
Path Integral Approaches and Graphics Processing

Unit Tools for Quantum Molecular Dynamics

Simulations

by

Stephen Joel Constable

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Chemistry

Waterloo, Ontario, Canada, 2012

c© Stephen Joel Constable 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis details both the technical and theoretical aspects of performing path in-

tegrals through classical Molecular Dynamics (MD) simulations. In particular, Graphics

Processing Unit (GPU) computing is used to augment the Path Integral Molecular Dy-

namics (PIMD) portion of the widely available Molecular Modelling Tool Kit (MMTK)

library. This same PIMD code is also extended in a different direction: a novel method for

nuclear ground state property prediction is introduced that closely mimics existing code

in functional form.

In order to add GPU computing capabilities to the existing MMTK codebase, the open

source Open Molecular Mechanics (OpenMM) library was used. OpenMM provides high

performance implementations of a variety of commonly used MD algorithms, with the goal

of supporting current and future specialized hardware. Due to the object oriented nature

of both codes, and the use of SI units in each, the development process was rather painless.

The integration of OpenMM with MMTK is seamless, and arbitrary systems are supported

without the user even needing to know that GPU acceleration is being used. The hybrid

OpenMM-MMTK code is benchmarked against the vanilla MMTK code in terms of speed

and accuracy, and the results show that GPU computing is the obvious choice for PIMD

simulations.

iii

Starting with a desire to apply the highly efficient Path Integral Langevin Equation

(PILE) thermostat to the Path Integral Ground State (PIGS) problem, a new hybrid

PILE-PIGS, or LE-PIGS, method was developed. This thesis describes the theoretical

justification for this method, including the introduction of a modified normal mode repre-

sentation based on the Discrete Cosine Transform (DCT). It is shown that in DCT space,

the equations of motion of a PIGS system are virtually identical to the equations of motion

of a PIMD system in Fourier space. This leads to direct reuse of existing PILE code in

MMTK, and options to extend this ground state problem to OpenMM for the purpose of

GPU acceleration. The method is applied to a series of model systems, and in each case

convergence to the exact ground state energy is observed.

A number of avenues for further research are revealed. Most obviously, the OpenMM

PIMD code uses the PILE internally so it can easily be modified to run LE-PIGS, which

would create the first GPU-accelerated PIGS method. This would allow for the study of

the ground states of large molecules, such as proteins, at high accuracy, in short time.

Extensions to the OpenMM PIGS code are suggested that would increase the speed of the

code on Nvidia GPUs. Also, the problem of finding the optimal estimate of the ground

state wave function for use in LE-PIGS is discussed, and some ideas are presented on how

to address this issue. Overall, future outlooks for this project are bright.

iv

Acknowledgements

I would like to acknowledge my supervisor, Dr. Pierre-Nicholas Roy, for all the ideas

that he has put into this thesis. Furthermore, he wrote the matrix multiplication code

that was used to calculate good parameters for my LE-PIGS code. He also pushed me

to compete at conferences and scholarship applications, and for that I am glad. Most

importantly, he made himself available to me and the rest of our group on a daily basis,

and often acted to inspire us with our own work.

I would like to thank my fellow members of the Roy research group, specifically Chris

Ing and Matt Schmidt. Chris was the pioneer of path integrals in MMTK, and was an

invaluable source of knowledge when I was getting started with my project, and later when

I was implementing my LE-PIGS method. Matt worked to test my code on real systems to

make sure it was working as expected, and I often found myself bouncing ideas off of him.

I would also like to thank Konrad Hinsen, the primary author of MMTK, for his advice

regarding the implementation of the OpenMM-MMTK hybrid code.

The credit for the schematic graphics of the flow of data on a motherboard goes to the

very talented Steven Curtis.

Finally, the early editions of this thesis were proofread by a panel of my peers: many

thanks to Richard Simms, Jasper Huang, Julian Martin, and Steven Curtis for their efforts.

v

Dedication

To my brother, Liam. May he be inspired to pursue a career in science one day.

vi

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements v

Dedication vi

List of Figures ix

List of Abbreviations x

1 Introduction 1

1.1 Fundamental Concepts of Statistical Mechanics 2

1.2 Molecular Dynamics . 4

1.3 The Canonical Ensemble . 9

1.4 Path Integral Molecular Dynamics . 16

1.5 Computational Considerations . 27

vii

2 MMTK & OpenMM Code 34

2.1 GPU Computing . 36

2.2 Software Architecture . 41

2.3 Results (Timings and Accuracy) . 42

3 LE-PIGS theory 55

3.1 Nuclear Ground States . 56

3.2 Derivation of LE-PIGS Equations . 63

3.3 Implementation . 66

3.4 Results and Examples . 68

4 Conclusions 75

4.1 Future Work . 76

References 82

Appendix A List of Code 88

A.1 Python Layer: LangevinDynamics.py . 88

A.2 C Layer: MMTK langevin.c . 99

viii

List of Figures

2.1 Flow of Data for CPU . 38

2.2 Flow of Data for GPU . 39

2.3 Timings of Classical MD on GPU . 44

2.4 Classical O-O g(r) for Water . 45

2.5 Classical O-H g(r) for Water . 46

2.6 Classical H-H g(r) for Water . 47

2.7 Timings of PIMD on GPU . 48

2.8 Quantum O-O g(r) for Water . 49

2.9 Quantum O-H g(r) for Water . 50

2.10 Quantum H-H g(r) for Water . 51

2.11 Timings of PIMD on GPU . 52

2.12 Reference g(r) for Water . 53

3.1 Variance in x of a Free Particle . 69

3.2 Convergence in β and τ for H.O. 71

3.3 Convergence in β and τ for Q.O. 73

3.4 Convergence in β and τ for D.W. 74

ix

List of Abbreviations

MD Molecular Dynamics

PIMD Path Integral Molecular Dynamics

PIMC Path Integral Monte Carlo

PIGS-MD Path Integral Ground State Molecular Dynamics

RPMD Ring Polymer Molecular Dynamics

PILE Path Integral Langevin Equation

WNLE White Noise Langevin Equation

MMTK Molecular Modelling Toolkit

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

DCT Discrete Cosine Transform

HPC High Performance Computing

DMC Diffusion Monte Carlo

GPU Graphics Processing Unit

CMD Centroid Molecular Dynamics

PIGS Path Integral Ground State

AMBER Assisted Model Building with Energy Refinement

QTST Quantum Transition State Theory

CUDA Compute Unified Device Architecture

FFTW Fastest Fourier Transform in the West

LE-PIGS Langevin Equation Path Integral Ground State

x

Chapter 1

Introduction

Molecular Dynamics (MD) is a formal and computational tool that is used to solve prob-

lems in classical statistical mechanics. The approach can also be extended to account

for quantum mechanical effects. The objective of the present work is to contribute to

MD methodology in the area of software development, and on formal and methodological

fronts. The software development contribution aspect aims at bringing the power of Graph-

ical Processing Unit (GPU) computing to the Molecular Modelling Toolkits (MMTK), an

open source toolkit for modelling and simulations. Another novel contribution is the de-

velopment of a general approach to obtain exact, within statistical error, ground state

properties of complex molecular systems. In order to understand how MD is used to com-

pute observable properties, a derivation from classical statistical mechanics theory is first

1

required. Such essential elements are presented in the next section.

1.1 Fundamental Concepts of Statistical Mechanics

Classical statistical mechanics is distinguished from quantum statistical mechanics by the

use of the continuous variables position and momentum to calculate properties[1], whereas

quantum statistical mechanics considers averages of discrete quantum states. In classical

particle mechanics, the total energy of a one-dimensional system with one particle of mass

m feeling an external potential V is given, in Cartesian coordinates, by the Hamiltonian,

H,

H(p, q) =
p2

2m
+ V (q) , (1.1)

which is a function of the particle’s position, q, and momentum, p. Classically, the mo-

mentum of a particle takes the form

p = mv = mq̇ = m
dq

dt
, (1.2)

where v is the velocity. The first term of the Hamiltonian is simply the classical expression

for the kinetic energy, K:

p2

2m
=
m2v2

2m
=

1

2
mv2 = K . (1.3)

2

Thus, the Hamiltonian is an expression for the total energy, E, of a classical system.

Consider a system consisting of many independent copies of the hypothetical system

described by Equation (1.1) at some energy E: specifically N copies such that N → ∞.

Such a collection of systems is referred to as a statistical ensemble, and is useful in describing

the bulk properties of molecular systems. With such a large collection of independent

systems, it is not feasible to describe the ensemble in terms of the variables p and q because

there are in principle infinitely many such variables. However, it is relatively easy to deal

with averages of properties, such as the energy, over the entire ensemble. An ensemble

average of some property A is denoted 〈A〉. In order to explicitly calculate the value of

〈A〉, one must invoke the fundamental postulate of statistical mechanics: in an ensemble of

systems there is no bias as to which state a system will occupy (i.e. all accessible states are

populated evenly). Within the context of classical statistical mechanics, the term ‘state’

refers to a unique combination of p and q, or more simply, a snapshot of the system. Such

an average takes the following form:

〈A〉 =
1

Ω

∫
dp

∫
dqA δ(H(p, q)− E) , (1.4)

where δ is the dirac delta function, E is the energy of the ensemble members, and Ω is

some normalization constant. The integral over p and q is called the integral over phase

3

space, which is spanned by every state of the system. The form of Ω may be calculated

explicitly by noting it is expected that 〈1〉 should equal 1. By Equation (1.4):

1

Ω

∫
dp

∫
dq δ(H(p, q)− E) = 1 , (1.5)

or, equivalently,

Ω(E) ∝
∫

dp

∫
dq δ(H(p, q)− E) . (1.6)

The normalizing constant Ω has a special importance in statistical mechanics, and is re-

ferred to as the density of states. It is so named because it acts to count the number of

times that a unique value of p and q, and therefore a unique state of the system, is observed

within the ensemble. The proper density of states is normalized by some constant, but

exact knowledge of this factor is not required because the same constant is present in both

the numerator and denominator of Equation (1.4).

1.2 Molecular Dynamics

In general, for a molecular system, is is not feasible to directly solve for the average of A.

Instead, it is possible to invoke the ergodic hypothesis: Given sufficient time, the trajectory

of an ensemble member will eventually visit all of its available states. This means that

4

a time average over a trajectory can be directly equated with an ensemble average, or

formally

〈A〉 = lim
T→∞

1

T

t=T∑
t=0

A(p(t), q(t)) (1.7)

where T is the total time that the trajectory is observed. This hypothesis directly leads to

the molecular dynamics method: given an ensemble member, numerically solve Hamilton’s

equations of motion [1], which dictate that

dp(t)

dt
= −∂H

∂q
, (1.8)

dq(t)

dt
=
∂H

∂p
. (1.9)

This time evolution of the system according to Hamilton’s Equations constitutes a trajec-

tory. It is important to note that due to conservation of energy,

H(p(t), q(t)) = H(p(0), q(0)) = E (1.10)

where E is the total energy of the system. Thus, when considering a classical system

governed by Hamilton’s Equations of motion, the form of the Hamiltonian and a single

configuration of the system is sufficient to describe the trajectory of the system. After

some amount of time, the average of some property A over the course of the trajectory

5

will converge to the ensemble average value. This technique is easily applicable to any

system where the potential energy function is defined and differentiable everywhere in the

accessible region of phase space. This requirement arises owing to the fact that, in solving

Hamilton’s equations of motion numerically, the gradient of the potential energy function

is used to generate the forces on each particle. An algorithm that solves these equations

numerically is called an integrator. One popular integrator is the Velocity Verlet integrator

[2], given by the following set of equations:

v(t+
1

2
∆t) = v(t) +

1

2m
∇V (x(t))∆t (1.11)

x(t+ ∆t) = x(t) + v(t+
1

2
∆t)∆t (1.12)

v(t+ ∆t) = v(t+
1

2
∆t) +

1

2m
∇V (x(t+ ∆t))∆t (1.13)

In this manner, the entire trajectory of a system can be elucidated from just an initial

configuration of p and q, and knowledge of the gradient of V . Assuming the potential

energy surface being explored is sufficiently smooth, this trajectory can reasonably be

expected to visit all states contributing to the entire ensemble, and thus the time average

will be equal to the ensemble average. The parameter ∆t is called the time step, and it

defines the smallest unit of time in the simulation. Ideally, ∆t is chosen such that it is

small enough that the dynamics of the system are sampled accurately, but large enough

6

that the simulation does not become prohibitively long in wall clock time. Specifically, ∆t

too large can lead to a collision event where two atoms that would normally repel each

other are propagated into close distance of each other. The next time that∇V is evaluated,

the force will be extremely high and the atoms will be thrust apart at high velocity. This

high velocity then increases the likelihood of a second collision event, and eventually the

kinetic energy of the system diverges to infinity.

With the trajectory of a system in hand, it is possible to evaluate the time dependence

of properties. One common approach to measuring properties as a function of time is

through the use of correlation functions. The autocorrelation function, CAA is an ensemble

average that measures the time progression of a property A relative to its own starting

value:

CAA(t) = 〈A(0)A(t)〉 (1.14)

where it is understood that A(0), the starting value, is averaged over all possible values.

By invoking the ergodic hypothesis, it can be shown that

〈A(0)A(t)〉 =
1

tmax

tmax∑
t0=1

A(t0)A(t0 + t) . (1.15)

While it is obvious that this average can be computed directly, a more nuanced form can

also be achieved. By appending a string of tmax zeros to the end of the data, CAA(t) can

7

be rapidly computed from the Fourier transform of A(t) [3]. The Fourier transform can

be computed rapidly on a computer using the FFT method, with O(n log n) time. The

algorithm to calculate CAA(t) using the FFT are as follows:

1. Append an extra tmax data to prevent spurious correlations from arising, giving 2tmax

data in total.

2. Calculate A(ν) as the Fourier transform of A(t) using the FFT.

3. Calculate A∗(ν)A(ν) by squaring all values.

4. Calculate the unnormalized correlation function C ′AA by performing the inverse FFT

on A∗(ν)A(ν).

