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Abstract

This thesis deals with the production of entangled photons using spontaneous paramet-

ric down-conversion (SPDC). We start with a short overview of some important theoretical

concepts. First we provide a brief reminder of the theory of entanglement. We then discuss

how the state of quantum systems can be determined using quantum state tomography.

We also explain SPDC, the physical process which we use to produce entangled photons.

Finally, we give an overview of the methods which have been used to produce entangled

photons in the past, both for two- and three-photon entanglement.

The first experiment is the design of an efficient source of entangled photon pairs

based on a polarizing Sagnac interferometer configuration. With this configuration, we

can use quasi-phasematched materials which allow for higher efficiencies than standard

bulk nonlinear materials. The source is pumped by a low-power continuous-wave laser

diode, and produces degenerate photon pairs at 809nm. It has a spectral brightness of

87, 500 pairs/s ·mW · nm, and the fidelity of the produced quantum states with a Bell state

is 98.9%. The source is used for experiments in quantum key distribution, cluster state

quantum computing, remote state preparation, state discrimination, and entanglement-

enhanced classical communication.

The second experiment discussed in this thesis is the generation of photon triplets using

cascaded SPDC. In this experiment, a primary SPDC source is pumped with a low-power,

continuous-wave laser diode, producing photon pairs. Single photons from these pairs

serve as the pump for a second down-conversion, resulting in photon triplets. This is the

first demonstration of the direct production of photon triplets, and the first observation

of SPDC at the single photon level. This method could potentially be used to produce

entangled photon triplets without post-selection, and as a source of triggered Bell pairs.
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Chapter 1

Theoretical background

1.1 Entanglement

Pure states

In the formalism of quantum mechanics, an isolated quantum system in a pure state is

represented by a normalized vector |ψ〉, which belongs to a Hilbert space H. Let us

consider the case where we have a composite system made up of two subsystems 1, which

we will call A and B. The state of the combined system is represented by a normalized

vector on the Hilbert space HAB, which is defined as:

HAB = HA ⊗HB (1.1)

where ⊗ represents the tensor product, and HA and HB are the Hilbert spaces correspond-

ing to the two subsystems, called the factor spaces. For any pair of vectors |ψ〉A ∈ HA and

|φ〉B ∈ HB, there is product vector |ψ〉A ⊗ |φ〉B which is in HAB. The states represented

by such product vectors are called separable. For these states, the whole system can be

described by the state of its individual parts.

1We consider two subsystems for simplicity, but everything in this section can readily be generalized

for any number of subsystems.
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However, we know from the superposition principle that any normalized sum of state

vectors is also a valid state vector. This is important because some of the states that can

be constructed in this way are not separable. Any quantum state that is not separable

is called entangled. This means that the state of the entire system can no longer be seen

simply as a combination of the two states of the subsystems. Important examples include

the Bell states:

|φ±〉 =
1√
2
|00〉 ± |11〉

|ψ±〉 =
1√
2
|01〉 ± |10〉

(1.2)

where |0〉 and |1〉 are the two basis states in the computational basis of a two level quantum

system, commonly called a qubit. If only one of the qubits is measured, then the result

is random. However, if both qubits are measured in the computational basis, the will

be perfectly correlated for the |φ〉 states and perfectly anti-correlated for the |ψ〉 states.

Moreover, we can still observe perfect correlations in other bases. As an example, when

the |ψ−〉 state is written in any orthonormal basis {|α〉, |α⊥〉}, it always has the form:

|ψ−〉 = 1√
2
(|α〉|α⊥〉 − |α⊥〉|α〉). It is therefore easy to see that if the same measurement is

performed on both qubits, the results will always be anti-correlated.

Mixed states

The definition of entanglement given above can be generalized for mixed (non-pure) states.

In this case, the quantum state of a system is no longer represented by a state vector |ψ〉,
but instead by a density matrix ρ, which is a Hermitian (ρ† = ρ), positive semi-definite

operator, and has trace 1. A mixed state is said to be separable if it can be written as a

convex sum of separable states:

ρ =
∑
i

piρ
A
i ⊗ ρBi . (1.3)

If a state cannot be written in this way, then it is entangled.
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Entanglement has been shown to exist in many different physical systems. In this work,

we are specifically interested in the production of entangled photons. More precisely, we

want to produce photons which are entangled in their polarization degree of freedom. We

will therefore replace the basis vectors of the computational basis, |0〉 and |1〉, with the

basis vectors |H〉 and |V 〉 representing horizontal and vertical polarizations. In Section

1.3, we provide an explanation of the physical process most often used for the production

of entangled photons: spontaneous parametric down-conversion. In Chapter 2, we will

explain how this process can be used produce entangled systems of two and three photons.

Entangled photons can be seen as a resource for several applications. Two photon

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and multi-photon [13, 14, 15, 16] entanglement have been

used extensively for fundamental tests of quantum mechanics. Entangled photons can also

be utilized for quantum key distribution [17, 18, 19, 20], and are a resource for linear optics

quantum computing [21], particularly cluster-state quantum computing [22, 23, 24, 25, 26].

.

1.2 Quantum state tomography

When we try to produce entangled photons, it is important to have a method to determine

whether or not we succeeded. One (very thorough) way of doing this is to determine

the entire quantum state of the photons. However, it is well known that it is impossible

to completely measure the state of any single copy of a quantum system, because the

system is disturbed by the measurement. This problem can be overcome if we have many

copies of the same quantum system. It is then possible to reconstruct the density matrix

corresponding to the quantum state of this system. The idea is to measure a number of

observables, each one on a portion of the ensemble of quantum systems. This is called

quantum state tomography.

In this section, we use a specific type of projective measurement where the system is only

detected for a specific outcome of the measurement. Therefore, for a given measurement,

our result corresponds to the number of detections recorded with the measurement device

in a particular configuration. We call this number of detections counts.
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1.2.1 Linear quantum state tomography

The minimum number of projective measurements required for quantum state tomography

is directly related to the number of free parameters in the density matrix. Indeed, one

projective measurement is required for every free parameter, with one extra measurement

needed for normalization, since measurements determine quantities instead of probabilities.

A system containing n qubits is represented by a 2n by 2n square density matrix, which

has 4n − 1 free parameters. Hence, 4n projective measurements are required for quantum

state tomography of such a system [27].

Of course, the choice of these measurements is not arbitrary. In the case of a two qubit

system, 16 measurements are needed. These measurements, consisting of projections onto

the 16 vectors |ψν〉, are tomographically complete if and only if the 16x16 matrix with

elements 2:

Bν,µ = 〈ψν |Γ̂µ|ψν〉 (1.4)

is nonsingular. The Γ̂µ are the set of matrices σ̂i ⊗ σ̂j, with i, j = 0, 1, 2, 3, where σ̂0 is the

2x2 identity, and the other σ̂i are the Pauli matrices. The un-normalized reconstructed

density matrix ρ̂, is given by [27]

ρ̂ =
16∑
ν=1

[
16∑
µ=1

(B−1)ν,µΓ̂µ

]
nν (1.5)

where nν is the number of counts for the |ψν〉 measurement. This method thus provides

a simple way of calculating an estimate of a quantum state given the appropriate mea-

surements. There are some shortcomings however. First, it does not allow us to take

into account any additional measurements. For example, for a two qubit system linear

quantum state tomography requires exactly 16 measurements. If we have a set of more

than 16 measurements, also called a tomographically over-complete set of measurements,

some of them will have to be excluded. Second, the density matrices calculated with this

method can be un-physical, especially when the states are very pure. These limitations

are addressed by another procedure used to reconstruct quantum states, called maximum

likelihood.
2in this section, we use theˆto identify matrices, not only quantum mechanical operators.
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1.2.2 Maximum likelihood quantum state tomography

The idea of the maximum likelihood method is to use the same measurements as in Section

1.2.1 to reconstruct a state, but with the added constraint that the reconstructed density

matrix must be physical. To do this, we start by writing parameterizing the density matrix,

ρ̂, as:

ρ̂ =
T̂ †T̂

Tr
[
T̂ †T̂

] (1.6)

where the † indicates the Hermitian conjugate, and T̂ is a square matrix of dimension d.

Writing ρ̂ as proportional to T̂ †T̂ ensures that it is hermitian and positive. Dividing by

Tr
[
T̂ †T̂

]
ensures that it is normalized. The matrix T̂ could have up to 2d2 parameters,

but we know that ρ̂ only has d2 − 1 free parameters. We thus need to write T̂ without

any unneeded parameters, but in such a way that the entire space of density matrices

is available for ρ̂ [28]. This can be done by writing T̂ as a triangular matrix, with real

numbers on the diagonal [27]. For a two qubit system, this would be written as:

T =


t1 0 0 0

t5 + it6 t2 0 0

t11 + it12 t7 + it8 t3 0

t15 + it16 t13 + it14 t9 + it10 t4


which gives 16 free parameters.

The next step is to provide a measure of how well a given reconstruction of the density

matrix agrees with the measurement results. To do this, we first consider that for a

given reconstructed density matrix ρ̂, we can predict the average number of counts for a

measurement. This is given by:

n̄ν = N〈ψν |ρ̂|ψν〉 (1.7)

5



where N is a constant related to the flux and detector efficiency. We then assume that

the probability of obtaining nν can be approximated by a Gaussian distribution centered

around n̄ν . Therefore the probability that a given set of κ counts {nν} are measured is

given by:

P{n1, n2, ...nκ} =
1

Nnorm

κ∏
ν=1

exp

[
−(n̄ν − nν)2

2n̄ν

]
(1.8)

where Nnorm is a normalization constant. By combining Equations 1.7 and 1.8, we obtain:

P{n1, n2, ...nκ} =
1

Nnorm

κ∏
ν=1

exp

[
−(N〈ψν |ρ̂|ψν〉 − nν)2

2N〈ψν |ρ̂|ψν〉

]
(1.9)

where the state ρ̂ would be written as a function of the parameters ti. The best state is the

one for which the number of counts measured {n1, n2, ...nκ} is the most probable. Finding

the best state then reduces to maximizing this function over the parameters ti. In practice,

instead of maximizing this function, we maximize its logarithm. So the mathematical

problem becomes a minimization over the d2 − 1 parameters ti of the following function:

L{t1, t2, ...td2−1} =
κ∑
ν=1

[
(N〈ψν |ρ|ψν〉 − nν)2

2N〈ψν |ρ|ψν〉

]
. (1.10)

As we have already mentioned, the first advantage of this method is that the resulting

density matrix will always be physical. We are, in a way, using some additional information

that we know about the matrix (the fact that it represents a physical system) to help with

the reconstruction. The other major advantage of this technique is that it works with

an arbitrarily large number of measurements. Indeed, κ can be larger than d2 − 1. This

means that we can use a tomographically over-complete set of measurements to get a

better estimate of the state. We will use the maximum likelihood method to reconstruct

the states produced in Chapter 3.
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1.3 Spontaneous parametric down-conversion

The most commonly used method for producing entangled photon pairs, and the method

which is used throughout the work described in this thesis, is spontaneous parametric down-

conversion (SPDC). It can roughly be explained as the splitting of a “pump” photon into

two photons of lesser energies, the “signal” and the “idler”. SPDC is a strictly quantum

effect; it cannot be explained in terms of classical nonlinear optics.

