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Abstract

Correlated data frequently arise from epidemiological studies, especially familial

and longitudinal studies. Longitudinal design has been used by researchers to inves-

tigate the changes of certain characteristics over time at the individual level as well

as how potential factors influence the changes. Familial studies are often designed

to investigate the dependence of health conditions among family members. Various

models have been developed for this type of multivariate data, and a wide variety

of estimation techniques have been proposed. However, data collected from observa-

tional studies are often far from perfect, as measurement error may arise from different

sources such as defective measuring systems, diagnostic tests without gold references,

and self-reports. Under such scenarios only rough surrogate variables are measured.

Measurement error in covariates in various regression models has been discussed ex-

tensively in the literature. It is well known that naive approaches ignoring covariate

error often lead to inconsistent estimators for model parameters.

In this thesis, we develop inferential procedures for analyzing correlated data with

response measurement error. We consider three scenarios: (i) likelihood-based infer-

ences for generalized linear mixed models when the continuous response is subject

to nonlinear measurement errors; (ii) estimating equations methods for binary re-

sponses with misclassifications; and (iii) estimating equations methods for ordinal

responses when the response variable and categorical/ordinal covariates are subject

to misclassifications.

The first problem arises when the continuous response variable is difficult to mea-

sure. When the true response is defined as the long-term average of measurements,

a single measurement is considered as an error-contaminated surrogate. We focus on

generalized linear mixed models with nonlinear response error and study the induced

bias in naive estimates. We propose likelihood-based methods that can yield consis-

tent and efficient estimators for both fixed-effects and variance parameters. Results

of simulation studies and analysis of a data set from the Framingham Heart Study

are presented.

Marginal models have been widely used for correlated binary, categorical, and

ordinal data. The regression parameters characterize the marginal mean of a single
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outcome, without conditioning on other outcomes or unobserved random effects. The

generalized estimating equations (GEE) approach, introduced by Liang and Zeger

(1986), only models the first two moments of the responses with associations be-

ing treated as nuisance characteristics. For some clustered studies especially familial

studies, however, the association structure may be of scientific interest. With bi-

nary data Prentice (1988) proposed additional estimating equations that allow one to

model pairwise correlations. We consider marginal models for correlated binary data

with misclassified responses. We develop “corrected” estimating equations approaches

that can yield consistent estimators for both mean and association parameters. The

idea is related to Nakamura (1990) that is originally developed for correcting bias

induced by additive covariate measurement error under generalized linear models.

Our approaches can also handle correlated misclassifications rather than a simple

misclassification process as considered by Neuhaus (2002) for clustered binary data

under generalized linear mixed models. We extend our methods and further develop

marginal approaches for analysis of longitudinal ordinal data with misclassification in

both responses and categorical covariates. Simulation studies show that our proposed

methods perform very well under a variety of scenarios. Results from application of

the proposed methods to real data are presented.

Measurement error can be coupled with many other features in the data, e.g.,

complex survey designs, that can complicate inferential procedures. We explore com-

bining survey weights and misclassification in ordinal covariates in logistic regression

analyses. We propose an approach that incorporates survey weights into estimating

equations to yield design-based unbiased estimators.

In the final part of the thesis we outline some directions for future work, such as

transition models and semiparametric models for longitudinal data with both incom-

plete observations and measurement error. Missing data is another common feature

in applications. Developing novel statistical techniques for dealing with both missing

data and measurement error can be beneficial.
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Chapter 1

Introduction

1.1 Overview

The fundamental task for many epidemiological studies is to investigate the rela-

tionship between a set of predictor variables (covariates) and a particular outcome

variable (response), which can be either continuous or discrete. Statistical models are

often used to characterize the effects of the covariates on the response. These models

involve parameters that are of scientific interest, and inference about the parameters

is often the main goal for statistical analysts. To do so, observations are often as-

sumed independent, for which regression models such as linear models or generalized

linear models (GLMs) can be employed.

Correlated data arise from many epidemiological studies, especially clustered stud-

ies, in which data are collected on members within a cluster, and longitudinal studies,

in which measurements are collected on the same subject repeatedly over time. For

example, members from a familial pedigree are genetically related, and their health

conditions are typically correlated. Some longitudinal studies are designed to investi-

gate how a characteristic changes over time. Rigorously controlled experiments such

as prospective randomized single-center and multi-center clinical trials are often in-

volved (Hedeker and Gibbons, 2006). In medical studies, the measurement might

be blood pressure, cholesterol level, lung volume, or serum glucose (Laird and Ware,
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1982). Multiple measurements may be obtained from each individual at regularly or

irregularly spaced measurement occasions and possibly under changing experimen-

tal conditions. For technical convenience, longitudinal data may be thought of as

a special kind of clustered data by treating a subject as a cluster so that available

statistical tools for analysis of clustered data can also be applied to longitudinal data

(Song, 2007). Unlike the univariate case, the correlation among repeated measure-

ments must be accounted for when analyzing data from these studies in order to

make valid inferences. Many models have been developed to take into account the

correlation, and various estimation methods have been proposed. These models can

be roughly divided into two broad classes: conditional models (e.g., random effects

or mixed models, transition models), and marginal models.

Variables are often assumed to be perfectly measured when we apply standard

statistical tools. In reality, however, data collected from observational studies and

surveys are often far from perfect, as measurement error may arise from many sources.

For example, ambiguous words in a badly designed survey questionnaire may lead to

incorrect interpretations of the respondents. When a diagnostic test for a particular

disease is not gold standard, we may obtain a false positive or false negative result

for the infection status. In some studies, variables cannot be precisely measured,

although rough surrogate variables may be obtained.

In this thesis, we develop inferential procedures for analyzing correlated data with

response measurement error. We consider three scenarios: (i) likelihood-based infer-

ences for generalized linear mixed models when the continuous response is subject

to nonlinear measurement errors; (ii) estimating equations methods for binary re-

sponses with misclassifications; and (iii) estimating equations methods for ordinal

responses when the response variable and categorical/ordinal covariates are subject

to misclassifications.
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1.2 Methods for Analysis of Longitudinal and Clus-

tered Data

Suppose data contain n independent clusters. Let Yij denote the response for the

jth observation in cluster i, j = 1, . . . , mi, i = 1, . . . , n. Let Xij denote a vector of

covariates whose effects are of interest. If observations are independent of each other,

the data can be fitted using a GLM given by

g(µij) = XT
ijβ, (1.1)

where µij = E[Yij |Xij], g(·) is a link function that relates µij to the linear predictor,

and β is a vector of regression parameters quantifying the covariate effects. The

link function g(·) is monotone and differentiable. For continuous responses, the link

function is usually the identity function g(u) = u. For binary responses, commonly

used link functions include the logit link g(u) = log{u/(1 − u)}, the complementary

log-log link g(u) = log{− log(1 − u)}, and the probit link g(u) = Φ−1(u), where

Φ(·) is the cumulative distribution function of a standard normal variable. In the

presence of within-cluster associations, however, GLMs are no longer good solutions.

In this section, we provide an overview of three general approaches to the analysis of

clustered/longitudinal data.

1.2.1 Mixed models

A flexible class of mixed models can be applied to normally distributed continuous

outcomes, categorical outcomes, and other non-normally distributed outcomes such as

counts. They are often used in studies where we cannot fully control the circumstances

under which measurements are taken. Because of the considerable variation among

clusters, data from these studies can be analyzed using some variant of a two-stage

model. The joint probability distribution of the repeated measurements has the same

form for each cluster, but a portion of the parameters may vary across clusters. These

parameters, or “random effects”, have a certain distribution in the population that

constitutes the second stage of the model.
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For convenience, we use the term “cluster” to represent the independent unit in

both clustered studies and longitudinal studies. As a result, a cluster may refer to

a family, in which observations on all members are collected, or a subject, on which

repeated measures are collected over time. A generalized linear mixed model (GLMM)

has the form

g(µb
ij) = XT

ijβ + ZT
ijbi, (1.2)

where β is a vector of fixed-effects parameters, bi is a vector of random effects as-

sociated with covariates Zij (usually part of Xij), and µb
ij = E[Yij |Xi,Zi,bi] is the

conditional mean of the response. Here an implicit assumption E[Yij|Xi,Zi,bi] =

E[Yij |Xij,Zij ,bi] is often made (Pepe and Anderson, 1994). The vector of random

effects bi follows a certain distribution, say, f(bi) with variance σb. The link function

g(·) relates µb
ij to the linear predictor. The main task of statistical inference is to esti-

mate the response parameters θ = (βT,σ2
b )

T, with primary interest in β (McCulloch

and Searle, 2001). When Yij is continuous and g(·) is the identity function, a linear

mixed model (LMM) is given by

Yij = XT
ijβ + ZT

ijbi + ǫij , (1.3)

where the random error ǫij is often assumed to follow the normal distribution with

mean 0 and variance σ2
ǫ . For example, in a study of changes in lung volume during

childhood (Laird and Ware, 1982), conditions related to the growth of the children

change over time, contributing to variation of lung volume among individuals. It is

then reasonable to assume that the relationship between lung volume and the cube

of height is linear but the regression parameters may vary among children.

A key feature distinguishing mixed models from usual regression models is that

the subject-specific random effects are unobserved components. A straightforward

strategy for the estimation of β and the parameters specifying the distribution of the

random effects is to use maximum likelihood (ML) method based on the marginal

distribution of the observations. However, the likelihood function involves integration

over the random components and is not in a closed form for most cases of GLMMs.
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Some authors proposed iterative algorithms for computing the ML estimates or re-

stricted maximum likelihood (REML) estimates in LMMs with normal variance com-

ponents (e.g., Harville, 1977; Fellner, 1986). Schall (1991) adapted the algorithm

of Harville (1977) to yield approximate ML or REML estimates in GLMMs. These

models assume that the random effects are independent of the covariates in standard

applications, e.g., the example of analyzing the effect of air pollutants on pulmonary

function development in children considered by Laird and Ware (1982). However,

Neuhaus and McCulloch (2006) showed that when the random effects are correlated

with one of the covariates, naively fitting a GLMM ignoring this correlation leads

to inconsistent estimators. The authors proposed conditional ML method that par-

titions the covariate into between- and within-cluster components to reduce bias.

Mixed models are full likelihood-based and can easily handle both time-invariant and

time-varying covariates (Hedeker and Gibbons, 2006). Therefore, they are among the

most widely used methods for analysis of clustered or longitudinal data.

1.2.2 Marginal models

Marginal approaches have been widely used in longitudinal and familial studies fo-

cusing on the population-averaged dependence of the responses on the covariates. A

link function is specified to connect the marginal expectation of a response to the

linear predictor without conditioning on the other outcomes or unobserved random

components, as opposed to conditional models (e.g., transition models, and mixed

models). Marginal models generally do not impose a full parametric assumption for

the joint distribution of the multivariate responses. Instead, least assumptions on the

first and second moments of the responses are made. In a landmark paper, Liang

and Zeger (1986) introduced the generalized estimating equations (GEE) approach

for analyzing longitudinal data, in which the mean parameters are of primary interest

while the association between outcomes is considered as a nuisance characteristic. As

a result, the GEE approach models the marginal mean of the responses assuming

a common correlation structure across all clusters. The parameters associated with

the “working” correlation structure can be estimated from Pearson residuals via the

method of moments.
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Let µij = E[Yij|Xi] (j = 1, . . . , mi; i = 1, . . . , n) be the marginal mean of the

response given the covariates. Marginal models specify the relationship between µij

and the covariate effects in the form of a GLM given by (1.1). The mean parameters

now have different interpretations than those in mixed models. Again, E[Yij|Xi] =

E[Yij |Xij] is often assumed (Pepe and Anderson, 1994). Let Yi = (Yi1, . . . , Yimi
)T

and µi = (µi1, . . . , µimi
)T. Define

U1i(β,α) = D1iV
−1
1i ǫ1i,

where ǫ1i = Yi−µi, D1i = ∂µT
i /∂β, V1i = B

1/2
1i R1i(α)B

1/2
1i , B1i = diag(vi1, . . . , vimi

),

vij = var(Yij|Xij) is the marginal variance of Yij, and R1i(α) is a working correlation

matrix for Yi parameterized by α. The GEE approach estimates β by solving

n∑

i=1

U1i(β,α) = 0. (1.4)

Here the correlation parameters α are treated as nuisance parameters. By assuming

a common correlation structure (e.g., independent, exchangeable, AR(1), or unspec-

ified), α can be estimated from Pearson residuals (Yij − µij)/
√
µij(1 − µij) via the

method of moments given β (Liang and Zeger, 1986). The GEE estimate of β is

essentially a multivariate analog of the quasi-score function estimate based on quasi-

likelihood method. Estimation can be carried out using the iterative Fisher scoring

algorithm. An advantage of the GEE approach is that inference of β is robust against

misspecification of R1i(α) for large sample size n. If R1i(α) is approximately correct,

i.e., R1i(α) ≈ corr(Yi|Xi), solving equation (1.4) yields efficient estimate of β. Even

if the correlation structure is misspecified, the GEE method still yields a consistent

estimator for β with some loss of efficiency (Crowder, 1995, 2001).

Many authors have studied the estimation of the correlation matrix (e.g., Prentice,

1988; Liang et al., 1992; Chaganty, 1997). Prentice (1988) suggested that the correla-

tion among clustered binary responses may also be of scientific interest and proposed

additional second-order estimating equations for the association parameters. This

approach allows one to model the pairwise correlations and can improve the efficiency

of the estimation of response probability regression parameters. Let Cijj′ = YijYij′ for
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j < j′ and Ci = (Cijj′, j < j′)T. Let µijj′ = E[Cijj′|Xi] and ξi = (µijj′, j < j′)T. The

first and second order estimating equations used by Prentice (1988) for binary data

to simultaneously model β and α are

n∑

i=1

U1i(β,α) =

n∑

i=1

D1iV
−1
1i ǫ1i = 0, (1.5)

n∑

i=1

U2i(β,α) =
n∑

i=1

D2iV
−1
2i ǫ2i = 0, (1.6)

where ǫ2i = Ci − ξi, D2i = ∂ξT
i /∂α, and V2i is a working covariance matrix for

Ci. Often, V2i = diag{µijj′(1 − µijj′), j < j′} is assumed in order to avoid modeling

third and higher moments of the responses. Here V1i is the covariance matrix rather

than just a working covariance matrix for Yi, which if different from that in the GEE

approach.

To allow higher-order associations, Zhao and Prentice (1990) considered reparame-

trization of a quadratic exponential model for correlated binary data in terms of

marginal mean parameters and correlations and proposed pseudo-ML estimation pro-

cedures for these parameters. Because of desirable properties and easier interpreta-

tion, odds ratio is commonly used by investigators as a measure of association between

paired binary responses. For instance, Lipsitz et al. (1991) modified the moment-

based estimating equations of Prentice (1988) by modeling the pairwise association

with the odds ratio. They showed through simulations that the marginal parameter

estimates for the logistic regression model appear slightly more efficient when using

the odds ratio parametrization. Similarly, Fitzmaurice and Laird (1993) discussed

likelihood-based methods for analyzing longitudinal binary data using odds-ratio rep-

resentation, extending the approach of Zhao and Prentice (1990) under quadratic

exponential family. The procedure of Prentice (1988), which uses cross-products for

association presentation, can become computationally infeasible as the cluster size

gets large. Carey et al. (1993) proposed the alternating logistic regressions (ALR)

approach for simultaneously regressing the response on explanatory variables as well

as modeling second-order associations in terms of pairwise odds ratios. For j < j′,
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let ξijj′ = E[Yij|Yij′ = yij′] be the conditional expectation given by (Diggle, 1992)

ξijj′ = logit−1

{
(logψijj′)yij′ + log

(
µij − µijj′

1 − µij − µij′ + µijj′

)}
.

Let ξ̇i = (ξijj′, j < j′)T. The set of first-order estimating equations from the ALR

model has the same form of (1.5), but the set of second-order estimating equations is

given by

n∑

i=1

U̇2i(β,α) =
n∑

i=1

Ḋ2iV̇
−1
2i ǫ̇2i, (1.7)

where ǫ̇2i is a residual vector with components given by ǫ̇ijj′ = Yij − ξijj′, Ḋ2i =

∂ξ̇T
i /∂α, and V̇2i = diag{ξijj′(1 − ξijj′), j < j′} is a working covariance matrix.

The employment of additional estimating equations for association parameters

can improve efficiency of the estimators for the mean parameters, provided that the

second-order association structure is modeled correctly. However, Sutradhar and

Das (1999) indicated that estimates of mean parameters obtained under a working

independence assumption are sometimes more efficient than those with a misspecified

non-diagonal working correlation structure.

1.2.3 Transition models

Transition models focus on conditional regression parameters rather than marginal

mean parameters. They are typically used for analysis of longitudinal binary and

categorical data by incorporating both the covariates effects and the dependence on

previous outcomes. A stochastic model for analysis of serial binary data was in-

troduced by Azzalini (1994), which models the influence of covariates on current

response by a marginal regression but separately characterizes the serial dependence

by a first-order Markov association. A first-order Markov model assumes that the

current response variable is dependent on the history only through the immediate

previous response. Heagerty and Zeger (2000) described a class of marginalized mod-

els, which specifies a conditional model for the underlying process of data generation
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but permits estimation of marginal mean parameters. A likelihood-based method for

analysis of binary serial data was proposed by Heagerty (2002), who generalized the

model of Azzalini (1994) to a broad class of marginalized transition models (MTM)

that permits marginal regression analysis and allows a general pth-order dependence

structure (Chen et al., 2009).

Suppose we have binary response data Yi = (Yi1, . . . , Yimi
) observed on subject i

at occasions j = 1, . . . , mi, i = 1, . . . , n. A marginal generalized linear model specifies

g(µM
ij ) = XT

ijβ,

where µM
ij = E[Yij |Xi] is the marginal mean of the response, and β is a vector of coef-

ficients quantifying the effects of the covariates Xij on average response. A first-order

Markov model describes the dependence of the current outcome on the immediate

previous outcome through transition probabilities pij,1 = Pr(Yij = 1|Yi,j−1 = 1) and

pij,0 = Pr(Yij = 1|Yi,j−1 = 0). Therefore, it can be seen that the first-order Markov

model of Azzalini (1994) is a two-stage model. First, a marginal mean regression

model can be structured as

µM
ij = pij,1µ

M
i,j−1 + pij,0

(
1 − µM

i,j−1

)
.

Second, the transition probabilities are modeled using odds ratio

ψij =
pij,1/(1 − pij,1)

pij,0/(1 − pij,0)
,

which measures the strength of the serial dependence (Azzalini, 1994). Heagerty

and Zeger (2000) described the dependence using the conditional expectation µC
ij =

E[Yij |Yi,j−1,Xi] under a logit model

logit(µC
ij) = ∆ij + φij,1Yi,j−1,

where regression coefficient φij,1 = logψij is the log odds ratio and is dependent on

both Xij and Yi,j−1. The intercept ∆ij in the model can be shown to be equal to

logit(pij,0) and is determined by β and φij,1. Furthermore, a linear regression model
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can be specified,

φij,1 = uT
ij,1α1,

where the parameter α1 determines how the dependence of φij,1 on Yi,j−1 varies as

a function of a set of covariates uij,1. For a pth-order dependence model, MTM(p),

the logit-linear model for conditional expectation µC
ij = E[Yij|Xi, Yi,j−1, . . . , Yi,j−p] is

given by

logit(µC
ij) = ∆ij +

p∑

k=1

φij,kYi,j−k,

φij,k = uT
ij,kαk, j = 1, . . . , p,

where the serial dependence is modeled in an additive form (Heagerty, 2002).

1.3 Measurement Error/Misclassification

Measurement error has been a longstanding concern in epidemiological studies. When

referring to a categorical variable, it is termed misclassification. Variables obtained

from self-report questionnaires are known to contain error, e.g., dietary intake, and

nutrition consumption, among others. Self-report bias is one of the major sources

of measurement error in data from surveys. Other examples of measurement errors

include many variables of medical interests, such as exposures to indoor or outdoor

pollutants, nutrition or drug intakes.

When covariates in the statistical models are subject to error, naive estimators for

model parameters are often inconsistent; see, for instance, Fuller (1987), Cook and

Stefanski (1994), and Prentice (1982), among others. On the other hand, measure-

ment errors may also exist in responses. One typical example is the long-term average

of systolic blood pressure, as it cannot be precisely measured with a single reading.

When a diagnostic test for a particular disease is not gold standard or the measuring

device is defective, the binary outcome may also contain misclassification. Much of

the research interest in this area has been focused on measurement error in covari-
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ates, particularly in continuous covariates. A large body of literature on methodology

can be found to be related to this problem, e.g., Cook and Stefanski (1994), Wang

et al. (1998), Suh and Schafer (2002) and Yi and Cook (2005). Error in response,

however, has received relatively less attention. Some contributions include Neuhaus

(1999, 2002), who studied estimation bias and inefficiency due to misclassification

in binary responses, and Buonaccorsi (1996), who discussed nonlinear measurement

error in a continuous response variable.

In this section, we give a short introduction to bias analysis for independent data

with measurement error in a covariate. We also outline some statistical approaches

to correcting the bias induced by covariate measurement error. A brief review of the

literature on response measurement error is also given.

1.3.1 Measurement error in a continuous covariate

Measurement error in continuous covariates have been discussed extensively under

GLMs, see, e.g., Carroll et al. (1984), Stefanski and Buzas (1995), among others.

To develop methods for eliminating or reducing bias induced by measurement error,

we must make some basic assumptions for the measurement error process. Different

measurement error mechanisms lead to different approaches to bias correction. The

literature distinguishes between functional modeling, which does not impose any dis-

tributional assumption on the true error-prone covariates, and structural modeling,

which hypothesizes a distributional structure for those covariates (e.g., Wang et al.,

1998; Gustafson, 2004).

Let Yi be the response for subject i, i = 1, . . . , n. Let Xi be a continuous covariate

subject to measurement error and Zi be a vector of precisely measured covariates.

The expectation µi = E[Yi|Xi,Zi] is related to the covariates in a GLM

g(µi) = Xiβx + ZT
i βz,

where βx and βz are regression parameters associated with the effects of Xi and Zi,

respectively.
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Instead of observing the true value of Xi, we observe an error-contaminated sur-

rogate version Wi. There are two ways of characterizing the relationship between Xi

and Wi: one models the dependence of Xi on Wi, and the other models the depen-

dence of Wi on Xi, given other variables. Much of the research focuses on a classical

additive measurement error model: given Yi and Zi,

Wi = Xi + ei, (1.8)

where ei follows a distribution with mean 0 and variance σ2
e , e.g., a normal distribu-

tion, and is often assumed to be independent of Xi. In some other cases, it is more

reasonable to assume that the measurement error process follows

Xi = Wi + ei. (1.9)

This is called the Berkson measurement error model (Berkson, 1950), in which the

realization of the surrogate Wi comes before that of Xi. Berkson error may predomi-

nate over classical error in exposure assessment in some epidemiological studies. For

example, a person’s actual exposure to indoor air pollutant may be unobserved, but

the air pollutant in that person’s neighborhood is measured. Therefore, Berkson error

model fits this kind of error structure, as the indoor pollutant level depends on the

outdoor pollutants.

Here we demonstrate the impact of a mismeasured continuous covariate on the

estimates of regression coefficients through an example used by Yi (2007). Consider

a simple linear regression model

Yi = β0 + βxXi + ǫi, i = 1, . . . , n,

where Xi ∼ Normal(µx, σ
2
x) and ǫi ∼ Normal(0, σ2

ǫ ). Let the measurement error

process for Xi follow the classical additive model (1.8) with ei ∼ Normal(0, σ2
e).

Naively fitting a linear model to the observed data {(Yi,Wi); i = 1, . . . , n} leads to a

misspecified model

Yi = β∗
0 + β∗

xWi + ǫ∗i ,
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where β∗
0 and β∗

x are regression coefficients under the false model, and ǫ∗i is assumed

to follow a normal distribution with mean 0 and variance σ∗2
ǫ . Let Ȳ =

∑n
i=1 Yi/n,

X̄ =
∑n

i=1Xi/n, W̄ =
∑n

i=1Wi/n, ǭ =
∑n

i=1 ǫi/n, and ē =
∑n

i=1 ei/n. The naive

least squares estimator for βx is given by

β̂∗
x =

∑n
i=1(Wi − W̄ )(Yi − Ȳ )∑n

i=1(Wi − W̄ )2
.

With some algebra, we have

β̂∗
x =

∑n
i=1(Wi − W̄ ){βx(Xi − X̄) + (ǫi − ǭ)}∑n

i=1(Wi − W̄ )2

= βx

∑n
i=1(Wi − W̄ )(Xi − X̄)∑n

i=1(Wi − W̄ )2
+

∑n
i=1(Wi − W̄ )(ǫi − ǭ)∑n

i=1(Wi − W̄ )2

= βx

∑n
i=1(Xi − X̄ + ei − ē)(Xi − X̄)∑n

i=1(Xi − X̄ + ei − ē)2
+

∑n
i=1(Wi − W̄ )(ǫi − ǭ)∑n

i=1(Wi − W̄ )2

= βx

∑n
i=1(Xi − X̄)2 +

∑n
i=1(Xi − X̄)(ei − ē)∑n

i=1(Xi − X̄)2 + 2
∑n

i=1(Xi − X̄)(ei − ē) +
∑n

i=1(ei − ē)2

+

∑n
i=1(Wi − W̄ )(ǫi − ǭ)∑n

i=1(Wi − W̄ )2

p→ βx

(
σ2

x

σ2
x + σ2

e

)
, as n→ ∞,

where the convergence in probability is based on the assumptions of independence be-

tween Xi and ei and independence between Wi and ǫi. Therefore, the naive analysis

leads to attenuated estimate of the regression coefficient associated with the mismea-

sured covariate, and the attenuation increases as the variance of the measurement

error increases.

Unlike classical additive error, Berkson error causes little or no bias in the esti-

mates of regression coefficients, as the measurement error ei is simply absorbed into

ǫi in the response model. That is,

Yi = β0 + βxWi + (βxei + ǫi)

= β0 + βxWi + ǫ∗i ,
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where ǫ∗i has variance (β2
xσ

2
e + σ2

ǫ ). Because of the inflation of the random error

variance, Berkson error reduces the power of a study.

1.3.2 Misclassification in a categorical covariate

Categorical variables are frequently included in covariates in regression analyses. A

categorical variable is said to be subject to misclassification if the recorded category

may differ from the true category. Unlike the continuous case, the surrogate cate-

gorical variable now cannot be expressed as a sum of the true plus a noise variable.

Similar to the difference between classical model and Berkson model for continuous

measurement error, Spiegelman et al. (2000) distinguished a reclassification model

from a misclassification model for categorical variables. The reclassification model

specifies the distribution of the true category given the observed category, the form of

which needs to be identified and empirically verified using validation data. An exam-

ple considered by the authors is the estimation of effect of high saturated fat intake

on the risk of breast cancer using data from the Women’s Health Initiative (Prentice

et al., 1988), where average daily saturated fat intake is dichotomized with cutoff

≤ 30g/day. The binary variable for high saturated fat intake contains misclassifica-

tion, because it is difficult to measure individual long-term average diet, components

of which are the exposures in the regression analysis.

In this thesis, we only consider the classical-type misclassification. A misclassi-

fication process is modeled in terms of (mis)classification probabilities. These prob-

abilities describe that given the true category and the precisely measured covari-

ates, how likely we observe the recorded category. Let Xi be a categorical covariate

with (K + 1) levels taking values 0, . . . , K, and let Wi be a surrogate for Xi. Let

πiqr = Pr(Wi = r|Xi = q,Zi) be the probability that the recorded category is r

when the true category is q, q, r = 0, . . . , K. Regression models such as generalized

logit models can be employed to characterize the dependence of the misclassification

process on Zi.

Misclassification is known to induce bias in the effect estimates in regression mod-

els (Gustafson, 2004). Some papers dealing with misclassified covariates in epidemi-
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ologic studies are available in the literature (see, e.g., Greenland, 1980, 1982, 1988,

2008; Rosner, 1996). Christopher and Kupper (1995), Veierød and Laake (2001) and

Paulino et al. (2003) assessed the bias results in linear regression, Poisson regression

and binomial regression with misclassification. Buonaccorsi et al. (2005) investigated

the impact of misclassification of a categorical covariate X on the estimates of the

coefficients associated with the precisely measured covariates Z. They showed that as

long as the error-prone X is correlated with Z, the naive estimates of the coefficients

of Z are biased even when the misclassification process is independent of Z.

1.3.3 Approaches for handling covariate error

There have been numerous methods for correcting bias induced by covariate mea-

surement error. These approaches sometimes are referred to as functional methods

and structural methods based on whether distributional assumptions are made for

the mismeasured covariates. Functional modeling, which does not specify the struc-

tures of the error-prone covariates, is appealing in situations where we do not have

much knowledge about the behaviors of the covariates. Some popular functional

methods include the corrected scores approach of Nakamura (1990, 1992), regression

calibration, and the simulation-extrapolation (SIMEX) approach originally proposed

by Cook and Stefanski (1994). Structural methods come into play when it is necessary

to specify a marginal distribution for the error-prone covariates, or it is of interest

to study their marginal behaviors. However, concerns may arise that the resulting

estimates and inferences may depend upon the parametric models chosen.

Likelihood-based methods

To perform likelihood-based analysis, full modeling assumption is usually required

for every key component of the data. Suppose the probability density function of

response Yi is given by fY |X,Z(Yi|Xi,Zi) conditional on covariates (Xi,Zi), and the

density function of Xi conditional on Zi is given by fX|Z(Xi|Zi). Often, the marginal

distribution of the precisely measured Zi is left unspecified. We also assume that the

measurement error process is fully parameterized with probability density function
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fW |X,Z(Wi|Xi,Zi). The observed-data likelihood is then given by

n∏

i=1

fY,W |Z(Yi,Wi|Zi)

∝
n∏

i=1

∫
fY,W,X|Z(Yi,Wi, Xi|Zi)dXi

=

n∏

i=1

∫
fY |W,X,Z(Yi|Wi, Xi,Zi)fW |X,Z(Wi|Xi,Zi)fX|Z(Xi|Zi)dXi

=
n∏

i=1

∫
fY |X,Z(Yi|Xi,Zi)fW |X,Z(Wi|Xi,Zi)fX|Z(Xi|Zi)dXi,

in which nondifferential measurement error mechanism is used. Here, nondifferential

measurement error mechanism means that Yi depends only on the true covariates

(Xi,Zi) but not on the observed surrogate Wi, given (Xi,Zi).