5. Normalize C ′AA with (tmax − t)−1 to yield CAA.

The correlation time, τ0 of property A is the time it takes for CAA to decay to the equilib-

rium value, 〈A〉2. The correlation time is important because measurements of A between

t = 0 and t = τ0 are not statistically independent. The standard error on 〈A〉 is

st. err.(A) =
σ2
A√
NA

(1.16)

where σA is the standard deviation of A and NA is the number of statistically independent

observations of A. Thus, the correlation time of A is required in order to accurately gauge

8

the measurement error in 〈A〉. Some dynamic properties can also be computed from CAA,

including diffusion coefficients and IR spectra.

Overall, MD is a powerful and general method that has been used to study a diverse

array of physical systems: gases, liquids, solids, clusters, interfaces, and proteins are all

examples of systems that have been studied with MD [4].

1.3 The Canonical Ensemble

Molecular dynamics as described above samples the microcanonical or NVE ensemble; the

ensemble retains a constant number of particles (N), volume (V), and energy (E). For

many applications, it is desired to work within the canonical (or NVT) ensemble, the main

difference being that instead of conservation of energy in individual ensemble members, the

temperature (T), or equivalently the kinetic energy, is conserved on average. This implies

a slightly different ensemble average, since each member of the ensemble may be found

in a different energy state. The obvious question follows: if energy is allowed to vary, in

which energy states will the ensemble be found? To answer this question, the idea of a

heat bath is introduced; the heat bath acts to exchange energy with the system such that a

constant temperature is maintained (NVT), but the total energy of the system plus heat

bath remains constant (NVE) [5].

9

Consider a system S coupled to a large external heat bath S ′, which together form a

large system S∗ whose energy is conserved. By the fundamental postulate of statistical

mechanics, the system can be found in any accessible energy state m with equal a priori

probability. The state m may vary in energy, so the energy corresponding to state m will

be labelled Em. The total energies of S∗ and S ′ are denoted E∗ and E ′ respectively, and

it is obvious that the relation E∗ = Em + E ′ holds universally. To answer the question

of which states (i.e. values of m) the system S will be found in, it is assumed that the

probability of observing state m is proportional to the number of states available to the

heat bath, or formally:

pm = C ′Ω′(E ′) (1.17)

where pm is the probability of S to be found in state m, Ω′ is the density of states of the

heat bath, and C ′ is some normalization constant. Taking the logarithm of both sides and

acknowledging that the energy E ′ is simply the difference between the total energy E∗ and

the system energy Em gives:

ln(pm) = ln(C ′) + ln(Ω′(E∗ − Em)) . (1.18)

Note that the total energy E∗ is much greater than the system energy Em, so a Taylor

expansion in E∗ around Em may be used to describe the behaviour of the second term in

10

Equation (1.18). This approximation is useful even with only the first two terms of the

expansion [6] [7]:

ln(Ω′(E∗ − Em)) =
∞∑
k=0

(E ′ − E∗)k

k!

dk ln(Ω′(E∗))

dE ′k
≈ ln(Ω′(E∗))− d

dE ′
ln(Ω′(E∗))Em .

(1.19)

The term d
dE′

ln(Ω′(E∗)) is given the symbol β and is referred to as the thermodynamic

beta or the inverse temperature. Substituting β into equation (1.19) yields

ln(pm) = ln(C ′) + ln(Ω′(E∗))− βEm (1.20)

which can be exponentiated to give

pm = C ′Ω′(E∗)e−βEm . (1.21)

E∗ is constant, so the two constants may be combined to give C = C ′Ω′(E∗), and then the

final result for pm is obtained:

pm = Ce−βEm . (1.22)

With the equation for pm in hand, it is possible to formulate an average of a property

11

A in the NVT ensemble:

〈A〉 = C

∫
dp

∫
dqe−βH(p,q)A(p, q) (1.23)

noting similarly to the NVE ensemble that 〈1〉 = 1, the explicit form of C can be calculated:

〈1〉 = C

∫
dp

∫
dqe−βH(p,q) = 1 (1.24)

C =
1

Z
∝ 1∫

dp
∫

dqe−βH(p,q)
(1.25)

where Z is shorthand for an expression proportional to
∫

dp
∫

dqe−βH(p,q), called the

canonical partition function. The role of Z in the NVT ensemble is analogous to the

role of Ω in the NVE ensemble; it serves to normalize probabilities and encodes all the

thermodynamic data for the system.

Some attention should be paid to the explicit form of β. Consider the formula for the

entropy, S of a system [5]:

S = kB ln(Ω) . (1.26)

An infintesimal change in S is therefore

dS = kBd ln(Ω) . (1.27)

12

Recalling that the definition of β is

β =
d ln(Ω)

dE
, (1.28)

the formulæ for dS and β can be equated via d ln(Ω):

β =
1

kB

dS

dE
. (1.29)

Thermodynamically, it is known that

dS

dE
=

1

T
, (1.30)

and therefore the explicit form of β is

β =
1

kBT
. (1.31)

Thus, an alternative way to write Z is

Z ∝
∫

dp

∫
dqe

−H(p,q)
kBT (1.32)

The NVT ensemble more accurately reflects common experimental conditions, and

13

therefore NVT ensemble averages will more faithfully reproduce many experimentally ob-

served phenomena. Unfortunately, the previously described MD method is inherently

restricted to sample the NVE ensemble. It is therefore desirable to incorporate modifi-

cations to the MD method so that the NVT ensemble may be sampled. In general, any

such modification is referred to as a thermostat, because it acts to maintain a constant

temperature throughout the simulation.

One basic approach to thermostatting an MD simulation is the Andersen Thermostat

[8]: at random time intervals, simulate a collision with a heat bath. The time interval

at which to adjust the velocities is called the collision frequency, and is chosen from the

Poisson Distribution P (ν) = νe−νt. During a collision event, the velocities of each particle

in the system are adjusted by randomly sampling from the Maxwell-Boltzmann distribution

at temperature T . Between collisions, the simulation is progressed via the regular NVE

integrator. While this thermostat gives a correct, NVT ensemble average, the trajectory

becomes completely unphysical due to the random reassignment step.

The Nosé-Hoover Thermostat [9] offers an improvement over the Andersen Thermo-

stat. The Nosé-Hoover thermostat attempts to model the interactions between the system

S and the heat bath S ′ in a simplified manner by introducing an additional degree of free-

dom to the system that acts to constrain the kinetic energy of the system to the desired

temperature. The Nosé-Hoover approach can be repeated multiple times to yield a Nosé-

14

Hoover Chain thermostat [10], which is generally considered to be the gold standard in

thermostatting Path Integral Molecular Dynamics (PIMD) simulations, described in the

next section [11].

While the Nosé-Hoover Chain thermostat is effective, it is conceptually difficult to

implement due to the additional degrees of freedom required. A slightly simplified thermo-

stat is the Langevin equation [12] [13], which models the additional degrees of freedom in a

stochastic manner. Specifically, a friction term γ is added for each particle that describes

the drag experienced by the presence of heat bath particles, and a random number ξ is

added to simulate high-energy collisions with the bath. Formally the force on particle i,

Fi, becomes

Fi(t) = ∇V (qi(t))− γipi(t) +

√
2γim

β
ξ(t) . (1.33)

The friction parameters γi controls per-particle coupling to the heat bath such that lighter

particles do not become overdamped and heavier particles do not become underdamped.

The magnitude of the random force also scales with γi, while the temperature is set with

β. The random number ξ is assumed to have a mean of zero and obey a delta correlation

function,

〈ξ(0)ξ(t)〉 = δ(t) , (1.34)

so that there is no correlation between measurements of ξ(t). The relative simplicity of

15

the Langevin equation compared to the Nosé-Hoover Chain thermostat, combined with its

statistical advantages over the Andersen thermostat, make it a popular thermostat choice

in modern MD simulations [13].

1.4 Path Integral Molecular Dynamics

Classical MD can describe many systems with good accuracy. However, sometimes the

effects of the underlying quantum structure of the system cannot be ignored, and classical

MD breaks down. This is especially true in the low temperature limit, where the thermal

wavelength of each particle becomes large [14] and exchange effects become important.

Additionally, classical MD fails to accurately describe tunneling effects in the transfer

of a proton from acid to base [15]. In order to capture these effects, the path integral

approach of Feynnman is adopted [16]. It was pointed out that MD and Monte Carlo [17]

[18] algorithms could be extended to sample quantum effects via path integrals through

a classical-quantum isomorphism [19] [20]; specifically, each particle is replaced with a

cyclical polymer of particles feeling a modified potential.

In electronic structure theory, the Born-Oppenheimer approximation is often employed

[21]. This approximation asserts that the many body wavefunction of a molecule can be

16

separated into a product of electronic and nuclear wavefunctions:

|Ψ〉 = |ψelec.〉|ψnuc.〉 . (1.35)

Electronic structure theorists then focus on deriving the form of |ψelec.〉 through various

techniques. One might reasonably expect that at equilibrium, path integrals could be

used to sample averages of properties of both the electronic and nuclear wavefunctions.

Unfortunately, imposing the required symmetry constraints on the electronic wavefunction

(i.e. the Pauli exclusion principle) leads to the summation of rapidly oscillating positive and

negative regions of |ψelec.〉, resulting in what is known in numerical analysis as catastrophic

cancellation. The integral is algebraically exact, but attempts to numerically evaluate

it diverge from the expected result. Physicists have termed this effect the fermion sign

problem [22]. For this reason, PIMD is effectively restricted to bosonic systems, such as

even-numbered nuclei in an effective potential. The following derivation is heavily based

on work by Tuckerman [23].

Quantum mechanically, the nuclear portion of the system can be thought of as a state

vector, |Ψ〉, which encodes all of the nuclear properties of the system. In turn, this state

vector can be represented in an arbitrary, possibly infinite, basis set of vectors {|φi〉}. Thus,

17

without loss of generality:

|Ψ〉 =
∞∑
i=0

ci|φi〉 . (1.36)

Consider a statistical ensemble consisting of Z such systems. An ensemble average of

property A must consist of the weighted average over each ensemble member’s expectation

values of the quantum mechanical operator Â:

〈A〉 =
1

Z

Z∑
k=1

〈Ψ(k)|Â|Ψ(k)〉 . (1.37)

By representing each |Ψ(k)〉 in its φ basis, it is obvious that

〈A〉 =
∑
i,j

(
1

Z

Z∑
k=1

c
(k)
i c

(k)
j

)
〈φi|Â|φj〉 . (1.38)

From Equation (1.38), it is evident that 〈A〉 can be compactly expressed in terms of the

trace of a matrix:

〈A〉 =
∑
i,j

ρijAij = Tr(ρA) , (1.39)

where Aij = 〈φi|Â|φj〉 and ρ, called the density matrix, is given by

ρij =
1

Z

Z∑
k=1

c
(k)
i c

(k)
j . (1.40)

18

The density matrix can also be expressed as a density operator ρ, having ρij = 〈φi|ρ|φj〉,

explicitly given by:

ρ =
1

Z

Z∑
k=1

|Ψ(k)〉〈Ψ(k)| , (1.41)

implying that ρ is the ensemble average of projection operators.

The quantum time evolution operator can be introduced to investigate the time evolu-

tion properties of ρ. Specifically,

|Ψ(t)〉 = e−iĤt/~|Ψ(0)〉 , (1.42)

and therefore

ρ(t) =
1

Z

Z∑
k=1

e−iĤt/~|Ψ(k)(0)〉〈Ψ(k)(0)|eiĤt/~ (1.43)

= e−iĤt/~ρeiĤt/~ . (1.44)

By taking the partial derivative of Equation (1.44) with respect to time, it can be shown

that

∂ρ(t)

∂t
= − i

~
(Ĥρ(t)− ρ(t)Ĥ) = − i

~

[
Ĥ, ρ(t)

]
. (1.45)

Note that at equilibrium, there can be no change in the density with respect to time

19

(
∂ρ(t)
∂t

= 0
)

, which implies that Ĥ and ρ commute at equilibrium. This relationship can

be used to show that ρ and Ĥ can be diagonalized together, and that ρ can be expressed

as a function of Ĥ. This means that

ρ = f(Ĥ) =
∑
i

f(Ei)|Ei〉〈Ei| . (1.46)

The particular choice of f(Ei) implies a particular choice of ensemble. For the canonical

ensemble, f(Ei) = e−βEi/Z, with Z as the quantum canonical partition function

Z =
∑
i

e−βEi |Ei〉〈Ei| = Tr
(
e−βĤ

)
(1.47)

and therefore the quantum mechanical canonical average of property A is given by

〈A〉 =
Tr(e−βĤÂ)

Tr(e−βĤ)
(1.48)

In order to evaluate the quantum mechanical canonical average of a property A using

20

MD, consider the representation of Z in a position basis,

Z = Tr(e−βH) =

∫
dx〈x|e−βĤ |x〉 (1.49)

=

∫
dx〈x|e−β(K̂+V̂)|x〉 (1.50)

In general, it is not possible to evaluate 〈x|e−βĤ |x〉 directly because K̂ and V̂ do not com-

mute. However, Trotter splitting [24] may be employed in order to separate the exponential

term. A symmetric second order splitting gives:

Z = lim
P→∞

∫
dx〈x|

(
e
−β
2P
V̂ e
−β
P
K̂e

−β
2P
V̂
)P
|x〉 . (1.51)

The operator e
−β
2P
V̂ e
−β
P
K̂e

−β
2P
V̂ will be represented compactly by Φ. This factorized form

can be further simplified by introducing a complete set of states |x〉〈x| as the identity I

I =

∫
dx|x〉〈x| (1.52)

21

between each evaluation of Φ:

ZP =

∫
dx〈x|(Φ)P |x〉 (1.53)

=

∫
dx〈x|(IΦ)P |x〉 (1.54)

=

∫
dx1 . . . dxP 〈x1|Φ|x2〉〈x2|Φ|x3〉 . . . 〈xP |Φ|x1〉 (1.55)

=

∫
dx1 . . . dxP

(
P∏
i=1

〈xi|Φ|xi+1〉

)
, (1.56)

where xP+1 ≡ x1, as required by the conditions of the trace. Now, the expression for

〈xi|Φ|xi+1〉 may be simplified further:

〈xi|Φ|xi+1〉 = 〈xi|e
−β
2P
V̂ e
−β
P
K̂e

−β
2P
V̂ |xi+1〉 (1.57)

= e
−β
2P
V (xi)〈xi|e

−β
P
K̂ |xi+1〉e

−β
2P
V (xi+1) . (1.58)

In order to ascertain the value of 〈xi|e
−β
P
K̂ |xi+1〉 another identity is used, this time in

momentum space:

〈xi|e
−β
P
K̂ |xi+1〉 =

∫
dp〈xi|p〉〈p|e

−β
P
K̂ |xi+1〉 . (1.59)

The (Hermitian) e
−β
P
K̂ operator can then act on its eigenstate to the left, yielding

〈xi|e
−β
P
K̂ |xi+1〉 =

∫
dpe

−βp2
2mP 〈xi|p〉〈p|xi+1〉 . (1.60)

22

By acknowledging that 〈x|p〉 = 1√
2π~e

ipx/~, the integral can be solved analytically:

〈xi|e
−β
P
K̂ |xi+1〉 =

1

2π~

∫
dpe

−βp2
2mP eip(xi−xi+1)/~ (1.61)

=

√
mP

2πβ~2
e
− mP

2β~2 (xi−xi+1)2

. (1.62)

The total expression for the elements of Φ is therefore

〈xi|Φ|xi+1〉 =

√
mP

2πβ~2
e
−β
2P
V (xi)e

− mP
2β~2 (xi−xi+1)2

e
−β
2P
V (xi+1) , (1.63)

and by invoking the circularity of the trace, we arrive at the following expression for the

partition function:

ZP =

√
mP

2πβ~2

∫
dx1 . . . dxP exp

{
P∑
i=1

[
mP

2β~2
(xi − xi+1)2 +

β

P
V (xi)

]}
. (1.64)

This expression is known as the discretized path integral form of the partition function, and

it is exact in the limit of P → ∞. The use of MD to perform path integration is referred

to as Path Integral Molecular Dynamics (PIMD).