The usual way to treat SPDC is to start with its Hamiltonian. It can be derived by

starting with the classical electric field energy density for a nonlinear medium, and then

quantizing the electric field [29]. The resulting Hamiltonian is [30]:

Ĥ = ε0

∫
V

d3rχ(2)Ê(+)
p Ê(−)

s Ê
(−)
i +H.c. (1.11)

where ε0 is the vacuum permittivity, H.c. is the Hermitian conjugate and s and i are indices

representing the two down-converted modes, the signal and idler. The integral is over the

volume V , which is the volume of the nonlinear crystal which is illuminated by the pump

beam. In this equation, it is assumed that only one element of the nonlinear susceptibility

tensor χ(2) must be considered. We assume that the pump field is intense and negligibly

depleted, so that it can be treated classically as a monochromatic wave. We thus write it

as:

Ê(+)
p = E0e

i( ~kp·~r−ωpt). (1.12)

We cannot do the same for the signal and idler fields, Ê
(−)
s and Ê

(−)
i , which we must keep

quantized as they describe single photon level fields. We can write them as:

Ê
(−)
j = −i

∑
k

√
~ωk,j
2ε0V

~εkâ
†
k,je
−i( ~kj ·~r−ωk,jt) (1.13)

where j = s, i to represent either the signal or the idler, â† is the creation operator, ~εk

is a unit polarization vector. This equation is a bit more general than what we need for

7



our purposes, and so we will make a few assumptions. For more general treatments, see

[29, 31, 32, 33]. We will first assume that all the fields are plane waves traveling in the z

direction. Equation 1.12 thus becomes:

E(+)
p = E0e

i(kpz−ωpt) (1.14)

and Equation 1.13 is simplified to:

Ê
(−)
j = −i

∑
k

√
~ωk,j
2ε0V

â†k,je
−i(kjz−ωk,jt) (1.15)

We also only look at a single mode from the signal and idler fields. We can therefore drop

the sum over k. So we have:

Ê
(−)
j = −i

√
~ωj

2ε0V
â†je
−i(kjz−ωjt). (1.16)

Let us now look at the quantum state produced by this Hamiltonian. We assume that the

quantum field is initially in the vacuum state. The quantum state’s evolution is given by:

|ψ(t)〉 = exp

[
1

i~

∫ t

0

dt′Ĥ(t′)

]
|vac〉 (1.17)

where |vac〉 represents the vacuum state. We expand the exponential to the first order,

which gives us:

|ψ(t)〉 = |vac〉+
1

i~

∫ t

0

dt′Ĥ(t′)|vac〉. (1.18)

Now by combining Equations 1.11, 1.14, 1.16 and 1.18, and only considering the non-

vacuum portion, we obtain:

8



|ψ(t)〉 ∼ 1

i~
ε0E0

∫ t

0

dt′
∫
V

d3rχ(2)

[
−i
√

~ωs
2ε0V

][
−i
√

~ωi
2ε0V

]
â†sâ
†
ie
i(kp−ks−ki)zei(ωs+ωi−ωp)t|vac〉.

(1.19)

Note that the Hermitian conjugate portion of the Hamiltonian is gone, as it contains

lowering operators acting on the vacuum. Because we assumed plane waves, we can easily

do the integration over x and y. This, and a few simplifications, gives us:

|ψ(t)〉 ∼
iE0LxLy

√
ωsωi

2V

∫ t

0

dt′ei(ωs+ωi−ωp)t

∫ Lz

0

dzχ(2)ei(kp−ks−ki)z|1〉s|1〉i (1.20)

where Lx and Ly are the height and width of the crystal. For now, we take χ(2) to have

no z dependance (in contrast to what we will do in Section 1.4), and we can do both

integrations. We find:

|ψ(t)〉 ∼
iE0LxLy

√
ωsωi

2V
χ(2)ei

∆ω
2
tt sinc

(
∆ωt

2

)
ei

∆k
2
LzLz sinc

(
∆kLz

2

)
|1〉s|1〉i (1.21)

where ∆ω = ωs + ωi − ωp and ∆k = kp − ks − ki. The interaction time, t, is long enough

that the first sinc function can be approximated as a delta function [31], so that we have:

|ψ(t)〉 ∼
iE0
√
ωsωi

2
χ(2)ei

∆ω
2
tei

∆k
2
Lzδ

(
∆ω

2

)
sinc

(
∆kLz

2

)
|1〉s|1〉i. (1.22)

We can observe that this result shows that the signal and photons are only produced in

pairs. Also, we notice that because of the delta function, we can only have pairs if the

following condition is met:

ωp = ωs + ωi. (1.23)

This essentially means that the energies of the two created photons equal the energy of

one pump photon. This is why down-conversion is sometimes called “photon splitting”.

We will also observe the because of the sinc
(

∆kLz
2

)
term, the signal will be maximal when:

9



kp = ks + ki. (1.24)

This relation is called phasematching. It is related to the fact that the pump beam must

stay in phase with the signal and idler beams in order for the signal power to constructively

interfere throughout the crystal.

Let us finally note for completeness that there are different types of SPDC, based on

the polarization of the pump, signal and idler. Different conventions exist, but in this work

we will use the convention that there are two types of SPDC. An SPDC process is of type

I if both signal and idler have the same polarization. It is of type II if the signal and idler

have perpendicular polarizations.

1.4 Quasi-phasematching

In the previous section, we saw that for SPDC to happen, we need the phase mismatch

∆k to approach zero. How can we do this? It is in fact not trivial, as the dispersion

in materials generally causes Equation 1.24 to not be satisfied. Therefore, we need to

modify the material, in order to change the effective indices of refraction for the pump,

signal and idler, so that ∆k = 0. The first methods that have been used to do this are

temperature tuning and angle tuning. Both of these methods make use of the birefringence

of the materials in order to compensate for the dispersion[34]. However, these methods

have several important limitations:

• Some materials with high optical nonlinearities are not birefringent, or have insuffi-

cient birefringence, particularly at shorter wavelengths.

• Some of the nonlinear coefficients are not affected by birefringence. For example,

the d33 element of the contracted nonlinear susceptibility tensor3 is much larger than

others for many materials, but it is only relevant when all three waves are polarized

along the same direction.

3The contracted nonlinear susceptibility tensor is a notation used in materials with Kleinman symmetry.

It is proportional to χ(2). For example, d33 = 1
2χ

(2)
zzz. For more details, see section 1.5.6 of [34].
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z 

Λ 

� (2) 

� (2) 
0 

Figure 1.1: Effective nonlinear coefficient in a periodic material. The nonlinear coefficient

can be written as a step function, which goes from χ
(2)
0 to −χ(2)

0 , with a period of Λ.

• Because the direction of propagation in the crystal is dictated by the phasematching,

it is usually not along one of the crystallographic axes. This leads to spatial walk-off,

which limits the length of crystals that can be used.

This is where quasi-phasematching comes in. It is often seen as an alternative to

angle or temperature tuning, although it was actually proposed before these methods by

Armstrong et al. in 1962 [35]. A good review of the subject can be found in [36]. Here

we will go through the basic theory of quasi-phasematching. Periodically reversing the

nonlinear medium leads to an effective nonlinear coefficient χ(2) like the one shown in

Figure 1.1. This can be written as:

χ(2)(z) = χ
(2)
0 sgn

(
cos

2πz

Λ

)
(1.25)
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where χ
(2)
0 is the nonlinear coefficient of the material, z represents the position within the

material, and sgn is the sign function, which returns 1 for positive arguments and -1 for

negative arguments. We can write χ(2)(z) as a Fourier series:

χ(2) =
∞∑

m=−∞

Gme
ikmz (1.26)

where km = 2πm
Λ

. The coefficients Gm are given by:

Gm =
1

Λ

∫ Λ/2

−Λ/2

χ(2)e−ikmz dz. (1.27)

Using the fact that χ(2) is an even function, the integral is easily evaluated, and we find:

Gm =
2χ

(2)
0

πm
sin
(mπ

2

)
. (1.28)

We can substitute this back into 1.25, and get:

χ(2) =
∞∑

m=−∞

2χ
(2)
0

πm
sin
(mπ

2

)
ei

2πm
Λ
z. (1.29)

We could insert this directly into Equation 1.20. We would then get a summation of

integrals, one for each term of the Fourier series. However, we only need one of these terms

to be large in order to get signal. In other words, we only need one of the terms to fit the

phasematching conditions. Because the coefficients of the Fourier series get smaller as |m|
grows, we will choose to keep only the m = −1 term4. We thus have:

χ(2) =
2χ

(2)
0

π
e−i

2π
Λ
z (1.30)

4We could just as well have chosen m = 1. This would simply change the sign of the 2π
Λ term in

Equation 1.32. In practice, the sign is chosen such that Equation 1.32 can be solved.
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If we now substitute this into equation Equation 1.20, we get :

|ψ(t)〉 ∼
iE0LxLy

√
ωsωi

πV

∫ t

0

dt′ei(ωs+ωi−ωp)t

∫ Lz

0

dzχ
(2)
0 ei(kp−ks−ki−

2π
Λ

)z|1〉s|1〉i (1.31)

We can then integrate this equation like we did for Equation 1.20. The only difference

compared to perfect phasematching, other than the factor of 2/π, is that because there is

an extra term in the exponential in z, the phasematching condition changes. Instead of

∆k = kp − ks − ki, we have ∆k = kp − ks − ki − 2π
Λ

. Since we still need ∆k ≈ 0, we have

the quasi-phasematching condition:

kp = ks + ki +
2π

Λ
. (1.32)

This new phasematching condition now depends on the period Λ, so we have a new pa-

rameter at our disposal that we can choose freely in order to satisfy the phasematching

condition. Therefore, we do not need to use angle tuning. This leads to two distinct advan-

tages. First, we can chose the period Λ so that collinear down-conversion is phasematched.

This makes it much easier to collect all of the signal and idler photons produced. The

second advantage is that we can now choose to have the beams traveling along one of the

crystal’s crystallographic axes. This then eliminates the problems caused by spatial walk-

off, and therefore allows us to use much longer crystals, which again leads to an increased

signal.

1.5 Periodic poling

In the previous section, a very important detail was omitted. We simply assumed that we

could periodically reverse the sign of the nonlinear coefficient, without explaining how this

can actually be done. In their 1962 paper, Armstrong et al. suggested cutting a nonlinear

crystal into thin slices, and then to reassemble it, rotating every second slice by 180◦. In

theory this would work, except that by using real parameters in Equation 1.32, one finds

that Λ has to be of the order of 1− 100µm. This makes this method impractical.

13



Instead, the most common method now used to fabricate nonlinear crystals for quasi-

phasematching is periodic poling. This method, first demonstrated by Yamada et al. [37],

works for ferroelectric materials. The idea, shown in Figure 1.2, is to apply electrodes

on a crystal, once every period. By applying a voltage to these electrodes, an electric

field is created in the material. This electric field inverts the orientation of the domains

in the material, thus inverting the sign of χ(2). This method has been applied to many

ferroelectric materials. Most fall into two categories :

• The lithium niobate (LiNbPO3 or LN) and lithium tantalate (LiTaO3 or LT) family.

Lithium niobate has the largest nonlinear coefficient of the commonly used ferro-

electrics (d33 = 28pm/V). Periods as small as 1.4µm can be fabricated. These

materials are most commonly used in the near infrared, but wavelengths of between

460nm to 2.8µm have been reached using difference or sum frequency generation.[36]

• Potassium tytanyl phosphate (KTiPO4 or KTP) and its isomorphs, (RbTiPO4 and

KTiAsO4). These have smaller nonlinear coefficients (d33 = 15pm/V - 17pm/V),

but have higher damage thresholds. Uniform polling periods of 4 − 39µm can be

obtained in crystals as long as 30mm. KTP is usually used in the visible to near

UV region of the spectrum. Wavelengths as low as 359nm have been reached using

second harmonic generation in periodically poled KTP[36]. This implies that it can

be used for SPDC with a pump wavelength as low as 359nm.

In general, periodic polling is not precise enough to achieve the exact period needed for

phasematching. Fine adjustment of the phasematching is usually done using temperature

tuning. In the case of down-conversion, we can chose the wavelength of the signal and idler

by changing the crystal temperature. The experimental observation of this effect is shown

for PPKTP in Section 3.4.1, and the theoretical predictions can be found in Appendix B.

