, 95

A. Brodnik. Searching in Constant Time and Minimum Space. PhD thesis, University of Water-
loo, 1995. Also available as Technical Report CS-95-41. 106, 107, 108

A. Brodnik, S. Carlsson, M. L. Fredman, J. Karlsson, and J. I. Munro. Worst case con-
stant time priority queue. Journal of Systems and Software, 78(3):249 – 256, 2005. ISSN
0164-1212. doi: 10.1016/j.jss.2004.09.002. URL http://www.sciencedirect.com/science/

article/pii/S0164121204002018. 102, 108, 109, 110

A. Brodnik, J. Karlsson, J. I. Munro, and A. Nilsson. An O(1) solution to the prefix sum problem
on a specialized memory architecture. In G. Navarro, L. E. Bertossi, and Y. Kohayakawa,
editors, IFIP TCS, volume 209 of IFIP, pages 103–114. Springer, 2006. ISBN 0-387-34633-3.
102, 111

B. C. Budge, J. C. Anderson, C. Garth, and K. I. Joy. A hybrid CPU-GPU implementation
for interactive ray-tracing of dynamic scenes. Technical Report CSE-2008-9, University of
California, Davis Computer Science, 2008. 193

F. W. Burton and M. R. Sleep. Executing functional programs on a virtual tree of processors.
In FPCA ’81: Proceedings of the 1981 conference on Functional programming languages and
computer architecture, pages 187–194, New York, NY, USA, 1981. ACM. ISBN 0-89791-060-5.
doi: http://doi.acm.org/10.1145/800223.806778. 35, 69, 92

P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems, USITS’97, pages 18–18, Berkeley, CA, USA,
1997. USENIX Association. URL http://dl.acm.org/citation.cfm?id=1267279.1267297.
133

P. Cao, E. W. Felten, and K. Li. Application-controlled file caching policies. In Proceedings of
the USENIX Summer 1994 Technical Conference - Volume 1, USTC’94, pages 11–11, Berke-
ley, CA, USA, 1994. USENIX Association. URL http://portal.acm.org/citation.cfm?id=

1267257.1267268. 135, 136, 137, 140, 154

S. Chakrabarti, J. Demmel, and K. Yelick. Modeling the benefits of mixed data and task par-
allelism. In Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’95, pages 74–83, New York, NY, USA, 1995. ACM. ISBN 0-89791-717-0.
doi: 10.1145/215399.215423. URL http://doi.acm.org/10.1145/215399.215423. 192

T. M. Chan. Point location in o(log n) time, Voronoi diagrams in o(n log n) time, and other
transdichotomous results in computational geometry. In Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science, FOCS ’06, pages 333–344. IEEE Computer
Society, 2006. ISBN 0-7695-2720-5. 64, 102

223

http://www.sciencedirect.com/science/article/pii/S0164121204002018
http://www.sciencedirect.com/science/article/pii/S0164121204002018
http://dl.acm.org/citation.cfm?id=1267279.1267297
http://portal.acm.org/citation.cfm?id=1267257.1267268
http://portal.acm.org/citation.cfm?id=1267257.1267268
http://doi.acm.org/10.1145/215399.215423

T. M. Chan and M. Patrascu. Transdichotomous results in computational geometry, i: Point
location in sublogarithmic time. SIAM J. Comput., 39(2):703–729, 2009. 64

B. Chazelle. Triangulating a simple polygon in linear time. Disc. and Comp. Geometry, 6:
485–524, 1991. 74

R. A. Chowdhury and V. Ramachandran. Cache-oblivious dynamic programming. In Proceedings
of the Seventeenth Annual ACM-SIAM Symposium on Discrete algorithm, SODA ’06, pages
591–600, New York, NY, USA, 2006. ACM. ISBN 0-89871-605-5. doi: 10.1145/1109557.
1109622. URL http://doi.acm.org/10.1145/1109557.1109622. 53, 58

R. A. Chowdhury and V. Ramachandran. Cache-efficient dynamic programming algorithms for
multicores. In Proceedings of the Twentieth Annual Symposium on Parallelism in Algorithms
and Architectures, SPAA ’08, pages 207–216, New York, NY, USA, 2008. ACM. ISBN 978-1-
59593-973-9. doi: 10.1145/1378533.1378574. URL http://doi.acm.org/10.1145/1378533.

1378574. 52, 53, 54, 56, 94

R. A. Chowdhury and V. Ramachandran. The cache-oblivious Gaussian elimination paradigm:
Theoretical framework, parallelization and experimental evaluation. Theory Comput. Syst., 47
(4):878–919, 2010. 47

R. A. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachandran. Oblivious algorithms for
multicores and network of processors. In Proceedings of the 24th IEEE International Symposium
on Parallel and Distributed Processing, pages 1–12. IEEE, 2010. 56, 57, 58

M. Chrobak. SIGACT news online algorithms column 17. SIGACT News, 41(4):114–121, 2010.
ISSN 0163-5700. doi: 10.1145/1907450.1907547. 173

M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan. New results on server problems. SIAM
J. Discret. Math., 4(2):172–181, 1991. ISSN 0895-4801. doi: 10.1137/0404017. 133, 169

M. Chrobak, G. J. Woeginger, K. Makino, and H. Xu. Caching is hard - even in the fault model.
Algorithmica, 63(4):781–794, 2012. 133, 174

M. Cieliebak, S. Eidenbenz, and G. Woeginger. Double digest revisited: Complexity and approx-
imability in the presence of noisy data. In T. Warnow and B. Zhu, editors, Computing and
Combinatorics, volume 2697 of Lecture Notes in Computer Science, pages 519–527. Springer
Berlin / Heidelberg, 2003. URL http://dx.doi.org/10.1007/3-540-45071-8_52. 10.1007/3-
540-45071-8 52. 155

R. Cole. Parallel merge sort. SIAM J. Comput., 17(4):770–785, 1988. ISSN 0097-5397. doi:
http://dx.doi.org/10.1137/0217049. 66

224

http://doi.acm.org/10.1145/1109557.1109622
http://doi.acm.org/10.1145/1378533.1378574
http://doi.acm.org/10.1145/1378533.1378574
http://dx.doi.org/10.1007/3-540-45071-8_52

R. Cole and V. Ramachandran. Resource oblivious sorting on multicores. In S. Abramsky,
C. Gavoille, C. Kirchner, F. Meyer auf der Heide, and P. G. Spirakis, editors, ICALP (1),
volume 6198 of Lecture Notes in Computer Science, pages 226–237. Springer, 2010. ISBN
978-3-642-14164-5. 47