With the expression for ZP given in Equation (1.64), consider the expectation value

of property A as given in Equation (1.48). The expectation value within a discrete path

23

integral formalism is therefore

〈A〉P =
1

ZP

√
mP

2πβ~2

∫
dx1 . . . dxP A(x1) exp

{
P∑
i=1

[
mP

2β~2
(xi − xi+1)2 +

β

P
V (xi)

]}
.

(1.65)

However, this integrand is unchanged under the cyclic relabelling of x1 to x2, x2 to x3, etc.

Therefore, 〈A〉 can also be described as

〈A〉P =
1

ZP

√
mP

2πβ~2

∫
dx1 . . . dxP

1

P

P∑
i=1

A(xi) exp

{
P∑
i=1

[
mP

2β~2
(xi − xi+1)2 +

β

P
V (xi)

]}
.

(1.66)

The notation 〈A〉P has been adopted to represent the discretized average of A, with the

exact value of 〈A〉 being achieved in the limit of P →∞. Note that the above expression

is valid for a property A for which the corresponding operator is diagonal in the position

representation. A closed path integral cannot be employed when dealing with operators

that are not diagonal in the position representation, such as momentum.

In order to compute the value of 〈A〉P , consider an angular frequency ωP given by

ωP =

√
P

β~
(1.67)

24

and an effective potential

Veff =
P∑
i=1

[
mω2

P (xi − xi+1)2 +
β

P
V (xi)

]
(1.68)

Substituting this value into the expression for ZP , it is found that

ZP =

√
mP

2πβ~2

∫
dx1 . . . dxP e−βVeff , (1.69)

which is of a similar form to the q component of the integrand of the classical ensemble av-

erage for a cyclical polymer of P identical particles. These fictional particles are commonly

referred to as beads. A fictional momentum integral is introduced in order to complete the

analogy:

Z̄P (p, q) = C

√
mP

2πβ~2

∫
dp̄1 . . . dp̄P

∫
dq1 . . . dqP exp

{
−β

[
P∑
i=1

p̄i
2

2m̄
+ Veff(q1 . . . qP)

]}
.

(1.70)

Note that the momentum integral is completely decoupled from the position integral, and

so Z̄P can be normalized by dividing by the analytical result:

C =

[
P∏
i=1

(
2πm̄

β

)P
2

]−1

. (1.71)

25

The integral in Equation (1.70) is exactly that of a classical partition function describing

the canonical ensemble average of a cyclic polymer of P beads feeling a modified potential,

and therefore MD can be employed to obtain averages of properties in this system. The

fictional momenta p̄ are related to a fictional mass m̄ which is arbitrary and may be chosen

to increase sampling efficiency of the MD simulation [25]. Averages of properties arising

from the integration of Equation (1.70) must be taken carefully; specifically the momenta

are completely fictitious and so the average total energy of the system 〈H〉 is meaningless.

Instead, property estimators based on the form of Equation (1.66) must be employed

to derive estimates from trajectories derived from this system. Consider the statistical

mechanics expression for the average energy:

〈E〉 =
∂

∂β
ln(Z) =

1

Z

∂Z

∂β
. (1.72)

By considering the partition function given in Equation (1.64) and taking the derivative,

the following energy estimator is derived

EP =

〈
P

2β
−

P∑
i=1

[
mP

2β2~2
(qi+1 − qi)2 − 1

P
V (qi)

]〉
, (1.73)

which is referred to as the primitive energy estimator. Other energy estimators exist, but

will not be discussed here [26].

26

1.5 Computational Considerations

The integration of the equations of motion implied by Equation (1.70) poses some technical

challenges. Specifically, the ω2
P term increases linearly with P , analogous to stiffening of

the bonds of the ring polymer. This stiffening leads to inefficient phase space sampling (i.e.

the system becomes non-ergodic)[27], and requires a small ∆t in the integrator to capture

the very rapid oscillations. Thus, any attempts to increase P beyond a certain threshold

will be stymied. In order to overcome this issue, a change of variables to normal modes is

introduced. The rationale for this choice is that it allows for analytic propagation of the

inter-bead spring terms.

Consider the spring potential term, Vspring:

Vspring =
P∑
i=1

mω2
P (qi − qi+1)2 =

P∑
i=1

mP

β2~2
(qi − qi+1)2 (1.74)

27

The second derivative or Hessian matrix of this potential is of the following form:

H(Vspring) =

2 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 −1 0

0 0
.

−1 0 0 −1 2

(1.75)

which is known as a circulant matrix. A circulant matrix is diagonalizable by the unitary

transform corresponding to the Discrete Fourier Transform (DFT) matrix of the same

dimensions. The DFT matrix of size N is a Vandermonde matrix of the N th root of unity:

DFTN =
1√
N

1 1 1 · · · 1

1 ω ω2 · · · ω(N−1)

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...

1 ω(N−1) ω2(N−1) · · · ω(N−1)(N−1)

(1.76)

with

ω = e−2πi/N . (1.77)

28

The DFT matrix can be used as a unitary transformation to give H(Vspring) in new coor-

dinates corresponding to Fourier normal modes:

H̃(Vspring) = DFT†PH(Vspring)DFTP =

0 0 0 0 0

0 f1 0 0 0

0 0 f2 0 0

0 0 0
. . . 0

0 0 0 0 fP−1

(1.78)

where {fi} are a set of frequencies corresponding to the eigenvalues of H(Vspring). This

transformed Hessian implies a transformed functional form of Vspring; in normal mode

coordinates, the following form is achieved:

Vspring =
P−1∑
k=0

mω2
kq̃

2 (1.79)

where q̃ represents the fourier transformed position, DFTP (q1, . . . , qP)†, and with

ωk = 2ωP sin(kπ/P) . (1.80)

The form of Equation (1.80) is that of P independent harmonic oscillators. The equations

of motion of the harmonic oscillator are known analytically in terms of sines and cosines,

29

so within this normal mode representation, the energies and forces resulting from the inter-

bead spring terms may be evaluated analytically. Considering also the Fourier transformed

momentum, p̃, the following relation may be used to propagate the spring terms:

 p̃′k

q̃′k

 =

 cos(ωk∆t) −mωk sin(ωk∆t)

(mωk)
−1 sin(ωk∆t) cos(ωk∆t)

 p̃k

q̃k

 . (1.81)

This analytic propagation does not fall victim to the ergodicity and timestep problems

outlined previously. Furthermore, it is possible to apply the Langevin equation in normal

mode coordinates, and the form of Equation (1.80) offers an analytical expression for a

statistically optimal γ value for normal modes 1 though P − 1. Considering the free ring

polymer Hamiltonian

HP,free(p̃, q̃) =
P−1∑
k=0

[
p̃2
k

2m
+mω2

kq̃
2

]
, (1.82)

the autocorrelation function 〈HP,free(0)HP,free(t)〉 can be worked out analytically to give

the following friction values:

γk =

1/τ0 if k = 0

2ωk if k > 0

(1.83)

with τ0 as the correlation time of the zeroth normal mode (centroid), which cannot be

determined analytically. Thus, the initial Langevin friction problem of supplying P friction

30

values to optimize sampling has been reduced to supplying 1 friction value, γc, the centroid

friction value. The application of the Langevin equation thermostat to PIMD via normal

mode analysis is referred to as the Path Integral Langevin Equation (PILE) [11] thermostat,

and it offers an improvement in efficiency over the standard Langevin approach in PIMD,

the White Noise Langevin Equation (WNLE) [28]. An integrator to solve the equations of

motion arising from the PILE is as follows:

31

p̃k(t) = DFTP pj(t) (1.84)

p̃k,f (t) = c1,kp̃k(t) +

√
mP

β
c2,kξ(t+ ∆t/2) (1.85)

pj,f (t) = DFT†P p̃k,f (t) (1.86)

pj,f (t+ ∆t/2) = pj,f (t) +
∆t

2
∇V (qj(t)) (1.87)

p̃k,f (t+ ∆t/2) = DFTP pj,f (t+ ∆t/2) (1.88)

q̃k(t) = DFTP qj(t) (1.89) p̃′k,f (t+ ∆t/2)

q̃′k(t)

 =

 cos(ωk∆t) −mωk sin(ωk∆t)

(mωk)
−1 sin(ωk∆t) cos(ωk∆t)

 p̃k,f (t+ ∆t/2)

q̃k(t)

(1.90)

p′j,f (t+ ∆t/2) = DFT†P p̃′k,f (t+ ∆t/2) (1.91)

qj(t+ ∆t)) = DFT†P q̃′k(t) (1.92)

pj,f (t+ ∆t) = p′j,f (t+ ∆t/2) +
∆t

2
∇V (qj(t+ ∆t)) (1.93)

p̃k,f (t+ ∆t) = DFTP pj,f (t+ ∆t) (1.94)

p̃k(t) = c1,kp̃k,f (t+ ∆t) +

√
mP

β
c2,kξ(t+ ∆t/2) (1.95)

pj(t+ ∆t) = DFT†P p̃k(t+ ∆t) (1.96)

32

where c1,k and c2,k are mode-specific constants related to the Langevin equation:

c1,k = e−(∆t/2)γk (1.97)

c2,k =
√

1− c2
1,k . (1.98)

The integration of the PILE equations of motion is not as complex as it seems, since per-

forming the DFT is fast using FFT algorithms; the DFT can be performed in O(n log(n))

time.

The PILE approach described above has recently been included in the MMTK using

CPU based code [29]. The work reported here has allowed the addition of GPU computing

to MMTK for both classical MD and PILE simulations. Another contribution of the

present work is a generalization of the PILE concepts to ground state systems.

The remainder of this thesis is organized as follows: Chapter 2 contains a description of

the addition of GPU computing capability to the MMTK code; the ground state general-

ization of the PILE approach is presented in Chapter 3 along with representative examples.

Conclusions and future directions are finally presented in Chapter 4.

33

Chapter 2

MMTK & OpenMM Code

When applying the principles of MD, it is crucial that the execution of computer code be

as fast as possible. With increased computer speed it is possible to decrease the numerical

error of a simulation by using lower error thresholds and to decrease the statistical error

by increasing the length of the trajectory, all while keeping the wall clock time fixed.

Researchers in the field of High Performance Computing (HPC) seek to build computers

and computer networks that can solve scientific problems as quickly as possible. Support

for long MD simulations, particularly of large molecules such proteins, are popular targets

of such endeavours. While many software packages for MD exist to facilitate simulation

on a variety of hardware, this document focusses on the Molecular Modelling Tool Kit

(MMTK) [30] Python scripting language. A wide range of chemistry related algorithms are

34

supported by MMTK, including MD and PIMD with arbitrary potential energy functions.

One needs only to supply code for the potential as well as its derivative and MMTK can

generate a trajectory using a variety of ensembles and integrators. This versatility makes

MMTK a good tool for research and development of novel MD methods. Structurally,

MMTK is composed of a Python interface that is exposed to the user, underpinned by C

code that is used to rapidly evaluate potential energy functions and perform integration.

This combination allows the use of highly optimized routines such as BLAS and LAPACK

to solve MD problems, while still maintaining simplicity for the scientific user.

Arguably the most common approach to accelerating the performance of an MD sim-

ulation is through the use of parallel computing, which seeks to break down a large task

into smaller independent subtasks that can be executed in isolation from each other. On a

single processor machine parallel computing offers little advantage, but on a machine with

many processors the speed of execution will scale with Amdahl’s Law:

S(N) =
1

(1− P) + P
N

(2.1)

where P is the fraction of the code that can be executed in parallel, N is the number of

processors available, and S is the speedup (i.e. the ratio of parallelized runtime to serial

runtime). This equation describes a sigmoidal curve in N , with additional processors

35

offering a large speedup at first, and subsequently having diminishing returns. Thus,

hardware manufacturers work to provide researchers with machines having more processors

(greaterN), while software vendors attempt to develop new parallel algorithms that provide

better scaling (greater P) [31] or reduce the computation time entirely. Parallel computing

is supported on MMTK with the C language energy evaluation code, but no other attempts

are made at parallelism. A method of coding that greatly increases the effective N available

to the system through novel use of hardware will be subsequently introduced.