For PPLN, the effect is shown in Figure 4.3.
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Electrodes 

        

a 
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c 

Λ 

Figure 1.2: Sketch of the periodic poling method. a, In the beginning, all the domains

point in the same direction indicated by the red arrow. b, An electric field is then applied

in the opposite direction, inverting the domains in the affected regions. c, We are left with

the desired periodic material.
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Chapter 2

Polarization entangled photons from

SPDC

2.1 Using SPDC to get polarization entangled photon

pairs

In this section, we will give a brief review of the different methods that have been used to

produce photon pairs entangled in polarization. Helpful references on the subject, which

we used for this section, are [38] and [39].

2.1.1 The first entangled photons from SPDC

Polarization entangled photons produced with SPDC were first demonstrated in [5, 6].

This method, shown in Figure 2.1, uses a type I SPDC process. The polarization of one

of the photons is rotated by 90◦. The two photons are then brought back together on a

50 : 50 beam splitter to interfere. The resulting state is:
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|ψ〉 =
1√
2

(|H〉a + i|H〉b)⊗ (−i|V 〉a + |V 〉b) (2.1)

=
1

2
(|H〉a|V 〉b + |V 〉a|H〉b − i|H〉a|V 〉a + i|V 〉b|H〉b) , (2.2)

which is a state that is not entangled. However, if we choose to only consider the cases

when a photon is detected in both modes a and b at the same time, then the produced

state is:

|ψ〉 =
1√
2

(|H〉a|V 〉b + |V 〉a|H〉b) (2.3)

which is a maximally entangled Bell state. This method uses so-called post-selection1. From

the full quantum state which is produced in Equation 2.2, only certain parts are chosen

to obtain the desired quantum state of Equation 2.3. The procedure is probabilistic, only

working half of the time in this case. Even if all the photons could be detected, only half of

them would belong to the entangled state 2.2. This method is therefore not appropriate for

certain fundamental tests of quantum mechanics, such as a loophole free Bell’s inequality

experiment [40], or for linear optics quantum computing[21]. Let us also note that the

technique can be adapted to use type II SPDC [41].

2.1.2 Type II SPDC single emitter scheme

In 1995, Kwiat et al. [8] demonstrated the first direct source of entangled photons using

SPDC, i.e. a source without the need for post-selection (of the kind described in Footnote

1). This scheme is illustrated in Figure 2.2. The phasematching conditions are chosen so

1In practice, we always use some kind of post-selection to produce entangled photons. This is in part

due to the probabilistic nature of SPDC (because we don’t know when pairs of photons will be produced)

and to the limited efficiency of coupling and detectors (when one photon is detected, its partner might

have been lost). So, in practice, we always only consider simultaneous detections, and this is a form of

post-selection. The post-selection needed for the scheme in Section 2.1.1 is different; even if SPDC was

deterministic and if we had perfect detectors, it would still be required. In the rest of this thesis, we will

use the term post-selection to refer specifically to this specific kind of “essential” post-selection.

17



SPDC  
crystal  𝐻  a 

b 

 𝐻 𝑎  𝑉 𝑏 +  𝑉 𝑎  𝐻 𝑏 

 𝐻  

BS 

 𝑉  

HWP 

Figure 2.1: The first successful method for the generation of polarization entangled pho-

tons using SPDC. A pump produces type I down-conversion in a nonlinear medium. The

polarization of one of the pairs is flipped using a half-wave plate (HWP). The pairs are

then recombined on a 50 : 50 beam splitter (BS). The labels a and b indicate the two

output modes of the BS.
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that the two conical surfaces along which the signal and idler photons are emitted intersect

along the lines a and b. If a signal photon is emitted in direction a, then an idler is emitted

in direction b, and vice-versa. This ensures that the state produced satisfies:

|ψ〉 =
1√
2

(
|H〉a|V 〉b + eiφ|V 〉a|H〉b

)
(2.4)

The phase φ is set by placing a birefringent material in one of the optical paths after

the crystal. This method is not probabilistic in the same way as the scheme described

in Section 2.1.1. Indeed, here if one was able to detect all of the photons emitted along

the directions a and b, every one of them would belong to an entangled pair. The other

advantage of this scheme is that entangled photons are produced along two distinct spatial

modes, which can readily be collected into single mode fibres. Its downside is that by only

using the photons from the intersection of the cones, a majority of the photons produced

by SPDC are lost. Also note that because of birefringence in the nonlinear crystal, the

signal and idler suffer from both longitudinal and transverse walk-off. This walk-off can

be compensated by placing a nonlinear crystal, half the length of the down-converter but

identical otherwise, in each of the output modes.

2.1.3 Type I SPDC sandwich scheme

Another source of entangled photon using SPDC was presented by Kwiat et al. in 1999

[42]. It is shown in Figure 2.3. This method uses two identical emitters, but one of them

is rotated by 90◦. With the pump polarized at 45◦, pairs may be produced either in the

first crystal (|HH〉) or in the second crystal (|V V 〉). As long as there is no information left

which would allow one to infer from which crystal a photon originated, then the resulting

quantum state is the entangled state:

|ψ〉 =
1√
2

(
|H〉a|H〉b + eiφ|V 〉a|V 〉b

)
(2.5)

where the phase φ can be chosen by changing the input polarization. The advantage of

this method over the single emitter type I scheme is that a much larger proportion of the
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SPDC crystal 

 𝐻  

 𝑉  

a 

b 

 𝐻 𝑎  𝑉 𝑏 +𝑒
𝑖𝜙   𝑉 𝑎  𝐻 𝑏 

Figure 2.2: Type II SPDC single emitter source of entangled photons. The signal and

idler photons are each emitted along a conical surface. By collecting photons from the

intersection of these surfaces (a and b), a maximally entangled state can be obtained.
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produced photons are entangled. However, in order to have indistinguishability in this

configuration, the crystals need to be thin, thus limiting the brightness of this kind of

source. Just like for the single type-II single emitter scheme, compensation crystals are

needed to compensate for the the transverse and longitudinal walk-off of the signal and

idler. Furthermore, if a pulsed pump is used, then additional compensation is needed to

compensate the longitudinal walk-off between the horizontal and vertical components of

the pump beam [43].

A variation of the sandwich source is to use collinear and non-degenerate SPDC[44].

In this case, the signal and idler do not have the same wavelength, and can be split up

using a dichroic mirror. This method is advantageous as almost all of the photons from

the SPDC are collected, and much longer crystals may be used. Its disadvantage is that

the scheme does not work when the signal and idler need to have the same wavelength.

2.1.4 Interferometric SPDC schemes

One way of using degenerate and collinear SPDC is to place two down-converters inside

an interferometer, as shown in Figure 2.4. In this scheme, two type II down-converters are

placed inside a Mach-Zehnder interferometer. They both produce |HV 〉 pairs, which are

then recombined on a polarizing beam splitter (PBS). The resulting state is:

|ψ〉 =
1√
2

(
|H〉a|V 〉b + eiφ|V 〉a|H〉b

)
(2.6)

The phase φ is again controlled by changing the input polarization. The advantage

of this method is that it allows for collinear SPDC, which equates to longer crystals and

to more photons being collected. The disadvantage is that it requires the interferometer

to be phase-stable, and thus usually requires sophisticated stabilization. The method was

proposed by [40]. The first demonstration of an interferometric SPDC scheme was reported

in [45], although in this case, a type I SPDC source was used, so there were not two separate

output modes as in Figure 2.4, which is one of the main benefits of this technique. The

first demonstration with a type II source was done in [46]. This setup was further improved

using a folded interferometer in [47], but the quality of the entanglement was still limited
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SPDC crystal 

 𝐻  

 𝑉𝑉  

a 

b 

 𝐻 𝑎  𝐻 𝑏 +𝑒
𝑖𝜙   𝑉 𝑎  𝑉 𝑏 

 𝐻𝐻  

Figure 2.3: Type I SPDC sandwich configuration source of entangled photons. Two type I

emitters are “sandwiched” together , with the second one rotated by 90◦. The first emitter

can produce |HH〉 pairs, and the second |V V 〉 pairs. If there is no way of distinguishing

from which crystal the photons come, then the produced state is maximally entangled.
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by the phase stability of the interferometer. In Chapter 3, we describe an entangled

photon source which gets around this problem by using an inherently phase-stable Sagnac

interferometer.

2.2 Using SPDC to produce polarization entangled

photon triplets

In this section, we describe methods that have been used to produce three photon en-

tanglement using SPDC. Three photon entanglement is different than the in two photon

case, because there exist two different classes of entangled states: the Greenberger-Horne-

Zeilinger (GHZ) class of states and the W class of states [48, 49]. We have included a short

review of the different methods that have been used to produce GHZ states, and we give

an example of how W states can be produced.

2.2.1 GHZ states

GHZ state with double pairs from a single emitter

The first demonstration of a three photon GHZ state was done by Bouwmeester at al.

[50]. Their scheme is shown in Figure 2.5. The production of a GHZ state with this setup

can be understood as follows: the SPDC source is pumped by a pulsed laser, and set

up to produce entangled pairs in the state of the form: |ψ〉 = 1√
2

(|H〉a|V 〉b − |V 〉a|H〉b),

using the single emitter scheme described in Section 2.1.2. We consider the case where two

photon pairs are produced by the same pulse. To treat this appropriately, we need to look

at the next term of the expansion in Equation 1.18, with two type II down-converters. The

bandwidth of the pump and the filtering of the down-conversion are such that a simple

single mode model suffices. Neglecting phasematching considerations, we can write the

double-pair contribution to the quantum state in modes a and b as proportional to:

|ψ〉 ∼
(
â†H,aâ

†
V,b + â†V,aâ

†
H,b

)2

|vac〉. (2.7)
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SPDC 1 

a 

b 

 𝐻 𝑎  𝑉 𝑏 + 𝑒𝑖𝜙 𝑉 𝑎  𝐻 𝑏 

 𝐻  
SPDC 2 

HWP 
 𝐻  

 𝐻   𝑉  

 𝐻   𝑉  

PBS 

PBS 

Figure 2.4: Interferometric source of entangled photons. Two type II down-converters are

placed in each arm of a Mach-Zehnder interferometer. The vertical portion of the pump

which is reflected by the PBS is rotated to horizontal with a half-wave plate (HWP).

Depending on which down-converter a pair came from, the output is either |H〉a|V 〉b or

|V 〉a|H〉b. If the interferometer is stable, then the produced state is a coherent superposition

of these two cases.
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where the subscripts H and V indicate the polarization of created photons, and a and b

the mode they are emitted in. If we expand this and let the operators act on the vacuum

state, we get:

|ψ〉 ∼ 2 (|2〉H,a|2〉V,b + |1〉H,a|1〉V,b|1〉V,a|1〉H,b + |2〉V,a|2〉H,b) . (2.8)

Here, the label in the brackets indicates the number of photons of a given polarization in

a mode. The individual terms in this equation will be transformed in the setup as follows:

|H〉a → |H〉T (2.9)

|V 〉b →
1√
2

(|V 〉2 + |V 〉3) (2.10)

|V 〉a →
1√
2

(|V 〉1 + |H〉2) (2.11)

|H〉b →
1√
2

(|H〉1 + |H〉3) . (2.12)

We can substitute these into Equation 2.8. We then expand this term, and we post-select

only the terms where there is a photon in each of the four output modes. With appropriate

renormalization, we find:

|ψ〉 =
1√
2
|H〉T (|V 〉1|V 〉2|H〉3 + |H〉1|H〉2|V 〉3) . (2.13)

which is a GHZ state when the trigger term is traced out. There is a resemblance between

this method for producing GHZ states and the method described in Section 2.1.1 to produce

Bell pairs. This is because in both cases, post-selection is critical to observing the entangled

state. Even with perfect detectors, most of the photons detected in any of the output

modes would not belong to a GHZ state. Indeed, there is only a 1/8 probability that all

the photons go to different detectors.
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SPDC  
crystal 
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b 

BS 

HWP 

T 

D1 

D2 

D3 

PBS 1 

PBS 2 

Figure 2.5: Double pairs from a single emitter setup used for the first production of

GHZ states. An SPDC source is pumped with a pulsed laser to produce entangled pairs.