R. Cole and V. Ramachandran. Analysis of randomized work stealing with false sharing. CoRR,
abs/1103.4142, 2011. 47

R. Cole and V. Ramachandran. Efficient resource oblivious algorithms for multicores with false
sharing. In 26th IEEE International Parallel and Distributed Processing Symposium, pages
201–214. IEEE Computer Society, 2012. ISBN 978-1-4673-0975-2. 47, 48

R. Cole and O. Zajicek. The APRAM: incorporating asynchrony into the PRAM model. In
SPAA ’89: Proceedings of the First Annual ACM Symposium on Parallel Algorithms and Ar-
chitectures, pages 169–178, New York, NY, USA, 1989. ACM. ISBN 0-89791-323-X. doi:
http://doi.acm.org/10.1145/72935.72954. 30

S. A. Cook. Towards a complexity theory of synchronous parallel computation. L’Enseignement
Mathdmatique, 27:99–124, 1981. 22

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT
Press, 2nd edition, 2001. 18, 53, 66, 70, 75, 79, 92, 112, 115

J. Csirik, C. Imreh, J. Noga, S. S. Seiden, and G. J. Woeginger. Buying a constant competitive
ratio for paging. In F. Meyer auf der Heide, editor, ESA, volume 2161 of LNCS, pages 98–108.
Springer, 2001. ISBN 3-540-42493-8. 173

D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and
T. von Eicken. LogP: towards a realistic model of parallel computation. In PPOPP ’93:
Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 1–12, New York, NY, USA, 1993. ACM Press. ISBN 0-89791-589-5. doi:
http://doi.acm.org/10.1145/155332.155333. 32

G. B. Dantzig. Discrete-variable extremum problems. Operations Research, 5(2):pp. 266–277,
1957. ISSN 0030364X. URL http://www.jstor.org/stable/167356. 113

E. W. Dijkstra. Over seinpalen (in Dutch). Circulated privately, 1974. URL http://www.cs.

utexas.edu/users/EWD/ewd00xx/EWD74.PDF. 33

R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics, 51:
161–166, 1950. 76

R. Dorrigiv. Alternative Measures for the Analysis of Online Algorithms. PhD thesis, University
of Waterloo, 2010. 134

225

http://www.jstor.org/stable/167356
http://www.cs.utexas.edu/users/EWD/ewd00xx/EWD74.PDF
http://www.cs.utexas.edu/users/EWD/ewd00xx/EWD74.PDF

R. Dorrigiv and A. López-Ortiz. A survey of performance measures for on-line algorithms.
SIGACT News, 36(3):67–81, 2005. 134

R. Dorrigiv and A. López-Ortiz. On developing new models, with paging as a case study. SIGACT
News, 40(4):98–123, 2009. 134

R. Dorrigiv, A. López-Ortiz, and A. Salinger. Optimal speedup on a low-degree multi-core parallel
architecture (LoPRAM). In Proceedings of the Twentieth Annual Symposium on Parallelism
in Algorithms and Architectures, SPAA ’08, pages 185–187, New York, NY, USA, 2008. ACM.
ISBN 978-1-59593-973-9. doi: 10.1145/1378533.1378568. URL http://doi.acm.org/10.1145/

1378533.1378568. 66

R. Dorrigiv, A. López-Ortiz, and J. I. Munro. On the relative dominance of paging algorithms.
Theor. Comput. Sci., 410(38-40):3694–3701, 2009. 134, 178

U. Drepper. What every programmer should know about memory, 2007. 141

R. A. Dwyer. A faster divide-and-conquer algorithm for constructing Delaunay triangulations.
Algorithmica, 2:137–151, 1987. 74

P. W. Dymond and M. Tompa. Speedups of deterministic machines by synchronous parallel
machines. In STOC ’83: Proceedings of the Fifteenth annual ACM Symposium on Theory
of Computing, pages 336–343, New York, NY, USA, 1983. ACM. ISBN 0-89791-099-0. doi:
http://doi.acm.org/10.1145/800061.808763. 96

D. Eckstein. Simultaneous memory access. Technical report, Computer Science Dept., Iowa State
Univ., 1979. 12

P. Ezzatti, E. Quintana-Ort́ı and, and A. Remon. High performance matrix inversion on a
multi-core platform with several GPUs. In Parallel, Distributed and Network-Based Processing
(PDP), 2011 19th Euromicro International Conference on, pages 87 –93, feb. 2011. doi: 10.
1109/PDP.2011.66. 192, 198

W. Feller. An Introduction to Probability Theory and Its Applications, volume 1. Wiley, Jan-
uary 1968. ISBN 0471257087. URL http://www.amazon.ca/exec/obidos/redirect?tag=

citeulike04-20{&}path=ASIN/0471257087. 89

E. Feuerstein and A. Strejilevich de Loma. On-line multi-threaded paging. Algorithmica, 32(1):
36–60, 2002. 136

A. Fiat and A. R. Karlin. Randomized and multipointer paging with locality of reference. In
Proceedings of the 27th Annual ACM Symposium on Theory of Computing, STOC ’95, pages
626–634, New York, NY, USA, 1995. ACM. ISBN 0-89791-718-9. doi: http://doi.acm.org.proxy.
lib.uwaterloo.ca/10.1145/225058.225280. URL http://doi.acm.org.proxy.lib.uwaterloo.

ca/10.1145/225058.225280. 135, 137

226

http://doi.acm.org/10.1145/1378533.1378568
http://doi.acm.org/10.1145/1378533.1378568
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20{&}path=ASIN/0471257087
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20{&}path=ASIN/0471257087
http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/225058.225280
http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/225058.225280

F. E. Fich, P. Ragde, and A. Wigderson. Relations between concurrent-write models of parallel
computation. SIAM J. Comput., 17(3):606–627, 1988. 12, 79

J. A. Fisher. Very long instruction word architectures and the ELI-512. SIGARCH Comput. Ar-
chit. News, 11:140–150, June 1983. ISSN 0163-5964. URL http://portal.acm.org/citation.

cfm?id=1067651.801649. 101

B. Fitzpatrick. Distributed caching with memcached. Linux J., 2004(124):5–, Aug. 2004. ISSN
1075-3583. URL http://dl.acm.org/citation.cfm?id=1012889.1012894. 173

M. J. Flynn. Some computer organizations and their effectiveness. IEEE Trans. Comput., 21(9):
948–960, Sept. 1972. ISSN 0018-9340. doi: 10.1109/TC.1972.5009071. URL http://dx.doi.

org/10.1109/TC.1972.5009071. 10

M. J. Flynn and K. W. Rudd. Parallel architectures. ACM Comput. Surv., 28(1):67–70, Mar.
1996. ISSN 0360-0300. doi: 10.1145/234313.234345. URL http://doi.acm.org/10.1145/