2.1 GPU Computing

Graphics Processing Units (GPUs), informally called graphics cards, were originally in-

tended to drive computer monitors so as to display data. With the growth of data-intensive

visualization needs, including but not limited to the computer video game industry, GPUs

began to take over computational duties normally performed by the Central Processing

Unit (CPU). Due to the highly parallel nature of the task of rendering an image on a

screen, GPU architecture naturally grew to include many programmable elements, called

shaders. These shaders could be reprogrammed to perform arbitrary tasks, such as the

evaluation of molecular mechanics forcefields, and the propagation of MD simulations [32].

With the increasing application of general purpose computation to GPUs (GPGPU pro-

36

gramming), GPU vendor Nvidia released a generation of GPUs with a focus on GPGPU

called CUDA, along with a specialized CUDA language based on C. Nvidia “C for CUDA”

is a C-like language that facilitates the production of GPU bytecode for Nvidia GPUs,

allowing application developers to leverage GPU functionality without investing the time

required to learn the specifics of GPU hardware and a GPU-specific shader language. The

development of CUDA was followed by OpenCL [33], an open standard for heterogenous

computing including GPUs from all major vendors and CPUs.

The types of problems that are most suited for a GPU approach are those which exhibit

some form of parallelism. While GPUs can offer massive speed advantages for parallel

executable code, traditional CPUs still reign in the single-threaded serial execution regime.

In traditional CPU-based code execution, data is fetched from some long-term storage

(HDD, CD-ROM, etc.) and stored in RAM. The CPU then requests data from RAM and

stores it in the CPU cache, where it is operated upon. The CPU has a dedicated access

channel to the RAM so this process is very rapid, and the presence of a CPU cache means

that data only occasionally needs to be written back to RAM. A schematic of the flow of

data for CPU execution is provided in Figure 2.2. In GPU execution, data that is initially

stored in RAM must be transferred to the GPU over the motherboard’s bus. This process

is slow relative to CPU RAM access because the motherboard bus is low-bandwidth and

shared by all peripherals. Once the data has reached the GPU, it must be stored in the

37

CPU

GPU

RAM

BUS

LAN

HDD

HDD

HDD

Figure 2.1: A schematic of the flow of data in CPU-oriented computing. The CPU has

a dedicated, high-bandwidth connection to main memory, which can be rapidly accessed

(blue arrows). Due to the high speed of the CPUs and fast memory access, this is an

example of a latency oriented architecture.

GPU’s Video RAM (VRAM) in order to be operated on by the GPU’s processors. Once

the data has been loaded into VRAM, execution by the GPU processors is performed

rapidly; a modern GPU may have upwards of 3000 processor cores operating at once. The

processed data is then transferred back over the bus into RAM where it can be accessed by

the CPU for analysis. A schematic of the flow of data in GPU code execution is provided

in Figure 2.2.

To rapidly implement GPU features in the existing MMTK codebase, the Open Molec-

ular Modelling (OpenMM) [34] library was employed. The goal of the OpenMM project is

38

CPU

GPU

RAM

BUS

LAN

HDD

HDD

HDD

Figure 2.2: A schematic of the flow of data in GPU-oriented computing. The transfer

bandwidth between the CPU and the GPU is limited, because data must traverse the

motherboard bus (blue arrows). Once the data has reached the GPU it can be rapidly

processed, so this is an example of a throughput oriented architecture.

39

to provide a universal interface to common molecular modelling routines (such as common

force fields and integrators) abstracted away from an underlying high performance imple-

mentation. In general, OpenMM is geared towards providing a computational backend to

developers of third-party chemistry programs, and not to end users. Currently, OpenMM

supports a CPU-based Reference implementation, considered the gold standard for numer-

ical accuracy and code readability, a cross-platform OpenCL implementation that supports

a variety of GPUs and CPUs, and a CUDA implementation that is specific to Nvidia GPUs

but provides maximum performance. In OpenMM parlance, these individual implementa-

tions are called Platforms. In order to run a simulation, a System object is created that

describes the geometry of the subject system, and Force objects are created to describe

the forces acting on the system. Also required is an Integrator object describing the

type of integrator to be utilized. The OpenMM runtime then selects the fastest available

Platform on which to run the simulation, and a Context is returned that represents the

implementation of the requested System on that Platform. Stepping through the simula-

tion via the Integrator.step() method then modifies the content of the Context, which

can be queried for information in the form of a State object, containing information such

as positions, velocities, and energies.

40

2.2 Software Architecture

The MMTK-OpenMM software is implemented via the MMTK Python to C language

bridge and the OpenMM C to C++/OpenCL/CUDA bridge. Essentially, the low-level C

code responsible for evaluating the potential and performing integration has all been re-

placed with calls to the OpenMM C API. The MMTK software is a subclass of Dynamics.

Integrator, which allows the user to treat it like any other MMTK integrator. The Python

level code is responsible for interrogating the contents of Universe.energyEvaluator

Parameters() to tease out the various components of the user’s selected force field. These

force field parameters are gathered up and sent into the lower level C code, where the

equivalent OpenMM Force objects are constructed. The Python code also records the

number of path integral beads requested, and calculates the maximum number of inte-

gration steps that can be skipped between observations of the system from user supplied

keywords. These parameters are passed into C integrator code, where an OpenMM System

class is prepared that mimics the MMTK Universe description. This includes extracting

information about periodic boundary conditions. During integration, OpenMM’s step

routine is called repeatedly in order to propagate the system in time, and getState is

used to extract desired information (coordinates, velocities, energies) from OpenMM and

report them via the standard MMTK PyTrajectory Output method. Thus, the input is

41

entirely native MMTK code, and the output is presented as though MMTK code was run.

The presence of OpenMM is entirely transparent, the only observed effect is the speedup

of the simulation.

There are a few noteworthy shortcomings of the implementation. Firstly, because the

overhead of transferring data to and from the GPU is considerable, the functionality of

the code is restricted to the set of features supported by OpenMM. For example: MMTK

supports removing centre of mass rotation from a simulation, but because OpenMM does

not, this feature is silently ignored. Furthermore, the code is designed to support the

AMBER force field and its derivatives; any custom forcefields must provide their own

OpenMM implementation, which requires modification to the source code. Lastly, PIMD is

currently not supported under CUDA which is the fastest available Platform in OpenMM.

In order to facilitate the inclusion of PIMD support via OpenMM, custom code was written

to create C language bindings to the RPMDIntegrator class that do not exist in OpenMM

proper. A full listing of code is included in Appendix A.

2.3 Results (Timings and Accuracy)

To benchmark the new code, the radial distribution function for q-SPC/Fw water [35] was

calculated in MMTK by a variety of codes. Briefly, the radial distribution function g(r)

42

[36] measures the probability of finding some atom A a given distance from another atom

B. It is computed by recording all interparticle distances between A and B over the course

of a trajectory and binning them. Classically, there is a single g(r) defined for a system,

but in PIMD there is both a centroid and quantum g(r). The centroid g(r) is computed by

first calculating the centroid of each path and treating the centroid as a classical particle,

while the quantum g(r) is computed by averaging the g(r) for each bead.

For the classical distribution function, the default MMTK LangevinIntegrator was

used, running with both 1 thread and 12 threads. The same distribution was prepared

using the OpenMM-MMTK code with the Reference, OpenCL, and CUDA platforms.

The relative speeds are plotted in Figure 2.3, and the results in Figures 2.4, 2.5, and 2.6.

The centroid and quantum g(r) were prepared in MMTK using the PILangevinNormal

ModeIntegrator and in MMTK-OpenMM with the Reference and OpenCL platforms.

Both codes are based around the PILE integrator. The relative speeds are plotted in

Figure 2.7, and the results in Figures 2.8, 2.9, and 2.10.

Due to the extremely long runtimes at higher numbers of beads, no additional g(r)

data is included, but an estimate of the runtimes for 16 beads is provided in Figure 2.11

Reference values for the g(r) are included in Figure 2.12.

From the results of the runtime benchmarking provided in Figures 2.3, 2.7, and 2.11, it

43

Figure 2.3: The absolute runtimes of a classical MD simulation using multiple codebases.

The system consisted of 69 q-SPC/Fw waters in a periodic box measuring 12 x 12 x 12

angstroms. The total simulation time was 50ps, the timestep was 0.1fs, and values were

reported every 0.1ps.

44

Figure 2.4: The values of the O-O g(r) for q-SPC/Fw water in the classical (one bead)

limit, as predicted by the different codebases.

45

Figure 2.5: The values of the O-H g(r) for q-SPC/Fw water in the classical (one bead)

limit, as predicted by the different codebases.

46

Figure 2.6: The values of the H-H g(r) for q-SPC/Fw water in the classical (one bead)

limit, as predicted by the different codebases.

47

Figure 2.7: The absolute runtimes of a PIMD simulation of 8 beads using multiple code-

bases. The system consisted of 69 q-SPC/Fw waters in a periodic box measuring 12 x 12

x 12 angstroms. The total simulation time was 50ps, the timestep was 0.1fs, and values

were reported every 0.1ps. The results for single core MMTK were extrapolated from a

10ps simulation due to the extremely slow runtime.

48

Figure 2.8: The values of the O-O g(r) for q-SPC/Fw water with 8 beads, as predicted by

the different codebases.

49

Figure 2.9: The values of the O-H g(r) for q-SPC/Fw water with 8 beads, as predicted by

the different codebases.

50

Figure 2.10: The values of the H-H g(r) for q-SPC/Fw water with 8 beads, as predicted

by the different codebases.

51

Figure 2.11: The absolute runtimes of a PIMD simulation of 16 beads using multiple

codebases. The system consisted of 69 q-SPC/Fw waters in a periodic box measuring 12 x

12 x 12 angstroms. For OpenCL, the total simulation time was 50ps, and for MMTK the

50ps runtime was estimated from at 12ps run. The timestep was 0.1fs, and values were

reported every 0.1ps.

52

Figure 2.12: Expected curves of g(r) of q-SPC/Fw water for O-O (a), O-H (b), and H-H

(c) distributions. Inset figures are at different magnifications. In all cases, the solid line is

PIMD, the dashed line is classical MD, and the dotted line is experimental data. Figure

from [35].

53

is obvious that the inclusion of GPU support in MMTK affords a massive gain in computa-

tional power. At larger values of P even fully multithreaded CPU code pales in comparison

to the performance offered by the OpenCL GPU code. Overall, the g(r) values measured

are similar but there are some slight differences, especially in the case of PIMD. This could

perhaps be attributed to slight implementation differences, for example, the way that long-

range force cutoffs are handled. Alternatively, the OpenMM GPU code can only run in

single precision, so numeric effects could be responsible for the discrepancy. It should be

noted that the underlying OpenMM PIMD code is beta quality, the release quality code

has yet to be tested. Further research is required to ascertain the source of this error.

54

Chapter 3

LE-PIGS theory

In this section, the Path Integral Ground State (PIGS) [37] MD method for determination

of the nuclear ground state density is introduced. It is demonstrated that through a

Discrete Cosine Transform (DCT) rather than the DFT, the PIGS MD problem can be

reformulated in terms of normal modes. These normal modes can then be propagated

using the PILE to circumvent inherent ergodicity problems in the high-P limit. This novel

combination of the PILE and PIGS method is referred to as the Langevin Equation Path

Integral Ground State (LE-PIGS) method.

55

3.1 Nuclear Ground States

One system of interest is 4He [38] [39] [40] [41]. This isotope of Helium is known to form an

exotic phase of matter at extremely low temperatures, known as a superfluid. Superfluid

4He displays a variety of unique properties, such as zero viscosity flow and the ability to

flow against gravity out of an unsealed container via interactions with the container walls.

The superfluid phase is thought to consist partially of a Bose-Einstein condensate of

4He. Bosons do not obey the Pauli exclusion principle; many particles are allowed to exist

in the same quantum state. A Bose-Einstein condensate is a collections of bosons that

have all settled into the same quantum state: the ground state. Clearly, to understand the

behaviour of superfluid 4He requires knowledge of its ground state. In order to probe the

nuclear ground state properties of a bosonic system, consider the following state vector:

Φ(x) = lim
β→∞

∫
dx′〈x|e−

β
2
Ĥ |x′〉ψT (x′) (3.1)

for some trial wavefunction |ψT 〉. The complete set of energy eigenstates of the system,

∞∑
n=0

|n〉〈n| = 1 , (3.2)

56

can be inserted to yield

Φ(x) = lim
β→∞

∫
dx′〈x|

∞∑
n=0

e−
β
2
En|n〉〈n|x′〉ψT (x′) , (3.3)

where the relation

e−
β
2
Ĥ |n〉 = e−

β
2
En|n〉 (3.4)

has been used. Consider the term

lim
β→∞

∞∑
n=0

e−
β
2
En . (3.5)

Equation (3.5) can be written in terms of a Chebyshev distance:

Dβ = lim
β→∞

(
∞∑
n=0

[
e−

En
2

]β) 1
β
β

(3.6)

which reduces to

Dβ = max
{
e−

En
2

}β
. (3.7)

The ground state energy E0 is by definition the smallest value of E that can be measured,

and therefore

Dβ =
(
e−

E0
2

)β
= e−

β
2
E0 . (3.8)

57

By this reasoning, Equation (3.3) simplifies to

Φ(x) =

∫
dx′〈x|e−

β
2
E0|n0〉〈n0|x′〉ψT (x′) . (3.9)

Terms that do not depend on x′ are constant with respect to integration, can can be

factored out of the integrand:

Φ(x) = e−
β
2
E0〈x|n0〉

∫
dx′〈n0|x′〉ψT (x′) (3.10)

Φ(x) = e−
β
2
E0n0(x)

∫
dx′n†0(x′)ψT (x′) (3.11)

Φ(x) = e−
β
2
E0n0(x)〈n0|ψT 〉 (3.12)

Φ(x) = ce−
β
2
E0n0(x) . (3.13)

As long as the overlap of the chosen trial function and the ground state, 〈n0|ΨT 〉, is

nonzero, Φ(x) will always be proportional to the exact energy eigenfunction ground state.

An expression for the average of some property A in the ground state is therefore:

〈A〉0 = lim
β→∞

〈Φ|Â|Φ〉
〈Φ|Φ〉

= lim
β→∞

1

Z0

〈Φ|Â|Φ〉 . (3.14)

58

The number Z0 is a pseudo partition function given by

Z0 =

∫
dx

∫
dx′ψT (x)〈x|e−βĤ |x′〉ψT (x′) . (3.15)

Observant readers will note that this expression is similar to the partition function in

PIMD, and can be solved via Trotter factorization [42]. While higher-order factorizations

are possible [43], a second order factorization is employed here:

Z0 = lim
P→∞

∫
dx1 . . .