Detectors are placed in each of the output modes T, D1, D2 and D3. In the case where

two pairs are produced at the same time, and by post-selecting on the cases where all four

detectors get a detection, a GHZ state is produced.
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GHZ state by interfering two independent sources

Another method which can be used to produce GHZ states was implemented for the first

time in [51] and is shown in Figure 2.6. Here, two nonlinear crystals are pumped by a

pulsed laser. They are configured to produce entangled photon pairs in the state |ψ〉 =
1√
2

(|H〉a|V 〉b − |V 〉a|H〉b). There is a probability that both sources will produce a photon

pair from the same pulse. We post-select the cases where there is a detection by all

detectors. This can happen in one of two ways:

• Horizontal photons in modes b and c. In this case, the final state is |H〉1|H〉2|V 〉3.

• Vertical photons in modes b and c. In this case, the final state is |V 〉1|V 〉2|H〉3.

So the final state is:

|ψ〉 =
1√
2

(|V 〉1|V 〉2|H〉3 + |H〉1|H〉2|V 〉3) . (2.14)

Note that this setup is actually producing a four photon GHZ state, but it can be used

just as well to produce a three photon entangled state. This method has the advantage

that it works 50% of the time2, which is four times better than using double pairs from a

single emitter. It does however still rely on post-selection.

GHZ state by interfering an entangled source with a coherent state

Finally, we will briefly mention a third way of producing three photon GHZ states. This

method, shown in Figure 2.7, was proposed by Rarity at al. in [52], and was implemented

in [53]. It involves a scheme similar to the one described in Figure 2.6, except that one

of the entangled sources is replaced with a coherent state. The argument as to why this

produces a GHZ state is the same as when two independent SPDC sources are interfered.

2A four photon GHZ state is produced 50% of the time. To obtain 50% success probability in the

three-photon case, active switching with feed-forward is required.
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D1 

D2 

D3 

PBS 

Figure 2.6: Setup for production of GHZ state by interfering two independent SPDC

sources. Two nonlinear crystals are pumped by a pulsed laser to produce entangled pairs.

The photons in modes b and c are interfered together on a PBS. If one of the outputs is

used as a trigger and only four-fold coincidences are considered, then the result is a three

photon GHZ state.
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Figure 2.7: Setup for production of GHZ state by interfering an SPDC source with a

coherent state. A pulsed laser beam passes through a beam splitter (BS). One part is

frequency-doubled and then used to pump a source of entangled pairs. The other part’s

polarization is set to 45◦ with a HWP and is then interfered on a beam splitter with one

of the photons from the pair. By post-selecting on three-folds, the result is a GHZ state.

If we ignore double pairs emitted by the entangled source, and if the coherent state in

mode a is weak enough, then the dominant way to obtain a three-fold coincidence is for

the photons in modes a and b to have the same polarization. The photon in mode c must

have orthogonal polarizations. The state produced is thus of the form:

|ψ〉 =
1√
2

(|V 〉1|V 〉2|H〉3 + |H〉1|H〉2|V 〉3) (2.15)

The advantage of this method is that it allows for much higher count rates, because it does

not require two separate down-conversions to happen at the same time. However, it still
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requires post-selection. It also has a downside compared to the other schemes: it cannot

lead to states with as high a fidelity. This is because because unlike the other schemes,

there is no trigger detector, so there are more accidental coincidences[53].

2.2.2 W states

The first method used to produce W states using SPDC [54, 55] is shown in figure 2.8. A

SPDC source is set up to produce |ψ〉 = 1√
2

(|H〉a|V 〉b − |V 〉a|H〉b) entangled states. We

consider only the cases where all four detectors fire, and assume that a double pair was

emitted. For this to happen, there needs to be exactly one horizontal photon and one

vertical photon in mode a to get a detection at T, and one vertical photon reflected by the

PBS. Consequently, there must be one horizontal and one vertical photon in mode b. The

polarization dependant beam splitter (PDBS) has transmission TV = 2TH , so that 1/3 of

the time, the horizontal photon is transmitted to D3. Photons reflected by the PDBS and

the PBS are recombined probabilistically with a beam splitter, and then split up again to

be detected by D1 and D2. This leads to the following state:

|ψ〉 =
1√
3

(|V 〉1|V 〉2|H〉3 + |V 〉1|H〉2|V 〉3 + |H〉1|V 〉2|V 〉3) (2.16)

which is a W state.

Just like for GHZ states, there are several other methods that have been used to produce

W states [56, 57], but we will not describe all of them in detail. The important point is

that they all of them require post-selection. In Section 2.1, we mentioned that there was

a fundamental change with the type II SPDC single emitter scheme, because it was the

first method that created pairs of photons directly, without post-selection (as explained in

Footnote 1). For three photon entanglement, an analogous step has not yet been achieved.

In chapter 4, we describe an experiment where we have directly produced triplets, which

we predict can be entangled without the use of post-selection.
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Figure 2.8: Setup for production of W state using double pairs from a single emitter. A

SPDC source is pumped using a pulsed laser to produce entangled pairs. In the case where

a double pair is emitted, the PBS takes out one horizontal photon, leaving one horizontal

and two vertical photons. The polarization dependant beam splitter (PDBS) assures that

the probability of the horizontal photon going to D1, D2 or D3 is equal in the cases where

all four detectors fire.
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Chapter 3

Experimental realization of a Sagnac

source

3.1 Motivation

As we have seen in Section 1.4, quasi-phasematched materials allow for much better down-

conversion efficiencies. However, the best way to make use of quasi-phasematched mate-

rials is through collinear down-conversion. Therefore, as we saw in Section 2.1, entangled

photon source schemes based on cone geometries [8, 42] cannot fully benefit from quasi-

phasematching.

The challenge when using collinear down-conversion is separating the down-converted

photons that are created in the same spatial mode. One possibility, if the down-conversion

is non-degenerate, is to use dichroic mirrors [44, 58] to separate them. However, this is

obviously not possible when operating near degeneracy. Another option is simply to split

up the photons probabilistically with a beam splitter [59], but this leads to the unwanted

loss of half of the pairs. These losses can be avoided by using the interferometric schemes

described in Section 2.1.4, but these configurations are limited by phase stability and

therefore require active phase stabilization.

To avoid the need for active phase stabilization, it is possible to instead use a single

down-converter, pumping it in two opposite directions inside a polarizing Sagnac interfer-
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ometer. This idea was first realized in [60], albeit with type I SPDC, and so the down-

conversion was not split into separate spatial modes. It was Kim et al. [61] who first showed

an entangled source with a type II emitter inside a Sagnac interferometer. This setup was

then improved in [62, 63]. Because this method uses collinear down-conversion, and does

not require phase stabilization, these sources have been able to achieve high entanglement

quality, while also allowing for a high source brightness. It also has the added advantage

over other interferometric schemes that only one down-converter is required.

3.2 Theory

The Sagnac source is illustrated in Figure 3.1. A nonlinear crystal is placed in the mid-

dle of a polarizing Sagnac interferometer. The crystal is kept at a constant tempera-

ture appropriate for degenerate type II down-conversion of a horizontally polarized pump

(|Hp〉 → |Hs〉, |Vi〉, where the subscripts p, s and i represent the pump, signal, and idler

photons respectively). The polarization of the pump is set using a half-wave plate and a

quarter-wave plate (HWP1 and QWP1). The vertical component of the pump is reflected

by the PBS, and is then rotated by the dual wavelength half-wave plate HWP31, which is

set to 45◦. This leads to pairs |Hs〉a, |Vi〉a propagating clock-wise through the interferom-

eter in mode a. These are split by the PBS, so that we have |Hs〉c, |Vi〉d. The horizontal

component of the pump is transmitted by the PBS, and thus produces pairs |Hs〉b, |Vi〉b
propagating counter-clockwise through the interferometer in mode b. After HWP3, these

become, |Vs〉b, |Hi〉b, and after the PBS, we have |Vs〉c, |Hi〉d. If the polarization state of

the pump is a coherent superposition of |H〉 and |V 〉, then the two photon state in modes

c and d is: α|Hs〉c|Vi〉d + βeiφ|Vs〉c|Hi〉d. α and β are set using HWP1, whereas the phase

φ is controlled by tilting QWP1, which is at 0◦. Note that because HWP3 also acts on the

down-converted photons, both signal photons come out in mode c, and both idler photons

exit through mode d. This allows the source to be operated in a non-degenerate regime.

This also cancels out any problems from longitudinal walk-off caused by birefringence in

the crystal, which is a common problem in sources using type II down-conversion [63]. We

will elaborate on this point in section 3.4.4.

1HWP3 is a dual wavelength half-wave plate, meaning that it acts as a half-wave plate for two wave-

lengths: the pump’s and the down-conversions’s.
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3.3 Experimental methods

The setup of the Sagnac source is shown in Figure 3.2. The pump laser is a 404.5nm grating-

stabilized laser diode (iWAVE-405-S, from Toptica Photonics). The produced beam is

passed through a free-space optical isolator (IO-5-405-LP, from Thorlabs) in order to avoid

retro-reflecting light into the laser. The pump beam is focused using a lens with a 200mm

focal length. The nonlinear material is a 25mm crystal of periodically-poled potassium

titanyl phosphate (PPKTP), with a grating period of 9.825 microns (from Raicol Crystals),

which is kept inside an oven at a constant temperature appropriate for degenerate SPDC

(between 50◦C and 70◦C, depending on the PPKTP sample). The down-converted photons

are coupled into single mode fibers using achromatic lenses with a 30mm focal length. A

guide detailing the construction and the alignment of the setup is provided in Appendix

A.

The photons are detected using silicon avalanche photo-diodes, (PerkinElmer four-

channel SPCM-AQ4C modules). These detectors have a detection efficiency of between

45% and 50% at 809nm [64]. To find coincidences, we use a homemade logic module,

built by Zhenwen Wang of the University of Waterloo Science Technical Services, which

outputs a signal when it receives TTL signals from each single photon detector within a

time window of 6ns. Both the single photon detections and coincidences are recorded on a

computer.

3.4 Results

3.4.1 Phasematching curves

We first show the effect of changing the PPKTP crystal’s temperature on the spectrum of

the down-converted photons. The results for a 10mm PPKTP crystal are shown in Figure

3.3.

These results illustrate one of the main advantages of quasi-phasematching for SPDC:

easy tunability. Indeed, by changing the temperature of the PPKTP crystal in a range of
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Figure 3.2: Experimental setup of the Sagnac source of entangled photons. After passing

through the optical isolator, the pump beam’s polarization is set by a half-wave plate

(HWP1) and a quarter-wave plate (QWP1). It is then focused onto the PPKTP crystal.

Single photons are separated from the pump using a dichroic mirror (DM). Any stray pump

is removed using a low-pass filter (LP) and an interference filter (IF). The single photons

are detected with single photon counting modules (SPCM). The output from the SPCM

is then sent to a coincidence logic, who’s output is analyzed on a computer.36



Figure 3.3: Phasematching curves for 10mm PPKTP crystal. This false color image shows

the measured spectrum of the photons produced by SPDC for a range of temperatures.