234313.234345. 11

S. Fortune and J. Wyllie. Parallelism in random access machines. In STOC ’78: Proceedings of
the Tenth Annual ACM Symposium on Theory of Computing, pages 114–118, New York, NY,
USA, 1978. ACM. doi: http://doi.acm.org/10.1145/800133.804339. 12, 65

M. Fredman and M. Saks. The cell probe complexity of dynamic data structures. In Proceedings
of the Twenty-first Annual ACM Symposium on Theory of Computing, STOC ’89, pages 345–
354, New York, NY, USA, 1989. ACM. ISBN 0-89791-307-8. doi: 10.1145/73007.73040. URL
http://doi.acm.org/10.1145/73007.73040. 103, 107

M. Fredman and D. Willard. Surpassing the information theoretic bound with fusion trees.
Journal of Computer and System Sciences, 47(3):424–436, 1993. 64

M. L. Fredman. The complexity of maintaining an array and computing its partial sums. J.
ACM, 29(1):250–260, Jan. 1982. ISSN 0004-5411. doi: 10.1145/322290.322305. URL http:

//doi.acm.org/10.1145/322290.322305. 111

M. Frigo and V. Strumpen. The cache complexity of multithreaded cache oblivious algorithms.
In SPAA ’06: Proceedings of the Eighteenth Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures, pages 271–280, New York, NY, USA, 2006. ACM. ISBN 1-59593-
452-9. doi: http://doi.acm.org/10.1145/1148109.1148157. 46, 47, 49, 52

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In
Proceedings of the 40th Annual Symposium on Foundations of Computer Science, FOCS ’99,
pages 285–, Washington, DC, USA, 1999. IEEE Computer Society. ISBN 0-7695-0409-4. URL
http://dl.acm.org/citation.cfm?id=795665.796479. 46, 47, 50, 57, 141

227

http://portal.acm.org/citation.cfm?id=1067651.801649
http://portal.acm.org/citation.cfm?id=1067651.801649
http://dl.acm.org/citation.cfm?id=1012889.1012894
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1109/TC.1972.5009071
http://doi.acm.org/10.1145/234313.234345
http://doi.acm.org/10.1145/234313.234345
http://doi.acm.org/10.1145/73007.73040
http://doi.acm.org/10.1145/322290.322305
http://doi.acm.org/10.1145/322290.322305
http://dl.acm.org/citation.cfm?id=795665.796479

A. Fujiwara, M. Inoue, and T. Masuzawa. Parallelizability of some P-complete problems. In
Proceedings of the 15 IPDPS 2000 Workshops on Parallel and Distributed Processing, IPDPS
’00, pages 116–122, London, UK, UK, 2000. Springer-Verlag. ISBN 3-540-67442-X. URL
http://dl.acm.org/citation.cfm?id=645612.663168. 96

Z. Galil and K. Park. Parallel dynamic programming. Technical Report CUCS-040-91, Columbia
University, Computer Science Dept., 1991. URL citeseer.ist.psu.edu/galil92parallel.

html. 74

M. R. Garey and D. S. Johnson. “Strong” NP-completeness results: Motivation, examples, and
implications. J. ACM, 25(3):499–508, July 1978. ISSN 0004-5411. doi: 10.1145/322077.322090.
URL http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/322077.322090. 151

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979. ISBN 0-7167-1044-7. 151, 155

M. Garland. NVIDIA GPU. In D. Padua, editor, Encyclopedia of Parallel Computing, pages
1339–1345. Springer US, 2011. ISBN 978-0-387-09766-4. URL http://dx.doi.org/10.1007/

978-0-387-09766-4_276. 10.1007/978-0-387-09766-4 276. 59, 60, 61

A. Gibbons and W. Rytter. Efficient parallel algorithms. Cambridge University Press, New York,
NY, USA, 1988. ISBN 0-521-34585-5. 67

P. B. Gibbons. A more practical PRAM model. In SPAA ’89: Proceedings of the First Annual
ACM Symposium on Parallel Algorithms and Architectures, pages 158–168, New York, NY,
USA, 1989. ACM Press. ISBN 0-89791-323-X. doi: http://doi.acm.org/10.1145/72935.72953.
12, 30

P. B. Gibbons, Y. Matias, and V. Ramachandran. The QRQW PRAM: accounting for contention
in parallel algorithms. In SODA ’94: Proceedings of the Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 638–648, Philadelphia, PA, USA, 1994. Society for Industrial
and Applied Mathematics. ISBN 0-89871-329-3. 29

L. M. Goldschlager. The monotone and planar circuit value problems are log space complete
for P. SIGACT News, 9(2):25–29, 1977. ISSN 0163-5700. doi: http://doi.acm.org/10.1145/
1008354.1008356. 25

A. Gottlieb, B. D. Lubachevsky, and L. Rudolph. Basic techniques for the efficient coordination
of very large numbers of cooperating sequential processors. ACM Trans. Program. Lang. Syst.,
5(2):164–189, Apr. 1983. ISSN 0164-0925. doi: 10.1145/69624.357206. URL http://doi.acm.

org/10.1145/69624.357206. 37

228

http://dl.acm.org/citation.cfm?id=645612.663168
citeseer.ist.psu.edu/galil92parallel.html
citeseer.ist.psu.edu/galil92parallel.html
http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/322077.322090
http://dx.doi.org/10.1007/978-0-387-09766-4_276
http://dx.doi.org/10.1007/978-0-387-09766-4_276
http://doi.acm.org/10.1145/69624.357206
http://doi.acm.org/10.1145/69624.357206

R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to parallel computation: P-completeness
theory. Oxford University Press, Inc., New York, NY, USA, 1995. ISBN 0-19-508591-4. 21, 22,
26, 85, 87

R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 841–850. Society
for Industrial and Applied Mathematics, 2003. 64

D. Gusfield. Algorithms on strings, trees, and sequences: computer science and computational
biology. Cambridge University Press, New York, NY, USA, 1997. ISBN 0-521-58519-8. 120

J. L. Gustafson. Moore’s law. In D. A. Padua, editor, Encyclopedia of Parallel Computing, pages
1177–1184. Springer, 2011. ISBN 978-0-387-09765-7. 41

T. Hagerup. Sorting and searching on the word RAM. In M. Morvan, C. Meinel, and
D. Krob, editors, STACS 98, volume 1373 of LNCS, pages 366–398. Springer Berlin / Hei-
delberg, 1998. ISBN 978-3-540-64230-5. URL http://dx.doi.org/10.1007/BFb0028575.
10.1007/BFb0028575. 62, 63, 64, 102, 103, 107, 116