Robustness to model assumptions is a concern for likelihood-based methods. In

situations where the assumptions are proper, maximum likelihood estimators are gen-

erally more efficient compared to simpler methods (Carroll et al., 2006, p. 181). A

major challenge for likelihood-based approaches is that they are usually computation-

ally demanding.

Estimating equation method

We now describe estimating equation methods, in which only the mean and variance

structures of the response are specified. An estimating function Ui(β;Yi, Xi,Zi) is

called an unbiased estimating function of β if it satisfies

E[Ui(β;Yi, Xi,Zi)] = 0, i = 1, . . . , n.

An unbiased estimating function leads to a consistent estimator for β under certain

regularity conditions. That is, as n→ ∞, the solution β̂ to

n∑

i=1

Ui(β;Yi, Xi, Zi) = 0
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converges in probability to the true β. When Wi is observed instead of Xi, the

naive estimating function Ui(β;Yi,Wi, Zi) is no longer unbiased. However, if a modi-

fied version U∗
i (β;Yi,Wi,Zi) is unbiased under expectations conditional on true data

(Yi, Xi,Zi), i.e.,

E[U∗(β;Yi,Wi, Zi)] = EY,X,Z [EW |Y,X,Z {U∗(β;Yi,Wi,Zi)}] = 0,

then solving
n∑

i=1

U∗(β;Yi,Wi,Zi) = 0

still gives consistent estimator for β (Nakamura, 1990, 1992). It suffices to construct

U∗
i (β;Yi,Wi,Zi) such that

EW |Y,X,Z [U∗
i (β;Yi,Wi,Zi)] = Ui(β;Yi, Xi,Zi). (1.10)

That is, U∗
i (β;Yi,Wi,Zi) is an unbiased estimator for Ui(β;Yi, Xi,Zi) under condi-

tional expectations given true data (Yi, Xi,Zi) and hence is called “corrected” esti-

mating functions (or “corrected” score functions). “Corrected” score functions exist

for some regression models in the GLM family such as Gaussian, Poisson, Gamma,

inverse Gaussian and Wald regression model. For logistic regression model, however,

a corrected score does not exist, although simulation based methods such as Monte

Carlo averaging method can be used for constructing approximate versions (Novick

and Stefanski, 2002).

The two types of methods described above take different approaches to modeling

the measurement error process. Likelihood-based methods are representative exam-

ples of structural approaches, as they specify a full probability model for the under-

lying true covariate. They are widely used due to the consistency and high efficiency

of the maximum likelihood estimators, as well as their good asymptotic properties.

The estimating equation approach only models the measurement error structure but

leaves the probability distribution of the error-prone variable completely unspecified.

The SIMEX approach of Cook and Stefanski (1994) is another popular functional

approach, which requires an additive measurement error model. It uses a re-sampling
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method to establish the relationship between the bias in the estimates of regression

coefficients and the measurement error variance, and then extrapolate to the case

where there is no measurement error. The implementation of the SIMEX approach is

easy. However, it is computationally intensive (e.g., Stefanski and Cook, 1995; Wang

et al., 1998).

Another relatively straightforward approach is the regression calibration, which

imputes the underlying true values of the covariates using a calibration function and

applies standard analysis tools to the imputed data. The calibration function and

associated parameters, however, are often unknown and need to be estimated from

validation data or replicates. Therefore, adjusting standard errors is required in

order to account for the uncertainty in the estimated calibration function parameters,

using either the bootstrap variance estimation or the sandwich method. Regression

calibration is a very convenient way to reduce the bias induced by measurement error.

However, the regression calibration model is only an approximate, working model for

the observed data. It is typically used in ad hoc ways, simply as a modeling device

and not based on any fundamental considerations such as classical or Berkson error

model. When the model is highly non-linear, this method may not work well (Carroll

et al., 2006).

Covariate measurement error in data from clustered and longitudinal studies has

been considered by some authors (e.g., Prentice, 1986; Wang et al., 1998; Lin and

Carroll, 1999). Wang and Davidian (1996) considered the influence of measurement

error on variance component estimators in nonlinear mixed models. Wang et al.

(1998) investigated the bias induced by classical additive error in a generalized lin-

ear mixed measurement error model (GLMMeM) and proposed to use SIMEX with

the quadratic extrapolation function for estimation of the mixed model parameters.

Buonaccorsi et al. (2000) considered the estimation of both regression coefficients

and variance parameters for a class of linear mixed models with measurement error in

a time-varying covariate. They found that regression calibration suitable and highly

efficient for fixed-effects, because the fixed-effects and the variance components are

orthogonal in the context of linear mixed models. The authors also showed that a

“corrected regression calibration”method, which is equivalent to the pseudo-maximum
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likelihood approach, can be used to correct the bias of the estimates of the variance

components. Xiao et al. (2010) considered measurement error in multiple covariates

and obtained consistent estimators by extending the generalized method of moments

(e.g., Griliches and Hausman, 1986; Wansbeek, 2001).

1.3.4 Response measurement error

Compared to the rich literature on covariate measurement error, response measure-

ment error has received relatively less attention. In linear regression, classical mea-

surement error in responses increases the variability of the estimated coefficients with-

out causing bias (Carroll et al., 2006). Therefore, classical measurement error in re-

sponses is often ignored in linear regression analysis, as in part, it can be absorbed

into the noise term of the response model. For nonlinear response measurement error,

however, this does not apply. Buonaccorsi (1996) considered nonlinear response error

in linear regression models and proposed the pseudo-maximum likelihood approach

with an illustration of a four-parameter logistic measurement error structure. Yanez

et al. (1998) presented a method of adjusting for response error in the modeling of

association of a set of explanatory variables with the change of the outcome variable

such as blood pressure. Moore et al. (2000) reviewed the sources of measurement

error in income surveys.

Much of the research on response measurement error has been focused on bi-

nary and categorical cases, i.e., misclassifications. Some early works include Tenebein

(1970, 1972) and Hochberg (1977) on studies of association in contingency tables with

element misclassification using doubly sampled data. Here a doubly sampling scheme

consists of two mechanisms: the observations in a larger sample are classified into a

contingency table by an inexpensive but fallible method, while the units of a subsam-

ple are classified jointly by the fallible method and by some expensive but reliable

method. Ekholm and Palmgren (1987) employed the GLM for analysis of doubly

sampled data by considering the problem as misclassification in both the explanatory

factor and the binary response. Chua and Fuller (1987) considered response error as-

sociated with self-reported categorical data from surveys. Bollinger and David (1997)

used pseudo-maximum likelihood estimation methods for Food Stamp participation
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by incorporating demographic and economic covariates in models for underreporting

and overreporting. Neuhaus (1999) examined the magnitude of bias and efficiency

loss due to misclassification in binary regression with a single covariate and obtained

some approximate bias-correction factor for regression parameter. Roy et al. (2005)

developed likelihood-based analysis for the probit regression model with measurement

error in covariates and classification error in binary responses.

Neuhaus (2002) studied the influence of response misclassification in generalized

linear mixed models for analysis of data from clustered and longitudinal studies. The

author showed that the class of GLMMs enjoy a closure property under misclassified

responses analogous to single-response GLMs (that is, the resulting model still belongs

to GLMMs but with a different link function), and the asymptotic relative efficiency

of the naive estimates to error-free estimates can be obtained. Roy et al. (2009)

considered multivariate probit models for correlated binary data with covariate and

response errors. They proposed likelihood-based methods for reducing the induced

bias in the marginal effects as well as the correlation parameters.

1.3.5 Identifiability

A general concern with measurement error problems is model identifiability. That

is, whether it is possible or not to know the exact parameters if one actually had an

infinite number of observations. When a problem is not identifiable, it means that a

key piece of information is unavailable.

Identifiability generally depends on the form of the model and the assumptions

made for the components in the model. Carroll et al. (2006) addressed this issue for

likelihood-based approaches. In some nonlinear measurement error models, parame-

ters associated with both the response model and the measurement error model may

be identified without extra information, e.g., validation data or replication data. It is

the nonlinearity in the model that makes identifiability possible. However, estimation

without additional data is generally not practical for linear models with variables and

measurement error that are normally or close to normally distributed (Carroll et al.,

2006, p. 184).

20



Identifiability is also the major practical issue for misclassification problems, as

misclassification probabilities are very weakly identified. That means a very large

sample is often required in order to obtain stable estimates or achieve convergence of

an algorithm. The difficulty to estimate with any precision carries over to estimation

of the underlying risk function (Carroll et al., 2006, p. 347). If extra information is

not available, misclassification parameters may be identified theoretically but not in

a practical sense. Copas (1988) and Neuhaus (2002) stated that without additional

data the best one can do is to conduct sensitivity analysis for possible values of the

misclassification probabilities.

To get around the identifiability issue, it is often assumed that extra information

is available in the form of validation data, multiple measurements, or instrument vari-

ables. Carroll and Wand (1991) described semiparametric estimation and inference in

a logistic regression model with measurement error in the predictors, where a smaller

validation data set is available in addition to the primary data set. Similarly, Lee

and Sepanski (1995) introduced consistent methods for the estimation of linear and

nonlinear regression models with measurement errors in variables in the presence of

validation data. The methods allowed the measurement errors be correlated with

the true explanatory variables in the model. Hu (2008) considered nonlinear models

with a misclassified discrete explanatory variable that is also allowed to be correlated

with other explanatory variables. The author provided a nonparametric approach to

the problem of identification and estimation using instrumental variables, for which

certain monotonicity restrictions may be required on the latent model.

In this thesis we do not focus on addressing the identifiability issues in measure-

ment error problems. Instead, in each chapter we first treat the error parameters as

known and develop methods to correct the induced bias in the estimates of response

parameters. Estimation of error parameters using possible additional information is

then discussed.
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1.4 Analysis of Survey Data

Surveys are an important and popular tool for collecting data. Analytical use of

survey data especially health survey data has become more and more common, with

focus on the association of particular outcome variables with explanatory variables

at the population level. Estimating equation methods have been widely used, and

their statistical properties have been studied by some authors, see, e.g., Godambe

and Thompson (1986) and Binder and Patak (1994), among others.

Let N be the size of a finite population. Let Yi and Xi be the response variable

and a vector of auxiliary variables for individual i, i = 1, . . . , N . We assume that

the finite population Y = (Y1, Y2, . . . , YN) is generated from a superpopulation model

ζ , which involves a vector of parameters θ. The finite population parameter, noted

as θN , can be regarded as the solution to the population (or “census”) estimating

equations

N∑

i=1

Ui(θ;Yi,Xi) = 0, (1.11)

where Ui(θ;Yi,Xi) are unbiased estimating functions of θ. Here, unbiasedness means

Eζ [Ui(θ;Yi,Xi] = 0, (1.12)

with Eζ denoting expectation under the superpopulation model ζ (Godambe and

Thompson, 1986). Let µi = Eζ [Yi|Xi]. Different choices of Ui(θ;Yi,Xi) in (1.11) lead

to different population characteristics. For example, Ui(θ;Yi) = Yi−θ gives the popu-

lation mean θN = (1/N)
∑N

i=1 Yi, Ui(θ;Yi,Xi) = Xi(Yi−µi) with µi = exp(XT
i θ){1+

exp(XT
i θ)}−1 gives the logistic regression vector θN , and Ui(θ;Yi,Xi) = Xi(Yi − µi)

with µi = XT
i θ gives the population regression vector θN = (XTX)−1XTY, where

X = (X1, . . . ,XN)T (Rao et al., 2002). Under the superpopulation model, θN can be

viewed as an estimate of the model parameter θ.

The data of the entire finite population are not available unless a census is con-

ducted. Let s be a sample of n individuals obtained from the finite population using
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a complex survey design p. Solving the sample based estimating equations

∑

i∈s

Ui(θ;Yi,Xi) = 0, (1.13)

yield estimates of both θN and θ simultaneously, provided that the superpopulation

model is correctly specified. Another approach is to incorporate the feature of the

complex survey design and construct estimating functions unbiased for the population

estimating function under the survey design p. It is natural to solve

∑

i∈s

diUi(θ;Yi,Xi) = 0, (1.14)

where di is the design weight for individual i. Without non-response issues, di =

1/Pr(i ∈ s). Note that

Ep

[
∑

i∈s

diUi(θ;Yi,Xi)

]
=

N∑

i=1

Ui(θ;Yi,Xi),

where Ep denotes expectation under the design p, the weighted sample estimating

functions in (1.14) is design unbiased for population estimating functions, and the

solution is consistent for the population parameter θN even if the superpopulation

model is misspecified. In this case, finite population parameter θN is of interest

(Godambe and Thompson, 1986).

A major problem with the estimation of regression parameters is that data col-

lected from surveys often contain measurement error. One source of measurement

error is that questionnaires may not be well designed. Another source of error, par-

ticularly for large scale surveys, comes from mistakes during the course of data record-

ing, coding, and editing. For example, the weight of the respondent is reported in

pounds but may be recorded as in kilograms. When measurement error is coupled

with complex survey design features, it adds another degree of difficulty and requires

development of new tools and alternative approaches. Analysis of survey data in

the presence of measurement error has been discussed by some authors, e.g., Fuller

(1987, 1995), with a focus on the estimation of population mean, total, and quantiles.
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Regression analysis of survey data with measurement error, however, has received

relatively less attention.

Here we use a simple example to illustrate the possibility of extending existing bias

correction methods to the survey context. Consider a finite population generated from

a superpopulation model

Yi = Xiβ + ǫi, i = 1, . . . , N, (1.15)

where ǫi are independently normally distributed with mean 0 and variance σ2
ǫ . The

objective is to simultaneously estimate β, namely the slope of superpopulation model,

and βN , the finite population slope, from a sample of n subjects. The original esti-

mating equation can be given by

∑

i∈s

Ui(β;Yi, Xi) =
∑

i∈s

Xi(Yi −Xiβ) = 0.

When the observed surrogateWi forXi follows the classical additive error model (1.8),

an unbiased estimating function of β is given by U∗
i (β;Yi,Wi) = (Yi − βWi)Wi + βσ2

e

(Nakamura, 1990). It can be shown that by incorporating survey weights, the solution

to estimating equation

∑

i∈s

diU
∗
i (β;Yi,Wi) = 0,

is both model and design unbiased for βN .

1.5 Data Sets

In this section we describe two data sets that are used in the following chapters of

the thesis.
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1.5.1 Framingham Heart Study

The Framingham Heart Study is a longitudinal investigation of the development of

cardiovascular disease. The study began in 1948 and 5,209 subjects were initially

enrolled in the original cohort. The cohort has been followed for morbidity and mor-

tality, and participants have continued to return to the study every two years for

a detailed medical history, physical examination, and laboratory tests. A total of

5124 second-generation (adult children of the original participants and the spouses

of these adult children) were recruited into a second cohort in 1971 and participated

in similar examinations. The objectives of the cohort study are to study the in-

cidence and prevalence of cardiovascular disease and identify its constitutional and

environmental risk factors, as well as to study the trend of the influence of the risk

factors over time. Measurement error problems arising from the Framingham Heart

Study have been discussed by many researchers, with a focus on error-in-covariate

in statistical regression models. For example, Carroll et al. (1984) and Wang et

al. (1998) considered relating the probability of developing coronary heart disease to

some baseline risk factors including systolic blood pressure (SBP), a covariate treated

as error-contaminated.

On the other hand, studying the risk factors for SBP measurements may also be

of clinical interest. SBP and its discreet versions are used as outcome variables in

this thesis, which are subject to measurement error.

1.5.2 Canadian Community Health Survey

The Canadian Community Health Survey (CCHS) is an ongoing large scale survey

conducted by Statistics Canada. Cycle 3.1 in 2005 targets persons aged 12 years

or older who live in private dwellings in the ten provinces and the three territories.

Persons living on Indian Reserves or Crown lands, clientele of institutions, full-time

members of the Canadian Armed Forces and residents of certain remote regions are ex-

cluded from the survey. The primary objectives of the survey are to provide estimates

of health determinant, health status and health system utilization across Canada, and

to gather data at the sub-provincial levels of geography (Statistics Canada, 2005).
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For administrative purposes, each province is divided into health regions (HR)

according to the types of regions: major urban centres, cities, and rural regions, and

each territory is designated as a single HR. During Cycle 3.1 of the CCHS, data were

collected in 122 HRs in the ten provinces, in addition to one HR per territory, totalling

125 HRs. Three sampling frames are used to select the sample of households: 49%

of the sample of households came from an area frame, 50% came from a list frame

of telephone numbers and the remaining 1% came from a Random Digit Dialling

(RDD) sampling frame. The CCHS uses the area frame designed for the Canadian

Labour Force Survey (LFS). The sampling plan of the LFS is a multistage stratified

cluster design in which the dwelling is the final sampling unit. Geographic or socio-

economic strata are created within each HR. Within the strata, between 150 and 250

dwellings are regrouped to create clusters. Some urban centres have separate strata for

apartments or for census Enumeration Areas (EA) to pinpoint households with high

income, immigrants and the native people. In each stratum, six clusters or residential

buildings (sometimes 12 or 18 apartments) are chosen with probability proportional

to size (PPS), with the number of households as the size variable. The list frame of

telephone numbers was used in all but five HRs (the two RDD only HRs and the three

territories) to complement the area frame. One list frame stratum was then created

for each HR based on postal codes that were obtained from names, addresses and

telephone numbers. Within each stratum the required number of telephone numbers

was selected using simple random sampling from the list. As for the RDD frame,

additional telephone numbers were selected to account for the numbers not in service

or out-of-scope. The hit rate observed under the list frame approach varied from 75%

to 88% depending on the province, which was much higher than that for the RDD

frame. In four HRs, a Random Digit Dialling (RDD) sampling frame of telephone

numbers was used to select the sample of households.

For all selected households, a single person aged 12 and older was randomly cho-

sen from members of the household. After removing the out-of-scope units, 168,464

households were selected to participate in the CCHS Cycle 3.1. Data were obtained

from 132947 respondents, yielding a response rate of 79%. Data were collected on

general health, chronic health conditions, drinking or smoking status, including self-
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reported weight and height. A subsample of 7376 respondents aged 12 or older were

also selected, who were asked later in the interview to directly measure weight and

height. Among the 7376 individuals selected in the subsample, 4735 individuals re-

sponded. The main reason for non-response was refusal (Statistics Canada, 2005).

Such validation subsample is useful in studies of risk factors for obesity as well as

the effect of obesity on health conditions. It provides information on the relationship

between a precise measurement and an error-contaminated measurement of weight or

height that makes it possible to correct estimation bias induced by the self-reported

data.

1.6 Outline of Thesis

The structure of the thesis is as follows. In Chapter 2, we consider the estimation

of regression coefficients in a mixed model where the continuous response variable

is subject to nonlinear measurement error. We first discuss the model formulation

for the response process and the measurement error process. We then conduct bias

analysis for a naive approach that completely ignores measurement error. We also

investigate another naive approach, which fits mixed models to transformed data.

Estimation and inference using likelihood-based methods are presented, and a two-

stage pseudo likelihood approach is developed for cases where validation data are

available. We conduct some simulation studies to investigate the performance of the

proposed methods. Finally, a real data set from the Framingham Heart Study is

analyzed.

In Chapter 3, we discuss the problem of misclassification in correlated binary

responses arising from longitudinal studies or familial studies. We start with the

model formulation for the mean response model and the misclassification process.

A method for correcting the bias induced by misclassified binary responses is pro-

posed, and generalized estimating equations analysis and the asymptotic properties

are established. Misclassifications within the same cluster can be correlated when the

observations are collected by the same person or using the similar defective measuring

device. Some feasible ways to construct estimating equations for first and second-order
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model parameters while eliminating the bias induced by correlated misclassifications

are explored.

Chapter 4 discusses the analysis of correlated ordinal data with misclassification

in both the response variable and a categorical covariate. We consider marginal

methods for estimating first and second order parameters associated with the cumu-

lative probabilities of the ordinal responses. Estimating equations are constructed

and asymptotic properties of the methods are discussed. We conduct simulations to

show the good performances of the proposed methods. We then illustrate the use of

the methods by a data analysis example.

Chapter 5 combines covariate measurement error problem and survey design fea-

tures. We discuss the analytic use of survey data with binary responses and a misclas-

sified ordinal covariate. Some issues about modeling the distribution of the ordinal

covariate and the misclassification process are also addressed. We propose to use

the expected score method for parametric estimation and use bootstrap method for

variance calculation. A limited simulation study is conducted to investigate the per-

formance of the expected score method. The proposed method is then applied to data

from the CCHS cycle 3.1.

Finally, in Chapter 6 we summarize the overall findings and outline future work.

Large scale longitudinal surveys have been widely used for studying labor force and

population health in a country. Complex survey features can be incorporated in

marginal models for categorical and ordinal data with misclassification. Incomplete

observations arise frequently in both the outcome variable and the covariates, e.g.,

subjects may drop out of the studies. Some authors considered using an inverse

probability weight matrix in the estimating equations approaches for dealing with in-

complete longitudinal observations (see, e.g., Robins et al., 1995; Yi and Cook, 2002).

In the presence of misclassification, modification to the weight matrix is needed.

When the transition probability from one response category to another is also the

focus in a longitudinal study, multi-state Markov transition models can be employed.

Marginalized methods (e.g., Heagerty, 2002) can be extended to accommodate both

misclassification and missing data.
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Chapter 2

Correlated Data with Response

Measurement Error under

Generalized Linear Mixed Models

2.1 Introduction

The primary interest of epidemiological studies often focuses on investigating the asso-

ciation of a continuous or categorical outcome variable with covariates. For standard

statistical analysis, we assume that all variables in the data are precisely observed.

In some observational studies, however, measurements of variables may contain error

due to imperfect measuring system and/or other reasons. Examples include the mea-

surement of blood pressure using nonstandard device and the determination of disease

infection status using poor diagnostic tests. There has been much interest in statisti-

cal inference for cases of error-in-covariates, and there exists a large body of references

on this topic; see, for instance, Jiang et al. (1999), Wang et al. (1998), and Yi and

Cook (2005). Measurement error in response, however, has received less attention,

since it is believed that ignoring error in response would still lead to valid inferences.

Unfortunately, this is only true for certain situations such as linear regression models

with classical additive measurement error in responses. Buonaccorsi (1996) discussed

some numerical assessment of bias in estimators from naive analysis ignoring non-
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linear response measurement error under linear models. He proposed some solutions

for correcting the bias. Neuhaus (1999, 2002) discussed binary responses and showed

that naive analysis ignoring measurement error may lead to incorrect conclusions.

Generalized linear mixed models (GLMMs) are of practical importance and have

been popular in analyzing correlated data, especially for clustered/familial data.

These models are also widely used in statistical genetic analysis of animal breed-

ing data, in which the sires of animals are considered random effects. GLMMs enable

the accommodation of non-normally distributed responses and the specification of a

possibly nonlinear link function between the mean of the response and the predictors.

For example, some reproductive traits in animal breeding are scored as counts (e.g.,

litter size in pigs), and a mixed Poisson regression model is a possibility (Tempelman

and Gianola, 1996). For longitudinal studies, in which repeated measurements are

collected on the same subject over time, GLMMs are also widely employed in analyses

to account for subject-specific variations (Diggle et al., 2002).

The Framingham Heart Study is a prospective study of the development of cardio-

vascular disease. This study has been the basis for a considerable amount of epidemi-

ologic research. It is well known that some variables are measured with error. For

example, Carroll et al. (1984) considered binary regression models with different link

functions to relate the probability of developing heart disease to risk factors including

systolic blood pressure (SBP), a variable that contains measurement error. Similarly,

Yi (2008) and Yi et al. (2010) considered the effects of covariate measurement error

on the estimation of response parameters for longitudinal studies with missing obser-

vations. Other research papers on covariate error using data from Framingham Heart

Study include Hall and Ma (2007) and Zucker (2005), among others.

In this chapter, we study the impact of measurement error in response variables

under GLMMs. We investigate asymptotic bias in the naive estimators for fixed

effect parameters when the response measurement error is ignored. Some available

approaches that can be used for handling nonlinear measurement errors are evaluated.

We present the approximate likelihood method that can yield consistent and highly

efficient estimators. In Section 2.5, we conduct a simulation study to compare the

performances of various approaches. In Section 2.6, we illustrate the proposed method
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using a real data set from the Framingham Heart Study. Our primary interest is to

study the relationship between long-time average SBP and risk factors such as age,

smoking status, and serum cholesterol level (see, e.g., Jaquet et al., 1998; Primatesta

et al., 2001; Ferrara et al., 2002). Some discussion and concluding remarks are given

in Section 2.7.

2.2 Model Formulation

2.2.1 Response model

Suppose there are n independent clusters in the sample. Let Yij denote the response

for the jth observation in cluster i, i = 1, . . . , n, j = 1, . . . , mi. For longitudinal

studies, Yij represents the response from the jth clinic visit for subject i. Let Xij and

Zij be vectors of covariates associated with fixed effects and random effects for subject

j and cluster i, respectively. Let Xi = (XT
i1, . . . ,X

T
imi

)T and Zi = (ZT
i1, . . . ,Z

T
imi

)T. A

GLMM for the data is given by

g(µb
ij) = XT

ijβ + ZT
ijbi, (2.1)

where µb
ij = E[Yij|Xi,Zi,bi] is the conditional expectation of Yij given Xi, Zi and

random effects bi, and β is a vector of regression coefficients for the fixed effects.

The random effects bi follow a certain distribution, say, fb(bi;σb), with unknown

parameters σb. The link function g(·), which is monotone and differentiable, relates

µb
ij to the subject-specific linear predictor XT

ijβ+ZT
ijbi. When Yij is binary, common

choices of g(·) can be the logit link, probit link, or complementary log-log link. The

log link is usually employed when Yij is a Poisson or Gamma variable.

With continuous Yij, the choice of identity function g(·) in (2.1) leads to the linear

mixed model (LMM)

Yij = XT
ijβ + ZT

ijbi + ǫij , (2.2)

which has been extensively discussed in the literature; see, for instance, Laird and

31



Ware (1982) and McCulloch and Searle (2001), among others. The error term ǫij

is often assumed to be normally distributed with mean 0 and unknown variance σ2
ǫ .

Let θ = (βT,σT
b , σ

2
ǫ )

T be the vector of response parameters. It is straightforward to

formulate the marginal likelihood for cluster i as

Li =

∫ mi∏

j=1

fY (Yij|Xij,Zij,bi)fb(bi)dbi, (2.3)

where the integration is over the multi-dimensional random components bi. The

likelihood of the data from all clusters is then given by L =
∏n

i=1 Li.

Making inference about GLMMs often involves integrals that are intractable, be-

cause the random effects may enter the model nonlinearly. We will discuss this later

in Section 2.4.4.

2.2.2 Measurement error models

In practice, Yij may not be measured precisely. Instead, we observe a surrogate Sij

that may be different from the true measurement. Parametric models for measure-

ment error process are often employed in order to develop methods to eliminate or

reduce estimation bias induced by measurement error. A common strategy is to spec-

ify the conditional distribution of Sij given true data (Yi,Xi,Zi) of cluster i. It is

often assumed that E[Sij |Yi,Xi,Zi] = E[Sij |Yij,Xij,Zij ] (Pepe and Anderson, 1994).

If the measurement error process is independent of covariates, then the expectation

of Sij only involves the underlying true response, i.e.,

E[Sij |Yi,Xi,Zi] = h(Yij ;γ(i)) (2.4)

where h(·) is a function that involves a vector of error parameters γ(i) for cluster

i. The dependence of γ(i) on i corresponds to situations where different measuring

systems are used for different clusters. If the same measuring system is applied to all

clusters, subscript i can be dropped from the parameters. Thus, the mean structure

for the measurement error process involves a common parameter vector, say, γ.
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Here we introduce the formulations for two widely used classes of measurement

error models.

Additive error models

Buonaccorsi (1996) discussed the formulation for nonlinear response measurement

error model in an additive form. The relationship between the observed surrogate

and the true response is given by

Sij = h(Yij ;γ) + eij, (2.5)

where eij has mean 0 and variance σ2
e . It is common to assume that eij ∼ Normal(0, σ2

e).

Let η = (γT, σ2
e)

T be the vector of parameters associated with the measurement error

process. When h(·) is the identity function, (2.5) is the classical additive error model.

In this case, naively fitting a linear mixed model (LMM) ignoring measurement error

still leads to consistent estimator for β, since eij is simply absorbed into the random

error ǫij of the response model. The naive estimator for the variance parameter σ2
ǫ ,

however, will be incorrect due to extra variation induced by eij .

When h(·) is a nonlinear function, naive estimators for θ from error-contaminated

data are generally biased; see Buonaccorsi (1996) for an example on a four-parameter

logistic model.

Multiplicative error models

Multiplicative covariate measurement errors arise as commonly as additive measure-

ment errors, such as energy consumption, and air-borne exposures in occupational

epidemiology (e.g., Lyles and Kupper, 1997; Carroll et al., 2006). Several authors

have considered linear regression with multiplicative error in the covariates. For ex-

ample, Hwang (1986) proposed a method-of-moments correction procedure to reduce

the bias in regression parameters. In the context of measurement error in response,

this type of model is expressed as

Sij = h(Yij ;γ) · eij , (2.6)
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where eij is independent of Yij and follows a distribution with mean 1 and variance

σ2
e , e.g., a log-normal distribution or Gamma distribution.

Although multiplicative errors are commonly seen, we show here that (2.6) can

be transformed into an error model with an additive noise term. By taking logarithm

on both sides of (2.6), we have

log(Sij) = log{h(Yij;γ)} + log(eij).

Let h∗(Yij;γ, σ
2
e) = {log{h(Yij;γ)} + E[log(eij)]} and e∗ij = {log(eij) − E[log(eij)]}.

Then we have log(Sij) = h∗(Yij;γ, σ
2
e) + e∗ij, which is of the same form as (2.5) with

the noise term having mean 0. The modified function h(·), however, may involve

both γ and σ2
e . When eij follows log-normal distribution with mean 1 and variance

σ2
e , for instance, the log-transformed variable log(eij) is normally distributed with

mean − log(σ2
e + 1)/2 and variance log(σ2

e + 1).

In following sections we focus the discussion on additive error, for which h(·)
involves only γ but not σ2

e .

2.3 Bias Analysis

In this section we assess the impact of measurement error on estimation of response

parameters from two naive approaches that may be used in practice. The first ap-

proach ignores measurement error completely and fits a standard GLMM to the data

treating Sij as the response. The second approach constructs surrogate responses

Ỹij = h−1(Sij ;γ) ignoring measurement error eij and fits standard mixed models to

the transformed data, provided that h(·) is known. For ease of exposition, we consider

cases where the clusters are of equal size, i.e., mi = m.