The measured intensity has been normalized. The line with the positive slope is the signal,

whereas the one with the negative slope is the idler.
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about 30◦C, we can vary the wavelength of the down-converted photons by approximately

6nm. It is interesting to compare this with the theoretical predictions. To obtain the

theoretical phasematching, we need to solve Equation 1.32, taking into account the proper

temperature dependance of each term. This is detailed in Appendix B. The result is shown

in Figure 3.4. The degeneracy points are very close to the one measured (66.8◦C calculated,

64.5◦C measured). However the slopes of the tuning curves differ a bit. We calculated an

average slope of -0.218nm/◦C for the idler, and measured -0.185nm/◦C. This difference

could be due to imperfections in the polling periods of the crystals, as we have noticed

that the phase matching curves are not the same for every sample.

3.4.2 Source performance

With a 25mm PPKTP crystal pumped with 6mW (measured after the optical isolator),

the source produced approximately 1,000,000 singles per second in each of its outputs,

and 210,000 coincidences per second. The bandwidth of the down-converted photons,

shown in Figure 3.5, was approximately 0.3nm. From these results, we can calculate the

spectral brightness of the source to be 117000 pairs/s ·mW · nm. This is a factor of 2.4

less than what is reported in [63]. This is partly due to power losses between where we

measured the pump power (after the optical isolator) and the PPKTP crystal, mainly from

the backside of the dichroic mirror and the PBS. However, the main contribution is that

space constraints prevented us from achieving the optimal pump spot size in the crystal,

something which was done in [63].

3.4.3 Characterization using quantum state tomography

To characterize the source, we used an external setup, capable of making any separable

projective measurement on each of the photons. In this setup, the single photons are

coupled back out into free-space, and then pass through a quarter-wave plate, a half-wave

plate and a polarizing beam splitter. The wave plates are mounted in motorized rotation

stages from Newport (PR50CC), which are controlled using a Newport XPS Universal

High-Performance Motion Controller/Driver. All the measurements needed to perform

quantum state tomography are automated with Labview, using a program written by
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Figure 3.4: Theoretical phasematching curves for our PPKTP sample.
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Figure 3.5: . Measured down-conversion spectrum in Sagnac source. From the Gaussian

fit, we find that the bandwidth is approximately 0.3nm.
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Figure 3.6: Reconstructed state measured with quantum state tomography. The left bar

chart shows the real part of the reconstructed density matrix, whereas the right part shows

the imaginary part. For ad ideal |ψ−〉, every element of the density matrix should be 0,

except for the four middle elements in the real part which would be either 0.5 or -0.5.

Rainer Kaltenbaek. The density matrix is reconstructed using the maximum likelihood

method described in Section 1.2.2.

The reconstructed density matrix of a typical state is shown in Figure 3.6. In this

example, the state was set to produce |ψ−〉. The power of the pump was also set using

HWP2 (see Figure 3.2), so that the coincidence rate was approximately 2000Hz. The

tomography consisted of three cycles of 36 measurements, specifically all combinations

of |H〉, |V 〉, |D〉 = 1√
2
(|H〉 + |V 〉), |A〉 = 1√

2
(|H〉 − |V 〉), |R〉 = 1√

2
(|H〉 − i|V 〉) and

|L〉 = 1√
2
(|H〉+ i|V 〉) measurements, each lasting 1 second.

In Table 3.1, we give several figures of merit of the reconstructed quantum state. The

fidelity is a measure of how similar two states, τ and σ, are. It is given by: F (τ, σ) =[
Tr
(√√

τσ
√
τ
)]2

[65]. The purity of a state σ is given by : Tr[σ2]. The tangle is a

measure of a two-qubit state’s entanglement, which ranges from 0 for a separable state to

1 for a maximally entangled state (see [66] for more details). The error bars quoted are

based on a Monte-Carlo simulation with 100 iterations. In each iteration, Poissonian noise

is added to the counts, and the maximum likelihood routine is run. For this calculation,

we used Mathematica code written by Robert Prevedel.
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Property Measured Value

Fidelity with |ψ−〉 0.9893 ± 0.0005

Purity 0.983 ± 0.001

Tangle 0.959 ± 0.002

Table 3.1: Figures of merit of reconstructed state

3.4.4 Effect of the crystal’s position inside the interferometer

We have observed that the entanglement quality of the source is highly dependent on

whether the crystal is properly placed inside the interferometer. To show this effect, we set

the source to produce a |ψ−〉 state so that the measurements in the diagonal basis should

be anti-correlated. Then, with both of our analyzers set to |D〉, we measured the number

of coincidences in 10 seconds. Ideally, it should be zero. We repeated the measurement

as the crystal was translated along the direction of propagation of the beam. The result

of this measurement is shown in Figure 3.7. We can see that when the crystal moves in

either direction, the number of coincidences becomes higher. This translates to a lower

entanglement visibility when the crystal is not in the optimal position.

We believe the effect can be explained in the following way. PPKTP is birefringent,

and the signal and idler do not have the same polarization. Therefore, they do not have

the same velocity inside the crystal, and so there is a longitudinal walk-off between them.

In a well aligned Sagnac, we do not have to worry about this, because the longitudinal

walk-off is the same whether the pairs are traveling clockwise or counter-clockwise through

the interferometer.

However, if the crystal is not centered, this is no longer the case. Indeed, the overlap

between the mode in which the pairs of photons are produced and the fiber-coupled mode

is best in the middle of the interferometer. Because of this, the detected pairs have a

higher probability of coming from the middle of the interferometer. If the crystal is not

perfectly centered, the pairs produced in one direction will therefore travel a larger average

distance in the crystal than the ones produced in the other direction. The longitudinal

walk-off caused by birefringence will then not be same in both directions, which will provide

some distinguishability between the two different types of pairs and adversely affect the

entanglement.
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Figure 3.7: Effect of the crystal’s position on entanglement. The points show the number

of coincidences measured in 10 seconds with both analyzers set to |D〉, for different crystal

positions. For an ideal |ψ−〉, these should be zero. As the crystal moves away from its

optimal position, the rate of measured coincidences increases, indicating a loss of entan-

glement. If one of the analyzers is set to do an |A〉 measurement, the coincidence rate

was approximately 6000/10s, so the contrast in the diagonal basis goes from a minimum

of ∼ 50 : 1 to ∼ 10 : 1.
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Figure 3.8: Time delays caused by birefringence. a, When the crystal is centered, the

detected pairs are produced on average in middle of the crystal. The time delay δT between

the signal (shown in orange) and the idler (shown in red) is the same for pairs produced in

either direction. b, If the crystal is not centered, the detected pairs come on average from

a distance d away from the center of crystal of length L. The delay is now larger for pairs

traveling towards the left because these pair travels further on average inside the crystal.
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We can do a rough calculation to check the plausibility of this explanation. Consider

the situation shown in Figure 3.8b. When the pairs are traveling to the right, the signal

will come out of the crystal ahead of the idler ahead by a time δTR given by:

δTR =
(L/2− d)

c
(ngs − ngi) (3.1)

where c is the speed of light, and ngs and ngi are the group velocity refractive indices for

the signal and idler respectively. These can be calculated using the Sellmeier equations

contained in Appendix B. We used ngs = 1.806 and ngi = 1.912. In the left direction, the

time delay is:

δTL =
(L/2 + d)

c
(ngs − ngi) (3.2)

so the difference between the time delays in each direction, δT is given by:

δT = δTL − δTR =
2d(ngs − ngi)

c
= l · 0.71ps/mm (3.3)

The pairs become distinguishable when δT is on the order of the coherence time of the

single photons τc [8]. We can estimate their coherence time from their bandwith, measured

to be 0.3nm.

τc ≈
λ̄2

c∆λ
= 7.27ps (3.4)

This means that a translation of only 1 cm would cause the relative time delay to be of the

same order of magnitude as the coherence length. We should note that this model is quite

simplistic. We have assumed that the photons are created only in a single point in the

crystal, so we overestimate the dependance on position. Nonetheless, since the orders of

magnitudes are correct, it is very probable that birefringence is indeed the cause of the loss

of entanglement. More experiments are needed to confirm our hypothesis. The most direct

way would be to add an additional birefringent material on one side of the interferometer,

and then to see how the optimal position of the crystal is affected.
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3.4.5 Effect of pump power on the state’s entanglement quality

The tomography results in Section 3.4.3 were taken with the source operating at a relatively

low power. The reason for this is that at higher powers, the measured fidelity drops

significantly. A measurement of this effect is shown in Figure 3.9.

This is due to what we commonly call accidental coincidences. Indeed, as the number

of counts measured becomes higher, the odds of two uncorrelated photons getting detected

within the coincidence window of the logic increases also. More precisely, the rate of

accidental coincidences, Cacci can be approximated by:

Cacci ≈ S1S2W (3.5)

where S1 and S2 are the number of detections per second at each detector, and W is the

time window in which two detections will be deemed a coincidence by the logic. This can

be rewritten as:

Cacci ≈ R2
pairsη1η2W. (3.6)

Rpairs is the number of photon pairs produced per second in the PPKTP crystal, and

η1 and η2 are the respective coupling efficiencies of each channel. The number of “real”

coincidences measured, C is given by:

C = Rpairsη1η2 (3.7)

Therefore, while the number of genuine coincidences detected increase linearly with Rpairs,

the accidental coincidences increase by the square of Rpairs. This means that as the source

is operated at higher powers, an increasing proportion of the coincidences measured are

accidentals, thus explaining the loss of fidelity.

To verify that this explanation is valid, a simple calculation was used to predict the

drop in fidelity that should arise because of these accidental coincidences. First, we set the
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Figure 3.9: Effect of number the average number of detections per second on the theoretical

and experimental fidelity with |ψ−〉 of the produced quantum state. The predicted results

are indicated by the red line, and the measured fidelities are the blue points.

source to produce a |ψ−〉 state with very low count rates and performed an over-complete

tomography. The number of expected accidental coincidences was calculated for all of

these measurements. These calculated accidental counts were then subtracted from the

measured data, in order to have an estimate of the number of real coincidences. Based on

these, we extrapolated the number of both real and accidental coincidences that should

be measured as the count rates are increased. Finally, we used a maximum likelihood

reconstruction to find the quantum state most likely to correspond to these extrapolated

measurements, and their fidelity with the ideal state |ψ−〉. The results are shown in Figure

3.9. We can see that there is quite a good agreement between our empirical model and

the measured results. This supports our claim that the loss in fidelity is mainly caused by

accidental coincidences.
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3.5 Applications

The source has been used for several experiments. As evidence of the contributions made

possible by the work described in this thesis, we give here a list of experiments for which

the source was used. However, since these experiments were not the main focus of this

thesis, they will not be discussed in detail.

First, data from the source was used to investigate the challenges related to doing

quantum key distribution with a very bright source of entangled photons. The idea is

that, similarly to what was discussed in Section 3.4.5, as sources get brighter, there is a

degradation in the effective secure bit rate. This can be attributed to double pair emission,

i.e. two pairs produced within a short time, which is less than the coincidence window of

the logic. The results were presented in:

• Chris Erven, Deny Hamel, Kevin Resch, Raymond Laflamme, and Gregor Weihs, En-

tanglement Based Quantum Key Distribution Using a Bright Sagnac Entangled Pho-

ton Source, In Quantum Communication and Quantum Networking (A. Sergienko,

S. Pascazio and P. Villoresi, eds.), pp. 108-116, Springer, Berlin, 2010.

The source was also employed for an experiment on cluster state quantum computing.

The goal was to study the benefit of using generalized quantum measurements (POVMs)

instead of only projective measurements to enhance the computational power of a given

the cluster state. This work was published in:

• Devon N. Biggerstaff, Rainer Kaltenbaek, Deny R. Hamel, Gregor Weihs, Terry

Rudolph and Kevin J. Resch, Cluster-state quantum computing enhanced by high-

fidelity generalized measurements, Phys. Rev. Lett. 103:240504, 2009.