∫
dxP−1

∫
dx′ψT (x1)

P−1∏
i=1

[〈xi|ρ|xi+1〉] 〈xP−1|ρ|x′〉ψT (x′) , (3.16)

with

ρ = e
−β

2(P−1)
V̂ e

−β
(P−1)

K̂e
−β

2(P−1)
V̂ . (3.17)

The notation of splitting P −1 times is merely a convenient notation, since the 〈xP−1|ρ|x′〉

term contributes an extra density matrix there will be P terms total. Therefore, x′ will be

relabelled as xP . Furthermore, τ = β/(P − 1) will be introduced as a shorthand notation.

The matrix elements can be evaluated analytically as in PIMD to yield

Z0 = lim
P→∞

∫
dx1 . . .

∫
dxPψT (x1) exp

{
−τ

[
P−1∑
i=1

[mω2
P−1(xi − xi+1)2] +

P∑
i=1

[ciV (xi)]

]}
ψT (xP)

(3.18)

59

where ωP−1 = 1/τ~ and ci is a scaling factor that acts on the potential:

ci =

1
2

if i = 1 or i = P

1 otherwise.

(3.19)

Note that for a ground state (nodeless) trial wavefunction it is always true that

ψT (x) = exp{ln[ψT (x)]} . (3.20)

Now a new potential, V ′i can be introduce to simplify Equation (3.18):

V ′i (xi) =

1
2
V (xi)− 1

τ
ln[ψT (xi)] if i = 1 or i = P

V (xi) otherwise.

(3.21)

Substituting V ′i into Equation (3.18) gives

Z0 = lim
P→∞

∫
dx1 . . .

∫
dxP exp

{
−τ

[
P−1∑
i=1

[mω2
P−1(xi − xi+1)2] +

P∑
i=1

[V ′i (xi)]

]}
(3.22)

which can be sampled in a variety of ways. Popular approaches include Diffusion Monte

Carlo (DMC) [44], Green’s Function Monte Carlo (GFMC) [45] [46], and Path Integral

Ground State Monte Carlo (PIGSMC) [37] [47] [48] [49]. Equation (3.22) can also be

60

sampled via MD by introducing fictitious momenta, analogous to PIMD. In PIMD there

is a circular polymer of beads, but Equation (3.22) describes an open chain polymer with

an extra force on the first and last beads. Furthermore, this integral is not invariant under

cyclical renaming of {xi}, so properties cannot be taken as an average over all beads as in

PIMD. Consider the expanded expression for 〈A〉0:

〈A〉0 = lim
β→∞

1

Z0

∫
dx

∫
dx′ψT (x)〈x|e−

β
2
ĤÂe−

β
2
Ĥ |x′〉ψT (x′) . (3.23)

Each of the two density operators may be Trotter factorized (P − 1)/2 times to give

〈A〉0 = lim
β→∞

lim
P→∞

1

Z0

∫
dx

∫
dx′ψT (x)〈x|ρ

(P−1)
2

1
2

Âρ
(P−1)

2
1
2

|x′〉ψT (x′) (3.24)

with

ρ 1
2

= e
−2β

4(P−1)
V̂ e

−2β
2(P−1)

K̂e
−2β

4(P−1)
V̂ = ρ . (3.25)

A total of P − 1 sets of states may be inserted to give

〈A〉0 = lim
β,P→∞

1

Z0

∫
dx1 . . .

∫
dxPψT (x1)〈x1| . . . |ρ|xP+1

2
〉Â〈xP+1

2
|ρ| . . . |xP 〉ψT (xP) ,

(3.26)

where x′ has been relabelled to xP . Note that this formula requires the existence of xP+1
2

,

61

i.e. P must be odd. The matrix elements can be solved to yield:

〈A〉0 = lim
β,P→∞

1

Z0

∫
dx1 . . .

∫
dxPA(xP+1

2
) exp

{
−τ

[
P−1∑
i=1

[mω2
P−1(xi − xi+1)2] +

P∑
i=1

[V ′i (xi)]

]}
,

(3.27)

and so averages of properties in the ground state are measured at the middle bead. This is

referred to as the primitive estimator of A in PIGS. Note that for A = 1 the expression for

the partition function Z0 is recovered since e
−β
2
Ĥe

−β
2
Ĥ = e−βĤ , and so 〈1〉 = 1 as expected.

For properties that commute with the density operator ρ, such as Ĥ, it is possible to

derive a mixed estimator. This estimator involves moving the position of Ĥ in the integrand

all the way to the right-hand side, so that it acts on ψT :

〈E〉0 = lim
β,P→∞

1

Z0

∫
dx1

∫
dxPψT (x1)

P−1∏
i=1

〈xi|ρ|xi+1〉ĤψT (xP) . (3.28)

This can be compactly represented as:

〈E0〉mixed =

〈
ĤψT (xP)

ψT (xP)

〉
. (3.29)

which, since Ĥ is Hermitian, is symmetrically equivalent to

〈E0〉mixed =

〈
ĤψT (x1)

ψT (x1)

〉
. (3.30)

62

In practice, the average of the xP and x1 values can be used in order to provide enhanced

sampling.

3.2 Derivation of LE-PIGS Equations

The total Hamiltonian for a classical system that will sample the path integral of Equation

(3.27) is given thusly:

H(p̄, q) =
P∑
i=1

p̄2
i

2m̄
+

P−1∑
i=1

[mω2
P−1(xi − xi+1)2] +

P∑
i=1

[V ′i (xi)] , (3.31)

which is sampled at the reduced inverse temperature τ = β/(P −1). The mω2
P−1 prefactor

of the inter-bead spring terms suffers from similar scaling issues as the analogous term in

PIMD; an increase of P toward the limit results in a stiffening of the spring terms and

non-ergodic behaviour. Consider the PIGS inter-bead spring term:

V ′spring =
P−1∑
i=1

1

2
mω2

P−1(xi − xi+1)2 . (3.32)

63

Unlike PIMD, there is no circularity condition. The Hessian matrix of this potential is

H(V ′spring) =

1 0 0 0 0

−1 2 −1 0 0

0
. 0

0 0 −1 2 −1

0 0 0 0 1

(3.33)

A matrix of this form can be diagonalized by the Discrete Cosine Transform (DCT) [50]

[51] matrix. The DCT has the following form:

DCTN = Ck

1 1 1 . . . 1

1 cos
(
π(1/2)
N

)
cos
(
π(3/2)
N

)
. . . cos

(
π(i−1/2)

N

)
1 cos

(
π(1/2)2
N

)
cos
(
π(3/2)2
N

)
. . . cos

(
π(i−1/2)2

N

)
...

...
...

. . .
...

1 cos
(
π(1/2)k
N

)
cos
(
π(3/2)k
N

)
. . . cos

(
π(i−1/2)k

N

)

, (3.34)

The normalization constant Ck ensures that the transform is unitary:

Ck =

√

1
N

if k = 0√
2
N

otherwise.

(3.35)

64

In these modified normal mode coordinates, the Hessian takes on a simplified form

H ′(V ′spring) = DCT†PH(V ′spring)DCTP =

0 0 0 0 0

0 f1 0 0 0

0 0 f2 0 0

0 0 0
. . . 0

0 0 0 0 fP−1

, (3.36)

analogous to the modified potential in PIMD. The potential V ′spring can then be restated in

terms of the normal mode positions, {x̃k}:

V ′spring(x̃) =
P−1∑
k=0

1

2
mω2

k(x̃k)
2 , (3.37)

with ωk = 2ωP−1 sin(kπ/(2P))This modified potential leads to a transformed Hamiltonian

in normal mode space,

H̃(p̄, q) =
P∑
i=1

p̄2
i

2m̄
+

P−1∑
k=0

1

2
mω2

kq̃
2
k +

P∑
i=1

V ′i (qi) . (3.38)

Note that the form Equation (3.38) is identical to the starting point in the derivation of

the PILE thermostat. This implies that already existing PILE integrator code can be used

to perform PIGS, since the only differences are the use of the DCT instead of DFT in

65

defining x̃k and the different values of ωk. This application of the PILE to integrating the

PIGS Hamiltonian via the DCT we refer to as LE-PIGS.

3.3 Implementation

By beginning with the existing implementation of the PILE in MMTK, converting the

code to perform LE-PIGS itself is rather straightforward. A setTrialWave() method was

added to MMTK’s Atom class in order to set a trial wavefunction. This method adds a

forcefield to the system that is intended to only act on the first and last bead. Due to

restrictions in the underlying code, the trial wavefunction is assumed to be of the form

ψT (x) = e−τ[f(x)+
V (x)

2] , (3.39)

and only evaluation of f(x) needs to be programmed. The reason that this form is adopted

is that in PIMD code the potential energy function is scaled evenly for all beads, where it

should be scaled by 1/2 for the end beads. The form follows directly from this restriction.

In order to compare to literature, it is of interest to examine the ψT (x) = 1 case. To

implement this, it is required that f(x) = −V (x)/2 so that

ψT (x) = e−τ[f(x)+
V (x)

2] = e−τ[−
V (x)

2
+
V (x)

2] = e−τ [0] = 1 . (3.40)

66

In this simple case

〈E0〉mixed = 〈V (xP)〉 , (3.41)

since the wavefunction is constant and therefore has a derivative of zero. Regrettably, the

MMTK code does not allow for access to V at a specific bead, so these energy estimators

must be coded by hand.

The PILE code from MMTK was converted to use the FFTW REDFT10 method of FFTW

[52] for the forward DCT and FFTW REDFT01 as the reverse DCT. The FFTW package

provides O(n log n) time algorithms for both the forward and backward DCT. The modes

of the DCT are weighted unevenly (i.e. Ck varies for k = 0), so the unitary transform was

applied. This means that {x̃i} are normalized both on the forward and reverse transforms.

The normalization therefore formally takes twice as long as PIMD but this time is quite

small, and the normal mode space code is slightly simplified in this basis. The only other

changes required to implement LE-PIGS are changing

ωk = 2ωP sin

(
kπ

P

)
(3.42)

to

ωk = 2ωP−1 sin

(
kπ

2P

)
(3.43)

67

3.4 Results and Examples

Consider the simple example of a free particle. In this case V (x) = 0, and so the only

potential term derives from the inter-bead spring term:

H̃free(p̄, q) =
P∑
i=1

p̄2

2m̄
+

P−1∑
k=0

1

2
mω2

kq̃
2
k . (3.44)

Assuming γc is set to zero, the results of this path integral are known analytically. The

k = 0 mode will experience a free ballistic trajectory, while all higher modes will be

distributed as a gaussian with σ = (τmω2
k)
−1

. This result is what is obtained from the

MMTK LE-PIGS code, as shown in Figure 3.1. This result is reassuring that the LE-PIGS

integrator functions as expected.

For a slightly more complicated example, consider the harmonic oscillator. The poten-

tial for this system is

VHO(x) =
1

2
kHOx

2 , (3.45)

where kHO = 1 in atomic units. The ground state density, 〈x〉0, is known to form a gaussian

distribution. When expressed in atomic units, the ground state energy is known to be 1Eh,

with kinetic and potential energies each contributing 0.5Eh.

The issue of limits must be discussed in order to examine the energies of this system.

68

Figure 3.1: The variance of the position distribution of the various modes of a free particle.

The distributions reproduce the expected variance from Equation (3.44).

69

As β tends towards ∞, the energy reported by the LE-PIGS energy estimator will tend

towards the true E0 as e−β. However, as P tends towards∞, the energy will tend towards

E0 as −τ−2. This effect is due to the nature of the Trotter factorization employed. In

essence,

eA+B ≈
(
e
B
2P e

A
P e

B
2P

)P
+O(P 2) , (3.46)

with the exact result being obtained in the limit of P → ∞. A plot of reported E0 vs τ

should yield a parabolic convergence to the exact value of E0 [53]. In this manner, the

limit of P →∞ may be extrapolated from the graph, as seen in Figure 3.2.

Convergence to the correct value (within standard error) is achieved. The optimal choice

of γ0 for the harmonic oscillator is an interesting problem. Formally, the relationship

γ0 =
1

2τ0

(3.47)

should apply, with τ0 equal to the correlation time of the centroid mode. In the harmonic

oscillator, the centroid motion does not decorrelate, so the correlation time is infinite,

leading to a γ0 value of 0. For this model, Müser’s rule of thumb [54] is employed and γ0

is set to 0.01/∆t.

70

Figure 3.2: Convergence of E0 with respect to simulation parameters β (top panel) and τ

(bottom panel) for the harmonic oscillator.

71

For the quartic and double well potentials the following potentials are used:

VQ(x) = kQx
4 , (3.48)

VDW(x) = aDWx
2 + bDWx

4 , (3.49)

with kQ = 0.25, aDW = −0.5, and bDW = 0.1 in atomic units. Numerical solutions for

the convergence in τ can be evaluated by explicitly constructing the density matrix ρ and

performing matrix multiplication. This technique is used to generate the exact values

of E0 for the quartic oscillator and double well potentials, seen in Figures 3.3 and 3.4,

respectively.

The convergence in τ approaches the exact value for all three systems, within standard

error. This is a strong indicator that the implementation is functioning as intended. The

varying magnitude of the error across the models is a reflection of the difficulty of converging

that parameter in simulation time. It is concluded that a novel method for ground state

property prediction, LE-PIGS, has been created as a synthesis of the PIGS and PILE

methods. The full extent of the power of this method has yet to be explored, but by

analogy to related PIMD methods, it should provide better results than vanilla PIGS

when high-P/low-τ regimes are under consideration because of the known ergodicity issue

with ωP .

72

Figure 3.3: Convergence of E0 with respect to simulation parameters β (top panel) and τ

(bottom panel) for the quartic oscillator.

73

Figure 3.4: Convergence of E0 with respect to simulation parameters β (top panel) and

τ(bottom panel) for the double well potential.