2.3.1 Naive analysis ignoring error

When the function h(·) is unknown, practitioners may naively fit a GLMM to the ob-

served data. Ignoring measurement error in response amounts to fitting a misspecified
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model

g(µb∗
ij ) = XT

ijβ
∗ + ZT

ijb
∗
i , i = 1, . . . , n, j = 1, . . . , m,

where b∗
i is the random effects assuming the same distribution fb(·) but with different

covariance parameters σ∗
b , and µb∗

ij = E[Sij |Xi,Zi,b
∗
i ]. For continuous Yij following

linear mixed model (2.2), the misspecified model is given by

Sij = XT
ijβ

∗ + ZT
ijb

∗
i + ǫ∗ij , i = 1, . . . , n, j = 1, . . . , m, (2.7)

where ǫ∗ij is assumed to have a distribution with mean 0 and variance σ∗2
ǫ , say,

Normal(0, σ∗2
ǫ ). Let θ∗ = (βT,σ∗T

b , σ∗
ǫ )

T.

We now adapt the arguments in White (1982) to study the effects of mismeasured

responses. The working likelihood contributed from cluster i is given by

Lw
i (θ∗) =

∫ m∏

j=1

fY |X,Z,b(Sij|Xij,Zij ,b
∗
i )fb(b

∗
i )db

∗
i .

Let ℓwi (θ∗) = logLw
i (θ∗). Maximizing ℓw(θ∗) =

∑n
i=1 ℓ

w
i (θ∗) with respect to θ∗ gives

a false ML estimator θ̂∗. It can be shown that, as n→ ∞, θ̂∗ converges in probability

to a limit that is the solution to a set of estimating equations

Etrue

[
n∑

i=1

∂

∂θ∗
ℓwi

]

= 0, (2.8)

where the expectation is taken with respect to the true distributions of all random

variables (Si,Yi,Xi,Zi,bi). The integrals involved in ℓwi (θ∗), however, are often

intractable. Thus, there is no simple closed form for the relationship between θ∗ and

θ, though approximation can be obtained using numerical integrations.

To gain insights on the impact of ignoring error in response, we further consider

a simple LMM involving a random slope for a single covariate Xij, i.e.,

Yij = β0 + (β1 + bi)Xij + ǫij , (2.9)
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where bi ∼ Normal(0, σ2
b ). The misspecified model (2.7) is now simplified to

Sij = β∗
0 + β∗

1Xij +Xijb
∗
i + ǫ∗ij, (2.10)

where b∗i and ǫ∗ij are assumed to be normally distributed with mean 0 and variance

respectively given by σ∗2
b and σ∗2

ǫ . We have

Lw
i (θ∗) =

∫ (
1√

2πσ∗2
ǫ

)m
1√

2πσ∗2
b

× exp

{

−
∑m

j=1(Sij − β∗
0 −Xijβ

∗
1 −Xijb

∗
i )

2

2σ∗2
ǫ

− b∗2i

2σ∗2
b

}

db∗i

=

(
1√
2π

)m
(

1√
σ∗2

ǫ

)m−1

exp

[
−
∑m

j=1(Sij − β∗
0 −Xijβ

∗
1)

2

2σ∗2
ǫ

+
σ∗2

b

{∑m
j=1(Sij − β∗

0 −Xijβ
∗
1)Xij

}2

2σ∗2
ǫ

(
σ∗2

b

∑m
j=1X

2
ij + σ∗2

ǫ

)
]

× 1√
σ∗2

b

∑m
j=1X

2
ij + σ∗2

ǫ

.

The corresponding working log-likelihood is then given by

ℓwi (θ∗) = −m
2

log(2π) − m− 1

2
log σ∗2

ǫ − 1

2
log

(
σ∗2

b

m∑

j=1

X2
ij + σ∗2

ǫ

)

−
∑m

j=1(Sij − β∗
0 −Xijβ

∗
1)

2

2σ∗2
ǫ

+
σ∗2

b

{∑m
j=1(Sij − β∗

0 −Xijβ
∗
1)Xij

}2

2σ∗2
ǫ

(
σ∗2

b

∑m
j=1X

2
ij + σ∗2

ǫ

) .

The misspecified score function therefore can be obtained from taking derivatives of

ℓwi (θ∗) with respect to θ∗. The components for β∗
0 and β∗

1 , for instance, are given by

(
∂

∂β∗

0

ℓwi (θ∗)

∂
∂β∗

1

ℓwi (θ∗)

)
=

m∑

j=1

[
1

σ∗2
ǫ

(
Sij − β∗

0 −Xijβ
∗
1

(Sij − β∗
0 −Xijβ

∗
1)Xij

)

−
σ∗2

b

{∑m
j′=1(Sij′ − β∗

0 −Xij′β
∗
1)Xij′

}

σ∗2
ǫ

(
σ∗2

b

∑m
j′=1X

2
ij′ + σ∗2

ǫ

)
(
Xij

X2
ij

)

 .(2.11)
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Based on (2.8), taking expectations on both sides of (2.11) gives

0 =

m∑

j=1

EX,ZEb|X,ZEY |b,X,Z

[
1

σ∗2
ǫ

(
h(Yij;γ) − β∗

0 −Xijβ
∗
1

{h(Yij;γ) − β∗
0 −Xijβ

∗
1}Xij

)

−
σ∗2

b

(∑m
j′=1 {h(Yij′;γ) − β∗

0 −Xij′β
∗
1}Xij′

)

σ∗2
ǫ

(
σ∗2

b

∑m
j′=1X

2
ij′ + σ∗2

ǫ

)
(
Xij

X2
ij

)

 . (2.12)

We consider two special cases for the error structure: linear measurement error,

and exponential measurement error. The first case, which is commonly seen in epi-

demiologic studies, specifies a linear relationship between Sij and Yij as

Sij = γ0 + γ1Yij + eij , (2.13)

where γ0 represents a bias of the measuring device at Yij = 0, and γ1 is a scale factor.

We can easily show that simple relationships between the true and false parameters

are given by β∗
0 = γ0 + γ1β0, β

∗
1 = γ1β1, σ

∗2
b = γ2

1σ
2
b , and σ∗2

ǫ = γ2
1σ

2
ǫ +σ2

e . The results

hold for general LMM with multiple covariates, as the distribution of the observed

surrogate response given covariates is still within the LMM framework but with scaled

fixed effects and variance components.

The second special measurement error model we consider is an exponential error

model given by

Sij = exp(γYij) + eij, (2.14)

where eij ∼ Normal(0, σ2
e) and is independent of Yij. This error model is of interest

when Yij is the logarithm of an underlying variable that is impossible to obtain. As

shown in Section 2.8.1, there is no closed form for the bias in the naive fixed-effect

estimator due to the expectations over nonlinear functions.

Here we specifically undertake a numerical study to illustrate the bias induced

by response error under model (2.14). We focus on the bias in β1 given the values

of β0, σ
2
b , and σ2

ǫ . The model parameters are specified by β0 = −1, σ2
ǫ = 0.01,

and σ2
b = 0.01, 0.25, and 1. Various combinations of error parameters γ and σ2

e are
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considered. Figure 2.1 displays nonlinear curves of the naive β∗
1 versus the true β1.

When γ = 0.5, for instance, the naive estimates of β1 are attenuated for small values

of β1 but are inflated for large values. When γ = 1, however, β∗
1 is much larger than

β1 in all settings. The shapes of the bias curves under the various settings are also

different.

In general, the direction and magnitude of the bias induced by nonlinear response

error depend on both h(·) and associated parameters η in the measurement error pro-

cess. Variance parameters also play significant roles in the bias of the naive estimates.

Figure 2.1: Bias in β∗
1 from the completely naive approach induced by an exponential

error model. The dashed line (- - -), twodash line (- –), and dotted line (. . .)
are for σ2

b = 0.01, 0.25, and 1, respectively.
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2.3.2 Naive analysis of transformed data

If the specific form of h(·) is known, another straightforward naive approach is to con-

struct surrogate response Ỹij = h−1(Sij ;γ) and perform standard statistical analysis

treating Ỹij as true.

It is easy to see that when h(·) is a linear function, the transformed surrogate

Ỹij is an unbiased surrogate for the true Yij. When h(·) is nonlinear, however, the

unbiasedness of Ỹij does not hold in general. Naively fitting a LMM to the transformed

data leads to estimation of a vector of false parameters, say, θ̃, other than the true θ.

The magnitude of bias mainly depend on measurement error variance σ2
e . When σ2

e

is extremely small, the transformed surrogate Ỹij approximates Yij very well. In this

case, estimation bias induced by response measurement error is generally ignorable.

To investigate the asymptotic bias in this naive estimator using the transformed

data, we again consider the simple LMM given by (2.9). A similar procedure can

be employed to develop a set of equations to relate θ̃ to the true θ. The working

log-likelihood from cluster i with the transformed surrogates is given by

ℓ̃wi (θ̃) = −m
2

log(2π) − m− 1

2
log σ̃2

ǫ −
1

2
log

(

σ̃2
b

m∑

j=1

X2
ij + σ̃2

ǫ

)

−
∑m

j=1(Ỹij − β̃0 −Xij β̃1)
2

2σ̃2
ǫ

+
σ̃2

b

{∑m
j=1(Ỹij − β̃0 −Xij β̃1)Xij

}2

2σ̃2
ǫ

(
σ̃2

b

∑m
j=1X

2
ij + σ̃2

ǫ

) .

The first derivatives of ℓ̃wi (θ̃) with respect to β̃ are of the same form as those in equa-

tions (2.11). Again the expectation of the working score function involves integrals

that do not have simple closed forms for cases with nonlinear h(·).

Here again we conduct a numerical study under the scenarios described in previous

section to investigate the relationship between β̃1 and β1. The bias curves are shown

in Figure 2.2. One can see that the bias is dramatically reduced compared to that

from the naive analysis ignoring error. Also, the size of the bias increases as the size

of β1 increases. Furthermore, the values of γ and σ2
e have significant impact on the

bias. In general, the size of the bias increases as σ2
e increases.
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Figure 2.2: Bias in β̃1 from the naive analysis of the transformed data induced by an

exponential error model. The dashed line (- - -), twodash line (- –), and dotted
line (. . .) are for σ2

b = 0.01, 0.25, and 1, respectively.
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2.4 Inference Methods

In this section we discuss likelihood inference methods for several practical cases: (i) η

is known, (ii) η is unknown but a validation subsample is available, and (iii) replicates

for the surrogates are available. We propose some strategies on the estimation of

model parameters.

2.4.1 η is known

Conditional on fixed η, the marginal likelihood of the observed data from cluster i

can be written as

Li(θ,η) =

∫ { m∏

j=1

∫
fS|Y,X,Z,b(Sij|Yij,Xij,Zij ,bi;η)

× fY |X,Z,b(Yij|Xij,Zij ,bi; θ)dYij

}
fb(bi;σb)dbi. (2.15)

Let ℓi(θ,η) = logLi(θ,η) and Ui(θ,η) = ∂ℓi(θ,η)/∂θ. The ML estimator θ̂ can be

obtained from maximizing ℓ(θ,η) =
∑n

i=1 ℓi(θ,η) provided that η is fixed at its true

value, say, η0. This leads to solving a set of equations

n∑

i=1

Ui(θ,η0) = 0.

From standard likelihood theory, the ML estimator θ̂ is consistent for θ. As

n → ∞, n1/2(θ̂ − θ)
d→ MVN(0,I−1), where I = E

[
−∂Ui(θ),η0/∂θ

T
]
. Using

Bartlett’s identity and the law of large numbers, I can be consistently estimated by,

n−1
∑n

i=1 Ui(θ̂,η0)Ui(θ̂,η0)
T.

2.4.2 η is estimated from validation data

In reality η is often unknown. In the absence of additional information such as a

validation data set or replicates of the measurements, parameter identifiability may
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be a major issue (e.g., Carroll et al. 2006, p. 184). For nonlinear h(·), θ may be

theoretically identified in some particular situations without extra information. The

estimators, however, are usually unstable. In this and next subsections, we discuss

estimation and inference procedures when a validation data set and replicates of

surrogates are respectively available.

Validation data arise commonly in the study when some observations are selected

into a subsample and the true values of the responses are obtained. Let δij = 1 if

Yij is available and δij = 0 otherwise. Let Nv =
∑n

i=1

∑m
j=1 δij be the size of the

validation subsample. Here the selection is assumed to be a random process that is

independent of the observed data. The full marginal likelihood of the main data and

the validation data contributed from cluster i is given by

LF i(θ,η) =

∫ [ m∏

j=1

{
fS|X,Z,b(Sij |Xij,Zij ,bi; θ,η)

}1−δij

×
{
fS,Y |X,Z,b(Sij, Yij|Xij,Zij ,bi; θ,η)

}δij

]

fb(bi;σb)dbi, (2.16)

where

fS|X,Z,b(Sij|Xij,Zij ,bi; θ,η)

=

∫
fS|Y,X,Z,b(Sij |Yij;η)fY |X,Z,b(Yij|Xij,Zij ,bi; θ)dYij,

and

fS,Y |X,Z,b(Sij, Yij|Xij,Zij ,bi; θ,η)

= fS|Y,X,Z,b(Sij|Yij,Xij,Zij ,bi;η)fY |X,Z,b(Yij|Xij,Zij,bi; θ).

Under the assumption that Sij is conditionally independent of bi given Yij , we can
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rewrite (2.16) as

LF i(θ,η) =

{∫ [ m∏

j=1

{
fS|X,Z,b(Sij |Xij,Zij ,bi; θ,η)

}1−δij

×
{
fY |X,Z,b(Yij|Xij,Zij ,bi; θ)

}δij

]
fb(bi;σb)dbi

}

×
m∏

j=1

{
fS|Y (Sij |Yij;η)

}δij .

Let

Lθi(θ,η) =

{∫ [ m∏

j=1

{
fS|X,Z,b(Sij|Xij,Zij ,bi; θ,η)

}1−δij

×
{
fY |X,Z,b(Yij|Xij,Zij ,bi; θ)

}δij

]

fb(bi;σb)dbi

}

,

and Lηi(η) =
∏m

j=1

{
fS|Y (Sij |Yij;η)

}δij . Therefore,

LF i(θ,η) = Lθi(θ,η) × Lηi(η).

Let ℓF i(θ,η) = logLF i(θ,η). When the dimension of (θ,η) is large, direct maximiza-

tion of
∑n

i=1 ℓF i(θ,η) can be computationally demanding.

We propose to use a two-stage estimation procedure as an alternative to the

joint estimation procedure. This approach employs stepwise maximization of the

log-likelihood function. Let ℓθi(θ,η) = logLθi(θ,η) and ℓηi(θ,η) = logLηi(θ,η). Let

U∗
i (θ,η) = ∂ℓθi(θ,η)/∂θ and Q∗

i (η) = ∂ℓηi(η)/∂η. In the first stage, estimator for

η is obtained by solving

n∑

i=1

Q∗
i (η) = 0. (2.17)
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Let η̂ be the solution to (2.17). In the second stage, replace η with η̂ and solve

n∑

i=1

U∗
i (θ, η̂) = 0. (2.18)

Let θ̂p denote the solution to (2.18), i.e., pseudo-ML estimator. As Nv → ∞, η̂

converges to the true η in probability. Therefore, θ̂p is consistent for θ as n → ∞
and Nv/n→ ρ, where 0 < ρ < 1.

Since there is uncertainty associated with the estimated η, we must account

for the extra variation that transfers to θ̂p. Let I∗
11 =

∑n
i=1 E

[
−∂U∗

i (θ,η)/∂θT
]
,

I∗
12 = I∗T

21 =
∑n

i=1 E
[
−∂U∗

i (θ,η)/∂ηT
]
, and J ∗(η) =

∑n
i=1 E

[
−∂Q∗

i (η)/∂ηT
]
.

The asymptotic covariance matrix for θ̂p can be obtained by following the arguments

in Buonaccorsi (1996),

Σ∗ = I∗−1
11 (θ,η) + I∗−1

11 (θ,η)I∗
12(θ,η)J ∗−1(η)I∗

21(θ,η)I∗−1
11 (θ,η). (2.19)

A sketch of the proof is outlined in Section 2.8.2. An approximate estimate of Σ∗

can be obtained by replacing I∗
11, I∗

12, and J ∗(η) with their empirical counterparts

M∗
11 =

∑n
i=1

{
−∂U∗

i (θ̂p, η̂)/∂θT
}

, M∗
12 =

∑n
i=1

{
− ∂U∗

i (θ̂p, η̂)/∂ηT
}
, and J∗ =

∑n
i=1

{
−∂Q∗

i (η̂)/∂ηT
}
, respectively.

2.4.3 Inference with replicates

In some situations we may have replicates for the surrogate measurements due to the

design of the study. Such amount of additional information can be used for identifying

the response model and the measurement error model when a validation subsample

is not available (Carroll et al. 2006).

Let Sijr be the rth surrogate replicate for subject j in cluster i, r = 1, . . . , dij. For

r 6= r′, we assume that Sijr and Sijr′ are conditionally independent given (Yi,Xi,Zi,bi).

We consider two scenarios: (a) σ2
e is the only nuisance parameters to be estimated,

(b) both σ2
e and γ are unknown.
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A method for estimating σ2
e

Here we discuss an approach for estimation of measurement error variance σ2
e that is

the only unknown nuisance parameter. One can see that σ2
e can be estimated alone

using the surrogate replicates when eijr are independent of each other conditional on

Yi.

Let S̄ij. = (1/dij)
∑dij

r=1 Sijr, j = 1, . . . , m, i = 1, . . . , n. Under the assumption of

conditional independence between Sijr and Sijr′, an unbiased estimator for σ2
e is given

by

σ̂2
e =

∑n
i=1

∑m
j=1

∑dij

r=1(Sijr − S̄ij.)
2

∑n
i=1

∑m
j=1(dij − 1)

. (2.20)

Note that when eijr’s are normally distributed,
{∑dij

r=1(Sijr − S̄ij.)
2
}
/σ2

e follows a chi

squared distribution with (dij − 1) degrees of freedom. Therefore, the variance of σ̂2
e

is given by

var(σ̂2
e) =

2σ4
e∑n

i=1

∑m
j=1(dij − 1)

.

An approximate variance can be obtained by replacing σ2
e in the formula above with

its estimate σ̂2
e .

This approach is appealing in situations where σ2
e is the only nuisance parameter

to be estimated. With classical additive measurement error, estimation bias in the

naive estimate of σ2
ǫ can be corrected by subtracting σ̂e

2. Another situation is that

the nonlinear function h(·) and parameter γ are known, e.g., by the design of the

study, from history data, or Box-Cox transformation (see, e.g., Hall and Ma 2007).

Thus, the two-stage estimation and inference procedures for θ can easily be used.
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Joint estimation of θ and η

The marginal likelihood of the replication data from cluster i is now given by

LRi(θ,η) =

∫
fb(bi;σb)

m∏

j=1

{∫
fY |X,Z,b(Yij|Xij,Zij,bi; θ)

×
dij∏

r=1

fS|Y,X,Z,b(Sijr|Yij,Xij,Zij ,bi;η)dYij

}
dbi. (2.21)

Unlike cases where validation data can be used for making inference about the mea-

surement error process, here η generally can not be estimated by solving a set of

equations that are free of θ. The underlying true responses are now completely un-

observed. Therefore, the two-stage estimation procedure cannot be employed in a

replication study except for some special situations where σ2
e is the only error param-

eter to be estimated. A joint estimation procedure for (θ,η) by maximizing LRi(θ,η)

is required. Let Ui(θ,η) = ∂LRi(θ,η)/∂θ and Qi(θ,η) = ∂LRi(θ,η)/∂η be the score

functions. ML estimators can be obtained by simultaneously solving

n∑

i=1

(
Ui(θ,η)

Qi(θ,η)

)

= 0.

Let (θ̂R, η̂R) be the solution. Under suitable regularity conditions, n1/2

(
θ̂R − θ
η̂R − η

)

is asymptotically normally distributed with mean 0 and covariance matrix given by

ΣR = E
[{

Ui(θ,η)T,Qi(θ,η)T
}T {Ui(θ,η)T,Qi(θ,η)T

}]
.

2.4.4 Numerical approximation

The likelihood functions discussed above involve integrations over unobserved ran-

dom components and underlying responses. The random effects are assumed to

follow known distributions such as normal distribution, gamma distribution, or t-

distribution. There are computational challenges in implementing the above proce-
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dures, as the integrals typically do not have closed forms.

A common approach to dealing with the computation is to linearize the model with

respect to the random effects, e.g., using a first-order population-averaged approxi-

mation to the marginal distribution by expanding about the average random effect

(Vonesh and Carter 1992). Another approach is to use numerical approximation to

integrals, such as Laplace’s approximation (e.g., Wolfinger 1993, and Vonesh 1996)

or Gaussian quadratures, to obtain an approximate likelihood function with a closed

form. The basic form of linearization using Laplace’s approximation is a second-order

Taylor series expansion of the integrand f(u) and is given by

∫

Rd

f(u)du ≈ (2π)d/2f(u0)

∣∣∣∣−
∂2 log f(u0)

∂u∂uT

∣∣∣∣
−1/2

,

where d is the dimension of u, and u0 is the mode of f(u), i.e., the solution to

∂ log f(u)/∂u = 0. To construct the Laplace approximation we need expressions for

the first two derivatives of log f(u).

For one dimensional case, we use Gaussian-Hermite quadrature for approximating

an integral where the integrand contains a weight function e−u2

. Specifically, the

integral is approximated by a sum

∫ ∞

−∞
e−u2

f(u)du ≈
K∑

k=1

wkf(tk),

where K is the number of points, and tk and wk are the value and the weight of the

kth designated point, respectively. As K increases, the accuracy of the approximation

increases (McCulloch and Searle 2001).

As an example, we consider the likelihood function in (2.15), where the random

effect is one-dimensional and follows a normal distribution Normal(0, σ2
b ). It can be
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written as

Lθi(θ,η) =

∫ { m∏

j=1

∫
1

2πσ2
e

exp

[
− {Sij − h(Yij;γ)}2

2σ2
e

]

× 1

2πσ2
ǫ

exp

[
−
{
Yij − (XT

ijβ + Zijbi)
}2

2σ2
ǫ

]
dYij

}

× 1

2πσ2
b

exp

(
− b2i

2σ2
b

)
dbi.

Its approximate is given by

L̃θi(θ,η) =
K∑

k=1

{
wk√
π

m∏

j=1

K∑

k′=1

wk′√
π

1√
2πσ̂2

e

exp

(
−
e2ij,kk′

2σ̂e
2

)}
, (2.22)

where eij,kk′ = Sij − h(XT
ijβ + Zijtk

√
2σ2

b + tk′

√
2σ2

ǫ ;γ). Here we use the same

quadrature order for all integrations. Further let

Aij,k =

K∑

k′=1

wk′√
π

1√
2πσ̂2

e

exp

(
−
e2ij,kk′

2σ̂e
2

)
.

The approximate score function is given by

Ũ∗
i (θ,η) =

∂ log L̃θi(θ,η)

∂θ

=

∑K
k=1

[{
wk/

√
π
∏m

j=1Aij,k

}{∑m
j=1 ∂ logAij,k/∂θ

}]

∑K
k=1

(
wk/

√
π
∏m

j=1Aij,k

) ,

where ∂ logAij,k/∂θ = (1/Aij,k) ∂Aij,k/∂θ, and

∂Aij,k

∂θ
=

K∑

k′=1

{
wk′√
π

1√
2πσ2

e

exp

(
−
e2ij,kk′

2σ2
e

)(
− eij,kk′

σ2
e

∂eij,kk′

∂θ

)}
.

Therefore, maximization of
∑n

i=1 L̃θi(θ,η) can be done using numerical optimization

methods in available statistical software packages (e.g. optim() or nlminb() in R).
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For cases with replication data, we further define

eijr,kk′ = Sijr − h(XT
ijβ + Zijtk

√
2σ2

b + tk′

√
2σ2

ǫ ;γ),

r = 1, . . . , dij, j = 1, . . . , m, i = 1, . . . , n,

and

Aij,k =
K∑

k′=1

wk′√
π

(
1√
2πσ2

e

)dij

exp

(
−
∑dij

r=1 e
2
ijr,kk′

2σ2
e

)
.

An approximate likelihood function is given by

L̃Ri(θ,η) =
K∑

k=1

{
wk√
π

m∏

j=1

Aij,k

}
.

The score functions of θ and η are then given by

(
Ũi(θ,η)

Q̃i(θ,η)

)

=

∑K
k=1

[(
wk/

√
π
∏m

j=1 Aij,k

){∑m
j=1 (1/Aij,k) ∂Aij,k/∂(θ

T,ηT)T
}]

∑K
k=1

(
wk/

√
π
∏m

j=1 Aij,k

) ,

where

∂Aij,k

∂θ
= −

K∑

k′=1





wk′√
π

(
1√
2πσ2

e

)dij

exp

(
−
∑dij

r=1 e
2
ijr,kk′

2σ2
e

)∑dij

r=1 eijr,kk′∂eijr,kk′/∂θ

σ2
e




 ,

and

∂Aij,k

∂η
=

(
∂Aij,k/∂γ

∂Aij,k/∂σ
2
e

)

=





∑K
k′=1

{
wk′√

π

(
1√

2πσ
2

e

)dij

exp

(
−

Pdij
r=1

e2

ijr,kk′

2σ2
e

)(
−

Pdij
r=1

eijr,kk′∂eijr,kk′/∂γ

σ2
e

)}

∑K
k′=1

{
wk′√

π

(
1√

2πσ
2

e

)dij

exp

(
−

Pdij
r=1

e2

ijr,kk′

2σ2
e

)(
− 1

2σ2
e

+
Pdij

r=1
e2

ijr,kk′

2σ2
e

)}




.
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Similarly, the optimization tools in R can be used for this case.

As the number of random effects particularly nested random effects grows, quadra-

ture quickly becomes computationally infeasible. The optimization may converge

very slowly due to the high-dimensional integration. In some situations, a single

quadrature node is sufficient, which is equivalent to Laplace approximation and is a

computationally more expedient alternative.

2.5 Simulation Studies

2.5.1 Design of simulation

We conduct some simulation studies to assess the performance of the proposed meth-

ods. We generate clustered binary responses from a simple LMM with a random

slope for 100 clusters of size 5. Specifically, the covariate Xij and random component

bi are generated independently under Normal(0, 1) and Normal(0, σ2
b ), respectively.

Given (Xi, bi), the binary responses Yi1, Yi2, . . . , Yi5 are then generated conditionally

independently from the LMM given by (2.9). Response parameters are specified by

β0 = −1, β1 = log(0.5), σ2
b = 0.04, and σ2

ǫ = 0.04.

We consider several measurement error models described in previous sections for

generating the surrogate response Sij:

(M1) Sij = exp(γYij) + eij , and

(M2) Sij = γ0 + γ1Yij + eij ,

where eij is independent of Yi and Xi and follows a normal distribution with mean

0 and variance σ2
e . For error model M1, the error parameters are specified by γ = 0.5

and σ2
e = 0.04. For error model M2, the parameters are specified by γ0 = 0.5, γ1 = 0.5,

and σ2
e = 0.04.

We consider two cases regarding the knowledge of η: either treated as known

or estimated from internal validation data. We obtain the validation subsample by

randomly selecting one subject from each cluster.
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For each parameter setting, we generate 2000 data sets. The internals in the

likelihood-based approach are approximated by Gaussian quadrature of order 15. For

comparison, we also include results from the two naive approaches.

2.5.2 Simulation results

We assess the performances of the estimators based on four measures: relative bias in

percent (%RB), sample standard deviation of the estimates (SD), average of model-

based standard errors (ASE), and coverage probability of the 95% confidence interval

(CP).

Table 2.1 reports simulation results for the exponential measurement error model

(M1) under scenarios where η is known or estimated from validation data. We first

look at the quantities for the fixed-effect parameter β1. As expected, the first naive

approach (NAI1) ignoring response measurement error leads to very biased (attenu-

ated) estimate of β1, and the coverage rate of the 95% confidence interval is close to 0.

The second naive approach (NAI2) using the transformed surrogate responses gives

slightly better estimates of β1. The magnitude of the relative bias (upward), although

smaller than that from NAI1, is still substantial. The pseudo-ML (PML) estimator

for β1 from the likelihood-based approach is much more consistent under both scenar-

ios than the two naive estimators, and the coverage rate of its 95% confidence interval

is very close to the nominal value.

Table 2.2 reports the results for the linear measurement error model (M2) under

scenarios where η is known or estimated from validation data. Again the estimator for

β1 from the naive approach ignoring error is biased. The value is scaled approximately

by a factor of γ1, which agrees with the analytical result shown in Section 2.3. The

naive estimator using the transformed surrogates yields consistent estimators for β0,

β1, and σ2
b . The estimator for σ2

ǫ , however, is very biased. As a result, the coverage

rates of the confidence intervals for σ2
b and σ2

ǫ are far from the nominal value of 95%.

In contrast, the likelihood-based approach gives consistent estimators for all the fixed-

effect parameters and the variance parameters, and associated standard errors also

approximate the empirical standard deviations very well. The coverage rates of the
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95% confidence intervals are close to the nominal value.

2.6 Application

We illustrate our proposed method by analyzing data from the Framingham Heart

Study. The data set includes exams #2 and #3 for n = 1615 male subjects aged

31-65 (Carroll et al., 2006, p. 112). Two SBP readings were taken during each

exam. One of the clinical interests is to understand the relationship between SBP

and potential risk factors such as baseline smoking status and age. (e.g., Jaquet et

al., 1998; Primatesta et al., 2001; Ferrara et al., 2002). We let Tij be the true SBP

measurement defined as the long-term average of SBP for subject i at time j, where

j = 1 for exam #2, and j = 2 for exam #3, and i = 1, . . . , n. The risk factors,

however, may not have linear effects on SBP directly. Some exploratory plots show

that the observed SBP measurements are positively skewed, i.e., with a right tail.

Data transformation such as Box-Cox transformation can be applied (Box and Cox,

1964). The square-root transformed observations are shown to satisfy the symmetry

condition. Let Yij =
√
Tij − 50. We assume that Yij follow a LMM with a random

intercept

Yij = β0 + βagexij1 + βsmokexij2 + βexamxij3 + bi + ǫij , j = 1, 2, i = 1, . . . , n,

where xij1 is the baseline age of subject i at exam #2, xij2 is the indicator variable

for baseline smoking status of subject i at exam #1, xij3 is 1 if j = 2 and 0 otherwise,

and bi and ǫij are assumed to be independently and normally distributed with means

0 and variances respectively given by σ2
b and σ2

ǫ .