Another experiment which used the Sagnac source, was done on the subject of remote state

preparation2. The goal was to show that with shared entanglement and feed-forward,

remote state preparation between two parties can be more successful than the classical

threshold. The experimental results, as well as the theory to calculate these classical

thresholds, was published in:

2The author of this thesis was note directly involved in this experiment
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• Nathan Killoran, Devon N. Biggerstaff, Rainer Kaltenbaek, Kevin J. Resch, and

Norbert Lütkenhaus, Derivation and experimental test of fidelity benchmarks for

remote preparation of arbitrary qubit states, Phys. Rev. A 81:012334, 2010.

The next experiment investigated the state discrimination of entangled states using local

polarization measurements and feed-forward. Our scheme achieved optimal state discrim-

ination both with orthogonal and non-orthogonal states, and showed a distinct advantage

with the use of feed-forward. The results of this experiment have been submitted for

publication, and are currently available on the arXiv:

• Yang Lu, Nick Coish, Rainer Kaltenbaek, Deny R. Hamel, Sarah Croke and Kevin

J. Resch, Minimum-error discrimination of entangled quantum states, arXiv:quant-

ph/1008.0843, 2010.

Finally, the most recent experiment that used the source investigated the benefit of us-

ing entanglement when sending classical information over a noisy classical channel3. A

manuscript describing the results from this experiment is currently in preparation.

3The author of this thesis was note directly involved in this experiment
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Chapter 4

Direct generation of photon triplets

using cascaded photon-pair sources

4.1 Notes and acknowledgements

In this chapter we describe the experimental production of photon triplets using cascaded

spontaneous down-conversion. The motivation for this comes from what was explained in

Section 2.2. Unlike for two photon entanglement, there is currently no way of producing

three entangled photons without post-selection. This experiment is a step in that direction,

by showing the first direct generation of photon triplets.

Notice: The content of this chapter has been published in :

Hannes Hübel, Deny R. Hamel, Alessandro Fedrizzi, Sven Ramelow, Kevin J. Resch

and Thomas Jennewein, Direct generation of photon triplets using cascaded photon-pair

sources. Nature, 466:601-603, 2010.

Author contributions

Hannes Hübel and Deny R. Hamel performed the experiment and analyzed the data

Alessandro Fedrizzi and Sven Ramelow participated in the design of the experiment
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Kevin J. Resch and Thomas Jennewein contributed to the design and realization of

the experiment

All authors co-wrote the paper.

4.2 Introduction

Non-classical states of light, such as entangled photon pairs and number states, are es-

sential for fundamental tests of quantum mechanics and optical quantum technologies.

The most widespread technique for creating these quantum resources is the spontaneous

parametric down-conversion (SPDC) of laser light into photon pairs[67]. Conservation

of energy and momentum in this process, known as phase-matching, gives rise to strong

correlations which are used to produce two-photon entanglement in various degrees of

freedom[5, 6, 8, 68, 69, 70, 71, 72]. It has been a longstanding goal of the quantum optics

community to realise a source that can produce analogous correlations in photon triplets,

but of the many approaches considered, none have been technically feasible[52, 73, 74, 75,

76, 77, 78, 79]. In this paper we report the observation of photon triplets generated by

cascaded down-conversion. Here each triplet originates from a single pump photon, and

therefore quantum correlations will extend over all three photons[80] in a way not achievable

with independently created photon pairs[81]. We expect our photon-triplet source to open

up new avenues of quantum optics and become an important tool in quantum technolo-

gies. Our source will allow experimental interrogation of novel quantum correlations[82],

the post-selection free generation of tripartite entanglement[74, 83] without post-selection

and the generation of heralded entangled-photon pairs suitable for linear optical quan-

tum computing[84]. Two of the triplet photons have a wavelength matched for optimal

transmission in optical fibres, ideally suited for three-party quantum communication[85].

Furthermore, our results open interesting regimes of non-linear optics, as we observe spon-

taneous down-conversion pumped by single photons, an interaction also highly relevant to

optical quantum computing.
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4.3 Theory

Given the potential for fundamental and applied quantum sciences, several physical sys-

tems have been proposed for the direct generation of photon triplets. These include four-

level atomic cascades and higher-order optical nonlinearities[52], tri-excitons in quantum

dots[73], combinations of second-order nonlinearities[75], and high-energy electron-positron

collisions[76]. Extremely low interaction strengths and collection efficiencies have rendered

these proposals unfeasible. Recent experiments have observed and studied third-order[77,

78] and cascaded second-order nonlinear[79] parametric processes seeded by strong lasers.

However, such seeding only increases stimulated emission which masks the production of

three-partite quantum correlations and cannot lead to three-photon entanglement.

Production of photon triplets by cascaded spontaneous parametric down-conversion

(C-SPDC) was first proposed 20 years ago[74], yet never experimentally realised. The

basic idea is shown in Fig. 4.1a. A primary down-conversion source is pumped by a laser

to create a photon pair. One of the photons from this pair drives a secondary down-

conversion process, generating a second pair and hence a photon triplet. Since the photon-

triplet originates from a single pump photon, the created photons have strong temporal

correlations[86] and their energies and momenta sum to those of the original photon.

The C-SPDC process can be described using a simplified quantum optical model. The

interaction Hamiltonian for the primary source can be written as, H1 = λ1α(a†0a
†
1 + h.c.),

with the pump laser treated as a classical field with amplitude α, and the photon creation

operators of the two output modes a†0 and a†1. The coupling strength between the inter-

acting fields is expressed by the parameter λ1, which includes the nonlinear response of

the material and governs the expected conversion rate of pump photons. For the second

down-conversion, the pump field is now a single photon and must be treated quantum

mechanically in the interaction Hamiltonian, H2 = λ2(a0a
†
2a
†
3 + h.c.), with output modes

2 and 3. The evolution operator of the system is U = U2U1 = exp(−iH2) exp(−iH1), and

can be approximated by expanding each term to first order. Applying U to the initial

vacuum state and ignoring the vacuum contribution for the final state results in

|Φ〉 = U |00, 01, 02, 03〉 (4.1)

≈ −iλ1α|10, 11, 02, 03〉 − λ1λ2α|00, 11, 12, 13〉,
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where the subscripts label the spatial modes. The first term describes the pair creation

process in the first crystal, while the second represents the desired three-photon state,

|0, 1, 1, 1〉, where the amplitude scales as the product of the two coupling strengths λ1 and

λ2 of both down-converters. Note that Eq. 4.1 predicts that the rate of triplet production

from C-SPDC should be linear in the intensity of the pump laser.

The conversion efficiencies in SPDC are typically very low. In optical nonlinear mate-

rials such as β-Barium Borate, for example, they reach about 10−11 per pump photon[87].

Major advances in nonlinear optics, such as quasi-phasematching of optical materials, have

recently made it possible to access the inherent higher nonlinearities of materials such

as periodically-poled Lithium Niobate (PPLN) and periodically-poled Potassium Titanyl

Phosphate (PPKTP). The down-conversion efficiencies demonstrated in these materials

can reach up to 10−9 in bulk[63]. The introduction of optical waveguides in photon-pair

sources[88] has further increased conversion efficiencies to 10−6, making the observation of

C-SPDC possible.

4.4 Experimental methods

Figure 4.1b depicts the experimental setup (see Methods for more details). The primary

source generated photon pairs in a PPKTP crystal, quasi-phasematched for collinear SPDC

of 405 nm → 775 nm + 848 nm. The 775 nm photons were used to pump the secondary

source, consisting of a PPLN waveguide, quasi-phasematched for 775 nm → 1510 nm

+ 1590 nm. The photon triplets were measured using a chained series of three photon

counters (D1, D2 and D3) based on avalanche photo-diodes (APD). The detection of a

848 nm photon at D1, which occurred at a rate of about 1 MHz, opened a 20 ns gate

at D2, which in turn gated D3 for 1.5 ns. The actual gate rate of D2 was reduced to

870 kHz, due to saturation. Since D3 was only armed if both D1 and D2 had fired, an

event at D3 constituted the detection of a photon triplet. The temporal signature of these

triple coincidences was recorded as histograms with a fast time acquisition card, where

the detection signal of D1 served as the start trigger, and the detection signal on D3 as

the stop. Data were recorded for a total of 20 hours, and analysed as a histogram of the

time-interval between D3 and D1 detections, ∆τD3−D1.

53



SPDC 1 

SPDC 2 
Pump 
Laser

Pump 
Laser

PPKTP

405nm

PPLNPolarisation
Control

BS

G
Delay

Generator

TAC

PC

Start Stop

D1

D2

D3

Temperature
Control

Temperature
Control

P
ho

to
n 

Tr
ip

le
t

Delay

848nm

775nm

1590nm &
1510nm

G

FP

Delay

F0

F1

a

b

0

1

2

3

Figure 4.1: Schematic of photon triplet generation and experimental setup. a, A down-

conversion source (SPDC1) produces a pair of photons in spatial modes 0 and 1, where the

photon in mode 0 creates another photon pair in the second source (SPDC 2) in modes

2 and 3, generating a photon triplet. b, The primary source, pumped by a 405 nm laser,

produces photon pairs at 775 nm and 848 nm. The 848 nm photon is directly detected

by a silicon avalanche photo-diode (D1), while the 775 nm photon serves as input to the

secondary source, creating a photon pair at 1510 nm and 1590 nm, which is detected by

two InGaAs avalanche photo-diodes (D2 and D3). A detection event at D3 represents a

measured photon triplet.
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4.5 Results and analysis

A typical data set, shown as a histogram in Fig. 4.2a, displays a peak 8 standard deviations

above the background noise. This is a clear signature of C-SPDC photon triplets. The

1.2 ns temporal width of the observed photon-triplet peak is dominated by detector jitter.

Integration over the three central time bins yields a raw triplet rate of 124 ± 11 events

in 20 hours. The observed background in the histogram is caused predominantly by triple

events between a genuine detection in D1 and dark counts in D2 and D3 (see Methods)

and was estimated from the displayed data to be 10.2 ± 0.9 per bin in 20 hours. The

detected rate of triplets, exclusively produced by the C-SPDC process, was 4.7 ± 0.6

counts per hour. We modelled the process under the assumption that the down-conversion

efficiency per photon in the secondary source was independent of the pump intensity (see

Supplementary Information). Using the conversion efficiencies obtained from independent

characterisations of both sources at mW pump power, and optical parameters from other

relevant components of our setup, our model predicts a triplet rate of 5.6 ± 1.1 counts per

hour, which is in very good agreement with the measured value.

It is expected that C-SPDC photon triplets should exhibit strict time correlations[86].

We investigated this property by introducing three different delays between D2 and D3

(-0.5, 0 and 0.5 ns) and measuring the histograms. The data in Fig. 4.2b shows a signifi-

cant reduction of the peak in the histograms with additional delays, verifying the strong

temporal correlations of the created triplets.

It is conceivable that other physical processes, such as the APD breakdown flash from

D1[89], electronic cross-talk, or double-pair emission from the primary source, might give

rise to correlated triple detection events with similar features to the ones we have observed.