74

Chapter 4

Conclusions

With the advent of widespread GPU computing and specialized GPGPU computing units,

MD simulations of large systems for long timescales have become feasible. By leveraging

the work of the OpenMM project, GPU computing support has been incorporated into

MMTK and the result is a marked drop in overall runtime for both classical MD and PIMD.

While initial forcefield support is limited, arbitrary system configurations are supported.

Furthermore, additional forcefields can be supported, but OpenMM implementations must

be provided and there is currently no way to load these implementations dynamically. The

O-O, OH, and H-H radial distribution functions of water were reproduced with moderate

accuracy by the new MMTK-OpenMM code, implying that it there may be some underlying

bugs. The computational overhead associated with the addition of many path integral

75

beads was shown to be ameliorated when running simulations on the GPU.

A new tool for studying the ground state properties of arbitrary molecular systems has

been realized in the LE-PIGS method. While the method is in its infancy and hasn’t been

comprehensively benchmarked against popular methods such as DMC, it has given good

results for a variety of model systems. The main advantages over currently available codes

are the ability to handle general systems without designing moves (a limitation of Monte

Carlo approaches) and an efficient normal mode representation currently unavailable in

existing PIGSMD codes. It is known that analogous PIMD codes suffer from ergodic-

ity problems when integrated in cartesian space, so this representation should provide

enhanced sampling of the canonical ensemble.

4.1 Future Work

At the time when this project was undertaken, OpenMM existed solely as a computational

backend meant to be integrated into existed MD codes. However, under pressure from

the scientific community, a Python-based frontend has been introduced to the OpenMM

project, not unlike the MMTK-OpenMM code described here. However, compared to

MMTK, this OpenMM Python environment has only the basic functionality required to

run a simulation. Since both codes are open source and written in Python, there is potential

76

for cross-pollination of features between the two codebases. In particular, it may be possible

to rewrite the MMTK-OpenMM bridge such that an intermediate C layer is not required,

depending on the approach taken by the OpenMM Python code.

While MMTK is rapidly scriptable and it is easy for anyone to code their own cus-

tom potential, this flexibility does not necessarily extend to OpenMM. OpenMM provides

a fixed number of forcefield primitives that have been integrated into MMTK so that

AMBER-type molecular mechanics force fields are supported, with arbitrary parameter

files. However, for many interesting systems, a custom potential function is desired. In

MMTK this can be programmed with Python and/or C, but there is currently no way to

inform the OpenMM backend of any nonstandard potentials. It is therefore desirable that

the MMTK ForceField class be extended to provide an option of embedding OpenMM

code, for example in a OpenMMImplementation() function, that will be passed into the

underlying C code and executed. This is feasible since OpenMM embeds a small language

that can be used to provide the functional form of a potential in terms of basic math-

ematical functions. Another option would be to provide a precomputed array of values

describing the potential on a grid, for which OpenMM has some limited support.

The benchmarking of various codes have confirmed the notion that for Nvidia GPUs,

the fastest execution results from programs written in CUDA C code. It is therefore

desirable to extend the current OpenMM PIMD code to the CUDA Platform so that

77

available hardware may be used to its fullest extent. Due to the open source nature of the

OpenMM libraries, it should be feasible to go through the current OpenCL implementation

of PIMD and replace OpenCL-specific syntax with the equivalent CUDA code, especially

since both languages are based on C. A CUDA-enabled PIMD integrator may achieve even

greater speedups than those already highlighted in this report.

The integrator used for PIMD in OpenMM is the PILE. Due to the similarities be-

tween the LE-PIGS method and the PILE method, this OpenMM code can fairly easily

be rewritten to provide GPU accelerated ground state code. To my knowledge, this would

be the first such code in existence. The advantages of such a code are twofold: Larger

systems up to the size of proteins and polymers could have their ground state energies

deduced, and the increased number of beads and length of time afforded by the newfound

efficiency would allow for vibrational spectroscopy of macromolecules and clusters. The

ground state of a protein could be of interest, especially at the active site of an enzyme,

where complicated reaction kinetics take place which may be affected by the gap between

the bottom of the potential and the zero-point energy. Vibrational spectra can be ex-

tracted from PIGS trajectories by computing a correlation function in τ [55]. By utilizing

OpenMM to perform the integration of PIGS equations it will be possible to achieve these

long simulations in shorter wall clock time, as demonstrated for PIMD, especially where

large numbers of beads are required.

78

The trial wavefunction, ψT (x), is of central importance in PIGS. The trial function

should try to maximize the overlap with the true ground state to accelerate convergence

of the simulation. For simple model systems it is possible to provide a trial function that

is exactly the form of the true ground state, but for complex molecular systems this is not

generally true. One possible idea for a trial function of a molecular system is a sum of

gaussian functions of the distance between atoms. This description arises from fact that

the exact quantum mechanical solution of the harmonic oscillator is a gaussian, and bonds

are often treated as harmonic oscillators for large systems. Such a trial function would be

of the form:

ψT (x) =
N∑
i=1

e
−
(
ri−µi
σi

)2

(4.1)

for some total number N of gaussians, each having mean µi and deviation σi, and ri being

the distance between two atoms of interest. Clearly µi is related to the equilibrium length

of the bond and σi to its strength, but how exactly to construct these functions is an area

yet to be explored. The energy of such a system will be easy to compute, since

∂2

∂x2
e−x

2

= (x2 − 1)e−x
2

(4.2)

and the laplacian distributes linearly across the sum. With proper tuning, a trial wavefunc-

tion could potentially be constructed automatically from the parameters of an AMBER-

79

style potential. This approach could be especially useful in dealing with organic molecules,

which are well described by these kinds of potentials.

One open question in the LE-PIGS theory is that of centroid dynamics. In PIMD, the

centroid (or k = 0 Fourier mode) is identified as the “most classical” degree of freedom of

the quantum system. The centroid is implicated in various semi-classical theories such a

Quantum Transition State Theory (QTST) [56] and Centroid Molecular Dynamics (CMD)

[57]. In LE-PIGS we have identified that the DCT diagonalizes the Hessian of the inter-bead

spring potential, and thus the k = 0 mode may also play a special role in the dynamics

of the ground state. One notable difference is that in PIMD the centroid consists of

contributions from all beads, each of which may be considered as contributing equally of

the average of A since the path integral for PIMD is invariant under cyclic relabelling of

the bead indices, whereas in PIGS the only bead that contributes to the average is the

middle bead. However, for properties that commute with the density matrix ρ such as

the Hamiltonian Ĥ, it is possible to move the operator to an arbitrary bead and act with

it there, and in such a manner contributions from all beads could be considered. It is

currently unknown whether or not such an approach is theoretically justified, but it may

be worthy of further investigation as it would yield correlation functions in time for ground

state systems.

Of course, one obvious area of study is the application of LE-PIGS beyond model sys-

80

tems. Investigations in this area are currently underway, in particular with applications to

the ground state energies of small metal clusters. Preliminary results show good agreement

with results from PIMC simulations. In the future, it is expected that GPU accelerated

LE-PIGS will be able to handle a wide variety of systems that were previously unreachable

due to computational constraints.

81

References

[1] H. Goldstein, Classical mechanics, Addison-Wesley series in physics (Addison-Wesley

Pub. Co., 1980).

[2] L. Verlet, Physical Review 159, 98 (1967).

[3] J. Kestemontand, Journal of Computational Physics 458, 451 (1976).

[4] M. E. Tuckerman and G. J. Martyna, The Journal of Physical Chemistry B 104, 159

(2000).

[5] D. McQuarrie, Statistical Mechanics (University Science Books, 2000).

[6] D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press,

USA, 1987).

[7] R. Wilde and S. Singh, Statistical mechanics: fundamentals and modern applications,

A Wiley-Interscience publication (Wiley, 1998).

82

[8] H. C. Andersen, The Journal of Chemical Physics 72, 2384 (1980).

[9] D. J. Evans and B. L. Holian, The Journal of Chemical Physics 83, 4069 (1985).

[10] G. J. Martyna, M. L. Klein, and M. Tuckerman, The Journal of Chemical Physics

97, 2635 (1992).

[11] M. Ceriotti, M. Parrinello, T. E. Markland, and D. E. Manolopoulos, The Journal of

Chemical Physics 133, 124104 (2010).

[12] D. S. Lemons, A. Gythiel, and P. Langevin, American Journal of Physics 65, 1079

(1997).

[13] G. Bussi and M. Parrinello, Physical Review E 75 (2007).

[14] Mizumoto, Chemical Physics Letters 501, 304 (2010).

[15] K. F. Wong, J. L. Sonnenberg, F. Paesani, T. Yamamoto, J. Vanicek, W. Zhang, H. B.

Schlegel, D. A. Case, T. E. Cheatham III, and W. H. Miller, Journal of Chemical

Theory and Computation 6, 2566 (2010).

[16] R. Feynman and A. Hibbs, Quantum mechanics and path integrals, International

series in pure and applied physics (McGraw-Hill, 1965).

[17] M. F. Herman, E. J. Bruskin, and B. J. Berne, The Journal of Chemical Physics 76,

5150 (1982).

83

[18] H. Kono, A. Takasaka, and S. H. Lin, The Journal of Chemical Physics 88, 6390

(1988).

[19] D. Chandler and P. G. Wolynes, The Journal of Chemical Physics 74, 4078 (1981).

[20] K. S. Schweizer, The Journal of Chemical Physics 75, 1347 (1981).

[21] R. G. Woolley and B. T. Sutcliffe, Chemical Physics Letters 45, 393 (1977).

[22] J. Anderson, International Reviews in Physical Chemistry 14, 85 (1995).

[23] M. E. Tuckerman, Path Integration via Molecular Dynamics, in Quantum Simula-

tions of Complex Many-Body Systems, volume 10, pages 269–298, John von Neumann

Institute for Computing, 2002.

[24] H. F. Trotter, Proceedings of the American Mathematical Society 10, 545 (1959).

[25] M. Müser, Computer physics communications 147, 83 (2002).

[26] M. F. Herman, The Journal of Chemical Physics 76, 5150 (1982).

[27] R. W. Hall and B. J. Berne, The Journal of Chemical Physics 81, 3641 (1984).

[28] M. Ceriotti, G. Bussi, and M. Parrinello, Journal of Chemical Theory 6, 1170 (2010).

[29] C. Ing, K. Hinsen, J. Yang, T. Zeng, H. Li, and P.-N. Roy, The Journal of Chemical

Physics 136, 224309 (2012).

84

[30] K. Hinsen, Journal of Computational Chemistry 21, 79 (2000).

[31] U. Borštnik, B. T. Miller, B. R. Brooks, and D. Janežič, Journal of Computational

Chemistry 32, 3005 (2011).

[32] M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A. L. Beberg,

D. L. Ensign, C. M. Bruns, and V. S. Pande, Journal of Computational Chemistry

30, 864 (2009).

[33] J. E. Stone, D. Gohara, and G. Shi, Computing in Science & Engineering 12, 66

(2010).

[34] V. Pande, Computing in Science & Engineering 12, 34 (2010).

[35] F. Paesani, W. Zhang, D. A. Case, T. E. Cheatham, and G. A. Voth, The Journal of

chemical physics 125, 184507 (2006).

[36] A. Rahman, Physical Review 136, A405 (1964).

[37] A. Sarsa, K. E. Schmidt, and W. R. Magro, The Journal of Chemical Physics 113,

1366 (2000).

[38] P. Whitlock, D. Ceperley, and G. Chester, Physical Review B 19, 5598 (1979).

[39] P. Sindzingre and M. Klein, Physical Review Letters 63, 1601 (1989).

85

[40] D. Ceperley, Reviews of Modern Physics 67 (1995).

[41] J. E. Cuervo, P.-N. Roy, and M. Boninsegni, The Journal of Chemical Physics 122,

114504 (2004).

[42] S. Miura, Chemical Physics Letters 482, 165 (2009).

[43] R. Rota, J. Casulleras, F. Mazzanti, and J. Boronat, Physical Review E 81, 1 (2010).

[44] B. Hetenyi, E. Rabani, and B. J. Berne, The Journal of Chemical Physics 110, 6143

(1999).

[45] D. Ceperley, Journal of Statistical Physics 43 (1986).

[46] J. Carlson, Physical Review C 36, 2026 (1987).

[47] D. E. Galli and L. Reatto, Molecular Physics 101, 1697 (2003).

[48] R. J. Hinde, Chemical Physics Letters 418, 481 (2006).

[49] J. E. Cuervo and P.-N. Roy, The Journal of Chemical Physics 125, 124314 (2006).

[50] P. Garcia and A. Peinado, Signal Processing, 43, 2631 (1995).

[51] C. J. Burnham, G. F. Reiter, J. Mayers, T. Abdul-Redah, H. Reichert, and H. Dosch,

Physical Chemistry Chemical Physics 8, 3966 (2006).

86

[52] M. Frigo and S. G. Johnson, Proceedings of the IEEE 93, 216 (2005), Special issue

on “Program Generation, Optimization, and Platform Adaptation”.

[53] N. Blinov, X. Song, and P.-N. Roy, The Journal of Chemical Physics 120, 5916 (2004).

[54] M. H. Müser, The Journal of Chemical Physics 114, 6364 (2001).

[55] S. Moroni, M. Botti, S. De Palo, and A. R. W. McKellar, The Journal of Chemical

Physics 122, 094314 (2005).

[56] F. McLafferty and P. Pechukas, Chemical Physics Letters 27, 511 (1974).

[57] J. Cao and G. A. Voth, The Journal of Chemical Physics 101, 6168 (1994).