Because a person’s SBP changes over time, the two individual SBP readings at

each exam are regarded as replicated surrogates. Several measurement error models

for SBP reading have been proposed by different researchers (see, e.g., Carroll et al.,

1984; Wang et al., 1998; Hall and Ma, 2007). Let T ∗
ijr be the rth observed SBP

reading for subject i at time j, i = 1, . . . , n, j = 1, 2, r = 1, 2. We consider an error

model log(T ∗
ijr − 50) = log(Tij − 50) + eijr suggested by Wang et al. (1998), where
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Table 2.1: Simulation results for M1 (2000 simulations)

NAI1 NAI2 PML

%RB SD ASE CP %RB SD ASE CP %RB SD ASE CP

scenario (i): η is known

β0 -164.516 0.011 0.010 < 0.001 16.676 0.051 0.046 0.050 -0.564 0.037 0.035 0.942
β1 -67.742 0.013 0.014 < 0.001 15.972 0.064 0.060 0.529 -0.831 0.040 0.039 0.949
σ2

b -80.299 0.003 0.184 1.000 235.840 0.090 0.253 0.943 -2.134 0.016 0.018 0.938
σ2

ǫ 17.589 0.003 0.035 1.000 2439.115 0.234 0.035 < 0.001 3.653 0.022 0.025 0.960

scenario (ii): η is estimated from internal validation data

β0 - - - - 13.722 0.072 0.042 0.198 -0.039 0.040 0.042 0.948
β1 - - - - 13.121 0.067 0.054 0.610 0.319 0.053 0.049 0.946
σ2

b - - - - 183.353 0.079 0.242 0.964 4.571 0.024 0.028 0.957
σ2

ǫ - - - - 1975.917 0.220 0.035 < 0.001 -3.142 0.017 0.014 0.933

† The NAI1 approach fits a linear mixed model to data with surrogate response Sij ignoring measurement
error. The NAI2 approach fits a linear mixed model to data with the transformed surrogate Ỹij . The
PML approach accounts for measurement error.
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Table 2.2: Simulation results for M2 (2000 simulations)

NAI1 NAI2 PML

%RB SD ASE CP %RB SD ASE CP %RB SD ASE CP

scenario (i): η is known

β0 -100.021 0.010 0.010 < 0.001 -0.042 0.021 0.021 0.952 -0.035 0.021 0.022 0.958
β1 -49.959 0.015 0.015 < 0.001 0.082 0.030 0.030 0.943 0.097 0.030 0.030 0.948
σ2

b -75.002 0.003 0.162 1.000 -0.006 0.012 0.162 1.000 -3.277 0.012 0.013 0.949
σ2

ǫ 25.030 0.003 0.035 1.000 400.122 0.014 0.035 < 0.001 -0.960 0.014 0.014 0.951

scenario (ii): η is estimated from internal validation data

β0 - - - - -0.133 0.037 0.021 0.753 -0.105 0.031 0.030 0.943
β1 - - - - 0.439 0.043 0.030 0.840 0.215 0.039 0.041 0.956
σ2

b - - - - 0.963 0.013 0.161 1.000 -2.718 0.017 0.017 0.948
σ2

ǫ - - - - 406.534 0.025 0.035 < 0.001 -2.015 0.018 0.022 0.957

† The NAI1 approach fits a linear mixed model to data with surrogate response Sij ignoring measurement
error. The NAI2 approach fits a linear mixed model to data with the transformed surrogate Ỹij. The
PML approach accounts for measurement error.
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eijr is normally distributed with mean 0 and variance σ2
e . Let Sijr = log(T ∗

ijr − 50).

Therefore, we have

Sijr = 2 log(Yij) + eijr,

which is a case of nonlinear measurement error in response. An estimate of the

measurement error variance σ2
e is obtained using formula (2.20) and is given by

0.009(0.000316), where the value inside the brackets is the standard error.

Table 2.3 reports the analysis results from the proposed method and two naive

approaches: one ignores measurement error, and the other uses the transformed surro-

gates. The estimated regression coefficients βage, βsmoke, and βexam from the likelihood

approach are 0.027(0.003), -0.120(0.061), and -0.087(0.017), respectively. Age is sta-

tistically associated with increasing blood pressure at the 5% level. The negative

coefficient for smoking status may suggest an effect of smoking on decreasing blood

pressure. As expected, the results from the NAI2 approach are similar to those from

the proposed method due to the small value of the measurement error variance. The

NAI1 estimates, however, are not comparable to the other two approaches, possibly

in part due to a different scale of responses.

Table 2.3: Analysis of data from the Framingham Heart Study

NAI1† NAI2 PML

Est. SE p-value Est. SE p-value Est. SE p-value

β0 4.117 0.030 < 0.001 7.727 0.140 < 0.001 7.729 0.156 < 0.001
βage 0.006 0.001 < 0.001 0.029 0.003 < 0.001 0.027 0.003 < 0.001
βsmoke -0.027 0.012 0.031 -0.122 0.057 0.032 -0.120 0.061 0.048
βexam -0.020 0.004 < 0.001 -0.086 0.018 < 0.001 -0.087 0.017 < 0.001
σ2

b 0.036 0.021 0.083 0.782 0.020 < 0.001 0.754 0.040 < 0.001
σ2

ǫ 0.013 0.018 0.474 0.248 0.018 < 0.001 0.120 0.007 < 0.001

† The NAI1 approach fits a linear mixed model to data with surrogate response Sij

ignoring measurement error. The NAI2 approach fits a linear mixed model to data
with the transformed surrogate Ỹij . The PML approach accounts for measurement
error.
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2.7 Discussion

In this chapter, we considered generalized linear mixed models for clustered data with

measurement error in the response variable. We mainly focused on regression models

for continuous response. It is known that when response error follows the classical

additive model, the induced error can be absorbed into the random error term in a

linear or linear mixed model. Therefore, naively fitting a mixed model to clustered

data gives consistent estimates of the fixed effects for linear models. The estimate

of the conditional variance of the true response, however, is not valid. In other

cases where the measurement error is nonlinear, naive analysis with error ignored

may lead to biased estimates and invalid inference. For the example on exponential

measurement error, we showed that naively fitting mixed model can lead to seriously

biased estimates of fixed effects. Although standard methods can be naively applied

to the transformed surrogates, the bias, however, may still be large depending on the

measurement error variance.

We formulated the marginal likelihood of the observed data and proposed a two-

stage pseudo maximum likelihood approach when the error parameters are estimated

from validation data. Our simulation studies show that estimators from likelihood-

based approaches are consistent.

It is worth pointing out that a major problem with likelihood-based approaches

is that it may be computationally intensive. The accuracy of the estimates relies on

the order of the quadrature approximations to the integrals involved in the likelihood

function. We found in our simulation that a quadrature approximation with order

5 performs well enough for a single integral. However, as the number of random

components increases, more quadrature points are required in order to obtain a good

approximation.
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2.8 Technical Details

2.8.1 Naive estimators under exponential measurement error

model

Suppose a general LMM is given by (2.2). When measurement error process follows

the exponential model E[Sij |Yij] = exp(γYij) for some parameter γ, equation (2.8)

becomes

0 = EX,ZEb|X,ZEY |X,Z,b

[∑m
j=1

{
exp(Yijγ) −XT

ijβ
∗}Xij

σ∗2
ǫ

−
σ∗2

b {
∑m

j=1

[
exp(Yijγ) − XT

ijβ
∗]Zij}

∑m
j=1 XijZij

σ∗2
ǫ (σ∗2

b

∑m
j=1Z

2
ij + σ∗2

ǫ )

]

= EX,ZEb|X,Z

[∑m
j=1

{
exp

[
(XT

ijβ + Zijbi)γ + σ2
ǫ γ

2/2
]
− XT

ijβ
∗}Xij

σ∗2
ǫ

−
σ∗2

b {
∑m

j=1(exp
{
(XT

ijβ + Zijbi)γ + σ2
ǫ γ

2/2
}
− XT

ijβ
∗)Zij}

∑m
j=1 XijZij

σ∗2
ǫ

(
σ∗2

b

∑
Z2

ij + σ∗2
ǫ

)
]

= EX,Z

[∑m
j=1

[
exp(γ2Z2

ijσ
2
b/2 + XT

ijβγ + σ2
ǫγ

2/2) − XT
ijβ

∗]Xij

σ∗2
ǫ

−
σ∗2

b {
∑m

j=1

[
exp(γ2Z2

ijσ
2
b/2 + XT

ijβγ + σ2
ǫγ

2/2) − XT
ijβ

∗]Zij}
∑m

j=1 XijZij

σ∗2
ǫ

(
σ∗2

b

∑m
j=1Z

2
ij + σ∗2

ǫ

)





=

m∑

j=1

EX,Z

[
exp(γ2Z2

ijσ
2
b/2 + XT

ijβγ + σ2
ǫγ

2/2) − XT
ijβ

∗

σ∗2
ǫ

×
(
Xij −

σ∗2
b Zij

∑
k XikZik

σ∗2
b

∑
k Z

2
ik + σ∗2

ǫ

)]
. (2.23)

One can see that there is generally no closed form for the relationship between β and

the naive estimator β∗.

57



2.8.2 Adjusted variance of θ̂p

Let U∗(θ,η) =
∑n

i=1 U∗
i (θ,η). A Taylor series expansion up to order one about the

point (θ,η) for U∗(θ̂p, η̂) is given by

U∗(θ̂p, η̂) ≈ U∗(θ,η) +
∂U∗(θ,η)

∂θT
(θ̂p − θ) +

∂U∗(θ,η)

∂ηT
(η̂ − η). (2.24)

But U∗(θ̂p, η̂) = 0. It is easy to show that the covariance matrix for θ̂p is approxi-

mately

Σ∗ ≈ E

[
∂U∗(θ,η)

∂θT

]−1

E
[
U∗(θ,η)U∗T(θ,η)

]
{

E

[
∂U∗(θ,η)

∂θT

]T
}−1

+ E

[
∂U∗(θ,η)

∂θT

]−1

E

[
∂U∗(θ,η)

∂ηT

]
E
[
(η̂ − η)(η̂ − η)T

]

· E

[
∂U∗(θ,η)

∂ηT

]T
{

E

[
∂U∗(θ,η)

∂θT

]T
}−1

.

But under suitable regularity conditions, E
[
U∗(θ,η)U∗T(θ,η)

]
= E

[
−∂U∗(θ,η)/∂θT

]
,

and when η̂ is unbiased for η, E
[
(η̂ − η)(η̂ − η)T

]
= J ∗−1(η). This yields the

asymptotic covariance matrix given by (2.19).
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Chapter 3

Misclassification in Correlated

Binary Responses: An Estimating

Equations Approach

3.1 Introduction

Longitudinal studies or clustered studies are important tools in epidemiological, clin-

ical and social science research. In longitudinal studies, the response variable, often

associated with a set of covariates, is observed on individuals repeatedly over a cer-

tain period of time. In clustered studies, such as household surveys, responses are

often recorded from all members of the same family. The repeated responses within

the same cluster or subject are typically correlated. Various models have been de-

veloped for analysis of such data, and a wide variety of estimation techniques have

been proposed. In contrast to conditional models (e.g., transition models or mixed

effects models), marginal models characterize the dependence of responses on covari-

ates at the population level without including unobserved random components or

past outcomes in the linear predictor. One compelling feature of such methods lies

in their minimal model assumptions. For example, generalized estimating equations

(GEE), proposed by Liang and Zeger (1986), focus on estimation of mean parameters,

with association parameters between outcomes treated as nuisance. Extensions of the
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GEE approach can be found, for instance, in Miller et al. (1993) and Molenberghs

and Lesaffre (1999), among many others.

In many epidemiological studies, association structures among repeated outcomes

are of scientific interest. For example, understanding the correlation of disease status

among household members is often of primary interest in familial studies. Prentice

(1988), Carey et al. (1993) and Yi and Cook (2002) extended the GEE approach by

specifying a second set of generalized estimating equations to estimate association pa-

rameters for binary data. Those methods are useful to conduct simultaneous inference

about the mean and association parameters. The validity of these methods requires

a critical condition: variables must be precisely measured. However, this requirement

is often violated in practice. Misclassification commonly arises with categorical data

collected from epidemiological studies or longitudinal surveys. For example, a disease

infection status may be wrongly identified due to a poor diagnostic test. If a survey

questionnaire is not well designed, such as ambiguous wording in an ordinal item, it

may lead to wrong interpretation by respondents and hence results in an incorrect

category for the response variable.

With covariates subject to error, there has been extensive research on studying

error effects and developing valid inferential procedures under various models. It

is known that naive analysis ignoring covariate error generally leads to biased es-

timates and invalid inference (Carroll et al., 2006). However, little attention has

been directed to problems with error-contaminated outcomes, such as misclassified

responses, although Neuhaus (1999, 2002) discussed this problem under generalized

mixed effects models, where a simple scenario of misclassification is considered. In

this chapter, we consider marginal regression models for correlated binary data in

the presence of response misclassification. We propose estimating equations methods

that can correct for misclassification effects under a variety of practical settings. The

proposed methods have several appealing features. They accommodate simultaneous

inference for both marginal mean and association parameters; they can handle various

misclassification scenarios, including cases with validation subsamples or replicates.

Furthermore, the proposed methods are robust to model misspecification in a sense

that no full distributional assumptions are required.
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The rest of the chapter is organized as follows. Section 3.2 describes basic nota-

tion and model assumptions for the response and misclassification processes. Section

3.3 presents the proposed method for the case where misclassification parameters

are known. In Sections 3.4 and 3.5, we develop inference methods that can handle

unknown parameters associated with the misclassification process. Simulation stud-

ies and applications to real data are respectively presented in sections 3.6 and 3.7.

Concluding remarks are presented in Section 3.8.

3.2 Notation and Model Formulation

3.2.1 The response process

Let Yij be the binary response for the jth subject in cluster i (or the jth measurement

of subject i) and Xij be the corresponding covariate vector, i = 1, . . . , n, j = 1, . . . , mi,

where n is the number of clusters, andmi is the number of subjects in cluster i. Denote

Yi = (Yi1, . . . , Yimi
)T and Xi = (XT

i1, . . . ,X
T
imi

)T. Let µij = E[Yij|Xi] be the marginal

mean of the response, and µi = (µi1, . . . , µimi
)T. A generalized regression model is

used to link µij to the covariates, where E[Yij|Xi] = E[Yij |Xij] is assumed (e.g., Pepe

and Anderson, 1994). That is,

g(µij) = XT
ijβ,

where β is a vector of regression parameters, and g(·) is a monotone link function.

Typical choices of g(·) include logit, probit, and complementary log-log functions.

The variance of the response Yij is specified as var(Yij |Xi) = µij(1−µij) accordingly.

When the mean parameters are of primary interest and association parameters

are treated as nuisance, the GEE method discussed by Liang and Zeger (1986) is

well suited for parameter estimation. However, to facilitate inference for association

parameters that are often of interest for clustered data analysis, one needs to derive a

second set of estimating functions to feature association structures. Here we assume

that Yij and Yi′j′ are independent when i 6= i′, but Yij and Yij′ may be correlated
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for j 6= j′. Let Cijj′ = YijYij′, Ci = (Cijj′, j < j′)T, µijj′ = E[Cijj′|Xi], and ξi =

(µijj′, j < j′)T.

For j < j′, let the odds ratio for Yij and Yij′ be

ψijj′ =
Pr(Yij = 1, Yij′ = 1|Xi) · Pr(Yij = 0, Yij′ = 0|Xi)

Pr(Yij = 1, Yij′ = 0|Xi) · Pr(Yij = 0, Yij′ = 1|Xi)
,

which is commonly used as an association measure for binary data. It is often assumed

that Pr(Yij = yij, Yij′ = yij′|Xi) = Pr(Yij = yij, Yij′ = yij′|Xij,Xij′). The odds ratios

are customarily modeled as

logψijj′ = uT
ijj′α,

where uijj′ is a set of pair-specific covariates featuring various association structures

such as autoregressive or exchangeable structure between Yij and Yij′. The relation-

ship between µijj′ and ψijj′ is given by

µijj′ =






aijj′ − [a2
ijj′ − 4(ψijj′ − 1)ψijj′µijµij′]

1/2

2(ψijj′ − 1)
, if ψijj′ 6= 1,

µijµij′, if ψijj′ = 1,

where aijj′ = 1− (1− ψijj′)(µij + µij′) (e.g., Lipsitz et al., 1991; Yi and Cook, 2002).

3.2.2 Marginal model for the misclassification process

When the response Yij is subject to misclassification, a surrogate version Sij is ob-

served instead of Yij. Let Hij = I(Sij = Yij) be the indicator variable for misclassifi-

cation, Hi = (Hi1, . . . , Himi
)T, and Si = ( Si1, . . . , Simi

)T. The marginal probability

of misclassifying Yij is assumed to depend only on the information concerning the

jth subject in cluster i, i.e., Pr(Sij = 1|Yi,Xi) = Pr(Sij = 1|Yij,Xi). Let τ0ij

= Pr(Hij = 1|Yij = 0,Xi) and τ1ij = Pr(Hij = 1|Yij = 1,Xi) be misclassifica-

tion probabilities. Alternatively, if we let τij(yij) = Pr(Hij = 1|Yij = yij ,Xi), then

τij(yij) = (1 − yij)τ0ij + yijτ1ij .
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Logistic models may be employed to characterize these probabilities:

logit(τ0ij) = LT
ijγ0, (3.1)

logit(τ1ij) = LT
ijγ1, (3.2)

where γ0 and γ1 are vectors of associated regression parameters, and Lij is a set

of covariates that reflects various misclassification mechanisms. Let γ = (γT
0 ,γ

T
1 )T.

Covariates Lij may be specified as various forms to feature different misclassification

processes. It may contain the entire covariate vector Xij in some situations; while in

extreme cases, Lij can be constant 1, that is, two parameters γ0 and γ1 are sufficient

to describe the misclassification mechanism. The latter scenario corresponds to a

homogeneous misclassification across all observations and clusters, with misclassifi-

cation independent of covariates and the other outcomes: τ0ij = τ0 = expit(γ0), and

τ1ij = τ1 = expit(γ1), where expit(u) = exp(u)/{1 + exp(u)}.

3.2.3 Association model for the misclassification process

When observations in the same cluster are measured using similar defective devices

or by the same person, misclassifications on two observations within the same cluster

are typically correlated with each other. In the same manner of characterizing the

association structure for response process, we measure the dependence between Hij

and Hij′ using odds ratios

λijj′(yij, yij′) =
Pr(Hij = 1, Hij′ = 1|Yi = yi,Xi)

Pr(Hij = 1, Hij′ = 0|Yi = yi,Xi)

× Pr(Hij = 0, Hij′ = 0|Yi = yi,Xi)

Pr(Hij = 0, Hij′ = 1|Yi = yi,Xi)
,

where it is assumed that Pr(Hij = hij , Hij′ = hij′|Yi = yi,Xi) = Pr(Hij = hij , Hij′ =

hij′|Yij = yij, Yij′ = yij′,Xi). The odds ratio λijj′(yij, yij′) can be modeled by

log {λijj′(yij, yij′)} = u∗T
ijj′νyij ,yij′

,

63



where u∗
ijj′ is a vector of covariates that features various types of dependence, and

νyij ,yij′
is a vector of regression coefficients that may vary with the values of yij and

yij′. Let ν = (νT
11,ν

T
10,ν

T
01,ν

T
00)

T. Let η = (γT,νT)T be the vector of parameters

associated with the misclassification process.

For j < j′, let Fijj′ = HijHij′, and Fi = (Fijj′, j < j′)T. Let ζijj′(yij, yij′) =

E[Fijj′|Yij = yij, Yij′ = yij′,Xi], and ζi = E[Fi|Yi,Xi]. Again, we assume that

E[Fijj′|Yi,Xi] = E[Fijj′|Yij = yij,Yij′ = yij′,Xi]. The relationship between ζijj′(yij, yij′)

and λijj′(yij, yij′) is given by

ζijj′(yij, yij′) =






{
a∗ijj′(yij, yij′) −

[
a∗2ijj′(yij, yij′) − 4 {λijj′(yij, yij′) − 1}

× λijj′(yij, yij′)τij(yij)τij′(yij′)]
1/2 }/{2[λijj′(yij, yij′) − 1]},

if λijj′(yij, yij′) 6= 1,

τij(yij)τij′(yij′), if λijj′(yij, yij′) = 1,

where a∗ijj′(yij, yij′) = 1 − {1 − λijj′(yij , yij′)} {τij(yij) + τij′(yij′)}.

Let µS
ijj′ = E[SijSij′|Xi] be the marginal mean of SijSij′ given covariates. In

Section 3.9.1 we show that µS
ijj′ 6= µijj′. Even under the assumption that misclassi-

fications of paired responses are independent of each other, i.e., Pr(Sij = sij , Sij′ =

sij′|Yi,Xi) = Pr(Sij = sij|Yi,Xi)Pr(Sij′ = sij′|Yi,Xi), µ
S
ijj′ is not equal to µijj′.

As a consequence, replacing Yij with Sij in the marginal analysis (to be discussed in

Section 3.3) often leads to biased inference.

3.3 Estimating Equations

3.3.1 Estimating equations under the true model

Let θ = (βT,αT)T be the vector of response parameters, D1i = ∂µT
i /∂β, and

B1i = diag{µi1(1 − µi1), . . . , µimi
(1 − µimi

)}. When the response variable is free

of misclassification, estimates of mean parameters β can be obtained by solving the
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first-order estimating equations

n∑

i=1

U1i(θ) = 0, (3.3)

where U1i(θ) = D1iV
−1
1i ǫ1i, ǫ1i = Yi − µi, V1i = cov(Yi) = B

1/2
1i R1i(θ)B

1/2
1i , and

R1i(θ) is the correlation matrix of Yi with off-diagonal entries given by

ρijj′ =
µijj′ − µijµij′√

µij(1 − µij)
√
µij′(1 − µij′)

, j 6= j′.

Let D2i = ∂ξT
i /∂α. Then the second-order estimating equations (Prentice 1988)

for association parameters α can be written as

n∑

i=1

U2i(θ) = 0, (3.4)

where U2i(θ) = D2iV
−1
2i ǫ2i, ǫ2i = Ci − ξi, and V2i is a working covariance matrix

for Ci. Because the correlation between Cij and Cij′ typically involves third and

fourth moments, one often uses an independent working matrix V2i = diag(µijj′(1 −
µijj′); j < j′) in order to avoid modeling higher order moments (e.g., Lipsitz et al.,

1991; Yi and Cook, 2002).

3.3.2 Estimating equations in the presence of misclassifica-

tion

When responses are subject to misclassification, the estimating functions in (3.3) and

(3.4) with Yij replaced by the observed surrogate Sij are no longer unbiased. In other

words, naive analysis ignoring misclassifications usually yields inconsistent estimates

of β and α. In this section we construct modified estimating equations to correct the

bias caused by misclassification.

Our proposed strategy is to construct modified estimating functions U∗
1i(θ,η;Si,Xi)
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and U∗
2i(θ,η;Si,Xi) based on the observed data so that

E[U∗
1i(θ,η;Si,Xi)|Yi,Xi] = U1i(θ;Yi,Xi), (3.5)

and

E[U∗
2i(θ,η;Si,Xi)|Yi,Xi] = U2i(θ;Yi,Xi). (3.6)

It can be shown that under mild regularity conditions, solving

n∑

i=1



 U∗
1i(θ,η;Si,Xi)

U∗
2i(θ,η;Si,Xi)



 = 0 (3.7)

gives a consistent estimator for θ.

To highlight the proposed method, we first assume that the parameters η associ-

ated with the misclassification process have a known value η0. An unbiased surrogate

of Yij, which is a function of Sij and the misclassification probabilities, can be formu-

lated as

Y ∗
ij =

Sij − 1 + τ0ij

τ0ij + τ1ij − 1
,

with E[Y ∗
ij |Yi,Xi] = Yij. Although Y ∗

ij is unbiased for Yij for all j, Y ∗
ijY

∗
ij′ is not

necessarily an unbiased surrogate for Cijj′ except for cases where misclassifications

are independent. Therefore, for Cijj′ we construct an unbiased surrogate as follows

C∗
ijj′ =

b0 + (Sij − b1)(Sij′ − b2)

b3
,

where

b0 = (1 − b1)τ0ij′ + (1 − b2)τ0ij − ζijj′(0, 0) − (1 − b1)(1 − b2),

b1 = {τ0ij + τ0ij′ + τ1ij′ − 1 − ζijj′(0, 1) − ζijj′(0, 0)} / (τ1ij′ + τ0ij′ − 1) ,

b2 = {τ0ij′ + τ0ij + τ1ij − 1 − ζijj′(1, 0) − ζijj′(0, 0)} / (τ1ij + τ0ij − 1) , and

b3 = b0 + b1b2 − b1τ1ij′ − b2τ1ij + ζijj′(1, 1).
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In Section 3.9.2 we outline the proof that E[Z∗
ijj′|Yi,Xi] = Cijj′ for j 6= j′.

Let Y∗
i = (Y ∗

i1, . . . , Y
∗
imi

)T, and C∗
i = (C∗

ijj′, j < j′)T. Define



 U∗
1i(θ,η0;Si,Xi)

U∗
2i(θ,η0;Si,Xi)



 =



 D1iV
−1
1i ǫ

∗
1i

D2iV
−1
2i ǫ

∗
2i



 , (3.8)

where the modified residual vectors ǫ∗1i and ǫ∗2i are given by Y∗
i −µi and C∗

i − ξi, re-

spectively. It is straightforward to verify that U∗
1i(θ,η0;Si,Xi) and U∗

2i(θ,η0;Si,Xi)

satisfy (3.5) and (3.6).

Let U∗
i (θ,η0) = (U∗

1i(θ,η0)
T,U∗

2i(θ,η0)
T)T, and θ̂0 = (β̂T

0 , α̂
T
0 )T be the solution

of estimating equation
∑n

i=1 U∗
i (θ,η0) = 0. Define Γ∗

0(θ,η0) = E
[
∂U∗

i (θ,η0)/∂θ
T
]
,

and Σ∗
0(θ,η0) = E

[
U∗

i (θ,η0)U
∗
i (θ,η0)

T
]
. Under suitable regularity conditions, it

can be shown that n1/2
(
θ̂0 − θ

)
has an asymptotic normal distribution with mean

0 and covariance matrix Γ∗−1
0 Σ∗

0

[
Γ∗−1

0

]T
.

At the end of this section we note that there exist alternative approaches to

correcting estimation bias induced by misclassification. A straightforward correction

is given by

U†
i(θ,η;Si,Xi) = Ui(θ;Si,Xi) − E [E {Ui(θ;Si,Xi)|Yi,Xi} |Xi]

=



 D1iV
−1
1i ǫ

†
1i

D2iV
−1
2i ǫ

†
2i



 , (3.9)

where ǫ†1i = Si − µS
i , µS

i = (µS
i1, . . . , µ

S
imi

)T, ǫ†2i = C†
i − ξ

†
i , C†

i = (SijSij′, j <

j′)T, and ξ†i = E
[
C†

i |Xi

]
. Both this approach and our proposed approach use the

naive covariance matrix V1i that is for the underlying true Yi. One can see that

the components in ǫ†1i and ǫ∗1i have relationship ǫ†1ij = ǫ∗1ij(τ0ij + τ1ij − 1). If the

misclassification process follows the simplest model and does not depend on covariates,

i.e., τ0ij = τ0 and τ1ij = τ1, then the two approaches are equivalent, since the factor

(τ0+τ1−1) in the estimating equations can be canceled. However, the equivalence does

not hold when the misclassification process involves covariates. Another alternative
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correction approach is given by

U∗∗
i (θ,η;Si,Xi) =



 D1iV
∗−1
1i ǫ

∗
1i

D2iV
∗−1
2i ǫ

∗
2i



 , (3.10)

where V∗
1i is the correct covariance matrix for Y∗

i , and V∗
2i is a working covariance

matrix for C∗
i . One may have efficiency gain by using correct covariance matrices. In

following sections, however, we still use the estimating functions given by (3.8) with

naive covariance matrices V1i and V2i.

3.4 Inference Method with Validation Subsample

Available

In order to use (3.7) to perform inference about θ, it is critical that parameter η

associated with misclassification is known. In practice, however, this condition is

often not satisfied. The parameter η must be estimated from an additional source of

data. It is then important to accommodate induced variation in inferential procedures

for θ. In this and next sections, we develop modified estimation algorithms to cover

two practical situations - either a validation subsample or replicates of surrogates are

available for estimation of η.

3.4.1 Estimating equations for η

When an internal validation subsample is available, one can develop estimating equa-

tions for the parameters associated with the misclassification process.

If the values of all misclassification indicators Hij ’s were observed, estimates of η

could be obtained as the solution to estimating equations

n∑

i=1



 Dη1iV
−1
η1i · (Hi − τi)

Dη2iV
−1
η2i · (Fi − ζi)



 = 0,
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where Dη1i = ∂τT
i /∂γ, Dη2i = ∂ζT

i /∂ν, Vη1i = B
1/2
η1iRη1iB

1/2
η1i , Bη1i = diag{τi1(yi1)[1−

τi1(yi1)], . . . , τimi
(yimi

)[1− τimi
(yimi

)]}, Rη1i is the correlation matrix of Hi, and Vη2i

is often assumed to be an independence working covariance matrix to avoid specifying

third and higher order moments of responses.

However, we do not observe the value of Hij unless subject j is in the validation

subsample. Let δij = 1 if the jth subject in cluster i belongs to the validation

subsample and δij = 0 otherwise. We assume that the selection of subjects may

depend on the covariates but not on the observed surrogates. This assumption ensures

that η can be estimated from fitting a prospective model to the validation data

without adjusting for the sampling scheme. Therefore, indicators δij ’s can be treated

as constants.