T. Hagerup. Online and offline access to short lists. In Proceedings of the 32nd International
Symposium on Mathematical Foundations of Computer Science, volume 4708 of Lecture Notes
in Computer Science, pages 691–702. Springer, 2007. ISBN 978-3-540-74455-9. 150

H. Hampapuram and M. L. Fredman. Optimal biweighted binary trees and the complexity of
maintaining partial sums. SIAM J. Comput., 28(1):1–9, 1998. 111

Y. Han. Deterministic sorting in O(nlog logn) time and linear space. J. Algorithms, 50:96–105,
January 2004. ISSN 0196-6774. doi: 10.1016/j.jalgor.2003.09.001. URL http://portal.acm.

org/citation.cfm?id=975978.975984. 64, 102

Y. Han and M. Thorup. Integer sorting in O(n sqrt (log log n)) expected time and linear space.
In Proceedings of the 43rd Symposium on Foundations of Computer Science, FOCS ’02, pages
135–144, Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1822-2. URL
http://dl.acm.org/citation.cfm?id=645413.652131. 64

J. Hartmanis and J. Simon. On the power of multiplication in random access machines. In
Switching and Automata Theory, 1974., IEEE Conference Record of 15th Annual Symposium
on, pages 13 –23, oct. 1974. doi: 10.1109/SWAT.1974.20. 10

A. Hassidim. Cache replacement policies for multicore processors. In A. C.-C. Yao, editor,
Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China, January
5-7, 2010. Proceedings, pages 501–509. Tsinghua University Press, 2010. ISBN 978-7-302-21752-
7. doi: http://conference.itcs.tsinghua.edu.cn/ICS2010/content/papers/39.html. 5, 136, 139,
141, 142, 148, 151, 154, 162

229

http://dx.doi.org/10.1007/BFb0028575
http://portal.acm.org/citation.cfm?id=975978.975984
http://portal.acm.org/citation.cfm?id=975978.975984
http://dl.acm.org/citation.cfm?id=645413.652131

J. L. Hennessy and D. A. Patterson. Computer Architecture - A Quantitative Approach (4. ed.).
Morgan Kaufmann, 2007. ISBN 978-0-12-370490-0. 1, 26, 42, 43

J. L. Hennessy and D. A. Patterson. Computer Architecture, Fifth Edition: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition, 2011.
ISBN 012383872X, 9780123838728. 2, 42, 60, 61

J. E. Hopcroft, W. J. Paul, and L. G. Valiant. On time versus space and related problems. In
Proceedings of the 16th Annual Symposium on Foundations of Computer Science, FOCS, pages
57–64. IEEE, 1975. 96

R. N. Horspool. Practical fast searching in strings. Software: Practice and Experience, 10(6):
501–506, 1980. ISSN 1097-024X. doi: 10.1002/spe.4380100608. URL http://dx.doi.org/10.

1002/spe.4380100608. 103, 121, 124

J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson, N. Borkar,
G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla,
M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss, T. Lund-
Larsen, S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, and T. Mattson. A 48-core IA-32
message-passing processor with DVFS in 45nm CMOS. In Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2010 IEEE International, pages 108 –109, feb. 2010. doi:
10.1109/ISSCC.2010.5434077. 43

T. Hu and M. Shing. Computation of matrix chain products. Part I. SIAM Journal on Comput-
ing, 11(2):362–373, 1982. doi: 10.1137/0211028. URL http://epubs.siam.org/doi/abs/10.

1137/0211028. 79

T. Hu and M. Shing. Computation of matrix chain products. Part II. SIAM J. Comput., 13(2):
228–251, May 1984. ISSN 0097-5397. doi: 10.1137/0213017. URL http://dx.doi.org/10.

1137/0213017. 79

J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J. Kelmelis. Cula: hybrid
GPU accelerated linear algebra routines. In Proc. of SPIE Defense and Security Symposium
(DSS), April 2010. doi: 10.1117/12.850538. 192, 193

O. H. Ibarra and N. Q. Trân. On the parallel complexity of solving recurrence equations. In
ISAAC ’94: Proceedings of the 5th International Symposium on Algorithms and Computation,
pages 469–477, London, UK, 1994. Springer-Verlag. ISBN 3-540-58325-4. 75, 76

IntelTurboBoost. Intel(R) Turbo Boost Technology. http://www.intel.com/content/www/us/
en/architecture-and-technology/turbo-boost/turbo-boost-technology.html. 41

230

http://dx.doi.org/10.1002/spe.4380100608
http://dx.doi.org/10.1002/spe.4380100608
http://epubs.siam.org/doi/abs/10.1137/0211028
http://epubs.siam.org/doi/abs/10.1137/0211028
http://dx.doi.org/10.1137/0213017
http://dx.doi.org/10.1137/0213017
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html

IntelXeonPhi. Intel delivers new architecture for discovery with Intel(R) Xeon Phi(TM) co-
processors. http://newsroom.intel.com/community/intel_newsroom/blog/2012/11/12/

intel-delivers-new-architecture-for-discovery-with-intel-xeon-phi-coprocessors?

cid=rss-258152-c1-278335, 12 2012. Retrieved 2012-11-27. 43

S. Irani. Page replacement with multi-size pages and applications to web caching. In Proceedings
of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC ’97, pages 701–
710, New York, NY, USA, 1997. ACM. ISBN 0-89791-888-6. doi: 10.1145/258533.258666. URL
http://doi.acm.org/10.1145/258533.258666. 133, 169

G. Jacobson. Space-efficient static trees and graphs. Foundations of Computer Science, IEEE
Annual Symposium on, pages 549–554, 1989. 64

J. JáJá. An introduction to parallel algorithms. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1992. ISBN 0-201-54856-9. 11, 12, 13, 14, 15, 16, 18, 19, 25, 38, 39,
40, 41, 67, 114

M.-Y. Kao and P. N. Klein. Towards overcoming the transitive-closure bottleneck: efficient
parallel algorithms for planar digraphs. In Proceedings of the Twenty-second Annual ACM
Symposium on Theory of Computing, STOC ’90, pages 181–192, New York, NY, USA, 1990.
ACM. ISBN 0-89791-361-2. doi: 10.1145/100216.100237. URL http://doi.acm.org/10.