87

Appendix A

List of Code

A.1 Python Layer: LangevinDynamics.py

from MMTK import Dynamics, Environment, Features, Trajectory,

Units, ParticleProperties

import numpy as N

from MMTK.Features import PathIntegralsFeature

import MMTK langevin

import MMTK forcefield

import operator, copy

#

88

Langevin integrator

#

class LangevinIntegrator(Dynamics.Integrator):

def init (self, universe, **options):

Dynamics.Integrator. init (self, universe, options)

Supported features: path integrals, to do PIMD

self.features = [PathIntegralsFeature]

assert PathIntegralsFeature.isInUniverse(universe)

self.nbeads = universe.maxNumberOfBeads()

#def initOmmSystem(self):

atoms = self.universe.atomList()

masses = [atom.mass() for atom in atoms]

MMTK langevin.initOpenMM(N.array(masses, dtype=N.float64), len(atoms))

def initOmmSystem(self):

atoms = copy.copy(self.universe.atomList())

atoms.sort(key=operator.attrgetter(’index’))

masses = [atom.mass() for atom in atoms]

MMTK langevin.initOpenMM(N.array(masses, dtype=N.float64), len(atoms))

89

def destroyOmmSystem(self):

MMTK langevin.destroyOpenMM()

def addOmmCMRemover(self, skip):

MMTK langevin.addCMRemover(skip)

def createOmmForces(self):

params = self.universe.energyEvaluatorParameters()

natoms = len(self.universe.atomList())

nbeads = self.nbeads

#here we convert MMTK’s internal representation of the forcefield parameters

#to OpenMM. For a new MMTK forcefield to work, it must implement the

#energyEvaluatorParameters method, and this code must be modified to make use

#of those parameters

#first, lets start with the bonded forcefield

bonds = params[’harmonic distance term’]

atom index 1 = []

atom index 2 = []

eq distance = []

90

spring k = []

for bond in bonds:

if ((bond[0] % nbeads == 0) and (bond[1] % nbeads == 0)):

atom index 1.append(bond[0]/nbeads)

atom index 2.append(bond[1]/nbeads)

eq distance.append(bond[2])

spring k.append(bond[3])

MMTK langevin.makeOmmBondedForce(N.array(atom index 1, dtype=N.int32),

N.array(atom index 2, dtype=N.int32),

N.array(eq distance, dtype=N.float64),

N.array(spring k, dtype=N.float64),

len(atom index 1))

#angles

angles = params[’harmonic angle term’]

atom index 1 = []

atom index 2 = []

atom index 3 = []

eq angle = []

91

spring k = []

for angle in angles:

if ((angle[0] % nbeads == 0) and (angle[1] % nbeads == 0) and (angle[2] % nbeads == 0)):

atom index 1.append(angle[0]/nbeads)

atom index 2.append(angle[1]/nbeads)

atom index 3.append(angle[2]/nbeads)

eq angle.append(angle[3])

spring k.append(angle[4])

MMTK langevin.makeOmmAngleForce(N.array(atom index 1, dtype=N.int32),

N.array(atom index 2, dtype=N.int32),

N.array(atom index 3, dtype=N.int32),

N.array(eq angle, dtype=N.float64),

N.array(spring k, dtype=N.float64),

len(atom index 1))

#dihedrals

dihedrals = params[’cosine dihedral term’]

atom index 1 = []

atom index 2 = []

92

atom index 3 = []

atom index 4 = []

periodicity = []

eq dihedral = []

spring k = []

for dihedral in dihedrals:

if ((dihedral[0] % nbeads == 0) and (dihedral[1] % nbeads == 0) and (dihedral[2] % nbeads

== 0) and (dihedral[3] % nbeads == 0)):

atom index 1.append(dihedral[0]/nbeads)

atom index 2.append(dihedral[1]/nbeads)

atom index 3.append(dihedral[2]/nbeads)

atom index 4.append(dihedral[3]/nbeads)

periodicity.append(dihedral[4])

eq dihedral.append(dihedral[5])

spring k.append(dihedral[6])

MMTK langevin.makeOmmDihedralForce(N.array(atom index 1, dtype=N.int32),

N.array(atom index 2, dtype=N.int32),

N.array(atom index 3, dtype=N.int32),

N.array(atom index 4, dtype=N.int32),

N.array(periodicity, dtype=N.int32),

N.array(eq dihedral, dtype=N.float64),

93

N.array(spring k, dtype=N.float64),

len(atom index 1))

#now, nonbonded forces

lj = params[’lennard jones’]

lj 14 factor = lj[’one four factor’]

lj cutoff = lj[’cutoff’]

e s matrix = lj[’epsilon sigma’]

epsilon list = []

sigma list = []

for i in range(0, len(e s matrix)):

epsilon, sigma = e s matrix[i][i]

epsilon list.append(epsilon)

sigma list.append(sigma)

#contains per-particle information, but we want per-atom

e s types = lj[’type’]

epsilon p = [] # per-particle epsilons

sigma p = [] # per-particle sigmas

94

for type in e s types:

epsilon p.append(epsilon list[type])

sigma p.append(sigma list[type])

epsilon = [] # per-atom epsilons

sigma = [] # per-atom sigmas

for i in range(0,natoms*self.nbeads,self.nbeads):

epsilon.append(epsilon p[i])

sigma.append(sigma p[i])

#now epsilon and sigma contain the correct values in the correct order

elec = params[’electrostatic’]

elec 14 factor = elec[’one four factor’]

elec cutoff = elec[’real cutoff’] #for step 0

#elec cutoff = elec[’cutoff’] #for example

charge p = elec[’charge’] # per-particle charges

elec method = elec[’algorithm’]

charge = [] # per-atom charges

95

for i in range(0,natoms*self.nbeads,self.nbeads):

charge.append(charge p[i])

MMTK langevin.makeOmmEsAndLjForce(N.array(sigma, dtype=N.float64),

N.array(epsilon, dtype=N.float64),

N.array(charge, dtype=N.float64),

elec 14 factor,

lj 14 factor,

elec cutoff,

len(sigma))

def call (self, **options):

Process the keyword arguments

self.setCallOptions(options)

Check if the universe has features not supported by the integrator

Features.checkFeatures(self, self.universe)

#the following two lines are required due to MMTK mixing up atom indices. This sorts them.

#atoms = self.universe.atomList()

#atoms.sort(key=operator.attrgetter(’index’))

Get the universe variables needed by the integrator

96

configuration = self.universe.configuration()

velocities = self.universe.velocities()

if velocities is None:

raise ValueError("no velocities")

Get the friction coefficients. First check if a keyword argument

’friction’ was given to the integrator. Its value can be a

ParticleScalar or a plain number (used for all atoms). If no

such argument is given, collect the values of the attribute

’friction’ from all atoms (default is zero).

friction = self.getOption(’friction’)

#call this method to create the OpenMM System. Without this, creating

#the forces will fail!!

self.initOmmSystem()

#call this method to ensure that the forcefield parameters get

#passed to OpenMM. Without this, there will be no forces to integrate!

self.createOmmForces()

#ugly hack to get timestep skip information

skip = -1

97

if (’actions’ in self.call options):

actions = self.call options[’actions’]

for action in actions:

if isinstance(action, Dynamics.TranslationRemover):

self.addOmmCMRemover(action.skip)

if isinstance(action, Trajectory.TrajectoryOutput):

skip = action.skip

action.skip = 1

if skip < 0 :

for action in actions:

if issubclass(action. class , Trajectory.TrajectoryOutput):

skip = action.skip

action.skip = 1

break

#we are not logging anything, so we don’t have to report any intermediate values

if skip < 0:

skip = 100

steps = 1

Run the C integrator

98

atoms = self.universe.atomList()

masses = [atom.mass() for atom in atoms]

natoms = len(atoms)

MMTK langevin.integrateLD(self.universe, configuration.array,

velocities.array, N.array(masses, dtype=N.float64),

friction,

self.getOption(’temperature’),

self.getOption(’delta t’),

self.getOption(’steps’), skip, natoms, self.nbeads,

self.getActions())

#call this to clean up after ourselves

self.destroyOmmSystem()

A.2 C Layer: MMTK langevin.c

#include "MMTK/universe.h"

#include "MMTK/forcefield.h"

#include "MMTK/trajectory.h"

#include "OpenMMCWrapper.h"

#include <stdio.h>

99

/* Global variables */

OpenMM System* omm system;

OpenMM BondArray* bonded list;

double kB; /* Boltzman constant */

/* Allocate and initialize Output variable descriptors */

static PyTrajectoryVariable *

get data descriptors(int n, PyUniverseSpecObject *universe spec,

PyArrayObject *configuration, PyArrayObject *velocities,

PyArrayObject *gradients, PyArrayObject *masses,

int *ndf, double *time,

double *p energy, double *k energy,

double *temperature, double *pressure,

double *box size) {

PyTrajectoryVariable *vars = (PyTrajectoryVariable *)

malloc((n+1)*sizeof(PyTrajectoryVariable));

int i = 0;

if (vars != NULL) {

if (time != NULL && i < n) {

vars[i].name = "time";

vars[i].text = "Time: %lf";

vars[i].unit = time unit name;

vars[i].type = PyTrajectory Scalar;

100

vars[i].class = PyTrajectory Time;

vars[i].value.dp = time;

i++;

}

if (p energy != NULL && i < n) {

vars[i].name = "potential energy";

vars[i].text = "Potential energy: %lf, ";

vars[i].unit = energy unit name;

vars[i].type = PyTrajectory Scalar;

vars[i].class = PyTrajectory Energy;

vars[i].value.dp = p energy;

i++;

}

if (k energy != NULL && i < n) {

vars[i].name = "kinetic energy";

vars[i].text = "Kinetic energy: %lf";

vars[i].unit = energy unit name;

vars[i].type = PyTrajectory Scalar;

vars[i].class = PyTrajectory Energy;

vars[i].value.dp = k energy;

i++;

}

if (temperature != NULL && i < n) {

101

vars[i].name = "temperature";

vars[i].text = "Temperature: %lf";

vars[i].unit = temperature unit name;

vars[i].type = PyTrajectory Scalar;

vars[i].class = PyTrajectory Thermodynamic;

vars[i].value.dp = temperature;

i++;

}

if (pressure != NULL && i < n) {

vars[i].name = "pressure";

vars[i].text = "Pressure: %lf";

vars[i].unit = pressure unit name;

vars[i].type = PyTrajectory Scalar;

vars[i].class = PyTrajectory Thermodynamic;

vars[i].value.dp = pressure;

i++;

}

if (configuration != NULL && i < n) {

vars[i].name = "configuration";

vars[i].text = "Configuration:

n";

vars[i].unit = length unit name;

vars[i].type = PyTrajectory ParticleVector;

102

vars[i].class = PyTrajectory Configuration;

vars[i].value.array = configuration;

i++;

}

if (box size != NULL && i < n) {

vars[i].name = "box size";

vars[i].text = "Box size:";

vars[i].unit = length unit name;

vars[i].type = PyTrajectory BoxSize;

vars[i].class = PyTrajectory Configuration;

vars[i].value.dp = box size;

vars[i].length = universe spec->geometry data length;

i++;

}

if (velocities != NULL && i < n) {

vars[i].name = "velocities";

vars[i].text = "Velocities:

n";

vars[i].unit = velocity unit name;

vars[i].type = PyTrajectory ParticleVector;

vars[i].class = PyTrajectory Velocities;

vars[i].value.array = velocities;

i++;

103

}

if (gradients != NULL && i < n) {

vars[i].name = "gradients";

vars[i].text = "Energy gradients:

n";

vars[i].unit = energy gradient unit name;

vars[i].type = PyTrajectory ParticleVector;

vars[i].class = PyTrajectory Gradients;

vars[i].value.array = gradients;

i++;

}

if (masses != NULL && i < n) {

vars[i].name = "masses";

vars[i].text = "Masses:";

vars[i].unit = mass unit name;

vars[i].type = PyTrajectory ParticleScalar;

vars[i].class = PyTrajectory Internal;

vars[i].value.array = masses;

i++;

}

if (ndf != NULL && i < n) {

vars[i].name = "degrees of freedom";

vars[i].text = "Degrees of freedom: %d";

104

vars[i].unit = "";

vars[i].type = PyTrajectory IntScalar;

vars[i].class = PyTrajectory Internal;

vars[i].value.ip = ndf;

i++;

}

vars[i].name = NULL;

}

return vars;

}

/* Langevin dynamics integrator */

static PyObject *

integrateLD(PyObject *dummy, PyObject *args)

{

/* The parameters passed from the Python code */

PyObject *universe; /* universe */

PyArrayObject *configuration; /* array of positions */

PyArrayObject *velocities; /* array of velocities */

PyArrayObject *masses; /* array of masses */

PyArrayObject *friction; /* array of friction coefficients */

PyListObject *spec list; /* list of periodic actions */

double ext temp; /* temperature of the heat bath */

105

double delta t; /* time step */

int steps; /* number of steps */

int skip; /* number of steps to skip */

int natoms; /* number of atoms */

/* Other variables, see below for explanations */

PyThreadState *this thread;

PyUniverseSpecObject *universe spec;

PyArrayObject *gradients, *random1, *random2;

PyTrajectoryOutputSpec *output;

PyTrajectoryVariable *data descriptors = NULL;

vector3 *x, *v, *g;

double *f;

energy data p energy;

double time, k energy, temperature;

int atoms, df;

int pressure available;

int i, j, k;

/* OpenMM required variables */

OpenMM Context* context;

OpenMM Platform* platform;

OpenMM LangevinIntegrator* integrator;

106

OpenMM State* state;

OpenMM Vec3Array* omm pos;

OpenMM Vec3Array* omm vel;

OpenMM Vec3* pos i;

OpenMM Vec3* vel i;

/* Get arguments passed from Python code */

if (!PyArg ParseTuple(args, "OO!O!O!O!ddiiiO!", &universe,

&PyArray Type, &configuration,

&PyArray Type, &velocities,

&PyArray Type, &masses,

&PyArray Type, &friction,

&ext temp, &delta t, &steps,

&skip, &natoms, &PyList Type, &spec list))

return NULL;

/* Obtain the universe specification */

universe spec = (PyUniverseSpecObject *)

PyObject GetAttrString(universe, " spec");

if (universe spec == NULL)

return NULL;

107

/* Create the array for energy gradients */

#if defined(NUMPY)

gradients = (PyArrayObject *)PyArray Copy(configuration);

#else

gradients = (PyArrayObject *)PyArray FromDims(configuration->nd,

configuration->dimensions,

PyArray DOUBLE);

#endif

if (gradients == NULL)

return NULL;

/* Set some convenient variables */

atoms = natoms; /* number of atoms */

x = (vector3 *)configuration->data; /* pointer to positions */

v = (vector3 *)velocities->data; /* pointer to velocities */

g = (vector3 *)gradients->data; /* pointer to energy gradients */

f = (double *)friction->data; /* pointer to friction constant */

df = 3*atoms; /* number of degrees of freedom */

/* Initialize trajectory output and periodic actions */

data descriptors =

get data descriptors(10 + pressure available,

universe spec,

108

configuration, velocities,

gradients, masses, &df,

&time, &p energy.energy, &k energy,

&temperature, NULL,

(universe spec->geometry data length > 0) ?