We add a superscript δ to each vector and matrix to indicate the components

corresponding to the validation subsample. To be specific, let Q1i(η) = Dδ
η1i

[
Vδ

η1i

]−1·
(Hi − τi)

δ, and Q2i(η) = Dδ
η2i

[
Vδ

η2i

]−1 · (Fi − ζi)
δ. Therefore, η can be estimated by

solving

n∑

i=1



 Q1i(η)

Q2i(η)



 = 0. (3.11)

3.4.2 Estimation equations for θ

Because of the availability of true response measurements in the validation subsample,

estimating functions of θ can be improved in terms of efficiency gain by pooling the

validation subsample and the primary data set, as opposed to using only the primary

data set that contains surrogate values. The pooling of the two data sets results

in reduced number of surrogate measurements that need to be corrected. There-

fore, modified estimating equations from the pool sample will lead to more efficient

estimator for θ.

To this end, we define

Ỹij = (1 − δij)Y
∗
ij + δijYij,
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and

C̃ijj′ = {1 − (1 − δij)(1 − δij′)} ỸijỸij′ + (1 − δij)(1 − δij′)C
∗
ijj′.

Thus, Ỹij = Yij if the jth subject in cluster i is in the validation subsample, Ỹij = Y ∗
ij

otherwise, C̃ijj′ = ỸijỸij′ if either Yij or Yij′ or both are available, and C̃ijj′ = C∗
ijj′ oth-

erwise. Let Ỹi = (Ỹi1, . . . , Ỹimi
)T and C̃i = (C̃ijj′, j < j′)T. Let Ũ1i(θ,η; Ỹi,Xi) =

D1iV
−1
1i ǫ̃1i, and Ũ2i(θ,η; C̃i,Xi) = D2iV

−1
2i ǫ̃2i, where ǫ̃1i = Ỹi−µi and ǫ̃2i = C̃i−ξi.

The augmented version of (3.7) is then given by

n∑

i=1



 Ũ1i(θ,η; Ỹi,Xi)

Ũ2i(θ,η; C̃i,Xi)



 = 0. (3.12)

3.4.3 Estimation and asymptotic distribution

When a validation subsample is available, the response parameter vector θ and the

misclassification parameter vector η can be estimated through a two-stage estimation

procedure.

Stage 1. Update the estimate of η via the Fisher scoring algorithm

η(t+1) = η(t) +

( {
−∑n

i=1 J1i(η
(t))
}−1 ·∑n

i=1 Q1i(η
(t))

{
−
∑n

i=1 J2i(η
(t))
}−1 ·

∑n
i=1 Q2i(η

(t))

)
, t = 0, 1, . . .

where η(t) is an estimate of η at the tth iteration, J1i(η) = −Dδ
η1i

[
Vδ

η1i

]−1 [
Dδ

η1i

]T

and J2i(η) = −Dδ
η2i

[
Vδ

η2i

]−1 [
Dδ

η2i

]T
. Let η̂ = (γ̂T, ν̂T)T denote the estimates at

convergence.

Stage 2. Replace η with its estimate η̂ and solve (3.12) for θ via the Fisher

scoring algorithm. Given an initial value θ(0), we iteratively update θ by

θ(t+1) = θ(t) +

( {
−
∑n

i=1 M1i(θ
(t))
}−1 ·

∑n
i=1 Ũ1i(θ

(t), η̂)
{
−∑n

i=1 M2i(θ
(t))
}−1 ·∑n

i=1 Ũ2i(θ
(t), η̂)

)

, t = 0, 1, . . .
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where M1i(θ) = −D1iV
−1
1i DT

1i, and M2i(θ) = −D2iV
−1
2i DT

2i. Let θ̂ = (β̂T, α̂T)T be

the estimate of θ at convergence.

We conclude this section with the asymptotic distribution for θ̂ which accounts

for the variation induced by estimation of η. Let Ũi(θ,η) =
(
ŨT

1i(θ,η), ŨT
2i(θ,η)

)T

,

Qi(η) =
(
QT

1i(η),QT
2i(η)

)T
, Γ̃(θ,η) = E

[
∂Ũi(θ,η)/∂θT

]
, and Ω̃i(θ,η) = Ũi(θ,η)−

E[∂Ũi(θ,η)/∂ηT] ·
{
E
[
∂Qi(η)/∂ηT

]}−1 · Qi(η). In Section 3.9.3 we show that

Ũ(θ, η̂) = n−1/2
∑n

i=1 Ũi(θ, η̂) and n1/2(θ̂ − θ) are asymptotically normally dis-

tributed with mean 0 and asymptotic covariance matrices given by Σ̃ and Γ̃−1Σ̃
[
Γ̃−1

]T
,

respectively, where Σ̃ = E
[
Ω̃i(θ,η)Ω̃T

i (θ,η)
]
. In Section 3.9.3 we also outline the

inferential procedures.

3.5 Joint Estimation and Inference with Replicates

In some circumstances a validation data set is not possible to obtain, but instead,

replicates are available by the design of the study. Now we describe an inference

procedure to accommodate this practical situation. Here we use notation slightly

different from those in the previous sections for ease of exposition. Let Sijr be the

rth replicate measure for Yij, r = 1, . . . , dij, where dij is the number of replicates

for subject j in cluster i, j = 1, . . . , mi, i = 1, . . . , n. Let Sij = (Sij1, . . . , Sijdij
)T,

and Hijr = I(Sijr = Yij) be the misclassification indicator variable. For j 6= j′, we

assume independence between Hijr and Hij′r′ given Yi and Xi. For r 6= r′, we assume

that Hijr and Hijr′ are independently identically distributed given Yi and Xi. Again

the assumption Pr(Hijr = hijr|Yi,Xi) = Pr(Hijr = hijr|Yij,Xi) is often made. Let

τ1ijr = Pr(Hijr = 1|Yij = 1,Xi) and τ0ijr = Pr(Hijr = 1|Yij = 0,Xi). Suppose that

τ1ijr and τ0ijr are modeled by (3.1) and (3.2), respectively.

Define Y∗
ijr = (Sijr − 1 + τ0ijr)/(τ0ijr + τ1ijr − 1). Then the average version Y∗

ij =
∑dij

r=1 Y∗
ijr/dij is unbiased for Yij , i.e., E

[
Y∗

ij|Yi,Xi

]
= Yij . Let Y∗

i = (Y∗
i1, . . . ,Y∗

imi
)T,

and C∗
i = (Y∗

ijY∗
ij′, j < j′)T. Define U 1i(θ,γ) = D1iV

−1
1i ε1i, and U2i(θ,γ) = D2iV

−1
2i ε2i,

where ε1i = Y∗
i − µi and ε2i = C∗

i − ξi are residual vectors. It is readily seen

that E [U 1i(θ,γ)|Yi,Xi] = U1i(θ,γ) and E [U 2i(θ,γ)|Yi,Xi] = U2i(θ,γ). Let
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U i(θ,γ) =
(
U 1i(θ,γ)T,U2i(θ,γ)T

)T
. Therefore, a consistent estimator of θ can

be obtained by solving

n∑

i=1

U i(θ,γ) = 0, (3.13)

provided γ is given.

However, γ is unknown here, and it must be estimated. In the case with replicates

Sijr, the true response measurements Yij ’s are not available. Thus, one cannot derive

a set of estimating equations for misclassification parameters γ analogous to (3.11).

Hence, the two-stage estimation procedure described in Section 3.4 no longer applies

here. With replicates, estimation of γ and θ typically interacts, and a joint estimation

procedure is required to simultaneously estimate θ and γ. In the sequel, we construct

estimating equations for misclassification parameters which typically involve response

parameters. Information about the misclassification process is captured by the het-

erogeneity in the replicates. We generalize the discussion in White et al. (2001) who

considered univariate logistic regression models with a misclassified binary covariate.

Let Aijk = 1 if
∑dij

r=1 Sijr = k and Aijk = 0 otherwise, k = 1, . . . , dij, j =

1, . . . , mi, i = 1, . . . , n. Define Aij = (Aij1, . . . , Aijdij
)T, and Ai = (AT

i1, . . . ,A
T
imi

)T.

Let πijk = E[Aijk|Xi] be the marginal mean of Aijk, πij = (πij1, . . . , πijdij
)T, and

πi = (πT
i1, . . . , π

T
imi

)T. Apparently, πijk involves both θ and γ.

Now we describe estimating functions of γ. For ease of exposition, we consider

cases with dij = 2. The method can be easily extended to cases with dij ≥ 3. Noting

that

Pr(Aij1 = 1|Yi,Xi) = {(1 − τ1ij1)τ1ij2 + (1 − τ1ij2)τ1ij1}Yij

+ {(1 − τ0ij1)τ0ij2 + (1 − τ0ij2)τ0ij1} (1 − Yij),

and

Pr(Aij2 = 1|Yi,Xi) = τ1ij1τ1ij2Yij + (1 − τ0ij1)(1 − τ0ij2)(1 − Yij),
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we write marginal means πijr (r = 1, 2) as follows:

πij1 = {(1 − τ1ij1)τ1ij2 + (1 − τ1ij2)τ1ij1}µij

+ {(1 − τ0ij1)τ0ij2 + (1 − τ0ij2)τ0ij1} (1 − µij),

and

πij2 = τ1ij1τ1ij2µij + (1 − τ0ij1)(1 − τ0ij2)(1 − µij).

Define Q1i(θ,γ) = DγiV
−1
γi (Ai−πi), where Dγi = ∂πT

i /∂γ, and Vγi is the covariance

matrix for Ai conditional on Xi. For a given θ, γ can be estimated from estimating

equations

n∑

i=1

Q1i(θ,γ) = 0. (3.14)

In contrast to the two-stage estimation algorithm in Section 3.4, we must simulta-

neously employ (3.13) and (3.14) to iteratively update the estimates of θ and γ. To

be specific, let J 1i(θ,γ) = −DγiV
−1
γi DT

γi, ∆i(θ,γ) = −DγiV
−1
γi ·
(
∂πi/∂θ

T
)
, and

Λi(θ,γ) =



 D1iV
−1
1i ·

(
∂Y∗

i /∂γ
T
)

D2iV
−1
2i ·

(
∂C∗

i /∂γ
T
)



 .

Given initial estimates θ(0) and γ(0), we update the estimates via




θ(t+1)

γ(t+1)



 =




θ(t)

γ(t)



−




∑n

i=1 Mi(θ
(t))

∑n
i=1 Λi(θ

(t),γ(t))
∑n

i=1 ∆i(θ
(t),γ(t))

∑n
i=1 J 1i(θ

(t),γ(t))




−1

·




∑n

i=1 U i(θ
(t),γ(t))

∑n
i=1 Q1i(θ

(t),γ(t))



 , t = 0, 1, . . .

until convergence. Let θ̂RS and γ̂RS denote the final solutions to (3.13) and (3.14).
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Now we conclude this section with the asymptotic distribution of θ̂RS. Define

Ω∗
i (θ,γ) = U i(θ,γ) − E

[
∂U i(θ,γ)/∂γT

]
·
{
E
[
∂Q1i(θ,γ)/∂γT

]}−1 · Q1i(θ,γ),

and

Γ∗(θ,γ) = E
[
∂U i(θ,γ)/∂θT

]
− E

[
∂U i(θ,γ)/∂γT

]

·
{
E
[
∂Q1i(θ,γ)/∂γT

]}−1 · E
[
∂Q1i(θ,γ)/∂θT

]
.

In Section 3.9.4 we establish that n1/2
(
θ̂RS − θ

)
is asymptotically normally dis-

tributed with mean 0 and covariance matrix Γ∗−1Σ∗ [Γ∗−1]
T
, where Σ∗ = E[Ω∗

i (θ,γ)

Ω∗
i (θ,γ)T].

3.6 Numerical Assessment of the Proposed Meth-

ods

3.6.1 Design of simulation studies

We conduct simulation studies to assess the performance of the proposed methods

in contrast to the naive method which ignores misclassification. We focus on the

case with mi = m = 3 for i = 1, . . . , n, where the sample sizes are n = 200 and

400 for cases of known and unknown misclassification parameters, respectively. Two

thousand simulations are run for each parameter configuration. The mean response

model is given by

logit(µij) = β0 + β1Xij1 + β2Xij2 + β3Xij3,

whereXij1 is 1 if the ith subject is randomized to the treatment group and 0 otherwise,

Xij2 is 1 if j = 2 and 0 otherwise, and Xij3 is 1 if j = 3 and 0 otherwise. An

exchangeable association structure is considered, which is given by

logψijj′ = α. (3.15)
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The regression parameters are specified by exp(β0) = 2, exp(β1) = 0.5, exp(β2) = 2/3

and exp(β3) = 1/3, and the association parameter is specified by α = log(3.0). The

binary response vector is generated from the probability function

Pr(Yi1 = yi1, Yi2 = yi2, Yi3 = yi3)

=
3∏

j=1

µ
yij

ij (1 − µij)
1−yij

{
1 +

∑

1≤j<j′≤3

ρijj′
(yij − µij)(yij′ − µij′)√

µij(1 − µij)
√
µij′(1 − µij′)

}
.

We consider both independent and correlated misclassification processes. For the

independent case, the misclassification process is considered to be homogeneous and is

characterized by two misclassification probabilities. Misclassification indicators Hij ’s

are generated with probabilities given by a logistic model

logit(τij) =

{
γ0, if Yij = 0,

γ1, if Yij = 1.
(3.16)

Surrogate responses Sij are then recorded as Yij if Hij = 1 and 1 − Yij if Hij = 0.

Three settings for γ are considered: (i) γ0 = logit(0.95) and γ1 = logit(0.95); (ii)

γ0 = logit(0.9) and γ1 = logit(0.9); and (iii) γ0 = logit(0.8) and γ1 = logit(0.8), which

represent different levels of misclassification rates.

The performance of the proposed methods are assessed under three scenarios. For

the first scenario where γ is known, each simulated sample contains n = 200 subjects.

For the second scenario where γ is not known but an internal validation subsample

is available, we take n = 400, and randomly select 30% of the subjects to be in the

validation sample. For low misclassification rates as in setting (i), large sample size

is usually necessary in order to obtain a valid estimate of γ. For the third scenario

where γ is not known but replicates are available, the sample size is set to be n = 200

and two replicate surrogates are used for each Yij.

For cases where misclassifications within the same subject are correlated, the mean

model is also given by (3.16), while the association is modeled in the same manner as
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in the response process and is given by

log {λijj′(yij, yij′)} = ν1I(yij = yij′) + ν2I(yij 6= yij′),

1 ≤ j < j′ ≤ 3, i = 1, . . . , n.

We set ν1 = log(2.0) and ν2 = log(1.5). The misclassification vector Hi is generated

with the given probabilities. Two scenarios are considered. For the first scenario with

known η, sample size is n = 200. For the second scenario with unknown η, sample

size is increased to n = 400. Again 30% of subjects are randomly selected into the

validation subsample.

3.6.2 Simulation results

Table 3.1 shows the simulation results of the first and second scenarios for cases

where the misclassification process is independent. The column under each approach

represents the percent relative bias (%RB), empirical variance (EV), average of model-

based variance (AMV), and coverage rate of the 95% confidence intervals (CP). We

first look at the results under known γ. One can see that the naive analysis leads

to downward biased estimates of response parameters even under a small proportion

of misclassifications. Under setting (i) where misclassification proportion is 5%, for

example, both the mean parameters and the association parameter are attenuated

by a non-ignorable amount. As misclassification proportion increases, the attenua-

tion increases. When misclassification proportion is increased to 20% in setting (iii),

coverage probabilities for the naive estimates of mean parameters and association

parameter are far below the nominal value 95%. In contrast, the proposed method

performs reasonably well for all parameter configurations. The relative biases in mean

parameters for settings (i) and (ii) with small and moderate misclassification rates

are within an ignorable amount. The relative biases increase a little when the mis-

classification rate is relatively high. The coverage probability for α is slightly over the

nominal value 95%. The variance estimates of the estimators are larger than those of

the naive estimators and increase as the misclassification rate increases. For the case

of estimated γ, similar patterns are observed.
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Table 3.1: Simulation results for the independent misclassification process (2000 simulations)

Naive method Proposed method

(n = 200) known η (n = 200) unknown η (n = 400)

%RB† EV AMV CP %RB EV AMV CP %RB EV AMV CP

(i) γ0 = logit(0.95), γ1 = logit(0.95)

β0 -10.823 0.030 0.032 0.935 0.317 0.038 0.041 0.962 0.635 0.021 0.021 0.955
β1 -9.593 0.038 0.040 0.938 1.943 0.049 0.051 0.952 0.367 0.024 0.025 0.955
β2 -11.931 0.032 0.033 0.945 -1.180 0.040 0.042 0.957 -0.981 0.018 0.019 0.952
β3 -10.621 0.035 0.036 0.903 0.776 0.046 0.047 0.956 0.672 0.021 0.022 0.958
α -23.260 0.045 0.044 0.750 0.049 0.082 0.081 0.954 0.427 0.035 0.038 0.957

(ii) γ0 = logit(0.9), γ1 = logit(0.9)

β0 -21.130 0.029 0.031 0.866 1.005 0.050 0.052 0.957 0.200 0.027 0.027 0.956
β1 -20.391 0.036 0.037 0.891 2.432 0.062 0.062 0.948 0.467 0.029 0.029 0.950
β2 -21.869 0.035 0.035 0.923 -0.421 0.057 0.057 0.950 -1.630 0.023 0.025 0.965
β3 -21.181 0.036 0.037 0.760 1.388 0.062 0.065 0.958 0.411 0.029 0.029 0.953
α -41.768 0.041 0.040 0.366 0.875 0.140 0.138 0.954 1.040 0.061 0.061 0.955

(iii) γ0 = logit(0.8), γ1 = logit(0.8)

β0 -41.513 0.029 0.029 0.591 2.292 0.095 0.095 0.960 1.375 0.050 0.051 0.959
β1 -41.297 0.032 0.032 0.636 3.508 0.103 0.104 0.953 1.240 0.045 0.045 0.958
β2 -41.083 0.037 0.037 0.855 2.032 0.113 0.114 0.956 0.076 0.042 0.045 0.963
β3 -41.572 0.038 0.039 0.365 3.091 0.131 0.133 0.958 1.870 0.053 0.056 0.961
α -69.294 0.033 0.034 0.024 4.091 0.469 0.539 0.966 2.510 0.179 0.196 0.957

† %RB=relative bias in percent: (
¯̂
θ − θ)/θ, EV=empirical variance, AMV=average of model-

based variances, CP=coverage rate of the 95% CI
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The simulation results for the case with replicates are shown in Table 3.2. The

relative biases and coverage rates for the naive estimators are similar to those in Table

3.1. The proposed method performs well. The relative biases of the estimates are

small for the first two settings where misclassification rates are low and moderate,

and coverage rates are close to the nominal value 95%. For setting (iii) with higher

misclassification rate, however, the relative biases in both the mean parameters and

the association parameter are larger than those in settings (i) and (ii). The coverage

rate is slightly over the nominal value 95% for the association parameter.

The results for correlated misclassifications are reported in Table 3.3. It can be

seen that naively fitting GEE2 ignoring misclassifications leads to seriously biased es-

timates and low coverage rates. The corrected GEE2 approach gives reasonably good

estimates of mean parameters. For the case where η is estimated from a validation

subsample, estimates of θ are greatly improved. Finally, we note that estimation

of association parameters ν involves larger variation when the size of a validation

subsample becomes smaller, hence resulting in possibly more unstable estimates of θ

and large bias in the estimates of θ. In this situation, one possible resolution is to

leave ν not estimated by assuming misclassifications are independent. The method

still works well for cases with higher misclassification rates.

3.7 Application

3.7.1 Analysis of the CCHS data

We apply the proposed method to analyze data from the Canadian Community Health

Survey (CCHS) cycle 3.1 conducted in 2005. CCHS is a large scale on-going survey

targeting individuals aged 12 and older in the Canadian population. Although the

design of the survey is cross-sectional, the data can be viewed as clustered, since

health status for subjects who live in the same neighborhood may be correlated.

The objective of our study is to explore the relationship between obesity status and

some risk factors. We consider a subset of the data that contains 2699 respondents

aged 18 and older in the Toronto health region who do not have missing response
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Table 3.2: Simulation results for the independent misclassification process with replicates (2000 simulations)

Naive method Proposed method

1st replicates (n = 200) 2nd replicates (n = 200) (n = 200)

%RB† EV AMV CP %RB EV AMV CP %RB EV AMV CP

(i) γ0 = logit(0.95), γ1 = logit(0.95)

β0 -9.912 0.032 0.032 0.926 -9.904 0.031 0.032 0.928 1.599 0.047 0.049 0.952
β1 -9.979 0.040 0.040 0.929 -10.338 0.040 0.040 0.933 1.723 0.048 0.048 0.945
β2 -10.466 0.034 0.033 0.941 -10.544 0.033 0.033 0.944 0.829 0.037 0.037 0.951
β3 -10.646 0.036 0.036 0.907 -10.231 0.036 0.036 0.908 1.068 0.041 0.041 0.959
α -22.419 0.043 0.044 0.765 -21.874 0.046 0.044 0.765 1.314 0.063 0.064 0.953

(ii) γ0 = logit(0.9), γ1 = logit(0.9)

β0 -20.675 0.032 0.031 0.860 -21.107 0.030 0.031 0.866 2.605 0.077 0.078 0.949
β1 -20.955 0.038 0.037 0.871 -20.862 0.038 0.037 0.880 2.040 0.054 0.053 0.949
β2 -20.970 0.037 0.035 0.912 -21.149 0.034 0.035 0.925 0.670 0.045 0.045 0.952
β3 -21.738 0.040 0.037 0.743 -21.478 0.036 0.037 0.762 0.908 0.050 0.049 0.950
α -41.459 0.039 0.040 0.366 -41.322 0.043 0.040 0.375 1.311 0.087 0.088 0.948

(iii) γ0 = logit(0.8), γ1 = logit(0.8)

β0 -40.886 0.029 0.029 0.608 -41.764 0.028 0.029 0.600 5.132 0.222 0.235 0.959
β1 -41.454 0.033 0.032 0.633 -42.598 0.033 0.032 0.618 3.687 0.077 0.076 0.947
β2 -41.726 0.037 0.037 0.854 -41.077 0.037 0.037 0.859 2.803 0.075 0.076 0.955
β3 -42.349 0.041 0.039 0.351 -41.644 0.038 0.039 0.365 3.487 0.088 0.087 0.955
α -69.273 0.037 0.034 0.026 -68.583 0.035 0.034 0.028 6.823 0.242 0.248 0.966

† %RB=relative bias in percent: (
¯̂
θ − θ)/θ, EV=empirical variance, AMV=average of model-

based variances, CP=coverage rate of the 95% CI
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Table 3.3: Simulation results for the correlated misclassification process (2000 simulations)

Naive method Proposed method

(n = 200) known η (n = 200) unknown η (n = 400)

%RB† EV AMV CP %RB EV AMV CP %RB EV AMV CP

(i) γ0 = logit(0.95), γ1 = logit(0.95)

β0 -10.449 0.030 0.032 0.932 0.797 0.035 0.037 0.954 0.144 0.019 0.019 0.952
β1 -10.928 0.038 0.040 0.941 0.392 0.045 0.047 0.957 0.081 0.023 0.024 0.952
β2 -9.989 0.032 0.033 0.944 1.088 0.036 0.037 0.951 0.168 0.018 0.018 0.945
β3 -10.243 0.036 0.036 0.905 1.011 0.042 0.041 0.948 0.291 0.020 0.021 0.957
α -22.189 0.043 0.044 0.766 -0.964 0.099 0.098 0.952 0.560 0.033 0.034 0.954

(ii) γ0 = logit(0.9), γ1 = logit(0.9)

β0 -21.514 0.015 0.015 0.773 0.206 0.021 0.021 0.954 0.225 0.022 0.023 0.954
β1 -21.746 0.019 0.019 0.801 0.399 0.027 0.027 0.944 0.400 0.027 0.027 0.942
β2 -21.908 0.017 0.017 0.894 -0.846 0.021 0.022 0.952 -0.821 0.021 0.022 0.953
β3 -21.634 0.018 0.018 0.575 0.384 0.024 0.024 0.950 0.370 0.024 0.025 0.954
α -36.455 0.021 0.020 0.204 0.770 0.089 0.085 0.949 1.148 0.054 0.053 0.942

(iii) γ0 = logit(0.8), γ1 = logit(0.8)

β0 -42.235 0.015 0.015 0.334 0.041 0.031 0.032 0.954 -0.064 0.035 0.036 0.959
β1 -42.490 0.017 0.017 0.384 0.608 0.037 0.038 0.947 0.626 0.038 0.038 0.950
β2 -42.605 0.018 0.018 0.742 -1.261 0.035 0.034 0.950 -1.245 0.035 0.035 0.954
β3 -42.322 0.019 0.019 0.076 0.513 0.040 0.040 0.950 0.593 0.042 0.042 0.950
α -56.991 0.017 0.018 0.003 0.721 0.246 0.251 0.964 0.753 0.169 0.171 0.959

† %RB=relative bias in percent: (
¯̂
θ − θ)/θ, EV=empirical variance, AMV=average of model-

based variances, CP=coverage rate of the 95% CI
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or covariates. A total of 435 clusters with size varying from 2 to 15 are formed by

postal codes. Covariates included in the analysis are age, sex, and physical activity

index. Four age categories are defined: 18-34 (reference category), 35-49, 50-64, and

65+. There are three levels of physical activity index: active, moderate (reference

category), and inactive. Let Yij denote the binary obesity status for subject j in

cluster i. We assume Yij follows the logistic regression model

logit µij = β0 +
3∑

k=1

βkxijk + β4xij4 +
6∑

k=5

βkxijk,

where xijk is 1 if subject j in cluster i belongs to the (k + 1)th age category and 0

otherwise, k = 1, . . . , 3, xij4 is 1 if the subject is male and 0 otherwise, xij5 is 1 if

physical activity index is “active” and 0 otherwise, and xij6 is 1 if physical activity

index is “inactive” and 0 otherwise. The association between Yij and Yij′, measured

by odds ratio ψijj′, is modeled by equation (3.15). Because the surrogate responses

are obtained from self-report interviews, obesity misclassifications are typically inde-

pendent for different individuals and clusters. We assume that the misclassification

process is modeled by (3.16). A subsample consisting of 150 subjects was selected,

in which BMI was measured on each subject. We treat the derived obesity status for

each subject in the subsample as the true binary response.

The analysis results for estimation of β and α from the proposed method are shown

in Table 3.4 with comparison to results from naive analysis ignoring misclassifications.

The estimates of misclassification parameters are given by γ̂0 = 4.103 and γ̂1 = 0.693.

Therefore, about 1 − expit(γ̂0) = 1.63% of the non-obese subjects self-reported as

obese, and about 1 − expit(γ̂1) = 33.3% of the obese subjects self-reported as non-

obese. Note that the p-values from testing for no misclassifications are computed

based on a one-sided alternative. The effect estimates of age categories 35-49, 50-

64 and 65+ are 1.219, 1.558 and 1.483, respectively, indicating that subjects in these

groups have a much higher probability of developing obesity compared to the baseline

age group of 18-34. The estimate of the gender effect indicates that the probability of

obesity in males is not significantly different from that in females. There is no evidence

that a subject with a higher physical activity index has a smaller chance of developing
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obesity than that with a moderate index. For the inactive group, however, the result

is significant at the 5% level. The odds of obesity in the inactive group is about twice

compared to the moderately active group. The estimate of association parameter α

is given by 0.104, which corresponds to an odds ratio of 1.11 between obesities of two

subjects in the same cluster. However, there is no evidence for association between

obesity among subjects in the neighborhood.

Table 3.4: Analysis results for obesity among adults in Toronto health region

Naive method Proposed method

Est. SE p-value Est. SE p-value

Response models
Intercept (β0) -3.129 0.331 < 0.001 -3.189 0.655 < 0.001
Age 35-49 (β1) 0.901 0.314 0.004 1.219 0.555 0.028

50-64 (β2) 1.204 0.316 < 0.001 1.558 0.568 0.006
65+ (β3) 1.145 0.337 0.001 1.483 0.581 0.011

Sex male (β4) 0.003 0.124 0.981 -0.001 0.152 0.997
PAI active (β5) -0.401 0.191 0.036 -0.527 0.264 0.046

inactive (β6) 0.340 0.153 0.026 0.421 0.188 0.025
Association: (α) 0.073 0.114 0.522 0.104 0.169 0.539

Misclassification models
expit(γ0) 0.984 0.011 0.076†

expit(γ1) 0.667 0.091 < 0.001†

† One-sided tests for no misclassification

3.7.2 Analysis of data from the Framingham Heart Study

Now we apply the proposed method to analyze a data set from the Framingham

Heart Study, which is a longitudinal study consists of a series of examinations on the

participants. The data we used here, as described in Carroll et al. (2006, p. 112),

contains two measurements of systolic blood pressures (SBP) by different examiners

at each of exams #2 and #3 for n = 1615 male subjects aged 31-65. One of the

clinical interests is to understand what risk factors may be associated with high blood

pressure (HBP). Potential risk factors include the smoking status recorded at exam

#1, and age recorded at exam #2. Response variable Yij is the binary HBP indicator
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obtained from dichotomizing the true SBP at cut point 140 mmHg for subject i at the

jth time point. Here true SBP is defined as the long term average of SBP measures.

The mean model for HBP is given by

logit µij = β0 + β1xij1 + β2xij2 + β3xij3, (3.17)

where xij1 is the age of subject i at exam #2, xij2 is 1 if subject i is a smoker

and 0 otherwise, and xij3 is 1 if j = 2 (i.e., exam #3) and 0 otherwise. Assume

an exchangeable structure for association between HBPs at the two exams and the

model is given by (3.15).

Since a single SBP measure is considered as an error-contaminated version for

the true SBP, its dichotomized version may contain misclassifications (Carroll et al.,

2006). Therefore, naively applying a standard method such as GEE2 to the data

could lead to biased estimates of the effects of risk factors. Here we consider the

marginal misclassification model given by (3.16), and the two replicates are condi-

tionally independent given the true binary HBP.

The analysis results are shown in Table 3.5. The estimates of misclassification

parameters are given by γ̂0 = 2.850 and γ̂1 = 2.109. Therefore, the rate of misclas-

sifying a non-HBP subject into the HBP group is about 1 − expit(2.850) = 0.055,

and the rate of misclassifying an HBP subject into the non-HBP group is about

1 − expit(2.109) = 0.108. The estimate of the age effect is highly significant, indi-

cating that the probability of developing HBP increases with age for male adults.