1145/100216.100237. 66

S. F. Kaplan. Trace reduction for virtual memory simulation. http://www.cs.amherst.edu/

~sfkaplan/research/trace-reduction/index.html. 185

S. F. Kaplan, Y. Smaragdakis, and P. R. Wilson. Flexible reference trace reduction for VM
simulations. ACM Trans. Model. Comput. Simul., 13(1):1–38, 2003. ISSN 1049-3301. doi:
10.1145/778553.778554. 185

A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy caching.
Algorithmica, 3:77–119, 1988. 148

R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In Handbook
of Theoretical Computer Science, Volume A: Algorithms and Complexity (A), pages 869–942.
MIT Press, Cambridge, MA, USA, 1990. 12, 20, 21, 22, 23, 25, 26, 66

A. K. Katti and V. Ramachandran. Competitive cache replacement strategies for shared cache
environments. Parallel and Distributed Processing Symposium, International, 0:215–226, 2012.
ISSN 1530-2075. doi: http://doi.ieeecomputersociety.org/10.1109/IPDPS.2012.29. 135, 154

Khronos OpenCL Working Group. The OpenCL Specification, version 1.2.19, 14 November 2012.
URL http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf. 60, 61, 62

231

http://newsroom.intel.com/community/intel_newsroom/blog/2012/11/12/intel-delivers-new-architecture-for-discovery-with-intel-xeon-phi-coprocessors?cid=rss-258152-c1-278335
http://newsroom.intel.com/community/intel_newsroom/blog/2012/11/12/intel-delivers-new-architecture-for-discovery-with-intel-xeon-phi-coprocessors?cid=rss-258152-c1-278335
http://newsroom.intel.com/community/intel_newsroom/blog/2012/11/12/intel-delivers-new-architecture-for-discovery-with-intel-xeon-phi-coprocessors?cid=rss-258152-c1-278335
http://doi.acm.org/10.1145/258533.258666
http://doi.acm.org/10.1145/100216.100237
http://doi.acm.org/10.1145/100216.100237
http://www.cs.amherst.edu/~sfkaplan/research/trace-reduction/index.html
http://www.cs.amherst.edu/~sfkaplan/research/trace-reduction/index.html
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

P. M. Kogge. Parallel solution of recurrence problems. IBM J. Res. Develop, 18:138–148, 1974.
76

C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient parallel algorithms.
Theor. Comput. Sci., 71(1):95–132, Mar. 1990. ISSN 0304-3975. doi: 10.1016/0304-3975(90)
90192-K. URL http://dx.doi.org/10.1016/0304-3975(90)90192-K. 23, 87, 95, 96, 100

L. Kucera. Parallel computation and conflicts in memory access. Inf. Process. Lett., 14:93–96,
1982. 12

J. Kurzak, R. Nath, P. Du, and J. Dongarra. An implementation of the tile QR factorization
for a GPU and multiple CPUs. In Proceedings of the 10th international conference on Applied
Parallel and Scientific Computing - Volume 2, PARA’10, pages 248–257, Berlin, Heidelberg,
2012. Springer-Verlag. ISBN 978-3-642-28144-0. doi: 10.1007/978-3-642-28145-7\ 25. URL
http://dx.doi.org/10.1007/978-3-642-28145-7_25. 193

F. T. Leighton. Introduction to parallel algorithms and architectures: array, trees, hypercubes.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992. ISBN 1-55860-117-1. 17,
18

C. E. Leiserson and B. M. Maggs. Communication-efficient parallel algorithms for dis-
tributed random-access machines. Algorithmica, 3:53–77, 1988. URL citeseer.ist.psu.

edu/leiserson88communicationefficient.html. 31

LEMON. Lemon graph library. http://lemon.cs.elte.hu/trac/lemon. 185

T. Lengauer and K. W. Wagner. The binary network flow problem is logspace complete for P.
Theor. Comput. Sci., 75(3):357–363, Oct. 1990. ISSN 0304-3975. doi: 10.1016/0304-3975(90)
90101-M. URL http://dx.doi.org/10.1016/0304-3975(90)90101-M. 26

A. López-Ortiz and A. Salinger. Brief announcement: paging for multicore processors. In SPAA
2011: Proceedings of the 23rd Annual ACM Symposium on Parallel Algorithms and Architec-
tures, pages 137–138. ACM, 2011. ISBN 978-1-4503-0743-7. 140

A. López-Ortiz and A. Salinger. Paging for multi-core shared caches. In Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pages 113–127, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1115-1. doi: 10.1145/2090236.2090246. URL
http://doi.acm.org/10.1145/2090236.2090246. 140

A. López-Ortiz and A. Salinger. Minimizing cache usage in paging. In T. Erlebach and G. Per-
siano, editors, 10th International Workshop, WAOA 2012, Ljubljana, Slovenia, September 13-
14, 2012, Revised Selected Papers, volume 7846 of Lecture Notes in Computer Science. Springer,
2012. 170

232

http://dx.doi.org/10.1016/0304-3975(90)90192-K
http://dx.doi.org/10.1007/978-3-642-28145-7_25
citeseer.ist.psu.edu/leiserson88communicationefficient.html
citeseer.ist.psu.edu/leiserson88communicationefficient.html
http://lemon.cs.elte.hu/trac/lemon
http://dx.doi.org/10.1016/0304-3975(90)90101-M
http://doi.acm.org/10.1145/2090236.2090246

A. López-Ortiz and A. Salinger. On the sublinear processor gap for parallel architectures. In T.-
H. Chan, L. Lau, and L. Trevisan, editors, Theory and Applications of Models of Computation,
volume 7876 of Lecture Notes in Computer Science, pages 193–204. Springer Berlin Heidelberg,
2013. ISBN 978-3-642-38235-2. doi: 10.1007/978-3-642-38236-9 18. URL http://dx.doi.org/

10.1007/978-3-642-38236-9_18. 85

A. López-Ortiz, A. Salinger, and R. Suderman. Toward a generic hybrid CPU-GPU parallelization
of divide-and-conquer algorithms. In Proceedings of the 15th Workshop on Advances in Parallel
and Distributed Computational Models (APDCM), 2013. To appear. 192

B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Models of parallel computation: a survey
and synthesis. In Proceedings of the 28th Hawaii International Conference on System Sciences
(HICSS), volume 2, pages 61–70, 1995. URL citeseer.ist.psu.edu/maggs95models.html.
29, 32

Y. Mansour, N. Nisan, and U. Vishkin. Trade-offs between communication throughput and
parallel time. In STOC ’94: Proceedings of the Twenty-sixth Annual ACM Symposium on
Theory of Computing, pages 372–381, New York, NY, USA, 1994. ACM. ISBN 0-89791-663-8.
doi: http://doi.acm.org/10.1145/195058.195199. 31

W. J. Masek and M. Paterson. A faster algorithm computing string edit distances. J. Comput.
Syst. Sci., 20(1):18–31, 1980. 79, 116, 120