universe spec->geometry data : NULL);

if (data descriptors == NULL){

goto error2;}

output = PyTrajectory OutputSpecification(universe, spec list,

"Langevin Dynamics",

data descriptors);

if (output == NULL){

goto error2;}

/* Initial coordinate correction (for periodic universes etc.) */

universe spec->correction function(x, atoms, universe spec->geometry data);

if (universe spec->is periodic == 1) {

if (universe spec->is orthogonal == 1) {

/*double min = universe spec->geometry data[0];

int geometry counter = 0;

for (geometry counter = 0; geometry counter < universe spec->geometry data length;

geometry counter++) {

109

if (universe spec->geometry data[geometry counter] < min) {

min = universe spec->geometry data[geometry counter];

}

}*/

OpenMM Vec3 a = {universe spec->geometry data[0],0.0,0.0};

OpenMM Vec3 b = {0.0,universe spec->geometry data[1],0.0};

OpenMM Vec3 c = {0.0,0.0,universe spec->geometry data[2]};

OpenMM System setDefaultPeriodicBoxVectors(omm system, &a, &b, &c);

printf("REMARK Using OpenMM periodic box with dimensions (%f, %f, %f)

n", universe spec->geometry data[0],

universe spec->geometry data[1], universe spec->geometry data[2]);

} else {

/* abort! OpenMM does not support non-orthorhombic periodic universes */

printf("ERROR OpenMM does not support non-orthorhombic universes

n");

goto error2;

}

}

110

integrator = (OpenMM Integrator*) OpenMM LangevinIntegrator create(ext temp, *f, delta t);

/* Let OpenMM Context choose best platform. */

/*context = OpenMM Context create(omm system, integrator);

platform = OpenMM Context getPlatform(context);*/

printf("REMARK Using OpenMM platform %s

n",

OpenMM Platform getName(platform));

/* Set starting positions and velocities of the atoms. Leave time zero. */

omm pos = OpenMM Vec3Array create(atoms);

omm vel = OpenMM Vec3Array create(atoms);

for (i = 0; i < atoms; i++) {

pos i = x[i];

vel i = v[i];

OpenMM Vec3Array set(omm pos, i, *pos i);

OpenMM Vec3Array set(omm vel, i, *vel i);

}

OpenMM Context setPositions(context, omm pos);

OpenMM Context setVelocities(context, omm vel);

/* Collect properties of interest for which to query OpenMM */

111

int infoMask = OpenMM State Positions + OpenMM State Energy;

/*

* Main integration loop

*/

time = 0.;

printf("completing %d steps while skipping %d per log output

n", steps, skip);

for (k = 0; k < steps; k+= skip) {

/* Calculation of thermodynamic properties */

state = OpenMM Context getState(context, infoMask, 1);

omm pos = OpenMM State getPositions(state);

for (i = 0; i < atoms; i++) {

pos i = OpenMM Vec3Array get(omm pos, i);

x[i][0] = pos i->x;

x[i][1] = pos i->y;

x[i][2] = pos i->z;

}

k energy = OpenMM State getKineticEnergy(state);

p energy.energy = OpenMM State getPotentialEnergy(state);

time = OpenMM State getTime(state);

112

temperature = 2.*k energy/(df*kB);

OpenMM State destroy(state);

/* Trajectory and log output */

PyTrajectory Output(output, k, data descriptors, NULL);

OpenMM LangevinIntegrator step(integrator, skip);

/* Coordinate correction (for periodic universes etc.) */

/* universe spec->correction function(x, atoms, universe spec->geometry data); */

}

/** End of main integration loop **/

/* Final thermodynamic property evaluation */

state = OpenMM Context getState(context, infoMask, 1);

omm pos = OpenMM State getPositions(state);

for (i = 0; i < atoms; i++) {

pos i = OpenMM Vec3Array get(omm pos, i);

x[i][0] = pos i->x;

x[i][1] = pos i->y;

x[i][2] = pos i->z;

}

113

k energy = OpenMM State getKineticEnergy(state);

p energy.energy = OpenMM State getPotentialEnergy(state);

time = OpenMM State getTime(state);

temperature = 2.*k energy/(df*kB);

OpenMM State destroy(state);

/* Final trajectory and log output */

PyTrajectory Output(output, k, data descriptors, NULL);

/* Cleanup */

PyUniverseSpec StateLock(universe spec, -2);

/*PyEval RestoreThread(this thread);*/

PyTrajectory OutputFinish(output, k, 0, 1, data descriptors);

free(data descriptors);

Py DECREF(gradients);

Py INCREF(Py None);

return Py None;

/* Error return */

error:

PyTrajectory OutputFinish(output, k, 1, 1, data descriptors);

error2:

114

free(data descriptors);

Py DECREF(gradients);

return NULL;

}

static PyObject* initOpenMM(PyObject* dummy, PyObject* args) {

PyArrayObject* masses;

int natoms;

if (!PyArg ParseTuple(args, "O!i",

&PyArray Type, &masses,

&natoms))

return NULL;

double* m = (double*)masses->data;

omm system = OpenMM System create();

int iter;

for (iter = 0; iter < natoms; iter++) {

OpenMM System addParticle(omm system, m[iter]);

/* printf("Added particle %d with mass %f

n", iter, m[iter]); */

115

}

return Py None;

}

static PyObject* destroyOpenMM(PyObject* dummy, PyObject* args) {

OpenMM System destroy(omm system);

OpenMM BondArray destroy(bonded list);

return Py None;

}

static PyObject* addCMRemover(PyObject *dummy, PyObject *args) {

int skip;

if (!PyArg ParseTuple(args, "i",

&skip))

return NULL;

OpenMM CMMotionRemover* remover = OpenMM CMMotionRemover create(skip);

OpenMM System addForce(omm system, (OpenMM Force*)remover);

return Py None;

}

116

static PyObject* makeOmmBondedForce(PyObject *dummy, PyObject *args) {

PyArrayObject *atom index 1;

PyArrayObject *atom index 2;

PyArrayObject *eq distance;

PyArrayObject *spring k;

int nbonds;

if (!PyArg ParseTuple(args, "O!O!O!O!i",

&PyArray Type, &atom index 1,

&PyArray Type, &atom index 2,

&PyArray Type, &eq distance,

&PyArray Type, &spring k,

&nbonds))

return NULL;

int* i = (int*)atom index 1->data;

int* j = (int*)atom index 2->data;

double* r = (double*)eq distance->data;

double* k eq = (double*)spring k->data;

OpenMM HarmonicBondForce* bonded = OpenMM HarmonicBondForce create();

bonded list = OpenMM BondArray create(nbonds);

117

printf("Adding bonds

n");

int iter;

for (iter = 0; iter< nbonds; iter++) {

OpenMM HarmonicBondForce addBond(bonded, i[iter], j[iter], r[iter], k eq[iter]);

/*printf("Added bond %d between atoms %d and %d with length %f and strength %f

n", iter, i[iter], j[iter], r[iter], k eq[iter]);*/

OpenMM BondArray append(bonded list, i[iter], j[iter]);

}

OpenMM System addForce(omm system, (OpenMM Force*)bonded);

return Py None;

}

static PyObject* makeOmmAngleForce(PyObject *dummy, PyObject *args) {

PyArrayObject *atom index 1;

PyArrayObject *atom index 2;

PyArrayObject *atom index 3;

PyArrayObject *eq angle;

PyArrayObject *spring k;

118

int nangles;

if (!PyArg ParseTuple(args, "O!O!O!O!O!i",

&PyArray Type, &atom index 1,

&PyArray Type, &atom index 2,

&PyArray Type, &atom index 3,

&PyArray Type, &eq angle,

&PyArray Type, &spring k,

&nangles))

return NULL;

int* i = (int*)atom index 1->data;

int* j = (int*)atom index 2->data;

int* k = (int*)atom index 3->data;

double* theta = (double*)eq angle->data;

double* k eq = (double*)spring k->data;

OpenMM HarmonicAngleForce* angles = OpenMM HarmonicAngleForce create();

printf("Adding angles

n");

119

int iter;

for (iter = 0; iter < nangles; iter++) {

OpenMM HarmonicAngleForce addAngle(angles, i[iter], j[iter], k[iter], theta[iter], k eq[iter]);

}

OpenMM System addForce(omm system, (OpenMM Force*)angles);

return Py None;

}

static PyObject* makeOmmDihedralForce(PyObject* dummy, PyObject* args) {

PyArrayObject* atom index 1;

PyArrayObject* atom index 2;

PyArrayObject* atom index 3;

PyArrayObject* atom index 4;

PyArrayObject* periodicity;

PyArrayObject* eq dihedral;

PyArrayObject* spring k;

int ndihedrals;

if (!PyArg ParseTuple(args, "O!O!O!O!O!O!O!i",

&PyArray Type, &atom index 1,

&PyArray Type, &atom index 2,

120

&PyArray Type, &atom index 3,

&PyArray Type, &atom index 4,

&PyArray Type, &periodicity,

&PyArray Type, &eq dihedral,

&PyArray Type, &spring k,

&ndihedrals))

return NULL;

int* i = (int*)atom index 1->data;

int* j = (int*)atom index 2->data;

int* k = (int*)atom index 3->data;

int* l = (int*)atom index 4->data;

int* n = (int*)periodicity->data;

double* phi = (double*)eq dihedral->data;

double* k eq = (double*)spring k->data;

OpenMM PeriodicTorsionForce* dihedrals = OpenMM PeriodicTorsionForce create();

printf("Adding dihedrals

n");

int iter;

for (iter = 0; iter < ndihedrals; iter++) {

OpenMM PeriodicTorsionForce addTorsion(dihedrals, i[iter], j[iter], k[iter], l[iter], n[iter],

121

phi[iter], k eq[iter]);

}

OpenMM System addForce(omm system, (OpenMM Force*)dihedrals);

return Py None;

}

static PyObject* makeOmmEsAndLjForce(PyObject* dummy, PyObject* args) {

PyArrayObject* sigma;

PyArrayObject* epsilon;

PyArrayObject* charge;

int natoms;

double es 14 factor, lj 14 factor, cutoff;

if (!PyArg ParseTuple(args, "O!O!O!dddi",

&PyArray Type, &sigma,

&PyArray Type, &epsilon,

&PyArray Type, &charge,

&es 14 factor, &lj 14 factor,

&cutoff, &natoms))

return NULL;

122

double* s = (double*)sigma->data;

double* e = (double*)epsilon->data;

double* z = (double*)charge->data;

OpenMM NonbondedForce* nonbond = OpenMM NonbondedForce create();

printf("Adding nonbonded

n");

int iter;

for (iter = 0; iter < natoms; iter++) {

OpenMM NonbondedForce addParticle(nonbond, z[iter], s[iter], e[iter]);

/*printf("help

n");

printf("atom %d: charge %f, sigma %f, epsilon %f

n", iter, z[iter], s[iter], e[iter]);*/

}

OpenMM NonbondedForce createExceptionsFromBonds(nonbond, bonded list, es 14 factor, lj 14 factor);

OpenMM NonbondedForce setNonbondedMethod(nonbond, OpenMM NonbondedForce Ewald); /*for step 0*/

/*OpenMM NonbondedForce setNonbondedMethod(nonbond, OpenMM NonbondedForce NoCutoff);*/ /*for

example*/

123

OpenMM NonbondedForce setCutoffDistance(nonbond, cutoff);

OpenMM System addForce(omm system, (OpenMM Force*)nonbond);

return Py None;

}

static PyMethodDef langevin methods[] = {

{"integrateLD", integrateLD, 1},

{"initOpenMM", initOpenMM, 1},

{"destroyOpenMM", destroyOpenMM, 1},

{"addCMRemover", addCMRemover, 1},

{"makeOmmBondedForce", makeOmmBondedForce, 1},

{"makeOmmAngleForce", makeOmmAngleForce, 1},

{"makeOmmDihedralForce", makeOmmDihedralForce, 1},

{"makeOmmEsAndLjForce", makeOmmEsAndLjForce, 1},

{NULL, NULL} /* sentinel */

};

/* Initialization function for the module */

void

initMMTK langevin()

{

PyObject *m, *dict;

124

PyObject *universe, *trajectory, *forcefield, *units;

/* Create the module and add the functions */

m = Py InitModule("MMTK langevin", langevin methods);

dict = PyModule GetDict(m);

/* Import the array module */

import array();

/* Import MMTK modules */

import MMTK universe();

import MMTK forcefield();

import MMTK trajectory();

/* OpenMM library initialization */

OpenMM StringArray* pluginList = OpenMM Platform loadPluginsFromDirectory(

OpenMM Platform getDefaultPluginsDirectory());

int num plugins = OpenMM StringArray getSize(pluginList);

int i;

for (i = 0; i < num plugins; i++) {

printf("loaded plugin %s

n", OpenMM StringArray get(pluginList, i));

125

}

OpenMM StringArray destroy(pluginList);

/* Get the Boltzman constant factor from MMTK.Units */

units = PyImport ImportModule("MMTK.Units");

if (units != NULL) {

PyObject *module dict = PyModule GetDict(units);

PyObject *factor = PyDict GetItemString(module dict, "k B");

kB = PyFloat AsDouble(factor);

}

/* Check for errors */

if (PyErr Occurred())

Py FatalError("can’t initialize module MMTK langevin");

}

126

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Abbreviations
	Introduction
	Fundamental Concepts of Statistical Mechanics
	Molecular Dynamics
	The Canonical Ensemble
	Path Integral Molecular Dynamics
	Computational Considerations

	MMTK & OpenMM Code
	GPU Computing
	Software Architecture
	Results (Timings and Accuracy)

	LE-PIGS theory
	Nuclear Ground States
	Derivation of LE-PIGS Equations
	Implementation
	Results and Examples

	Conclusions
	Future Work

	References
	Appendix List of Code
	Python Layer: LangevinDynamics.py
	C Layer: MMTK_langevin.c