The smoking effect is not statistically significant at the 5% level. An estimate of the

odds ratio between HBP at the two exams is given by exp(4.253) = 70.32 with a

p-value close to 0, indicating very strong associations. Along with the analysis from

the proposed method, we also report in Table 3.5 the results from the naive analysis

using the first or the second replicates at each time point. Although the trends in

the estimates are similar to those from the proposed method, the estimates generally

“shrink”, especially in the association parameter.
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Table 3.5: Analysis results for a data arising from the Framingham Heart Study

Naive method Proposed method

1st replicates 2nd replicates

Parameter Est. SE p-value Est. SE p-value Est. SE p-value
Response models

Intercept (β0) -3.097 0.292 < 0.001 -3.566 0.317 < 0.001 -3.930 0.382 < 0.001
AGE (β1) 0.051 0.006 < 0.001 0.056 0.006 < 0.001 0.066 0.007 < 0.001
SMOKE (β2) -0.114 0.114 0.313 -0.191 0.121 0.115 -0.188 0.137 0.168
EXAM (β3) -0.135 0.056 0.016 -0.092 0.058 0.113 -0.141 0.058 0.015
Association (α) 2.313 0.132 < 0.001 2.534 0.142 < 0.001 4.253 0.264 < 0.001

Misclassification models
expit(γ0) 0.945 0.021 0.005†

expit(γ1) 0.892 0.142 0.013†

† One-sided tests for no misclassification
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3.8 Discussion

In this chapter we propose semi-parametric methods based on estimating equations to

handle misclassification in correlated binary responses. Since misclassification param-

eters are often unknown, additional information such as validation data or replicated

measures is required in order to obtain estimates of these parameters. Proportion of

validation subsample and cluster size play important roles in estimation of parame-

ters governing the misclassification process, especially for the dependence structure.

Our simulation studies demonstrate that the proposed methods perform well under

various settings. In some situations, the size of the validation data is too small to

effectively estimate the correlation between misclassifications. Assumptions about in-

dependent misclassifications may have to be made in order to obtain generic estimates

of mean parameters of the misclassification process. For data with a rare outcome,

estimators for misclassification parameters are often associated with large variances,

as there may be sparse or zero counts in the classification table obtained from valida-

tion data. In circumstances where no validation data nor replicates are available to

estimate misclassification parameters, one may conduct sensitivity analysis to eval-

uate the impact of misclassification on inference about response parameters. When

misclassification rate is very small, i.e., below 1%, naive estimators for response pa-

rameters may be acceptable. Our methods are most useful for studies with moderate

and serious misclassifications.

Our approach to modeling longitudinal data is a marginal regression one, which

characterizes the dependence of the response on covariates but not on the history

of outcomes. In contrast, a conditional regression model, or transition model (e.g.,

Azzalini, 1994; Heagerty, 2002; Diggle et al., 2002), may be employed to capture the

serial dependence in some cases. If the category in the past observation is misclas-

sified, inference results could be incorrect if misclassification effects are not properly

accounted for. It would be interesting to modify the proposed methods to deal with

the misclassification problem in transition models.

Our proposed methods can also be extended to further incorporate missing data.

It is common in longitudinal studies that both measurement error and missing data
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may exist. Incomplete longitudinal binary data are often analyzed using marginal

models such as the inverse probability weighted GEE (e.g., Yi and Cook, 2002).

The weight matrix, however, may be dependent on the history of outcomes and can

be problematic if misclassification effects are not adjusted for. Therefore, it is also

interesting to develop statistical tools to simultaneously account for missing data and

measurement error effects for correlated data analysis.

3.9 Technical Details

3.9.1 Marginal expectation of Sij and SijSij′

The conditional expectation of Sij given (Yij,Xi), is given by

E[Sij |Yij,Xi] = 1 − τ0ij + (τ0ij + τ1ij − 1)Yij. (3.18)

Let µS
ij = E[Sij |Xi]. Then µS

ij = 1 − τ0ij + (τ0ij + τ1ij − 1)µij.

For j 6= j′, the conditional expectation of SijSij′, given Yij, Yij′ and Xi, is given

by

E [SijSij′|Yij = yij, Yij′ = yij′,Xi]

= Pr(Sij = 1, Sij′ = 1|Yij = yij , Yij′ = yij′,Xi)

=






Pr(Hij = 1, Hij′ = 1|Yij = 1, Yij′ = 1,Xi), if yij = 1, yij′ = 1,

Pr(Hij = 1, Hij′ = 0|Yij = 1, Yij′ = 0,Xi), if yij = 1, yij′ = 0,

Pr(Hij = 0, Hij′ = 1|Yij = 0, Yij′ = 1,Xi), if yij = 0, yij′ = 1,

Pr(Hij = 0, Hij′ = 0|Yij = 0, Yij′ = 0,Xi), if yij = 0, yij′ = 0,

= yijyij′Pr(Hij = 1, Hij′ = 1|Yij = 1, Yij′ = 1,Xi)

+ yij(1 − yij′)Pr(Hij = 1, Hij′ = 0|Yij = 1, Yij′ = 0,Xi)

+ (1 − yij)yij′Pr(Hij = 0, Hij′ = 1|Yij = 0, Yij′ = 1,Xi)

+ (1 − yij)(1 − yij′)Pr(Hij = 0, Hij′ = 0|Yij = 0, Yij′ = 0,Xi)

= ζijj′(1, 1)yijyij′ + {τ1ij − ζijj′(1, 0)} yij (1 − yij′) + {τ1ij′ − ζijj′(0, 1)}
× (1 − yij) yij′ + {1 − τ0ij − τ0ij′ + ζijj′(0, 0)} (1 − yij) (1 − yij′) , (3.19)
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where again we assume Pr(Sij = 1|Yi,Xi) = Pr(Sij = 1|Yij,Xi) and Pr(Sij =

1|Yij, Yij′,Xi) = Pr(Sij = 1|Yij,Xi) for j 6= j′. Let µS
ijj′ = E [E {SijSij′|Yi,Xi} |Xi].

We then have

µS
ijj′ = E[ζijj′(1, 1)YijYij′ + {τ1ij − ζijj′(1, 0)}Yij(1 − Yij′) + {τ1ij′ − ζijj′(0, 1)}

× (1 − Yij)Yij′ + {1 − τ0ij − τ0ij′ + ζijj′(0, 0)} (1 − Yij)(1 − Yij′)|Xi]

= ζijj′(1, 1)µijj′ + (τ1ij − ζijj′(1, 0))(µij − µij′j′) + {τ1ij′ − ζijj′(0, 1)}
× (µij′ − µijj′) + {1 − τ0ij − τ0ij′ + ζijj′(0, 0)} (1 − µij − µij′ + µijj′)

= {τ0ij + τ1ij − 1 + τ0ij′ − ζijj′(1, 0) − ζijj′(0, 0)}µij

+ {τ0ij − 1 + τ1ij′ + τ0ij′ − ζijj′(0, 1) − ζijj′(0, 0)}µij′

+ {1 − τ0ij − τ1ij − τ0ij′ − τ1ij′ + ζijj′(1, 1) + ζijj′(1, 0)

+ ζijj′(0, 1) + ζijj′(0, 0)}µijj′ + {1 − τ0ij − τ0ij′ + ζijj′(0, 0)} .

3.9.2 Derivation of unbiased surrogate for Cijj′

Under the assumptions that E[Hij |Yi,Xi] = E[Hij |Yij,Xi] and E[HijHij′|Yi,Xi] =

E[HijHij′|Yij, Yij′,Xi] for j 6= j′, we have

E[C∗
ijj′|Yi,Xi]

= E

[
b0 + (Sij − b1)(Sij′ − b2)

b3
|Yi,Xi

]

=
1

b3
E[b0 + (Sij − b1)(Sij′ − b2)|Yi,Xi]

=
1

b3
{b0 + E[SijSij′|Yi,Xi] − b1E[Sij′|Yi,Xi] − b2E[Sij |Yi,Xi] + b1b2}

=
1

b3
{b0 + E[SijSij′|Yij, Yij′,Xi] − b1E[Sij′ |Yij, Yij′,Xi]

−b2E[Sij |Yij, Yij′,Xi] + b1b2} .
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Now applying the expressions (3.18) and (3.19), we obtain

E[C∗
ijj′|Yi,Xi]

=
1

b3

[

b0 + ζijj′(1, 1)YijYij′ + {τ1ij − ζijj′(1, 0)}Yij (1 − Yij′)

+ {τ1ij′ − ζijj′(0, 1)} (1 − Yij)Yij′ + {1 − τ0ij − τ0ij′ + ζijj′(0, 0)}
× (1 − Yij) (1 − Yij′) − b1 {1 − τ0ij′ + (τ0ij′ + τ1ij′ − 1)Yij′}

− b2 {1 − τ0ij + (τ0ij + τ1ij − 1)Yij} + b1b2

]

=
1

b3

[
b0 + 1 − τ0ij − τ0ij′ + ζijj′(0, 0) − b1(1 − τ0ij′) − b2(1 − τ0ij) + b1b2

+ {τ1ij + τ0ij + τ0ij′ − 1 − ζijj′(1, 0) − ζijj′(0, 0) − b2(τ0ij + τ1ij − 1)}Yij

+ {τ1ij′ + τ0ij′ + τ0ij − 1 − ζijj′(0, 1) − ζijj′(0, 0) − b1(τ0ij′ + τ1ij′ − 1)}Yij′

+ {1 − τ0ij − τ1ij − τ0ij′ − τ1ij′ + ζijj′(1, 1) + ζijj′(1, 0)

+ ζijj′(0, 1) + ζijj′(0, 0)}YijYij′

]

=
1

b3
(0 + 0 · Yij + 0 · Yij′ + b3 · YijYij′)

= YijYij′

3.9.3 Consistency and asymptotic normality for θ̂

Because of the unbiasedness of Qi(η) and Ũi(θ,η), the estimators η̂ and θ̂ are con-

sistent for η and θ, respectively. By first-order Taylor series approximation, we have

n1/2



 θ̂ − θ
η̂ − η



 = −



 E
[
∂Ũi(θ,η)/∂θT

]
E
[
∂Ũi(θ,η)/∂ηT

]

0 E
[
∂Qi(η)/∂ηT

]




−1

· n−1/2




∑n

i=1 Ũi(θ,η)
∑n

i=1 Qi(η)



+ op(1).
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It follows that

n1/2(θ̂ − θ) = − n−1/2
{

E
[
∂Ũi(θ,η)/∂θT

]}−1

·
{

n∑

i=1

Ũi(θ,η)

− E
[
∂Ũi(θ,η)/∂ηT

]
·
{
E
[
∂Qi(η)/∂ηT

]}−1 ·
n∑

i=1

Qi(η)

}

+ op(1)

= − n−1/2Γ̃−1(θ,η) ·
n∑

i=1

Ω̃i(θ,η) + op(1).

Then applying the Central Limit Theorem establishes the asymptotic distribution.

Let

Mi(θ) =



 M1i(θ) 0

M21i(θ) M2i(θ)



 ,

where M21i(θ) = −D2iV
−1
2i

(
∂ξi/∂β

T
)
. The matrix Γ̃ can be consistently estimated

by, as n→ ∞,

Γ̂ = n−1

n∑

i=1

Mi(θ̂).

Define



 Λ̃1i(θ,η)

Λ̃2i(θ,η)



 =




D1iV

−1
1i

(
∂Ỹi/∂η

T
)

D2iV
−1
2i

(
∂C̃i/∂η

T
)



 ,

and

Ji(η) =




J1i(η) 0

J21i(η) J2i(η)



 ,

where J21i(η) = −Dδ
η2i

[
Vδ

η2i

]−1 (
∂ζδ

i /∂ν
T
)
. Similarly, as n→ ∞, E[∂Ũi(θ,η)/∂ηT]
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and E
[
∂Qi(η)/∂ηT

]
can be consistently estimated by

Λ̃(θ̂, η̂) = n−1
n∑

i=1



 Λ̃1i(θ̂, η̂)

Λ̃2i(θ̂, η̂)



 ,

and

J(η̂) = n−1
n∑

i=1

Ji(η̂),

respectively. Therefore, the matrix Σ̃ can be consistently estimated by

Σ̂ = n−1
n∑

i=1

Ω̃i(θ̂, η̂)Ω̃T
i (θ̂, η̂),

where Ω̃i(θ̂, η̂) = Ũi(θ̂, η̂) − Λ̃(θ̂, η̂)J−1(η̂)Qi(η̂). A consistent estimator for the

asymptotic covariance matrix of θ̂ is given by the empirical version n−1Γ̂−1Σ̂
[
Γ̂−1

]T
.

3.9.4 Consistency and asymptotic normality for θ̂RS

The asymptotic distribution of θ̂RS can be established in a similar manner to that

in Section 3.4. However, there is an important difference arising from the interplay

of θ and γ in both U i(θ,γ) and Q1i(θ,γ). Specifically, applying the Taylor series

expansion, we obtain

n1/2




θ̂RS − θ

γ̂RS − γ



 = −




E
[
∂U i(θ,γ)/∂θT

]
E
[
∂U i(θ,γ)/∂γT

]

E
[
∂Q1i(θ,γ)/∂θT

]
E
[
∂Q1i(θ,γ)/∂γT

]




−1

· n−1/2




∑n

i=1 U i(θ,γ)
∑n

i=1 Q1i(θ,γ)



 + op(1).
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It follows that

n1/2
(
θ̂RS − θ

)
= n−1/2

(
E
[
∂U i(θ,γ)/∂θT

]
− E

[
∂U i(θ,γ)/∂γT

]

·
{
E
[
∂Q1i(θ,γ)/∂γT

]}−1 · E
[
∂Q1i(θ,γ)/∂θT

])−1

·
{ n∑

i=1

U i(θ,γ) − E
[
∂U i(θ,γ)/∂γT

]

·
{
E
[
∂Q1i(θ,γ)/∂γT

]}−1 ·
n∑

i=1

Q1i(θ,γ)

}
+ op(1)

= n−1/2Γ∗−1(θ,γ) ·
n∑

i=1

Ω∗
i (θ,γ) + op(1).

Thus, the Central Limit Theorem yields the results.

As n → ∞, Γ∗ and Σ∗ can be consistently estimated by their empirical counter-

parts given by

Γ̂∗ = n−1
n∑

i=1

[
Mi(θ̂RS) − Λ∗

i (θ̂RS, γ̂RS) ·
{
J 1i(θ̂RS, γ̂RS)

}−1

·∆∗
i (θ̂RS , γ̂RS)

]

and

Σ̂∗ = n−1

n∑

i=1

Ω∗
i (θ̂RS , γ̂RS)Ω∗

i (θ̂RS, γ̂RS)T,

respectively. A consistent estimator for the asymptotic covariance matrix of θ̂RS is

given by Γ̂∗−1Σ̂∗
[
Γ̂∗−1

]T
.
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Chapter 4

Estimating Equations for Analysis

of Longitudinal Ordinal Data with

Misclassified Responses and

Covariates

4.1 Introduction

Longitudinal studies often involve repeated measurements of categorical outcomes

with a set of covariates on each subject. The response can be nominal, i.e., there

is no particular ordering of the categories, or ordinal, i.e., there is a natural order-

ing of the levels. Ordinal data are commonly seen in surveys and medical studies,

where the categories are general representations of an underlying continuous variable,

such as the measure of severity of a health condition. There are three widely used

approaches for modeling repeated categorical data: transition models, mixed mod-

els, and marginal models. Transition models describe the probability distribution

of a subject’s outcome at a time point given the history of outcomes. The interest

focuses on how covariates influence the transition intensity or transition probability

from one response level to another. Mixed models take into account the correlations

between repeated measurements by specifying some cluster-level random components.
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In marginal models, the focus is on the relationship between covariates and the re-

sponse variable at the population level. Various methodological strategies are utilized

to account for the correlation. Liang and Zeger (1986) proposed a generalized esti-

mating equation (GEE) approach, which assumes that the marginal distribution of

the response follows a generalized linear model and uses a working correlation struc-

ture to account for correlation between the repeated measurements. Prentice (1988)

further extended this approach for repeated binary data by specifying an additional

estimating equation for the second-order association parameters, in which an inde-

pendent working correlation matrix is assumed for the pairwise products of responses.

Lipsitz et al. (1991) suggested using odds ratio as a measure of association between

binary responses.

In regression analyses, however, measurement errors or misclassifications in both

the response variable and covariates often arise due to non-perfect measuring systems

or due to the designs of the studies. Neuhaus (1999, 2002) considered misclassification

in binary response in generalized linear models and generalized linear mixed models.

Carroll et al. (2006) provided a comprehensive summary of the development of statis-

tical methods for dealing with measurement error in nonlinear models, mostly error

in covariates. The approaches for correcting covariate error can be separated into two

major classes: structural modeling, and functional modeling. In structural modeling,

full parametric assumption on the distribution of the mismeasured covariate is made.

In contrast, functional modeling leaves the probability distribution of the covariate

completely unspecified, which is particularly attractive for handling covariate error

problems. One typical example for functional modeling is the SIMEX approach pro-

posed by Cook and Stefanski (1994), which uses a resampling method to establish a

relationship between the bias and the variance of the measurement error and then

extrapolate back to the case where there is no measurement error. Another example

is the corrected score method (Nakamura, 1990, 1992), in which consistent estimators

can be obtained by solving a set of estimating equations. Several authors also have

used the corrected score methods for analysis of survival data with covariate measure-

ment error and misclassification (e.g., Yi and Lawless, 2006; Zucker and Spiegelman,

2008). For repeated measurements, likelihood-based methods may not be available
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due to the lack of full probability model assumptions. Therefore, functional modeling

for correcting covariate error is especially appealing in marginal methods that only

reply on the least model assumptions,.

In this chapter, we consider marginal modeling for longitudinal or clustered ordinal

data, where the response and a categorical covariate are subject to misclassifications.

Extensions to handling multiple misclassified covariates can be established in a sim-

ilar spirit. We adapt the approach of Akazawa et al. (1998) to formulate unbiased

estimating functions using constructed unbiased surrogates for misclassified variables.

The remainder of this chapter is organized as follows. In Section 4.2, we give

detailed model formulation for the response process as well as for both the response

and the covariate misclassification processes. In Section 4.3, unbiased estimating

functions of response parameters are constructed, which account for both response

and covariate misclassifications. In Section 4.4, we propose a two-stage estimation

approach for cases where a validation subsample with true categories of response

and covariates is available. Asymptotic properties of the estimators are also derived.

Section 4.5 presents simulation studies to investigate the performance of the proposed

method under a variety of settings. We demonstrate the method by applying it to a

data set from the Framingham Heart Study in Section 4.6. Section 4.7 includes some

final remarks and discussion.

4.2 Model Formulation

4.2.1 The response process

We are interested in modeling the relationship between a categorical ordinal response

and some covariates that can be either continuous or categorical. Let Yij denote the

response that has (K+1) distinct levels, say, 0, 1, . . . , K, for subject i at time point j,

j = 1, . . . , mi, i = 1, . . . , n. Dummy variables are often used to represent a categorical

variable in estimation of parameters. Let Yijk = 1 if Yij = k, and Yijk = 0 otherwise,

k = 0, . . . , K. We treat level 0 as the reference category. Therefore, it is sufficient to

94



describe the response using the vector Yij = (Yij1, . . . , YijK)T. Let Yi = (YT
i1, . . . ,

YT
imi

)T.

We assume that the covariates for subject i at time point j include a vector of

precisely measured covariates Zij and a categorical variable Xij with (Kx + 1) levels,

say, 0, 1, . . . , Kx, that may be subject to misclassification. Let Xijq = 1 if Xij = q,

and Xijq = 0 otherwise, q = 0, . . . , Kx. Similarly, we treat level 0 as the reference

category. Let Xij = (Xij1, . . . , XijKx)T. Let Zi = (ZT
i1, . . . , Z

T
imi

)T, and Xi = (XT
i1,

. . . , XT
imi

)T.

Mean model

For marginal modeling, the interest is in studying the effects of covariates at the pop-

ulation level. Let µijk = E[Yijk|Xi,Zi], k = 0, . . . , K. We have
∑K

k=0 µijk = 1.

It is often assumed that E[Yijk|Xi,Zi] = E[Yijk|Xij,Zij ] (e.g., Pepe and Ander-

son, 1994). For ordinal data, it is common to use cumulative probabilities λijk =

Pr(Yij ≥ k|Xi,Zi), k = 1, . . . , K, as alternatives to the marginals (e.g., Agresti,

2002). Proportional odds models are then employed to relate the response to the

covariate effects (e.g., Miller et al., 1993), which are given by

logit λijk = β0k + XT
ijβx + ZT

ijβz, k = 1, . . . , K, (4.1)

where logit(u) = log{u/(1 − u)}, βx and βz are vectors of regression parameters

associated with the effects of the misclassified covariate and the error-free covariates,

and β0k is the intercept in the kth logit model. It is easy to see that the marginals

can be calculated from the cumulative probabilities as






µij1 = λij1 − λij2,
...

µij(K−1) = λij(K−1) − λijK ,

µijK = λijK .

The variance of Yijk can be given by var(Yijk) = µijk(1 − µijk), k = 1, . . . , K. Let

β = (β01, . . . , β0K ,β
T
x ,β

T
z )T. Let µij = (µij1, . . . , µijKx)T and µi = (µT

i1, . . . ,µ
T
imi

)T.
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Association model

The second-order dependence between two ordinal responses is often characterized

by the bivariate cumulative probability. Let ςi;jk;j′k′ = Pr(Yij ≥ k, Yij′ ≥ k′|Xi,Zi),

k, k′ = 1, . . . , K. We use global odds ratio (e.g., Williamson et al., 1995) as an

association measure for ordinal responses, which is given by

ψi;jk;j′k′ =
Pr(Yij ≥ k, Yij′ ≥ k′|Xi,Zi) · Pr(Yij < k, Yij′ < k′|Xi,Zi)

Pr(Yij ≥ k, Yij′ < k′|Xi,Zi) · Pr(Yij < k, Yij′ ≥ k′|Xi,Zi)

=
ςi;jk;j′k′ {1 − λijk − λij′k′ + ςi;jk;j′k′}
{λijk − ςi;jk;j′k′} {λij′k′ − ςi;jk;j′k′} , j < j′, k, k′ = 1, . . . , K.

A log-linear model is commonly employed for the global odds ratio, which is given by

(Williamson et al., 1995)

logψi;jk;j′k′ = φ+ φk + φk′ + φkk′ + uT
ijj′α1, k, k′ = 1, . . . , K, (4.2)

where φ is a global intercept term, φk is the effect of category k, φkk′ is the inter-

action effect between categories k and k′ (with φkk′ = φk′k), and uijj′ is a vector of

pair-specific covariates, the effects of which are quantified by a vector of regression

parameters α1. Identifiability constraints must be placed on the regression parame-

ters. Let φ1 = 0, φ1k = φk1 = 0 for k = 1, . . . , K. Let α = (φ, {φk, k = 2, . . . , K}T,

{φkk′, 2 ≤ k ≤ k′ ≤ K}T, αT
1 )T be a vector of all second-order association parameters.

The bivariate cumulative probability can be expressed in terms of the global odds

ratio and the two marginal cumulative probabilities as

ςi;jk;j′k′ =

{ {
ai;jk;j′k′ −

√
bi;jk;j′k′

}
/ {2 (ψi;jk;j′k′ − 1)} , if ψi;jk;j′k′ 6= 1,

λijkλij′k′, if ψi;jk;j′k′ = 1,

where ai;jk;j′k′ = 1 − (1 − ψi;jk;j′k′) (λijk + λij′k′), bi;jk;j′k′ = a2
i;jk;j′k′− 4 (ψi;jk;j′k′ − 1)

×ψi;jk;j′k′λijkλij′k′.

For j < j′, let Ci;jk;j′k′ = YijkYij′k′, k, k′ = 1, . . . , K, and let Cijj′ = (Ci;j1;j′1,

Ci;j1;j′2, . . . , Ci;jK;j′K)T. Therefore, Cijj′ contains all pairwise products of indi-

cator variables for the jth and the j′th responses for subject i. Let µi;jk;j′k′ =
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E[Ci;jk;j′k′|Xi,Zi], k, k
′ = 1, . . . , K, which can be rewritten as

µi;jk;j′k′ = Pr(Yij = k, Yij′ = k′|Xi,Zi)

=






ςi;jk;j′k′ − ςi;j(k+1);j′k′

−ςi;jk;j′(k′+1) + ςi;j(k+1);j′(k′+1), if 1 ≤ k, k′ < K,

ςi;jK;j′k′ − ςi;jK;j′(k′+1), if k = K, 1 ≤ k′ < K,

ςi;jk;j′K − ςi;j(k+1);j′K , if 1 ≤ k < K, k′ = K,

ςi;jK;j′K , if k = k′ = K.

Let ξijj′ = {µi;j1;j′1, µi;j1;j′2, . . . , µi;jK;j′K}T. Let Ci = (CT
ijj′, j < j′)T and ξi =

(ξT
ijj′, j < j′)T.

We further let

µi;j0;j′k′ = Pr(Yij = 0, Yij′ = k′|Xi,Zi)

= E

[(
1 −

K∑

k=1

Yijk

)
Yij′k′|Xi,Zi

]

= µij′k′ −
K∑

k=1

µi;jk;j′k′, for k′ 6= 0,

and

µi;j0;j′0 = Pr(Yij = 0, Yij′ = 0|Xi,Zi)

= E

[(

1 −
K∑

k=1

Yijk

)(

1 −
K∑

k′=1

Yij′k′

)

|Xi,Zi

]

= 1 −
K∑

k=1

µijk −
K∑

k′=1

µij′k′ +

K∑

k=1

K∑

k′=1

µi;jk;j′k′.

The correlation between two indicator variables is given by

ρi;jk;jl =
−µijkµijl√

µijk(1 − µijk)
√
µijl(1 − µijl)

,
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for 0 ≤ k < l ≤ K at the same time point j, and is given by

ρi;jk;j′k′ =
µi;jk;j′k′ − µijkµij′k′

√
µijk(1 − µijk)

√
µij′k′(1 − µij′k′)

,

for j 6= j′ and k, k′ = 0, . . . , K. Bahadur (1961) and Cox (1972) described the

joint distribution of correlated binary responses in terms of their marginals and cor-

relations. Prentice (1988) considered a special case of the presentation by setting

the third and higher correlations to be zero. Because (Yi1 = k1, . . . , Yimi
= kmi

) =

(Yi1k1
= 1, . . . , Yimikmi

= 1), we can obtain the joint distribution of repeated categor-

ical responses in terms of their marginals and pairwise correlations

Pr (Yi1 = k1, . . . , Yimi
= kmi

|Xi,Zi)

= Pr
(
Yi1k1

= 1, . . . , Yimikmi
= 1|Xi,Zi

)

=

mi∏

j=1

µijkj

{
1 +

∑

j<j′

ρi;jkj;j′kj′

(1 − µijkj
)(1 − µij′kj′

)
√
µijkj

(1 − µijkj
)
√
µij′kj′

(1 − µij′kj′
)

}
,

where k1, . . . , kmi
= 0, . . . , K.

4.2.2 The misclassification process for the response

We observe the surrogate version Sij for the true response Yij. Let τijk,l = Pr(Sij =

l|Yij = k,Xi,Zi) be the probability that the surrogate response falls into category l

when the true category is k (k, l = 0, . . . , K). The (K+1)×(K+1) (mis)classification

probability matrix is given by

Pij =





τij0,0 τij0,1 · · · τij0,K

...
...

. . .
...

τijK,0 τijK,1 · · · τijK,K



 =





τij0,0 τT
ij0

...
...

τijK,0 τT
ijK



 , (4.3)

where τT
ijk = (τijk,1, . . . , τijk,K), k = 0, . . . , K. Let Sij = (Sij1, . . . , SijK)T, where

Sijl = 1 if Sij = l, and Sijl = 0 otherwise, l = 1, . . . , K. It is easy to see that

E[Sij |Yij = k,Xi,Zi] = τijk for k = 0, . . . , K.
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Generalized logit models are often employed for the misclassification process (e.g.,

Albert et al., 1997; Pfeffermann et al., 1998), which are given by

log

(
τijk,l

τijk,0

)
= LT

ijγkl, k = 0, . . . , K, l = 1, . . . , K,

where Lij is a covariate vector featuring the misclassification, and γkl is a vector of

regression parameters in the logit model. For simplicity, we assume that Lij do not

include the misclassified covariate Xi. Let γk = (γT
k1, . . . , γ

T
kK)T. Further let γ =

(γT
0 , . . . , γ

T
K)T.

4.2.3 The misclassification process for the covariate

Instead of observing the categorical covariate Xij , we obtain a surrogate version Wij .

Assume that the misclassification in covariate is independent of both the response

process and the misclassification process for the response. Let πijq,r = Pr(Wij =

r|Xij = q,Zi) be the probability that the surrogate covariate falls into category r when

the true category is q (q, r = 0, . . . , Kx). The (Kx + 1)× (Kx + 1) (mis)classification

probability matrix is given by

Gij =





πij0,0 πij0,1 · · · πij0,Kx

...
...

. . .
...

πijKx,0 πijKx,1 · · · πijKx,Kx



 =





πij0,0 πT
ij0

...
...

πijKx,0 πT
ijKx



 , (4.4)

where πT
ijq = (πijq,1, . . . , πijq,Kx), q = 0, . . . , Kx. Let Wij = (Wij1, . . . ,WijKx)T, where

Wijr is 1 if Wij = r and 0 otherwise. We have E[Wij |Xij = q,Zi] = πijq for q =

0, . . . , Kx. Again, we use generalized logit models to characterize the misclassification

process, which are given by

log

(
πijq,r

πijq,0

)
= LxT

ij ϕqr, q = 0, . . . , Kx, r = 1, . . . , Kx,

where Lx
ij is a covariate vector associated with the misclassification, and ϕqr is a

vector of the regression parameters in the logistic model. Let ϕq = (ϕT
q1, . . . , ϕ

T
qKx)T,

and let ϕ = (ϕT
0 , . . . , ϕ

T
Kx)T.
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4.3 Estimating Equations

4.3.1 Estimating equations under the true model

Let θ = (βT,αT)T be a vector of all response parameters. Let U1i(θ;Yi,Xi,Zi) =

D1iV
−1
1i (Yi−µi), where D1i = ∂µT

i /∂β, V1i = B
1/2
1i R1iB

1/2
1i , B1i = diag{µi11(1−µi11),

µi12(1−µi12), . . . , µimiK(1−µimiK)}, R1i is the correlation matrix of Yi and involves

both β and α. Let U2i(θ;Yi,Xi,Zi) = D2iV
−1
2i (Ci − ξi), where D2i = ∂ξT

i /∂α, and

V2i is a working covariance matrix for Ci. To avoid specifying third and higher-order

moments, a block diagonal working matrix is often used for V2i. Specifically, the

entries in the diagonal block matrices in V2i involving only the jth and j′th time

points are given by

cov(Ci;jk;j′k′, Ci;jl;j′l′) =

{
µi;jk;j′k′(1 − µi;jk;j′k′), for (j, k; j′, k′) = (j, l; j′, l′),

−µi;jk;j′k′µi;jl;j′l′, for (j, k; j′, k′) 6= (j, l; j′, l′).