M. D. McCool, K. Wadleigh, B. Henderson, and H.-Y. Lin. Performance evaluation of GPUs using
the RapidMind development platform. In Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, SC ’06, New York, NY, USA, 2006. ACM. ISBN 0-7695-2700-0. 192

L. McGeoch and D. Sleator. A strongly competitive randomized paging algorithm. Algorith-
mica, 6:816–825, 1991. ISSN 0178-4617. URL http://dx.doi.org/10.1007/BF01759073.
10.1007/BF01759073. 133, 136

K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of prams by parallel
machines with restricted granularity of parallel memories. Acta Informatica, 21:339–374, 1984.
29

P. Mell and T. Grance. The NIST Definition of Cloud Computing. Technical report, National
Institute of Standards and Technology, Information Technology Laboratory, July 2009. URL
http://www.csrc.nist.gov/groups/SNS/cloud-computing/. 172, 173

L. Mirsky. A dual of Dilworth’s decomposition theorem. The American Mathematical Monthly,
78(8):876–877, 1971. 76

233

http://dx.doi.org/10.1007/978-3-642-38236-9_18
http://dx.doi.org/10.1007/978-3-642-38236-9_18
citeseer.ist.psu.edu/maggs95models.html
http://dx.doi.org/10.1007/BF01759073
http://www.csrc.nist.gov/groups/SNS/cloud-computing/

H. Miyatake, M. Tanaka, and Y. Mori. A design for high-speed low-power CMOS fully parallel
content-addressable memory macros. IEEE Journal of Solid-State Circuits, 36(6):956 –968,
2001. ISSN 0018-9200. doi: 10.1109/4.924858. 172

G. E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8), April
1965. 1

G. Moruz and A. Negoescu. Outperforming LRU via competitive analysis on parametrized inputs
for paging. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’12, pages 1669–1680. SIAM, 2012. URL http://dl.acm.org/citation.

cfm?id=2095116.2095248. 184

J. I. Munro. Tables. In V. Chandru and V. Vinay, editors, FSTTCS, volume 1180 of Lecture
Notes in Computer Science, pages 37–42. Springer, 1996. ISBN 3-540-62034-6. 64, 88

J. I. Munro. On the competitiveness of linear search. In Proceedings of the 8th Annual European
Symposium on Algorithms, ESA ’00, pages 338–345, London, UK, 2000. Springer-Verlag. ISBN
3-540-41004-X. URL http://portal.acm.org/citation.cfm?id=647910.740474. 150

J. I. Munro and E. L. Robertson. Parallel algorithms and serial data structures. In Proceedings
of the 17th Annual Allerton Conference con Communication, Control and Computing, pages
21–26, 1979. ISBN 0732-6181. 39

G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings – Practical on-line search
algorithms for texts and biological sequences. Cambridge University Press, 2002. ISBN 0-521-
81307-7. 280 pages. 122, 124

J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming with CUDA.
Queue, 6(2):40–53, Mar. 2008. ISSN 1542-7730. doi: 10.1145/1365490.1365500. URL http:

//doi.acm.org/10.1145/1365490.1365500. 59, 192

E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt. Helios: heterogeneous
multiprocessing with satellite kernels. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, SOSP ’09, pages 221–234, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-752-3. doi: http://doi.acm.org/10.1145/1629575.1629597. URL http://

doi.acm.org/10.1145/1629575.1629597. 192

NVIDIA. Dynamic parallelism in CUDA, 2012. URL https://developer.nvidia.com/sites/

default/files/akamai/cuda/docs/TechBrief_Dynamic_Parallelism_in_CUDA_v2.pdf.
Retrieved on 01/19/2013. 195

K. Pagiamtzis and A. Sheikholeslami. Content-addressable memory (CAM) circuits and architec-
tures: A tutorial and survey. IEEE Journal of Solid-State Circuits, 41(3):712–727, 2006. 170,
172

234

http://dl.acm.org/citation.cfm?id=2095116.2095248
http://dl.acm.org/citation.cfm?id=2095116.2095248
http://portal.acm.org/citation.cfm?id=647910.740474
http://doi.acm.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/1629575.1629597
http://doi.acm.org/10.1145/1629575.1629597
https://developer.nvidia.com/sites/default/files/akamai/cuda/docs/TechBrief_Dynamic_Parallelism_in_CUDA_v2.pdf
https://developer.nvidia.com/sites/default/files/akamai/cuda/docs/TechBrief_Dynamic_Parallelism_in_CUDA_v2.pdf

K. Panagiotou and A. Souza. On adequate performance measures for paging. In Proceedings of
the Thirty-eighth Annual ACM Symposium on Theory of Computing, STOC ’06, pages 487–
496, New York, NY, USA, 2006. ACM. ISBN 1-59593-134-1. doi: 10.1145/1132516.1132587.
URL http://doi.acm.org/10.1145/1132516.1132587. 179, 184

C. M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Massachusetts, 1994.
ISBN 0201530821. 22

M. Papadrakakis, G. Stavroulakis, and A. Karatarakis. A new era in scientific computing: Domain
decomposition methods in hybrid CPU-GPU architectures. Computer Methods in Applied
Mechanics and Engineering, 200(13-16):1490–1508, Mar. 2011. ISSN 00457825. doi: 10.1016/
j.cma.2011.01.013. URL http://dx.doi.org/10.1016/j.cma.2011.01.013. 193

R. H. Parrot. Parallel Programming. Addison-Wesley, 1987. 27, 28

E. Peserico. Paging with dynamic memory capacity. CoRR, abs/1304.6007, 2013. URL http:

//arxiv.org/abs/1304.6007. 143, 145

U. Pferschy. Dynamic programming revisited: Improving knapsack algorithms. Computing, 63
(4):419–430, 1999. 112

D. Pisinger. Dynamic programming on the word RAM. Algorithmica, 35:128–145, 2003. ISSN
0178-4617. URL http://dx.doi.org/10.1007/s00453-002-0989-y. 10.1007/s00453-002-
0989-y. 112, 113, 114

V. R. Pratt and L. J. Stockmeyer. A characterization of the power of vector machines. J. Comput.
Syst. Sci., 12(2):198–221, Apr. 1976. ISSN 0022-0000. doi: 10.1016/S0022-0000(76)80037-2.
URL http://dx.doi.org/10.1016/S0022-0000(76)80037-2. 10, 24

G. Quintana-Ort́ı, F. D. Igual, E. S. Quintana-Ort́ı, and R. A. van de Geijn. Solving dense linear
systems on platforms with multiple hardware accelerators. In Proceedings of the 14th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’09, pages
121–130, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-397-6. doi: 10.1145/1504176.
1504196. URL http://doi.acm.org/10.1145/1504176.1504196. 194