We can rule out these alternatives by testing the expected dependence of the C-SPDC

signal on temperature and input wavelength of the secondary down-conversion. As shown

in Fig. 4.3a, for a given input wavelength into the PPLN crystal, phase-matching imposes a

minimum temperature below which down-conversion cannot occur. The triple coincidence

peak, in Fig. 4.3b, indeed disappears when the PPLN temperature is lowered from 60◦C

(setting A) to 50◦C (setting B), while keeping the input wavelength fixed at 776.0 nm. The

triple photon signal is then recovered at this temperature, by lowering the input wavelength

to 775.4 nm (setting C). These measurements, together with the strong agreement between
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Figure 4.2: Triple-coincidence histograms. a, Measured triple coincidences obtained in

20 hours. Each bin corresponds to a 0.8 ns time interval between events at D3 and D1

(∆τD3−D1). The sharp peak indicates a strong temporal correlation between all three

detection events, as expected of the C-SPDC process. b, Triple-coincidence histograms

with varying delays of τ = 0 and ± 0.5 ns between D2 and D3, resulting in a decrease

of the coincidence peak. Note that the absolute rate reduction for τ = 0 results from a

different setting on the InGaAs detectors for this measurement series. Error bars represent

one standard deviation.
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Figure 4.3: Phase-matching and triple-coincidence dependence on crystal temperatures.

a, Central wavelengths of the pair of photons produced by the secondary source as a

function of the PPLN temperature for input wavelengths of 775.4 nm (circles) and 776.0 nm

(squares). The dashed line shows the theoretic phase-matching curve with the poling period

as the only fit parameter. Triple coincidences were measured for different settings of the

PPLN temperature and the input pump photon wavelength. The PPLN temperature was

60 C for setting A and 50 C for settings B and C; the input photon wavelength was 776.0 nm

for settings A and B and 775.4 nm for setting C. b, Measured triple coincidence histograms

over 20 hours for each measurement setting. For A and C, the PPLN temperatures lie

on the respective phase-matching curves and a triple coincidence peak is observed. For

B, the temperature is outside the 776.0 nm phase-matching curve and no peak is present.

Wavelength changes in the input photons, needed for the measurements shown in Fig. 4.3b,

were achieved by altering the temperature of the PPKTP crystal (43.6◦C for setting A and

B, and 40.8◦C for C). Error bars represent one standard deviation.
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the observed and predicted triplet rate, provide conclusive proof that we have indeed

observed spontaneously produced photon triplets.

4.6 Conclusion and outlook

In the near future we expect to increase the photon-triplet rate by at least one order of

magnitude using an improved time acquisition system, a dichroic beamsplitter for sep-

arating the photons created in the secondary source and matching the down-conversion

bandwidth of the initial pair to the PPLN crystal. The direct generation of the triplet

guarantees strong energy-time correlations, allowing the creation of entangled, or hyper-

entangled[90] triplets and realisations of tri-partite states like GHZ[50] and W[54] without

elaborate and probabilistic post-selection schemes. For example, time-bin entangled[69]

GHZ states could be produced by pumping our triplet source with a pulsed pump laser

in a coherent superposition of two time slots. The entanglement could then be detected

using three standard unbalanced interferometers. For a further example, W-states could

be made by using an entangling source as the primary down-converter producing a Bell-

state 1√
2
(|V0V1〉 + |H0H1〉), where |V 〉 and |H〉 denote the photon polarization states in

their respective modes. The secondary source would consist of two down-converters where

|V0〉 is converted to |H2H3〉, and |H0〉 is converted to 1√
2
(|H2V3〉 + |V2H3〉), into the same

pair of modes. The relative amplitudes could then be balanced by tuning the conversion

efficiencies. Polarization entangled GHZ states could be made by modifying the W-state

scheme such that the secondary source converts |V0〉 to |V2V3〉 and |H0〉 to |H2H3〉. An in-

teresting application of such a GHZ source could be to herald the presence of an entangled

photon pair in mode 1 and 2 by detecting the secondary down-converted photon in mode

3. This has proven very difficult to achieve otherwise. Our results also confirm that the

SPDC conversion efficiency is independent of pump power down to the single photon level

(see Supplementary Information), allowing new tests of nonlinear optics in the quantum

regime.
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4.7 Methods summary

4.7.1 Experimental setup

The primary source, shown in Fig. 4.1b, consisted of a 25 mm long, temperature-stabilised

PPKTP crystal and was pumped with 2.4 mW from a 405 nm continuous-wave diode laser.

The type II SPDC in the PPKTP generated orthogonally-polarised photons at 775 nm and

848 nm, which were separated by a polarising beamsplitter and coupled into single mode

fibers. A longpass filter (FP) was used to block the strong 405 nm pump, passband filters

(12 nm bandwidth) with central wavelengths of 780 nm (F0) and 840 nm (F1) respectively,

were placed before the fiber couplers to further reduce background. The 775 nm photon,

after passing an in-fiber polarisation controller, served as input to the secondary source,

a 30 mm temperature-stabilised PPLN waveguide crystal with fiber pigtails attached to

both ends for type I SPDC. The photon pair at 1510 nm and 1590 nm was separated using

a 50:50 fiber beamsplitter (BS). The secondary source was operated without filters, as the

input power during a C-SPDC measurements was low enough (∼ 1 million input photons

per second) not to cause additional detection events in the InGaAs detectors. The gate (G)

and photon arrivals on these detectors were synchronised by an internal delay generator

on D2, and an external delay generator between D2 and D3. Detection efficiencies on the

InGaAs detectors D2 and D3 were set to 20% and 10%, respectively. Trigger events from

D1 and detection events from D3 were recorded via a time acquisition card (TAC) with a

timing resolution of 103 ps and analysed on a computer (PC).

4.7.2 Dark count rate

The total background during the 20 hour runs, seen in Fig. 4.2a, was measured to be

268 ± 16 events over the whole 20 ns gate. This number is in very good agreement with

the expected noise count of 254 ± 5 triple events as calculated from the individual dark

count probabilities per gate of D2 and D3 (1.8 × 10−3 and 4.5 × 10−6), trigger rate and

efficiency of the time acquisition card.
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4.8 Supplementary information

4.8.1 Calculation of the expected triplet detection rate

The predicted triplet rate, Rtriple, quoted in our manuscript was calculated in the following

way. Considering the efficiencies of all the components of the C-SPDC setup and the

down-conversion probability, the triple coincidence probability (Ptriple) per trigger at D1,

is given by

Ptriple = η775 ηin PSPDC η
2
out 2 η2

BS ηD2 ηD3 (4.2)

where η775 is the fiber coupling probability of the primary SPDC, ηin and ηout are the

coupling efficiencies into and out of the waveguide respectively, PSPDC is the intrinsic

down-conversion probability of the PPLN waveguide, ηBS is the transmission of the fiber

beamsplitter for either arms, and ηD2 and ηD3 are the detection efficiencies of the InGaAs-

APDs D2 and D3, respectively.

The probability, η775, to find a 775 nm photon in the output fiber of the primary

source upon detection of its partner photon at 848 nm was estimated from a coincidence

measurement between the 775 and 848 nm photons, where a coincidence to singles ratio of

0.24 was measured. Assuming a detection efficiency of ηD1 = 0.45 ± 0.05 for the Si-APD

(D1), the fiber coupling probability, η775, is 0.53 ± 0.06.

The probability, Pcoinc, of a detected coincidence event between the pair photons of the

secondary source, given a single 775 nm photon in the input fiber of the waveguide, can

be written as:

Pcoinc = ηin PSPDC η
2
out η

2
LP 2 η2

BS ηD2 ηD3 ηduty (4.3)

where ηLP is the transmission of a longpass filter needed to block the strong pump light

and ηduty is the duty cycle of detector D2, which was operated in a quasi free running mode

with 100 ns gate width and 100 kHz gate repetition rate. Pcoinc was measured, using a cw-

laser with 245 nW power, and 24 ± 2 coincidences per second were observed. Converting

the pump power into number of photons per second numbers (9.56 × 1011 s−1) we arrive

at a coincidence probability, Pcoinc, of (2.5± 0.2)× 10−11.
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Combining Eq. 4.2 and 4.3 leads to:

Ptriple = η775
Pcoinc

η2
LP ηduty

(4.4)

To arrive at the observed triplet rate, the trigger rate (Rtrigger), and experimental values

for the efficiency of the time acquisition card (ηTAC) and the SPDC bandwidth dependence

(ηcw) have to be included, finally yielding:

Rtriple = Rtrigger η775
Pcoinc

η2
LP ηduty

ηTAC ηcw (4.5)

Due to the internal deadtime, the time acquisition card only counted every second event

and hence reduced the number of observed events by a factor of 2. Measurements of the

PPLN waveguide have also shown that the acceptance of the down-conversion process with

respect to the input wavelength is very small. The overall efficiency is hence reduced when

broadband input photons (0.4 nm) are used as was the case in the C-SPDC measurements.

The efficiency with such a broad pump was calculated to be 73% for optimal matching of

the single photon wavelength and dropping to 55% when the input wavelength is 0.2 nm off.

For the calculation of Rtriple, a value of 0.67 ± 0.05 for ηcw is assumed here. Substituting

the experimental values, as summarised in Table 4.1, in Eq. 4.5, a triplet rate of 5.6 ± 1.1

counts per hour is found.

4.8.2 Measurement of the down-conversion efficiency in the PPLN

waveguide

By using the estimates for the various losses and efficiencies, the down-conversion proba-

bility per pump photon inside the waveguide of the secondary SPDC source, PSPDC , was

calculated from a coincidence measurement (Eq. 4.3) using 245 nW laser power and also

from the measured triplets rate (Eq. 4.2) where 106 single photons per second were used.

The laser pumping yields a PSPDC of (9.9 ± 2.9) × 10−6, compared to (8.2 ± 2.2) × 10−6

for the single photon input. The down-conversion efficiency was also measured at a higher

laser power of 1.1 mW. For this input, an SPDC power of 0.9 ± 0.1 nW could be de-

tected at the output fiber of the waveguide using a standard power meter. Including the

losses of the fiber couplings and the longpass filter, this measurement yields an PSPDC of

(6.6± 0.7)× 10−6 for the waveguide.
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Rtrigger (8.70± 0.05)× 105Hz

ηD1 0.45± 0.05

η775 0.53± 0.06

Pcoinc (2.5± 0.2)× 10−11

ηLP 0.50± 0.03

ηduty 0.01

ηTAC 0.5

ηcw 0.67± 0.05

ηin 0.50± 0.05

ηout 0.50± 0.05

ηBS 0.45± 0.05

ηD2 0.20± 0.02

ηD3 0.10± 0.01

Table 4.1: Experimental parameters used for the calculation of the triple coincidence rate

(Rtriple) and PPLN down-conversion efficiency (ηSPDC). Errors correspond to 1σ.

The agreement, within measurement errors, of the down-conversion efficiency obtained

at input powers of 1.1 mW and 245 nW and for the single photon input is very good. This

leads us to the conclusion that the SPDC probability is indeed constant over the observed

power range, from 260 fW (106 pump photons per second) to 1 mW (1015 pump photons).
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Chapter 5

Conclusion

In this thesis, we focused on different types of entangled photon sources. In Chapter 3,

we demonstrated a highly efficient source of entangled photon pairs. This source uses a

Sagnac interferometer configuration, which allows us to take full advantage of periodically

poled materials. This source was then used for several experiments, related to quantum

key distribution, cluster state quantum computing, remote state preparation, state dis-

crimination, and entanglement-enhanced classical communication.

The next experiment, detailed in Chapter 4, was the first demonstration of a direct

production of photon triplets. We cascaded two spontaneous parametric down-conversions

to produce photon triplets, which were detected using their timing correlations. The SPDC

phasematching conditions were used to confirm the presence of genuine photon triplets.

This experiment was also the first observation of SPDC pumped at the single photon level,

opening the way to a new regime of nonlinear optics.

The next step will be to demonstrate the entanglement of these photon triplets. To

do this, we hope to entangle the photons in the polarization degree of freedom. This will

require replacing each down-converter with a source of entangled photon pairs. For the first

down-converter, we will again use a Sagnac interferometer configuration. However, unlike

in the experiments described in this thesis, it will be operated far from degeneracy. The

second down-converter will be replaced with an interferometric source of entangled photon

pairs, in a Mach-Zehnder configuration. If this works, then this would be the same kind
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of step forward for entangled triplets as the first single emitter scheme was for entangled

pairs, as it would be the first direct production of entangled photon triplets. It could also

be used to produce triggered Bell pairs, which are a useful tool for fundamental tests of

quantum mechanics and linear optics quantum computing.
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Appendix A

Aligning the Sagnac Source

The aim of this appendix is to explain, as thoroughly as possible, the process of building

and aligning a Sagnac source. It was written with the basic philosophy that it is better

to include something which the reader already might already know than to risk omit-

ting something which he does not. Consequently, some of these instructions might seem

elementary for someone with experience working in optics.