In the absence of misclassifications, the original set of estimating equations for

response parameters is given by

n∑

i=1



 U1i(θ;Yi,Xi,Zi)

U2i(θ;Yi,Xi,Zi)



 = 0. (4.5)

Iterative estimation procedure such as Fisher’s scoring algorithm can be used. Let

M1i(θ) = −D1iV
−1
1i DT

1i, and M2i(θ) = −D2iV
−1
2i DT

2i. Given an initial estimate θ(0),

we iteratively update the estimate of θ by

θ(t+1) = θ(t) +




{
−
∑n

i=1 M1i(θ
(t))
}−1 ·

{∑n
i=1 U1i(θ

(t))
}

{
−∑n

i=1 M2i(θ
(t))
}−1 ·

{∑n
i=1 U2i(θ

(t))
}



 , t = 0, 1, . . .

until convergence.
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4.3.2 Estimating equations in the presence of covariate mis-

classification alone

In this subsection, we consider the case where Xij’s are subject to misclassification,

and Yij ’s are correctly observed.

Akazawa et. al (1998) proposed a method to construct an unbiased surrogate for

the vector Xij from observed surrogate Wij. Define a Kx ×Kx matrix

G∗
ij = (πij1 − πij0, . . . ,πijKx − πij0),

and define

X∗
ij = (X∗

ij1, . . . , X
∗
ijKx)T = G∗−1

ij (Wij − πij0).

One can verify that E[X∗
ij |Xi,Zi] = Xij. Let X∗

ij0 = 1 −
∑Kx

q=1X
∗
ijq.

Denote by eq the Kx-dimensional vector whose rth component is 1 if r = q and

0 otherwise, q = 1, . . . , Kx. Let e0 = 0 be a vector of all zeros. In Section 4.8.1 we

generalize the result of Akazawa et. al (1998) to cases of an arbitrary vector of real-

valued functions. By applying these results, we can obtain an unbiased surrogates for

U1i(θ;Yi,Xi,Zi) and U2i(θ;Yi,Xi,Zi) from observed (Yi,Wi,Zi), which are given

by

U∗
1i(θ,ϕ;Yi,Wi,Zi) =

Kx∑

qmi
=0

. . .

Kx∑

q1=0

U1i(θ;Yi, (e
T
q1
, . . . , eT

qmi
)T,Zi)

mi∏

j=1

X∗
ijqj
,

U∗
2i(θ,ϕ;Yi,Wi,Zi) =

Kx∑

qmi
=0

. . .

Kx∑

q1=0

U2i(θ;Yi, (e
T
q1
, . . . , eT

qmi
)T,Zi)

mi∏

j=1

X∗
ijqj
.

Here the quantity
∏mi

j=1X
∗
ijqj

plays the role of weight for each of the (Kx + 1)mi

possibilities of the underlying true Xi.
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4.3.3 Estimating equations in the presence of response and

covariate misclassifications

When the response variable is also subject to misclassification, an unbiased surrogate

for the vector Yij can be constructed using similar techniques. Define

P∗
ij = (τij1 − τij0, . . . , τijK − τij0),

and define

Y∗
ij = (Y ∗

ij1, . . . , Y
∗
ijK)T = P∗−1

ij (Sij − τij0).

Then E
[
Y∗

ij|Yi,Xi,Zi

]
= Yij. Let Y∗

i = (Y∗T
i1 , . . . , Y∗T

imi
)T. Let η = (γT,ϕT)T

denote a vector of all nuisance parameters. Therefore, unbiased estimating functions

are given by

U∗∗
1i (θ,η;Si,Wi,Zi)

= U∗
1i(θ,ϕ;Y∗

i ,Wi,Zi)

=

Kx∑

qmi
=0

. . .

Kx∑

q1=0

U1i(θ;Y
∗
i , (e

T
q1
, . . . , eT

qmi
)T,Zi)

mi∏

j=1

X∗
ijqj
, (4.6)

U∗∗
2i (θ,η;Si,Wi,Zi)

= U∗
2i(θ,ϕ;Y∗

i ,Wi,Zi)

=

Kx∑

qmi
=0

. . .

Kx∑

q1=0

U2i(θ;Y
∗
i , (e

T
q1
, . . . , eT

qmi
)T,Zi)

mi∏

j=1

X∗
ijqj
. (4.7)

With some algebra one can verify that E [U∗∗
1i (θ,η; Si,Wi, Zi)|Yi, Xi,Zi] = U1i(θ;Yi,

Xi,Zi) and E [U∗∗
2i (θ,η; Si,Wi, Zi)|Yi, Xi,Zi] = U2i(θ; Yi,Xi,Zi).
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4.4 Inference Method with Validation Subsample

Available

4.4.1 Estimating equations for η

Equations (4.6) and (4.7) are constructed treating nuisance parameters η as known.

In practice, however, η is often unknown. Instead, a validation subsample may be

available (Carroll et al., 2006). Let δij = 1 if the jth observation for subject i

is included in the validation subsample, and δij = 0 otherwise. In current stage

of methodology development, we assume that both the true measurements of the

response and the covariates are obtained for the jth observation if δij = 1. In reality,

however, selecting a validation subsample for true response measurements may be

independent of that for covariates, for which we need two sets of validation indicators.

Our proposed methods can be easily extended to accommodate this situation.

It is often assumed that E[Sij |Yi,Xi,Zi] = E[Sij |Yij,Xij,Zij ] (Pepe and Ander-

son, 1994). Therefore, we use notation τij(Yij) = E[Sij |Yi,Xi,Zi] to express the

dependence of Sij on Yij . Under the assumption of independence between response

misclassifications, the estimating function of γ contributed by subject i is given by

Qγi(γ) =

mi∑

j=1

DγijV
−1
γij {Sij − τij(Yij)} δij ,

where Dγij = ∂τT
ij (Yij)/∂γ, and Vγij is the covariance matrix of Sij conditional on

Yij.

Similarly, assumption E[Wij |Xi,Zi] = E[Wij |Xij,Zij ] is often made. Let πij(Xij) =

E[Wij |Xi,Zi]. Under the assumption of independence between misclassifications, the

estimating function of ϕ contributed by subject i is given by

Qϕi(ϕ) =

mi∑

j=1

DϕijV
−1
ϕij {Wij − πij(Xij)} δij ,

where Dϕij = ∂πT
ij(Xij)/∂ϕ, and Vϕij is the covariance matrix of Wij conditional
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on Xij.

4.4.2 Estimating equations for θ

The validation subsample can also be incorporated into the estimating functions to

improve the efficiencies of the estimators for θ. Let Ỹij = (Ỹij1, . . . , ỸijK)T, where

Ỹijk = Yijk if δij = 1, and Ỹijk = Y ∗
ijk otherwise. Let C̃i;jk;j′k′ = ỸijkỸij′k′ for j 6= j′.

Similarly, let X̃ij = (X̃ij1, . . . , X̃ijKx)T, where X̃ijq = Xijq if δij = 1, and X̃ijq = X∗
ijq

otherwise.

By incorporating the validation data in subject i, the improved estimating func-

tions are given by

Ũ1i(θ,η; Ỹi, X̃i,Zi) =

Kx∑

qmi
=0

. . .

Kx∑

q1=0

U1i(θ; Ỹi, (e
T
q1
, . . . , eT

qmi
)T,Zi)

mi∏

j=1

X̃ijqj
,

Ũ2i(θ,η; Ỹi, X̃i,Zi) =
Kx∑

qmi
=0

. . .
Kx∑

q1=0

U2i(θ; Ỹi, (e
T
q1
, . . . , eT

qmi
)T,Zi)

mi∏

j=1

X̃ijqj
.

Therefore, a more efficient estimate of θ can be obtained by solving estimating equa-

tions

n∑

i=1



 Ũ1i(θ,η; Ỹi, X̃i,Zi)

Ũ2i(θ,η; Ỹi, X̃i,Zi)



 = 0. (4.8)

4.4.3 Estimation and asymptotic distribution

We use a two-stage estimation procedure for the parameters.

Stage 1. Estimate all parameters associated with the misclassification processes.

Specifically, solve

n∑

i=1



 Qγi(γ)

Qϕi(ϕ)



 = 0,
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and obtain estimates γ̂ and ϕ̂. Under the independence assumption for misclassifica-

tion processes, this is equivalent to fitting generalized logit models to the validation

data, in which misclassification events are now treated as “responses”.

Stage 2. Replace γ and ϕ with their estimates, and solve (4.8) via the Fisher

scoring algorithm. Given an initial value θ(0), we iteratively update θ by

θ(t+1) = θ(t) −





{∑n
i=1 M̃1i(θ

(t), η̂)
}−1

·
{∑n

i=1 Ũ1i(θ
(t), η̂)

}

{∑n
i=1 M̃2i(θ

(t), η̂)
}−1

·
{∑n

i=1 Ũ2i(θ
(t), η̂)

}



 , t = 0, 1, . . .

where

M̃1i(θ,η) =
Kx∑

qmi
=0

. . .
Kx∑

q1=0

M1i(θ; Ỹi, (e
T
q1
, . . . , eT

qmi
)T,Zi)

mi∏

j=1

X̃ijqj
,

M̃2i(θ,η) =
Kx∑

qmi
=0

. . .
Kx∑

q1=0

M2i(θ; Ỹi, (e
T
q1
, . . . , eT

qmi
)T,Zi)

mi∏

j=1

X̃ijqj
.

Let θ̂ = (β̂T, α̂T)T denote the estimate of θ at convergence.

We conclude this section with the asymptotic distribution of θ̂ which accounts for

extra uncertainty induced by the estimation of η. Let Ũi(θ,η) =
(
ŨT

1i(θ,η), ŨT
2i(θ,η)

)T

,

and Qi(η) =
(
QT

γi(γ),QT
ϕi(ϕ)

)T
. By first-order Taylor series approximation, we have

n1/2



 θ̂ − θ
η̂ − η



 = −



 E
[
∂Ũi(θ,η)/∂θT

]
E
[
∂Ũi(θ,η)/∂ηT

]

0 E
[
∂Qi(η)/∂ηT

]




−1

· n−1/2




∑n

i=1 Ũi(θ,η)
∑n

i=1 Qi(η)



+ op(1)
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With some algebra, we obtain

n1/2(θ̂ − θ) = −n−1/2
{

E
[
∂Ũi(θ,η)/∂θT

]}−1

·
{

n∑

i=1

Ũi(θ,η)

− E
[
∂Ũi(θ,η)/∂ηT

]
·
{
E
[
∂Qi(η)/∂ηT

]}−1 ·
n∑

i=1

Qi(η)

}
+ op(1)

= −n−1/2Γ̃−1(θ,η) ·
n∑

i=1

Ωi(θ,η) + op(1),

where Ωi(θ,η) = Ũi(θ,η) − E[∂Ũi(θ,η)/∂ηT] ·
{
E
[
∂Qi(η)/∂ηT

]}−1 · Qi(η), and

Γ̃(θ,η) = E
[
∂Ũi(θ,η)/∂θT

]
. Therefore, Ũ(θ, η̂) and n1/2(θ̂−θ) are asymptotically

normally distributed with mean 0 and asymptotic covariance matrices given by Σ̃

and Γ̃−1Σ̃
[
Γ̃−1

]T
, respectively, where Σ̃ = E

[
Ωi(θ,η)ΩT

i (θ,η)
]
.

Let

M̃i(θ,η) =



 M̃1i(θ,η) 0

M̃21i(θ,η) M̃2i(θ,η)



 ,

where

M̃21i(θ,η) =
Kx∑

qmi
=0

. . .
Kx∑

q1=0

M21i(θ; Ỹi, (e
T
q1
, . . . , eT

qmi
)T,Zi)

mi∏

j=1

X̃ijqj
,

and M21i(θ;Yi,Xi,Zi) = −D2iV
−1
2i

(
∂ξi/∂β

T
)
. As n → ∞, the matrix Γ̃ can be

consistently estimated by

Γ̂ = n−1

n∑

i=1

M̃i(θ̂, η̂).

Let

Ji(η) =



 Jγi(γ) 0

0 Jϕi(ϕ)



 ,
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where Jγi(γ) = −
∑mi

j=1 DγijV
−1
γij

(
∂τij/∂γ

T
)
δij , and Jϕi(η) = −

∑mi

j=1 DϕijV
−1
ϕij·(

∂πij/∂ϕ
T
)
δij. Define

Λ̃ϕi(θ,η) =

Kx∑

qmi
=0

. . .

Kx∑

q1=0

Ui(θ; Ỹi, (e
T
q1
, . . . , eT

qmi
)T,Zi)

(

∂

mi∏

j=1

X̃ijqj
/∂ϕT

)

,

where ∂
∏mi

j=1 X̃ijqj
/∂ϕT is given in Section 4.8.2. Also define

Λ̃γi(θ,η) =
Kx∑

qmi
=0

. . .
Kx∑

q1=0

Λγi(θ,η; Ỹi, (e
T
q1
, . . . , eT

qmi
)T,Zi)

mi∏

j=1

X̃ijqj
,

where

Λγi(θ,η; Ỹi,Xi,Zi) =



 D1iV
−1
1i ∂Ỹi/∂γ

T

D2iV
−1
2i ∂C̃i/∂γ

T



 ,

and ∂Ỹi/∂γ
T and ∂C̃i/∂γ

T are given in Section 4.8.3. As n→ ∞, E[∂Ũi(θ,η)/∂ηT]

and E
[
∂Qi(η)/∂ηT

]
can be consistently estimated by

Λ̃(θ̂, η̂) = n−1
n∑

i=1

(
Λ̃γi(θ̂, η̂) Λ̃ϕi(θ̂, η̂)

)

and

J(η̂) = n−1

n∑

i=1

Ji(η̂),

respectively. Therefore, the matrix Σ̃ can be consistently estimated by

Σ̂ = n−1

n∑

i=1

Ω̂i(θ̂, η̂)Ω̂T
i (θ̂, η̂),

where Ω̂i(θ̂, η̂) = Ũi(θ̂, η̂) − Λ̃(θ̂, η̂)J−1(η̂)Qi(η̂). A consistent estimator for the

asymptotic covariance matrix of θ̂ is given by n−1Γ̂−1Σ̂
[
Γ̂−1

]T
.
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4.5 Simulation

4.5.1 Design of simulations

We conduct simulation studies to investigate the performance of the proposed method

under different settings. We consider a longitudinal study in which three visits are

planned for n patients, with the sample size n = 1000 for both cases with known

and unknown η. Half of the cohort is randomly assigned to the treatment group,

while the other half is assigned to the placebo group. A 3-level categorical covariate

Xij , which takes value at 0,1, and 2 with proportions 0.5, 0.3, and 0.2, is generated

for each patient at each visit independently. The kth logit model (k = 1, 2) for the

response Yij are given by

logit λijk = β0k + β1Xij1 + β2Xij2 + β3Zij1 + β4Zij2 + β5Zij3, k = 1, 2,

where Xij1 is 1 if Xij = 1 and 0 otherwise, Xij2 is 1 if Xij = 2 and 0 otherwise, Zij1

is 1 if subject i is assigned to the treatment group and 0 otherwise, Zij2 is 1 for visit

#2 and 0 otherwise, and Zij3 is 1 for visit #3 and 0 otherwise. The mean parameters

are given by β01 = log(2), β02 = log(1/2), β1 = log(2), β2 = log(3), β3 = log(1/2),

and β4 = log(3/4), and β5 = log(1/2). Therefore, higher levels of Xij are associated

with increased probabilities of higher response levels, and the treatment has a positive

effect on lowering response levels compared to the placebo. We consider two models

for the second-order association structure:

(M1) A common global odds ratio is assumed for all pairs of responses, i.e.,

logψi;jk;j′k′ = φ, k, k′ = 1, 2, (4.9)

where the single intercept is specified as φ = log(3).

(M2) Global odds ratio is dependent of the response levels, i.e.,

logψi;jk;j′k′ = φ+ φ2 · I(k = 2) + φ2 · I(k′ = 2)

+ φ22 · I(k = 2, k′ = 2), (4.10)
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where the association parameters are specified as φ = log(3), φ2 = log(2/3),

and φ22 = 2 log(3/2).

We generate the surrogate response Sij under generalized logit models conditional

on Yij = k, which are given by

log

(
τijk,l

τijk,0

)
= γkl, l = 1, 2.

Similarly, the surrogate categorical covariateWij is generated by, conditional onXij =

q,

log

(
πijq,r

πijq,0

)
= ϕqr, r = 1, 2.

Three scenarios for the misclassification parameters are considered:

(i) γ01 = log(0.04/0.95), γ02 = log(0.01/0.95), γ11 = log(0.95/0.03), γ12 =

log(0.02/0.03), γ21 = log(0.04/0.01), γ22 = log(0.95/0.01);

ϕ01 = log(0.04/0.95), ϕ02 = log(0.01/0.95), ϕ11 = log(0.95/0.03), ϕ12 =

log(0.02/0.03), ϕ21 = log(0.04/0.01), and ϕ22 = log(0.95/0.01);

(ii) γ01 = log(0.08/0.90), γ02 = log(0.02/0.90), γ11 = log(0.90/0.06), γ12 =

log(0.04/0.06), γ21 = log(0.08/0.02), γ22 = log(0.90/0.02);

ϕ01 = log(0.08/0.90), ϕ02 = log(0.02/0.90), ϕ11 = log(0.90/0.06), ϕ12 =

log(0.04/0.06), ϕ21 = log(0.08/0.02), and ϕ22 = log(0.90/0.02);

(iii) γ01 = log(0.15/0.80), γ02 = log(0.05/0.80), γ11 = log(0.80/0.15), γ12 =

log(0.05/0.15), γ21 = log(0.15/0.05), γ22 = log(0.80/0.05);

ϕ01 = log(0.15/0.80), ϕ02 = log(0.05/0.80), ϕ11 = log(0.80/0.15), ϕ12 =

log(0.05/0.15), ϕ21 = log(0.15/0.05), and ϕ22 = log(0.80/0.05).

In scenario (i), the misclassification rate is about 5% for all categories of both the

response variable and the covariate. The overall misclassification rate is increased

to 10% and 20% in scenarios (ii) and (iii), respectively. The probability of a mis-

classification between non-adjacent categories is smaller than that for an adjacent
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misclassification. For example, an observation in category 0 has probabilities 0.15

and 0.05 of being recorded as category 1 and 2 in scenario (iii), respectively.

For the case of unknown η, 30% of the observations are randomly selected into a

validation subsample, in which the true categories for both the response variable and

the covariate are obtained. A total of 2000 simulation runs are carried out for each

single parameter configuration in each of the three scenarios.

4.5.2 Results of simulations

We present the results from the naive analysis, the proposed method with both known

and unknown η. Table 4.1 shows the results for simulation under setting M1. The

four columns under each approach are the percent relative bias (%RB), empirical

variance (EV), average of model-based variance (AMV), and coverage rate of the

95% confidence intervals (CP). One can see that the biases in the estimates from

the naive approach are non-ignorable even under low misclassification rates. As the

misclassification rates increase, the biases increase and the coverage rates decrease.

The proposed method performs very well in reducing bias in the estimates of both

mean and association parameters, and the coverage rates are close to the nominal

value of 95%. As the misclassification rates increase, the variance associated with each

estimator also increases. Similar patterns are observed for cases where η is unknown

and is estimated from a validation subsample. We do not report in the table the

estimates of the misclassification parameters due to the size of the table. The biases

in the estimates of γ and ϕ are ignorable for scenarios (ii) and (iii) but not scenario

(i). The biases in the estimates of θ for scenario (i) with low misclassification rates are

a bit larger than those for scenarios (ii) and (iii), because some rare misclassification

events (e.g., misclassification from the highest level to the lowest level, or vise versa)

may not be present in the validation subsample. The convergence rate of the algorithm

for scenario (i) is about 1860/2000, while those for scenarios (ii) and (iii) are about

1995/2000.

Table 4.2 shows the results for simulation under setting M2 with association struc-

ture given by (4.10). The estimates from the naive approach are all downward biased,
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particularly in β1 and β2 for the effects of the misclassified covariate as well as the

association parameters. For the case of known η, the proposed method performs

well in correcting the induced biases by misclassification. We also observe that the

associated variances increase as the misclassification rates increase. For the case of

unknown η, results are similar to those in Table 4.1. The biases are slightly larger

for scenario (i). The proposed method performs reasonably well for scenarios (ii) and

(iii) in terms of consistency. The variance estimators for the estimates of association

parameters in scenario (iii) are upward biased, which leads to coverage rates slightly

above the nominal value of 95%.

4.6 Application

4.6.1 Framingham Heart Study

We apply the proposed method to a data set containing n = 1615 male subjects aged

31-65 from the Framingham Heart Study (e.g., Carroll et al., 2006, p. 112). The

cohort has been followed for morbidity and mortality, and participants have contin-

ued to return to the study every two years for a detailed medical history, physical

examination, and laboratory tests. The data set includes exams #2 and #3. Our

clinical interest is to study the relationship between blood pressure levels and its risk

factors, as well as to understand the trend of the influence of the risk factors over

time. In this example, the high blood pressure(HBP) status for subject i at time j

(i = 1, . . . , n, j = 1 for exam #2 and j = 2 for exam #3), is an ordinal variable

with three levels: non-HBP, HBP Stage 1, and HBP Stage 2, which correspond to

systolic pressure < 140 mmHg, 140 − 159 mmHg, and ≥ 160 mmHg, respectively.

Potential set of risk factors included in this study are serum cholesterol level (see,

e.g., Ferrara et al., 2002), age, and smoking status. We consider cholesterol level as a

categorical variable that can be normal, border-line, and hypercholesterolemia, which

correspond to cholesterol measurement < 200 mg/dL, 200 − 239 mg/dL, and ≥ 240

mg/dL, respectively (e.g., Grundy, 2000; Natarajan et al., 2002). The proportional
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Table 4.1: Simulation results for Model 1 (2000 simulations)

Naive method Proposed method

known η unknown η

%RB EV AMV CP %RB EV AMV CP %RB EV AMV CP

scenario (i): 5% misclassification rate

β01 4.14 0.006 0.007 0.943 0.19 0.007 0.008 0.956 -0.59 0.008 0.008 0.945
β02 1.99 0.006 0.007 0.958 0.18 0.007 0.008 0.960 1.38 0.008 0.008 0.952
β1 -13.20 0.006 0.006 0.764 -0.01 0.008 0.008 0.950 -5.74 0.020 0.013 0.932
β2 -11.11 0.008 0.008 0.698 -0.01 0.011 0.010 0.948 1.58 0.015 0.010 0.921
β3 -6.75 0.008 0.007 0.908 -0.18 0.009 0.008 0.946 0.26 0.009 0.008 0.945
β4 -5.82 0.005 0.005 0.944 0.73 0.006 0.006 0.946 1.42 0.006 0.006 0.951
β5 -6.49 0.005 0.005 0.912 0.20 0.006 0.006 0.954 0.65 0.006 0.006 0.957
φ -13.07 0.010 0.010 0.672 0.20 0.014 0.015 0.956 1.10 0.016 0.016 0.957

scenario (ii): 10% misclassification rate

β01 8.15 0.007 0.007 0.898 0.20 0.009 0.009 0.958 -0.12 0.009 0.010 0.966
β02 4.19 0.006 0.007 0.942 0.40 0.009 0.009 0.958 0.68 0.010 0.010 0.958
β1 -25.01 0.005 0.006 0.363 0.20 0.011 0.011 0.960 -0.73 0.012 0.011 0.957
β2 -21.11 0.008 0.008 0.260 0.46 0.014 0.013 0.944 0.38 0.013 0.012 0.942
β3 -12.71 0.007 0.007 0.812 0.23 0.009 0.009 0.954 0.16 0.009 0.009 0.947
β4 -12.28 0.005 0.005 0.922 0.50 0.007 0.007 0.954 0.47 0.006 0.007 0.953
β5 -12.72 0.005 0.006 0.788 0.42 0.007 0.007 0.959 0.35 0.006 0.007 0.963
φ -24.69 0.009 0.009 0.188 0.52 0.022 0.022 0.948 0.61 0.020 0.022 0.959

scenario (iii): 20% misclassification rate

β01 9.54 0.007 0.007 0.868 0.34 0.015 0.015 0.953 0.47 0.015 0.016 0.961
β02 11.15 0.006 0.007 0.850 0.25 0.015 0.015 0.951 0.61 0.015 0.016 0.966
β1 -48.17 0.006 0.006 0.004 0.68 0.030 0.029 0.942 1.07 0.025 0.023 0.939
β2 -43.22 0.008 0.008 0.001 0.26 0.027 0.027 0.954 0.68 0.023 0.023 0.958
β3 -26.32 0.006 0.006 0.372 0.42 0.012 0.012 0.952 0.52 0.011 0.011 0.956
β4 -25.19 0.006 0.006 0.850 1.32 0.011 0.011 0.948 1.49 0.009 0.010 0.950
β5 -26.58 0.006 0.006 0.319 0.42 0.011 0.012 0.948 0.62 0.010 0.011 0.954
φ -45.03 0.008 0.008 0.001 1.19 0.054 0.052 0.942 0.90 0.040 0.048 0.964
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Table 4.2: Simulation results for Model 2 (2000 simulations)

Naive method Proposed method

known η unknown η

%RB EV AMV CP %RB EV AMV CP %RB EV AMV CP

scenario (i): 5% misclassification rate

β01 4.22 0.007 0.007 0.926 0.26 0.008 0.008 0.942 -0.50 0.009 0.008 0.944
β02 1.93 0.007 0.007 0.944 0.16 0.008 0.008 0.945 1.46 0.010 0.008 0.937
β1 -12.92 0.006 0.006 0.766 0.35 0.008 0.008 0.950 -5.65 0.021 0.013 0.932
β2 -10.78 0.008 0.008 0.726 0.36 0.010 0.010 0.948 1.96 0.014 0.011 0.940
β3 -6.06 0.007 0.007 0.912 0.56 0.008 0.008 0.944 0.72 0.008 0.008 0.946
β4 -6.56 0.006 0.005 0.935 -0.07 0.006 0.006 0.942 0.77 0.006 0.006 0.945
β5 -6.50 0.006 0.006 0.901 0.22 0.007 0.007 0.948 0.57 0.006 0.007 0.959
φ -15.62 0.011 0.011 0.629 0.01 0.018 0.018 0.950 0.90 0.021 0.024 0.958
φ2 -23.08 0.007 0.007 0.816 -0.24 0.011 0.012 0.952 0.73 0.011 0.014 0.960
φ22 -20.44 0.013 0.013 0.682 -0.28 0.020 0.020 0.945 1.06 0.020 0.023 0.961

scenario (ii): 10% misclassification rate

β01 8.57 0.007 0.007 0.893 0.67 0.009 0.009 0.948 0.47 0.009 0.010 0.951
β02 3.98 0.007 0.007 0.938 0.22 0.010 0.009 0.944 0.37 0.010 0.010 0.942
β1 -24.74 0.006 0.006 0.384 0.61 0.012 0.012 0.952 -0.18 0.013 0.011 0.948
β2 -21.00 0.008 0.008 0.266 0.61 0.013 0.014 0.958 0.67 0.012 0.012 0.956
β3 -12.21 0.007 0.007 0.802 0.82 0.009 0.009 0.942 0.80 0.009 0.008 0.943
β4 -12.49 0.005 0.006 0.930 0.30 0.007 0.007 0.952 0.08 0.007 0.007 0.953
β5 -12.49 0.006 0.006 0.779 0.74 0.008 0.008 0.950 0.51 0.007 0.007 0.956
φ -28.82 0.011 0.010 0.134 0.35 0.026 0.025 0.948 0.29 0.023 0.025 0.957
φ2 -41.04 0.007 0.007 0.481 0.77 0.018 0.018 0.944 0.53 0.015 0.017 0.961
φ22 -36.65 0.013 0.012 0.258 0.48 0.031 0.030 0.943 0.35 0.026 0.030 0.966

scenario (iii): 20% misclassification rate

β01 9.34 0.007 0.007 0.875 0.34 0.015 0.015 0.950 0.86 0.015 0.016 0.970
β02 11.68 0.007 0.007 0.832 0.81 0.015 0.015 0.946 0.12 0.015 0.016 0.962
β1 -47.59 0.006 0.006 0.009 1.03 0.030 0.029 0.951 0.76 0.024 0.023 0.948
β2 -42.39 0.008 0.008 0.002 1.21 0.027 0.027 0.951 0.94 0.023 0.023 0.950
β3 -26.13 0.006 0.006 0.350 0.78 0.012 0.012 0.946 0.95 0.011 0.011 0.950
β4 -25.70 0.006 0.006 0.838 0.41 0.012 0.011 0.949 0.66 0.010 0.010 0.956
β5 -26.48 0.006 0.006 0.348 0.70 0.013 0.012 0.939 0.86 0.011 0.011 0.953
φ -53.34 0.008 0.009 0.000 1.69 0.074 0.069 0.950 1.72 0.053 0.067 0.971
φ2 -72.70 0.007 0.006 0.044 0.35 0.053 0.048 0.944 1.27 0.039 0.050 0.973
φ22 -59.97 0.011 0.011 0.004 0.44 0.076 0.075 0.948 1.49 0.057 0.080 0.978
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odds models for the cumulative probabilities of the ordinal response are given by

logit λijk = β0k + β1xij1 + β2xij2 + β3xij3 + β4xij4 + β5xij5,

i = 1, . . . , n, j = 1, 2, k = 1, 2,

where xij1 is 1 if the cholesterol level for subject i at time j is border-line high and

0 otherwise, xij2 is 1 if the cholesterol level is high and 0 otherwise, xij3 is the age,

xij4 is 1 if the subject is a smoker and 0 otherwise, and xij5 is 1 for exam #3 and 0

otherwise. We consider two association models given by (4.9) and (4.10).