M. Raab and A. Steger. ”balls into bins” - a simple and tight analysis. In Proceedings of the
Second International Workshop on Randomization and Approximation Techniques in Computer
Science, RANDOM ’98, pages 159–170, London, UK, UK, 1998. Springer-Verlag. ISBN 3-540-
65142-X. URL http://dl.acm.org/citation.cfm?id=646975.711521. 92

R. Ramanathan. Intel multi-core processors: Making the move to quad-core and beyond.
Intel Whitepaper, Intel Corporation, 2006. URL http://www.intel.com/technology/

architecture/downloads/quad-core-06.pdf?iid=tech_mc+body_qcdoc. 02/11/2008. 41

235

http://doi.acm.org/10.1145/1132516.1132587
http://dx.doi.org/10.1016/j.cma.2011.01.013
http://arxiv.org/abs/1304.6007
http://arxiv.org/abs/1304.6007
http://dx.doi.org/10.1007/s00453-002-0989-y
http://dx.doi.org/10.1016/S0022-0000(76)80037-2
http://doi.acm.org/10.1145/1504176.1504196
http://dl.acm.org/citation.cfm?id=646975.711521
http://www.intel.com/technology/architecture/downloads/quad-core-06.pdf?iid=tech_mc+body_qcdoc
http://www.intel.com/technology/architecture/downloads/quad-core-06.pdf?iid=tech_mc+body_qcdoc

N. Reingold and J. Westbrook. Off-line algorithms for the list update problem. Inf. Process.
Lett., 60(2):75–80, 1996. 150

R. Riesen and A. B. Maccabe. MIMD (Multiple Instruction, Multiple Data) machines. In D. A.
Padua, editor, Encyclopedia of Parallel Computing, pages 1140–1149. Springer, 2011. ISBN
978-0-387-09765-7. 42, 43

A. L. Rosenberg and R. C. Chiang. Toward understanding heterogeneity in computing. In 24th
IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2010, Atlanta,
Georgia, USA, pages 1–10. IEEE, 2010. 194

R. M. Russell. The CRAY-1 computer system. Commun. ACM, 21(1):63–72, 1978. ISSN 0001-
0782. doi: http://doi.acm.org/10.1145/359327.359336. 101

W. L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci., 22(3):365–383, 1981. 24

S. S. Seiden. Randomized online multi-threaded paging. Nord. J. Comput., 6(2):148–161, 1999.
136

L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, P. Dubey, S. Junkins, A. Lake, R. Cavin, R. Es-
pasa, E. Grochowski, T. Juan, M. Abrash, J. Sugerman, and P. Hanrahan. Larrabee: A
many-core x86 architecture for visual computing. IEEE Micro, 29(1):10–21, 2009. 192

J. Simon. On feasible numbers (preliminary version). In STOC, pages 195–207. ACM, 1977. 24

M. Sipser. Introduction to the Theory of Computation. International Thomson Publishing, 1st
edition, 1996. ISBN 053494728X. 8, 9

D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Commun.
ACM, 28(2):202–208, 1985. 128, 173

L. Snyder. Type architectures, shared memory, and the corollary of modest potential. In J. F.
Traub, B. J. Grosz, B. W. Lampson, and N. J. Nilsson, editors, Annual review of computer
science vol. 1, 1986, pages 289–317. Annual Reviews Inc., Palo Alto, CA, USA, 1986. ISBN
0-8243-3201-6. URL http://dl.acm.org/citation.cfm?id=17814.17826. 32

L. J. Stockmeyer and U. Vishkin. Simulation of parallel random access machines by circuits.
SIAM J. Comput., 13(2):409–422, 1984. 22, 23

J. E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming standard for heterogeneous
computing systems. Computing in Science and Engineering, 12:66–73, 2010. ISSN 1521-9615.
59, 192

V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–356, 1969.
ISSN 0029–599X. 47, 50, 74

236

http://dl.acm.org/citation.cfm?id=17814.17826

A. Strejilevich de Loma. New results on fair multi-threaded paging. Electronic Journal of SADIO,
1(1):21–36, 1998. URL http://publicaciones.dc.uba.ar/Publications/1998/Str98. 136

L. Surhone, M. Tennoe, and S. Henssonow. Intel Array Building Blocks. VDM Verlag Dr.
Mueller AG & Co. Kg, 2010. ISBN 9786133312159. URL http://books.google.com/books?

id=OVxFYgEACAAJ. 192

G. Teodoro, R. Sachetto, O. Sertel, M. Gurcan, W. Meira, U. Catalyurek, and R. Ferreira. Coordi-
nating the use of GPU and CPU for improving performance of compute intensive applications.
In Cluster Computing and Workshops, 2009. CLUSTER ’09. IEEE International Conference
on, pages 1 –10, 31 2009-sept. 4 2009. doi: 10.1109/CLUSTR.2009.5289193. 194

S. Tomov, J. Dongarra, P. Du, and R. Nath. Magma version 0.2 user guide. MAGMA, 2009.
URL http://http://icl.cs.utk.edu/magma/. 09/06/2011. 192, 193

S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra for hybrid GPU accel-
erated manycore systems. Parallel Comput., 36:232–240, June 2010a. ISSN 0167-8191. doi:
http://dx.doi.org/10.1016/j.parco.2009.12.005. URL http://dx.doi.org/10.1016/j.parco.

2009.12.005. 193, 198

S. Tomov, R. Nath, and J. Dongarra. Accelerating the reduction to upper hessenberg, tridiagonal,
and bidiagonal forms through hybrid GPU-based computing. Parallel Comput., 36(12):645–
654, Dec. 2010b. ISSN 0167-8191. doi: 10.1016/j.parco.2010.06.001. URL http://dx.doi.

org/10.1016/j.parco.2010.06.001. 193

E. Torng. A unified analysis of paging and caching. Algorithmica, 20:194–203, 1998. 133, 148,
184

L. G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111, 1990a.
31, 54

L. G. Valiant. General purpose parallel architectures. In Handbook of Theoretical Computer
Science, Volume A: Algorithms and Complexity (A), pages 943–972. MIT Press, Cambridge,
MA, USA, 1990b. 30

L. G. Valiant. A bridging model for multi-core computing. J. Comput. Syst. Sci., 77(1):154–166,
2011. 54, 55

P. van Emde Boas. Machine models and simulation. In Handbook of Theoretical Computer
Science, Volume A: Algorithms and Complexity (A), pages 1–66. MIT Press, 1990. 9, 10

P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority
queue. Mathematical Systems Theory, 10:99–127, 1977. 108

237

http://publicaciones.dc.uba.ar/Publications/1998/Str98
http://books.google.com/books?id=OVxFYgEACAAJ
http://books.google.com/books?id=OVxFYgEACAAJ
http://http://icl.cs.utk.edu/magma/
http://dx.doi.org/10.1016/j.parco.2009.12.005
http://dx.doi.org/10.1016/j.parco.2009.12.005
http://dx.doi.org/10.1016/j.parco.2010.06.001
http://dx.doi.org/10.1016/j.parco.2010.06.001

S. Venkatasubramanian, R. W. Vuduc, and n. none. Tuned and wildly asynchronous stencil
kernels for hybrid CPU/GPU systems. In Proceedings of the 23rd international conference
on Supercomputing, ICS ’09, pages 244–255, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-498-0. doi: 10.1145/1542275.1542312. URL http://doi.acm.org/10.1145/1542275.