A.1 Construction and rough alignment of the source

This section describes the initial construction of the Sagnac source, as shown in Figure 3.2,

up to the point where down-converted photons are detected.

1. Start by setting up the the laser and the optical isolator. Note that the isolator is

not optional. When the source is properly aligned, the pump beam is reflected back

towards the laser cavity by the interferometer. A half-wave plate (HWP2) can be

placed before the isolator in order to control the pump power.

2. Next, place the steering mirrors M1 and M2. Using these two mirrors and some irises,

make sure that the beam is horizontal, and is aligned along the holes on the table.
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3. Add the M3 mirror, and steer it so that the reflected beam is parallel to the table,

and at 45◦ with the incoming beam. Then, place the lens so that it focuses the light

onto the spot where you plan to have the crystal. The lens should be on a translation

stage so that its position may be optimized later. Also keep in mind that the smaller

the interferometer, the easier it will be to align mirrors M3 and M4.

4. The dichroic mirror can now be added. Since it does not have a back reflection, a

good way to align it is to ensure that the reflection off its back face is perpendicular

to the pump beam by using irises. The wave plates HWP1 and QWP1 can also be

added now. The quarter-wave plate should be mounted so that it can be rotated

around the vertical axis.

5. The next step is to add the PBS. It is important for the dichroic mirror to be already

in place, as it will cause the beam to deviate a bit in the transverse direction. Make

sure that the PBS is back-reflected (i.e. that the reflection coming from its front face

is overlapping the incoming beam), and that the light coming out of the reflected

port is traveling parallel to the table surface. Because the PBS is a central part of

the interferometer, care should be taken on getting its alignment right the first time,

as it is not something which can easily be adjusted later.

6. The last mirror, M4, is then added. It should be placed so that the intersection

of the two beams coming from the PBS is on its surface, and angled such that at

mirror M3, the two counter-propagating beams are superimposed. The tip and tilt

of M3 are then adjusted in a similar way. It might be necessary to go back and forth

and do this with both mirrors a few times. Essentially, the idea is simply to overlap

the two counter-propagating beams at those two points, which ensures that they are

overlapping everywhere in the interferometer.

7. The crystal can now go in. Ideally, all degrees of rotation should be available. In

addition to this, it should be possible to translate the crystal along the direction of

the beam. The other two directions of translation are useful to get the crystal in

place, but are not critical for further alignment. For now, simply place the crystal in

the center of the interferometer, and adjust the tip and tilt so that it is back-reflected.

8. The dual-wavelength half-wave plate (HWP3) can now be placed in the interfer-

ometer. It should be back-reflected, and its angle set to minimize the pump beam
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intensity in output a of the PBS.

9. Next, the long-pass filters can be added, and then the couplers. The couplers can be

roughly aligned by coupling light of the right wavelength into the single mode fibers.

Simply make sure this light is overlapped with the pump beam, and focused near the

crystal.

10. Now, it should be possible measure to some single photon counts. The maximum

counts can be reached by walking the couplers. This completes the construction and

rough alignment of the Sagnac source.

A.2 Precise alignment and fine-tuning of the Sagnac

source

The following are the steps needed to align the Sagnac source. Some of these may have to

be repeated a few times to get everything just right. They are also not all independent of

each other, and so it can be necessary to go back and forth between the steps.

1. Mirrors M3 and M4. These are the first, and most important, elements to align.

The goal is to have the two counter-propagating pump beams in the interferome-

ter perfectly superimposed, so that the down-converted photons coming from both

directions are coupled into the fibers. The procedure is as follows.

(a) Set the wave plates HWP1 and QWP1 to produce horizontally polarized light,

and walk both couplers (tip, tilt and translations) to have maximum singles

counts for each. Once this is done, write down the position of all the translation

stages.

(b) Next, turn HWP1 to have vertically polarized light, and using only translation

of the couplers, maximize singles for both. Write down the new positions of the

translation stages.

(c) Turn HWP1 to produce diagonally polarized light, and translate the couplers

so that they are at the average of the positions obtained in steps (a) and (b).
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(d) Finally, carefully adjust the mirrors M3 and M4 to maximize coincidences. It

is usually necessary to walk them a bit to reach the maximum.

If the mirrors are fairly misaligned at the start (i.e. if there is a large difference

between the positions found in (a) and (b)), it may be necessary to repeat this

procedure a few times. When the alignment is good, translating the couplers in step

(b) should lead to no noticeable improvement in the amount of counts measured. Let

us add a few notes on this procedure:

• It is always good to make the final adjustment of the translation stages in

the same direction to avoid backlash, particularly during later iterations of the

alignment procedure.

• The maximum counts measured in (a) and (b) should be nearly equal; an unex-

plained large difference is indicative that something could be wrong. If, however,

there is a known cause for this (for example, if the dual-wavelength half-wave

plate works better for either the pump or the signal), then try to approximately

compensate for the difference when setting HWP1 in (c). For example, if there

are less counts when the pump is V polarized than when it is H polarized, set

HWP1 so that the pump is a bit closer to V then to H.

• A slight variation of step (a) is to turn the dual-wavelength HWP by 22.5◦, so

that both photons from a pair may exit the PBS through the same port. Then,

instead of walking the coupler to maximize singles, use a fiber beam splitter and

maximize the number of coincidences between each of its outputs. This method

ensures that the coupling is optimized for the photons originating from collinear

down-conversion.

2. Setting crystal temperature. This is quite easy to do by simply using a spec-

trometer and setting the temperature to produce the desired wavelength. A useful

trick is to turn HWP3 to 22.5◦ so that both idler and signal photons can be coupled

into the same single mode fibre at the same time. That way, both of them may be

monitored simultaneously.

3. Dual wavelength HWP. These can have a slightly different optical axis for different

wavelengths. It is better to have it optimized for the signal than for the pump. Its
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angle can be fine-tuned by slightly turning it to maximize coincidences, with HWP1

set to produce a horizontally polarized pump.

4. Lens and crystal position. The optimal position for the lens and crystal can

be found with the same measurement. Start with the pump horizontally polarized.

Then, translate the crystal along the beam’s propagation direction. For each crystal

position, find the maximum number of singles counts in one of the couplers by adjust-

ing its position and focus. There should be an optimal position for the crystal, with

the singles counts dropping when it is translated in either direction. Next, repeat the

same measurement, but this time with the pump vertically polarized. The optimal

crystal position is at the average of the two measured positions. The pump lens is in

the right position if the optimal crystal position is the same for both directions.

5. Interference filters. To increase the coupling efficiency, interference filters may

be added in front of each coupler. Obviously, these should only be added once the

crystal’s temperature has been set. If the transmission wavelength of the filters is

slightly higher than that of the signal, slightly tilting these filters can help improve

the transmission. This will also translate the beam, so it is necessary to “walk”

the tilt of the filter, along with the appropriate translation of the coupler until the

transmission is maximized.

A.3 Producing a Bell state

Once the source is aligned, it can then be set up to produce entangled states. To do this,

the single mode fibres should be connected to wherever the Bell state will be sent. To set

the source properly, we need to do polarization measurements on the photons in two bases,

so a simple polarizer, or a PBS with a HWP are needed.

1. First the fibres can be connected to the experimental setup, passing through polar-

ization controllers. The polarization controllers can be adjusted using the polarized

single photons produced by the Sagnac source when the crystal is pumped in only

one direction.
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2. Next, set HWP1 to 22.5◦, and the analyzers to the measurements in the horizon-

tal/vertical basis where high correlations are expected. For example, if a |ψ〉 state is

desired, the first analyzer could be set to H and the other to V. The rate of measured

coincidental photon detections is then be measured.

3. The settings of both analyzers are inverted, and the rate of coincidental detections is

again measured. Ideally, this should be equal to what was measured in the previous

step. Otherwise, the angle of HWP1 should be tuned to make it that way. Simply

go back and forth between the two pairs of settings, turning HWP1 slightly until the

same rate of coincidences are measured for both settings.

4. Finally, change the analyzers to a setting from a different basis (for example the

diagonal/anti-diagonal basis), where you want to have anti-correlations. Then, tilt

QWP1 until the rate of measured coincidences are minimized. Et voilà, your desired

Bell state is ready!
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Appendix B

Calculating the theoretical

phasematching curves

In this appendix, we show how we can calculate the theoretical phasematching curves

shown in Figure 3.4. To obtain this plot, we first start with the phasematching Equation

1.32. We rewrite it in terms of wavelength, which gives us:

np
λp

=
ns
λs

+
ni
λi

+
1

Λ
(B.1)

where nj represents the temperature dependant index of refraction for the pump, signal

and idler. Because of energy conservation (Equation 1.23), we have λs = (1/λp − 1/λi)
−1.

So we have to solve:
np
λp

= ni

(
1

λp
− 1

λi

)
+
ni
λs

+
1

Λ
. (B.2)

We now need to include the temperature dependance. For the parameters of this depen-

dance, we based ourselves on [91], the source recommended by Alex Skliar from Raicol

Crystals. First, the poling period will change slightly as the temperature changes. This

change is given by:

Λ = Λ0[1 + α(T − 25◦C) + β(T − 25◦C)2] (B.3)
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with α = 6.7 × 10−6◦C and β = 11 × 10−9◦C [91]. This however has only a small effect

on the phasematching. The main contribution comes from the change in the refractive

indices. In the PPKTP crystals that we use, the pump and signal are both polarized in

the y direction, and the idler is polarized in the z direction. The room temperature values

of the corresponding refractive indices are given by the following Sellmeier equations:

n2
y = Ay +

By

1− Cy/λ2
−Dyλ

2 (B.4)

n2
z = Az +

Bz

1− Cz/λ2
− Dz

1− Ez/λ2
− Fzλ2 (B.5)

The value of the coefficients are indicated in Table B.1. The values for ny and nx are taken

from [92] and [93] respectively.

Sellmeier coefficient Value

Ay 2.19229

By 0.83547

Cy 0.04970

Dy 0.01621

Az 2.12725

Bz 1.18431

Cz 0.0514852

Dz 0.6603

Ez 100.00507

Fz 9.68956× 10−3

Table B.1: KTP Sellmeier coefficients at room temperature

For the temperature dependance of the refractive index, Emanueli et al. [91] write the

variation of the refractive index, ∆n, as a parabolic function of the temperature T :

∆n(λ, T ) = n1(λ)(T − 25◦C) + n2(λ)(T − 25◦C)2 (B.6)
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where the coefficient n1 and n2 are written as a third order polynomial of inverse wave-

lengths:

n1,2(λ) =
3∑

m=0

am
λm

(B.7)

The values of the coefficients am for the x and y polarizations are included in Table B.2

y polarization z polarization

n1 [10−6] n2 [10−8] n1 [10−6] n2 [10−8]

a0 6.2897 -0.14445 9.9587 -1.1882

a1 6.3061 2.2244 9.9228 10.459

a2 -6.0629 -3.5770 -8.9603 -9.8136

a3 2.6486 1.3470 4.1010 3.1481

Table B.2: Coefficients for KTP refractive index dependance on temperature

We now have the temperature dependance of every term in Equation B.2. If we sub-

stitute all of these in, along with the known poling period of the crystal and wavelength

of the pump, we can then solve for the wavelength of the idler for any given temperature.

The wavelength of the signal is then easy to calculate with Equation 1.23. We plot these

over the same range of wavelengths as measured. The results are shown in Figure 3.4
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