1542312. 193

U. Vishkin. Implementation of simultaneous memory address access in models that forbid it. J.
Algorithms, 4:45–50, 1983. 12

J. Vitter and R. Simons. New classes for parallel complexity: A study of unification and other
complete problems for p. Computers, IEEE Transactions on, C-35(5):403 –418, may 1986.
ISSN 0018-9340. doi: 10.1109/TC.1986.1676783. 96

C. Vömel, S. Tomov, and J. Dongarra. Divide and conquer on hybrid GPU-accelerated
multicore systems. SIAM Journal on Scientific Computing, 34(2):C70–C82, 2012. doi:
10.1137/100806783. URL http://epubs.siam.org/doi/abs/10.1137/100806783. 193

S. Wagner. Restricted Cache Scheduling. PhD thesis, Michigan State University, 2001. 174

A. Wolfe Gordon and P. Lu. Low-latency caching for cloud-based web applications. In Proceed-
ings of the 6th International Workshop on Networking Meets Databases (NetDB ’11), Athens,
Greece, 2011. 169, 173

S. Wu and U. Manber. Fast text searching: allowing errors. Commun. ACM, 35(10):83–91, Oct.
1992. ISSN 0001-0782. doi: 10.1145/135239.135244. URL http://doi.acm.org/10.1145/

135239.135244. 102, 121

N. E. Young. On-line file caching. In Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’98, pages 82–86, Philadelphia, PA, USA, 1998. Society for Indus-
trial and Applied Mathematics. ISBN 0-89871-410-9. URL http://dl.acm.org/citation.

cfm?id=314613.314658. 133, 169

238

http://doi.acm.org/10.1145/1542275.1542312
http://doi.acm.org/10.1145/1542275.1542312
http://epubs.siam.org/doi/abs/10.1137/100806783
http://doi.acm.org/10.1145/135239.135244
http://doi.acm.org/10.1145/135239.135244
http://dl.acm.org/citation.cfm?id=314613.314658
http://dl.acm.org/citation.cfm?id=314613.314658

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Summary of Results and Structure of this Thesis

	Parallel Computation
	Sequential Models of Computation
	Turing Machine
	Random Access Machine

	Parallelism in Computation: Flynn's Taxonomy
	Theoretical Modeling of Parallel Computation
	The Shared-Memory Model and the PRAM
	Performance Measures
	Network Models
	Communication
	Directed Acyclic Graphs
	Boolean Circuits and Parallel Complexity Classes
	Alternating Turing Machines
	Vector Machines
	P-Complete Problems
	Amdahl's Law

	Parallel Architectures
	Beyond the PRAM
	Variants of the PRAM Model
	Hierarchical Memory Models
	Bridging Models

	Aspects of Parallel Programming
	Scheduling Multi-Threaded Programs

	Basic Parallel Algorithm Design Techniques
	Balanced Trees
	Pointer Jumping
	Pipelining
	Divide and Conquer
	Partitioning
	Accelerated Cascading
	Symmetry Breaking

	The Multi-Core Era
	Multi-Core Architectures
	Models for Multi-Core Computation
	Graphic Processing Units

	Bit Parallelism and the Word-RAM

	LoPRAM: A Model for Low-Degree Multi-Core Parallel Computation
	Model
	Thread Model
	Multiprocessing Model

	Optimal Algorithm Parallelization
	Divide and Conquer
	Dynamic Programming

	Experiments
	Conclusions

	On the Sublinear Processor Gap for Parallel Architectures
	Overview of Arguments
	Exposition
	Limited Parallelism
	Natural Constraints
	Write Conflicts
	Processor Communication Network
	Buffer Overflow
	Divide-and-Conquer Algorithms
	Cache Imposed Bounds
	The Class E(p(n))
	Parallelism in Turing Machine Simulations
	Amdahl's Law

	Conclusions

	Algorithms in the Ultra-Wide Word Model
	The Ultra-Wide Word-RAM Model
	UW-RAM Subroutines

	Simulation of FS-RAM
	Implementing FS-RAM Operations in the UW-RAM
	Constant Time Priority Queue
	Constant Time Dynamic Prefix Sums

	Dynamic Programming
	Subset Sum
	Knapsack
	Generalizations of Subset Sum and Knapsack Problems
	Longest Common Subsequence

	String Searching
	Shift-And and Shift-Or
	Boyer-Moore-Horspool (BMH)

	Conclusions

	Paging and Online Algorithms
	Online Algorithms
	Competitive Analysis

	Paging
	Paging Algorithms
	Other Cost Models
	Alternative Performance Measures
	Paging with Multiple Request Sequences

	Paging for Multi-Core Shared Caches
	The Cache Model
	Bounds of Online Strategies for Minimizing Faults
	The Offline Problem
	Hardness of Multi-Core Paging
	Properties of Offline Algorithms for Final-Total-Faults
	Optimal Algorithms for Final-Total-Faults and Partial-Individual-Faults

	Conclusions

	Minimizing Cache Usage in Paging
	Paging with Cache Usage
	Applications
	Related Cost Models

	Offline Optimum
	Online Algorithms
	A Family of Cost-Sensitive Online Algorithms
	Bounds on the Competitive Ratio of A

	Real World Sequences
	Conclusions

	Toward a Generic Hybrid CPU-GPU Parallelization of Divide-and-Conquer Algorithms
	Related Work
	A Hybrid CPU-GPU Model
	Generic Divide-and-Conquer Parallelization
	Breadth-First Structure
	Conversion to GPU Code
	Example: Divide-and-Conquer Sum

	Work Division and Scheduling Strategies
	Basic Hybrid Work Division
	Advanced Hybrid Work Division

	Case Study: Mergesort
	Basic Hybrid Implementation
	Advanced Hybrid Implementation
	GPU Optimizations
	Experimental Results

	Conclusions

	Conclusions
	References