Two measurements of systolic blood pressure by different examiners were obtained

at each of the two exams. Because systolic blood pressure changes over time, a sin-

gle measurement does not reflect the patient’s long-time average of systolic blood

pressure, which is usually regarded as the true measurement. Therefore, misclas-

sification may be present in the HBP variable obtained from categorizing a single

SBP measurement. Similarly, the observed cholesterol categories may also contain

misclassifications, as the cholesterol serum measurements are subject to error. Since

the data set does not contain a validation subsample, we conduct sensitivity analysis

by assuming different misclassification rates described in scenarios (i) and (ii) in the

Section 4.5.1.

Table 4.3 reports the results under the model with association structure given

by (4.9). The proposed method is compared to the naive approach which ignores

error in the SBP measurements. We report three analyses: the first one uses the first

replicates in the exams, the second one uses the second replicates, and in the third one,

the response category is obtained from the average of the two SBP replicates. One

can see that the trend of the covariate effects is similar for both the naive approach

and the proposed method. The estimates of mean and association parameters are

boosted after accounting for misclassification, and the increments are getting larger

as higher misclassification rates are assumed. This is consistent with the findings in

the simulation studies in previous section. Note that the p-values from hypotheses

testing for significant cholesterol effects (i.e., β1 and β2) are getting larger, since the

standard errors are getting larger after accounting for misclassifications with higher
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rates.

Table 4.4 displays the results under the model with association structure given by

(4.10). The patterns of the parameter estimates and their associated standard errors

for the naive analysis and the proposed method are similar to those in Table 4.3. The

association parameters φ2 and φ22, however, are not statistically significant at the

5% level in most cases. This suggests that a single global odds ratio is sufficient to

describe the dependence of the response levels in the two exams.

4.7 Discussion

In this chapter we have proposed a marginal method for analysis of longitudinal or

clustered ordinal data with response and covariate misclassifications. We constructed

unbiased estimating functions of both the mean and the association parameters. The

estimation bias induced by misclassifications can be reduced by solving these estimat-

ing equations.

The proposed method yields consistent estimators for the response parameters

given the true misclassification parameters. Our simulation studies illustrate good

performance of the proposed method under a variety of parameter configurations.

For cases where misclassification parameters are unknown and a validation subsam-

ple is available, a two-stage estimation procedure is proposed. When the validation

subsample is small and misclassification rate is low, estimates of the nuisance pa-

rameters associated with the misclassification process may have very large variation.

Without validation data or replicate measures, one may conduct sensitivity analysis

and see if the conclusion, e.g., significant effect of a covariate, changes for different

misclassification settings.

Our future research work includes developing methods that can handle situations

where replicates of the misclassified variables are available instead of a validation

subsample. In this case, the two-stage estimation procedure can not be used. Joint

estimation of the misclassification parameters and the response parameters may be
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Table 4.3: Results of naive analysis and sensitivity analysis for Framingham
data under Model 1

1st replicates 2nd replicates averaged replicates

Est. SE p-value Est. SE p-value Est. SE p-value

Naive method

β01 -3.315 0.299 < 0.001 -3.901 0.328 < 0.001 -3.869 0.326 < 0.001
β02 -4.795 0.300 < 0.001 -5.256 0.329 < 0.001 -5.324 0.328 < 0.001
β1 0.004 0.095 0.965 0.169 0.106 0.110 0.123 0.098 0.210
β2 0.271 0.105 0.010 0.359 0.114 0.002 0.279 0.109 0.010
β3 0.054 0.006 < 0.001 0.060 0.006 < 0.001 0.061 0.006 < 0.001
β4 -0.139 0.115 0.228 -0.208 0.122 0.089 -0.236 0.122 0.052
β5 -0.117 0.051 0.021 -0.109 0.053 0.038 -0.053 0.050 0.286
φ 2.670 0.162 < 0.001 2.717 0.170 < 0.001 2.991 0.174 < 0.001

Proposed method

scenario (i): 5% misclassification rate
β01 -3.827 0.361 < 0.001 -4.697 0.422 < 0.001 -4.637 0.416 < 0.001
β02 -5.253 0.362 < 0.001 -5.968 0.422 < 0.001 -6.026 0.418 < 0.001
β1 -0.019 0.133 0.888 0.232 0.159 0.144 0.168 0.145 0.245
β2 0.331 0.145 0.022 0.470 0.169 0.005 0.375 0.160 0.019
β3 0.061 0.007 < 0.001 0.071 0.008 < 0.001 0.072 0.007 < 0.001
β4 -0.150 0.132 0.256 -0.241 0.144 0.095 -0.276 0.143 0.053
β5 -0.137 0.058 0.019 -0.124 0.062 0.047 -0.062 0.059 0.289
φ 3.303 0.240 < 0.001 3.454 0.266 < 0.001 3.786 0.273 < 0.001

scenario (ii): 10% misclassification rate

β01 -4.586 0.477 < 0.001 -6.116 0.646 < 0.001 -5.980 0.622 < 0.001
β02 -5.930 0.478 < 0.001 -7.251 0.642 < 0.001 -7.263 0.621 < 0.001
β1 -0.046 0.214 0.828 0.371 0.289 0.200 0.276 0.256 0.281
β2 0.456 0.239 0.056 0.692 0.314 0.027 0.579 0.293 0.048
β3 0.072 0.008 < 0.001 0.092 0.011 < 0.001 0.093 0.011 < 0.001
β4 -0.163 0.157 0.300 -0.298 0.183 0.103 -0.344 0.178 0.054
β5 -0.167 0.070 0.016 -0.136 0.077 0.078 -0.075 0.072 0.301
φ 4.113 0.425 < 0.001 4.533 0.542 < 0.001 4.910 0.557 < 0.001

116



Table 4.4: Results of naive analysis and sensitivity analysis for Framingham
data under Model 2

1st replicates 2nd replicates averaged replicates

Est. SE p-value Est. SE p-value Est. SE p-value

Naive method

β01 -3.288 0.298 < 0.001 -3.851 0.326 < 0.001 -3.828 0.326 < 0.001
β02 -4.766 0.300 < 0.001 -5.204 0.326 < 0.001 -5.280 0.327 < 0.001
β1 0.030 0.094 0.747 0.177 0.105 0.091 0.132 0.097 0.172
β2 0.298 0.104 0.004 0.374 0.113 0.001 0.293 0.108 0.007
β3 0.052 0.006 < 0.001 0.059 0.006 < 0.001 0.060 0.006 < 0.001
β4 -0.131 0.115 0.251 -0.202 0.122 0.097 -0.231 0.121 0.056
β5 -0.108 0.050 0.030 -0.113 0.052 0.029 -0.050 0.049 0.311
φ 2.167 0.135 < 0.001 2.353 0.145 < 0.001 2.578 0.150 < 0.001
φ2 0.397 0.186 0.032 0.417 0.194 0.032 0.445 0.238 0.061
φ22 0.097 0.279 0.728 -0.086 0.289 0.767 -0.095 0.378 0.802

Proposed method

scenario (i): 5% misclassification rate

β01 -3.816 0.361 < 0.001 -4.673 0.421 < 0.001 -4.601 0.416 < 0.001
β02 -5.239 0.362 < 0.001 -5.943 0.421 < 0.001 -5.990 0.418 < 0.001
β1 0.011 0.129 0.929 0.238 0.157 0.129 0.172 0.143 0.229
β2 0.358 0.141 0.011 0.478 0.167 0.004 0.379 0.159 0.017
β3 0.060 0.007 < 0.001 0.071 0.008 < 0.001 0.071 0.007 < 0.001
β4 -0.145 0.132 0.271 -0.238 0.144 0.099 -0.273 0.143 0.055
β5 -0.127 0.057 0.027 -0.126 0.062 0.042 -0.058 0.058 0.314
φ 2.834 0.211 < 0.001 3.268 0.256 < 0.001 3.621 0.279 < 0.001
φ2 0.328 0.340 0.334 0.250 0.385 0.516 0.494 0.668 0.460
φ22 0.052 0.522 0.920 -0.154 0.602 0.798 -0.582 1.172 0.619

scenario (ii): 10% misclassification rate

β01 -4.607 0.478 < 0.001 -6.054 0.648 < 0.001 -5.922 0.628 < 0.001
β02 -5.951 0.478 < 0.001 -7.194 0.644 < 0.001 -7.219 0.627 < 0.001
β1 -0.048 0.215 0.822 0.279 0.317 0.378 0.207 0.290 0.475
β2 0.461 0.237 0.052 0.595 0.349 0.089 0.517 0.339 0.127
β3 0.073 0.008 < 0.001 0.093 0.011 < 0.001 0.093 0.011 < 0.001
β4 -0.165 0.157 0.294 -0.302 0.182 0.098 -0.367 0.179 0.040
β5 -0.174 0.070 0.014 -0.129 0.082 0.115 -0.092 0.078 0.240
φ 4.084 0.492 < 0.001 5.736 1.232 < 0.001 6.689 1.749 < 0.001
φ2 -0.305 0.669 0.648 -0.994 1.191 0.404 0.102 0.756 0.893
φ22 0.516 1.056 0.625 0.474 1.964 0.809 -2.148 0.274 < 0.001
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feasible by simultaneously solving a set of estimating equations. Unlike correlated

binary data with replicates, however, the minimum number of replicates required for

model identifiability remains unclear for longitudinal ordinal data.

4.8 Technical Details

4.8.1 Extension of the results of Akazawa et. al (1998)

Akazawa et. al (1998) proved that, for an arbitrary real-valued function f(Xij), an

unbiased surrogate can be given by f ∗(Wij) =
∑Kx

q=0 f(eq)X
∗
ijq. Here we generalize

the result to multivariate case.

Lemma 1 Let f(Xij) = {f1(Xij), . . . , fp(Xij)}T be an arbitrary p-dimensional

vector of real-valued functions of Xij . Define

f∗(Wij) =
Kx∑

q=0

f(eq)X
∗
ijq.

Then E [f∗(Wij)|Xij] = f(Xij).

Proof The lth component in f∗ is given by f ∗
l (Wij) =

∑Kx

q=0 fl(eq)X
∗
ijq. From

Akazawa et. al (1998), E [f ∗
l (Wij)|Xij] = fl(Xij). Therefore, the result holds.

Theorem 1 Let f(Xi1, . . . ,Ximi
) be a vector of real-valued functions of (XT

i1, . . . ,

XT
imi

)T. Assume that the misclassifications processes for Xi1, . . . ,Ximi
are indepen-

dent of each other. Define

f∗(Wi1, . . . ,Wimi
) =

Kx∑

qmi
=0

. . .

Kx∑

q1=0

f(eq1
, . . . , eqmi

)X∗
i1q1

· · ·X∗
imiqmi

.

Then

E [f∗(Wi1, . . . ,Wimi
)|Xi1, . . . ,Ximi

] = f(Xi1, . . . ,Ximi
). (4.11)
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Proof We first look at the most inner expectation with respect to Wi1 conditional

on Xi1. Under the assumption of independent misclassification, we have

EWi1|Xi1
[f∗(Wi1, . . . ,Wimi

)]

=

Kx∑

qmi
=0

. . .

Kx∑

q2=0

EWi1|Xi1

[
Kx∑

q1=0

f(eq1
, eq2

, . . . , eqmi
)X∗

i1q1

]

X∗
i2q2

· · ·X∗
imiqmi

=
Kx∑

qmi
=0

. . .
Kx∑

q2=0

f(Xi1, eq2
, . . . , eqmi

)X∗
i2q2

· · ·X∗
imiqmi

.

Therefore, the result (4.11) holds after applying all expectations with respect to Wi1,

. . . ,Wimi
conditional on Xi1, . . . ,Ximi

.

4.8.2 Explicit form for ∂Ũi/∂ϕ
T

Note that ϕ is involved in the constructed surrogates X̃ijqj
only. Therefore,

∂Ũi

∂ϕT
=

Kx∑

qmi
=0

. . .
Kx∑

q1=0

Ui(θ; Ỹi, (e
T
q1
, . . . , eT

qmi
)T,Zi)

∂
(∏mi

j=1 X̃ijqj

)

∂ϕT

=
Kx∑

qmi
=0

. . .
Kx∑

q1=0

Ui(θ; Ỹi, (e
T
q1
, . . . , eT

qmi
)T,Zi)

{
mi∑

j=1

(
∏

j′ 6=j

X̃ij′qj′

∂X̃ijqj

∂ϕT

)}
,

where

∂X̃ijqj

∂ϕT
=

{
∂X∗

ijqj
/∂ϕT if δij = 0,

0T if δij = 1,
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For qj 6= 0, the components in ∂X∗
ijqj
/∂ϕT are given by

∂X∗
ijqj

∂ϕqrv

=
∂

∂ϕqrv

{
eT

qj
G∗−1

ij (Wij − πij0)
}

= eT
qj

{(
−G∗−1

ij

) G∗
ij

∂ϕqrv
G∗−1

ij (Wij − πij0) −G∗−1
ij

∂πij0

∂ϕqrv

}
,

q = 0, . . . , Kx, r = 1, . . . , Kx, v = 1, . . . , dim(ϕqr).

Therefore,

∂X∗
ijqj

∂ϕqrv

= − eT
qj
G∗−1

ij

{
G∗

ij

∂ϕqrv

X∗
ij +

∂πij0

∂ϕqrv

}

= − eT
qj
G∗−1

ij

{
X∗

ij1

(
∂πij1

∂ϕqrv
− ∂πij0

∂ϕqrv

)
+ . . .

+X∗
ijKx

(
∂πijKx

∂ϕqrv
− ∂πij0

∂ϕqrv

)
+
∂πij0

∂ϕqrv

}

= − eT
qj
G∗−1

ij

{
Kx∑

q′=1

X∗
ijq′

∂πijq′

∂ϕqrv

+

(
1 −

Kx∑

q′=1

X∗
ijq′

)
∂πij0

∂ϕqrv

}

= − eT
qj
G∗−1

ij

Kx∑

q′=0

X∗
ijq′

∂πijq′

∂ϕqrv

.

However,

∂πijq′

∂ϕqrv

=

{
erπijqr(1 − πijqr)L

x
ijv if q′ = q,

0 if q′ 6= q,
q′, q = 0, . . . , Kx.

Therefore,

∂X∗
ijqj

∂ϕqrv

= − eT
qj
G∗−1

ij erX
∗
ijqπijqr(1 − πijqr)L

x
ijv, q = 0, . . . , Kx,

r = 1, . . . , Kx. (4.12)
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For qj = 0,

∂X∗
ij0

∂ϕqrv

= −
Kx∑

q′=1

∂X∗
ijq′

∂ϕqrv

= 1TG∗−1
ij erπijqr(1 − πijqr)L

x
ijvX

∗
ijq, q = 0, . . . , Kx,

r = 1, . . . , Kx.

4.8.3 Explicit form for ∂Ũi/∂γ
T

Using similar argument, we can derive explicit form for ∂Ũi/∂γ
T. We have

∂Ũi

∂γT
=

Kx∑

qmi
=0

. . .

Kx∑

q1=0

Λγi(θ; Ỹi, (e
T
q1
, . . . , eT

qmi
)T,Zi)

mi∏

j=1

X̃ijqj
,

where

Λγi(θ; Ỹi,Xi,Zi) =

(
D1iV

−1
1i ∂Ỹi/∂γ

T

D2iV
−1
2i ∂C̃i/∂γ

T

)
,

and

∂Ỹijkj

∂γT
=

{
∂Y ∗

ijkj
/∂γT if δij = 0,

0T if δij = 1,
kj = 1, . . . , K.

Similar to (4.12), the elements in ∂Y ∗
ijkj

/∂γT are given by

∂Y ∗
ijkj

∂γklv
= − eT

kj
P∗−1

ij

K∑

k′=0

∂τijk′

∂γklv
Y ∗

ijk′

= − eT
kj
P∗−1

ij elτijkl(1 − τijkl)LklvY
∗
ijk, k = 0, . . . , K,

l = 1, . . . , K, v = 1, . . . , dim(γkl).
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Furthermore, for j 6= j′, we have

∂C̃i;jkj);j′kj′)

∂γT
=

∂Ỹijkj

∂γT
Ỹij′kj′

+
∂Ỹij′kj′

∂γT
Ỹijkj

, kj , kj′ = 1, . . . , K.
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Chapter 5

Regression Analysis of Binary

Data from Complex Survey with

Misclassification in an Ordinal

Covariate

5.1 Introduction

Survey sampling has been a widely used method for collecting data. Auxiliary in-

formation is often collected and used for improving the estimation of population

quantities for particular variables of interest, e.g., using model-calibration estimators

(Wu and Sitter, 2001; Wu, 2003). On the other hand, analytic use of survey data

has become more and more popular. Studying the relationship between a response

variable and auxiliary variables in the target population can be among the primary

objectives of a survey. Measurement error, however, arises frequently in data during

the course of the collection. Many authors have considered correcting bias in the

analysis of contaminated survey data, see, e.g., Ybarra and Lohr (2008) and Gregoire

and Salas (2009) for small area estimation and ratio estimation with measurement

error in auxiliary information.

123



Many variables collected from surveys are categorical and ordinal. These variables

may be subject to misclassifications when the survey is based on self-report. In this

chapter, we consider logistic regression analysis of data from complex surveys with

misclassification in ordinal covariates. This problem arises often in health surveys,

in which the objective is to investigate the association of some binary chronic condi-

tions with categorical exposures that are collected with error. We first formulate the

models for the response process and the misclassification process. We then discuss

estimation and inference methods for the regression coefficients associated with the

risk factors. An expected score approach is proposed for simultaneously accounting

for misclassification and complex survey features. Results from a simulation study are

reported to show the good performance of the proposed method. Finally, we apply

the method to a data set from the Canadian Community Health Survey (CCHS) cycle

3.1.

5.2 Model Formulation

5.2.1 Response model

Different from Chapters 2− 4, in this chapter we focus the discussion on a univariate

binary response variable. The interest of the study is to investigate the effects of

certain risk factors on particular binary outcomes, such as the presence of any heart

disease. Suppose a finite population consists of N individuals. Let Yi denote the

binary response variable for individual i (i = 1, . . . , N) such that Yi = 1 if the

outcome is present and Yi = 0 otherwise. Let Xi be a (K + 1)-level ordinal variable

that takes values at 0, 1, . . . , K and is subject to misclassification. Let Xi0, . . . , XiK

be indicators such that Xik = 1 if Xi = k, and Xik = 0 otherwise. Without loss

of generality, we treat the lowest category as the reference. Therefore, the vector

Xi = (Xi1, . . . , XiK)T is used to represent the original categorical Xi. Let Zi be a

vector of precisely measured covariates, including an intercept and possibly indicator

variables for categorical covariates.

We assume that the finite population is generated from a superpopulation model
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ζ . Let µi = Eζ [Yi|Xi,Zi] be the conditional mean of Yi under the superpopulation

model. A logistic model is given by

logit µi = XT
i βx + ZT

i βz,

where βx and βz are vectors of regression coefficients associated with the effects of Xi

and Zi, respectively. Let β = (βT
x ,β

T
z )T. If data on all N individuals were available,

the population parameter βN is then defined as the maximizer of the finite population

log-likelihood

ℓ(β) =

N∑

i=1

ℓi(β;Yi,Xi,Zi)

=

N∑

i=1

{
Yi log(

µi

1 − µi
) + (1 − Yi) log(1 − µi)

}
.

Furthermore, βN can be viewed as an estimate of the model parameter β. It is

equivalent to solving equations

N∑

i=1

Ui(β;Yi,Xi,Zi) =

N∑

i=1

∂µi

∂β

Yi − µi

Vi
= 0,

where Vi = µi(1 − µi) is the conditional variance of Yi under ζ .

Suppose a sample s consisting of n individuals is drawn from the finite popula-

tion using a complex survey design p. Let di be the survey weights for individual i.

The finite population parameter βN and superpopulation model parameter β can be

simultaneously estimated by maximizing a pseudo-likelihood
∑

i∈s diℓi(β;Yi,Xi,Zi).

It can be shown that the resulting estimating function is unbiased for the finite pop-

ulation estimating function under survey design p, i.e.,

Ep

[
∑

i∈s

diUi(β;Yi,Xi,Zi)

]

=

N∑

i=1

Ui(β;Yi,Xi,Zi), (5.1)

where Ep denotes expectation taken with respect to the sampling scheme.
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5.2.2 Misclassification model

The simplest example is the misclassification of a binary variable, which involves only

two error parameters. Misclassification of a categorical covariate with more than two

levels are commonly seen in survey sampling, especially for measurements based on

self-reporting. It is reasonable to assume that the misclassification of an ordinal co-

variate only occurs between adjacent categories (e.g., BMI categories, income levels).

Furthermore, the misclassification process may depend on other covariates.

Let Wi be the observed surrogate for Xi. Correspondingly, let Wil = 1 if Wi = l,

and Wil = 0 otherwise, l = 0, . . . , K. Let πik,l = Pr(Wi = l|Xi = k,Zi) be the

probability that the observed category is l given the true category is k for individual

i, k, l = 0, . . . , K. Based on the assumption of adjacent misclassifications, we have

πik,l = 0 for |k − l| ≥ 2. The probability of correctly classifying Xi into category k is

then given by

πik,k = 1 − πik,k−1I(k > 0) − πik,k+1I(k < K),

where I(·) is the indicator function.

We assume that the misclassification process is characterized by generalized (or

multinomial) logit models (Pfeffermann et al., 1998)

log

(
πik,k−1

πik,k

)
= LT

i ϕk,k−1, k = 1, . . . , K,

log

(
πik,k+1

πik,k

)
= LT

i ϕk,k+1, k = 0, . . . , K − 1,

where Li is a set of covariates (usually part of Zi) associated with the misclassifica-

tion process, and ϕk,k−1 and ϕk,k+1 are vectors of regression parameters in the logit

models for misclassification to a lower level and misclassification to a higher level, re-

spectively. Let ϕ = (ϕT
01, . . . , ϕ

T
K,K−1)

T. Therefore, the probability of misclassifying

an observation into a lower category is given by

πik,k−1 =
exp(LT

i ϕk,k−1)

1 + exp(LT
i ϕk,k−1) + exp(LT

i ϕk,k+1)
, k = 1, . . . , K,
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and the probability of misclassifying an observation into a higher category is given by

πik.k+1 =
exp(LT

i ϕk,k+1)

1 + exp(LT
i ϕk,k−1) + exp(LT

i ϕk,k+1)
, k = 0, . . . , K − 1.

When both K and the number of covariates in Li are large, the dimension of

nuisance parameter vector ϕ can be very high. In some extreme cases, the mis-

classification process may be homogeneous, i.e., the probability of misclassifying the

observation into the lower or higher category is consistent for all categories.

5.2.3 Model for the ordinal covariate

For covariate measurement error problems, the literatures distinguish structural mod-

eling, which hypothesizes a distribution for the error-prone covariate, and functional

modeling, which does not make any parametric assumptions for the marginal behavior

of the covariate. Functional modeling may lose some efficiency. Often, the behavior

of the precisely measured Zi is not of interest, and its distribution can be left unspec-

ified. When the behavior of the error-prone covariate is of interest (e.g., percentage

distribution of BMI), however, it is convenient to hypothesize a marginal distribution

for Xi.

For ordinal variables, cumulative probabilities are often used as alternatives to

marginals. Let λik = Pr(Xi ≥ k|Zi), k = 1, , . . . , K. The proportional odds models

can be employed to characterize the distribution of Xi conditional on Zi (e.g., Agresti,

2002). The kth model is given by

logit λik = ZT
i αk, k = 1, . . . , K,

where αk = (α0k,ψ
T)T, α0k is the intercept term in the kth logit model, and ψ is

a vector of regression coefficients associated with Zi and is common for all k. Let

α = (α01, . . . , α0K ,ψ
T)T be a vector of all regression parameters associated with the

distribution of Xi.

Similarly, the dimension of α mainly depends on K and the dimension of Zi.

When Xi and Zi are independent, we only need to specify the marginal distribution
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of Xi, which is given by

Pr(Xi = k) = αk, k = 0, . . . , K,

where
∑K

k=0 αk = 1. Under this assumption, the computational burden is dramati-

cally reduced.

5.3 Parametric Estimation

5.3.1 Expected score for estimation of β

If data were free of measurement error,
∑

i∈s diUi(β;Yi,Xi,Zi) is unbiased under the

sampling scheme and the superpopulation model. In the presence of misclassification,

however, Xi is not available. Let Wi = (Wi1, . . . ,WiK)T. Ignoring misclassification

and naively solving a set of equations

∑

i∈s

diUi(β;Yi,Wi,Zi) = 0.

no longer yields valid estimate of β. If there exists a set of estimating functions, say,

U∗
i (β;Yi,Wi,Zi), that is close to Ui(β;Yi,Xi,Zi), then solving

∑

i∈s

diU
∗
i (β;Yi,Wi,Zi) = 0

may still lead to consistent estimator for β.

We here construct an approximate version of
∑

i∈s diUi(β;Yi,Xi,Zi) by taking

conditional expectation with respect to the underlying unobserved variables given

observed data (Yi,Wi,Zi). It can be seen that the conditional expectation is depen-

dent on the response model, the measurement error model, as well as the covariate

distributions. Without additional information, ϕ and α cannot be estimated from

the observed data. Therefore, validation data containing true values of the covariates

are required so that it is possible to make inference about the measurement error
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process and the covariate distribution. Suppose internal validation data is available

where the true error-prone covariate is partially observed. The original sample s can

be divided into three subsets as follows:

s1 = {i : (Yi, Xi,Zi)},
s2 = {i : (Yi,Wi, Xi,Zi)},
s3 = {i : (Yi,Wi,Zi)}.

For i ∈ s3, let U∗
i (β,ϕ,α;Yi,Wi,Zi) = Eζ [Ui(β;Yi,Xi,Zi)|Yi,Wi,Zi] be the ex-

pected score function of β. Given ϕ and α, response parameter β can be estimated

by solving

∑

i∈s1∪s2

diUi(β;Yi,Xi,Zi) +
∑

i∈s3

diU
∗
i (β,ϕ,α;Yi,Wi,Zi) = 0. (5.2)

For k = 1, . . . , K, let ek denote a K-dimensional vector whose lth element is 1

if l = k and 0 otherwise. Let e0 = 0. Let Ωi(Wi) = {k : max(0,Wi − 1) ≤ k ≤
min(Wi + 1, K)} be a set of possible values for the underlying true covariate given

Wi. The expected score function can be shown to be a weighted sum

U∗
i (β,ϕ,α;Yi,Wi,Zi) =

∑

k∈Ωi(Wi)

Ui(β;Yi, ek,Zi)Pr(Xi = k|Yi,Wi,Zi;β,ϕ,α),

where Pr(Xi = k|Yi,Wi,Zi;β,ϕ,α) is the posterior weight of (Xi = k) given observed

data (Yi,Wi,Zi). With the properties of conditional distribution, we have

Pr(Xi = k|Yi,Wi,Zi;β,ϕ,α)

=
Pr(Yi,Wi, Xi = k|Zi;β,ϕ,α)∑

k′∈Ωi(Wi)
Pr(Yi,Wi, Xi = k′|Zi;β,ϕ,α)

=
Pr(Yi|Wi, Xi = k,Zi;β)Pr(Wi, Xi = k|Zi;ϕ,α)∑

k′∈Ωi(Wi)
Pr(Yi|Wi, Xi = k′,Zi;β)Pr(Wi, Xi = k′|Zi;ϕ,α)

=
Pr(Yi|Xi = k,Zi;β)Pr(Wi|Xi = k,Zi;ϕ)Pr(Xi = k|Zi;α)∑

k′∈Ωi(Wi)
Pr(Yi|Xi = k′,Zi;β)Pr(Wi|Xi = k′,Zi;ϕ)Pr(Xi = k′|Zi;α)

,

which involves the response model, misclassification model and covariate distribution.
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If Xi and Zi are independent, then

Pr(Xi = k|Yi,Wi,Zi;β,ϕ,α)

=
Pr(Yi|Xi = k,Zi;β)Pr(Wi|Xi = k,Zi;ϕ)Pr(Xi = k;α)∑

k′∈Ωi(Wi)
Pr(Yi|Xi = k′,Zi;β)Pr(Wi|Xi = k′,Zi;ϕ)Pr(Xi = k′;α)

.

For fixed ϕ and α, estimation of β can be performed through iteratively solving

(5.2). We now describe the detailed steps of the algorithm as follows:

1. For i ∈ s3, obtain the set of all possible values of Xi given Wi.

2. Given a current estimate β̂(t) and fixed ϕ and α, calculate the pseudo-survey

weight for each enumerated possibility in the set Ωi(Wi)

d
(t)
ik = di Pr(Xi = k|Yi,Wi,Zi; β̂

(t),ϕ,α)

3. Obtain new estimate β̂(t+1) by solving

∑

i∈s1∪s2

diUi(β;Yi,Xi,Zi) +
∑

i∈s3

∑

k∈Ωi(Wi)

d
(t)
ik Ui(β;Yi, ek,Zi) = 0.

4. The algorithm iterates between steps 2 and 3 until it converges.

Let β̂ be the final estimate at convergence.

5.3.2 Estimation of ϕ and α

The estimation procedure for β requires knowledge of ϕ and α, which can be es-

timated from the validation data. Estimate of ϕ can be obtained by fitting the

misclassification model to subsample s2, while estimate of α can be obtained from

the combined s1 and s2.

When the dimension of ϕ and α are very high, the validation data may not

be able to provide sufficient information for the estimation. In this situation, we

may impose further assumptions such as simple misclassification process independent
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of Zi. For example, we can assume independence between Xi and Zi. Therefore,

α = (α1, . . . , αK)T, of which the entries can be estimated by

α̂k =

∑
i∈s1∪s2

diI(Xi = k)
∑

i∈s1∪s2
di

, k = 1, . . . , K.

5.3.3 Variance estimation

It is known that model-based variance matrix of the estimators β̂ is not preferred,

as it does not take into account the complex sampling design. Therefore, we suggest

using a resampling method such as bootstrap approach for variance estimation (e.g.,

Rao and Wu, 1988; Sitter, 1992). Because of the features of the complex survey and

the non-response issue, the survey weight for each individual in each bootstrap sample

need to be re-calculated in order to account for these features. Suppose β̂(b) is the

estimate of β from an estimation procedure using the bth of B bootstrap samples.

Given fixed ϕ and α, the approximate variance of β̂ is given by

BV (β̂) =
1

B − 1

B∑

b=1

(β̂(b) − β̂)(β̂(b) − β̂)T. (5.3)

When ϕ and α are estimated from internal validation data, the uncertainty in

(ϕ̂, α̂) need to be accounted for when calculating the variance of β̂. This can be done

by re-estimating ϕ and α in each bootstrap sample.

5.4 Simulation Study

5.4.1 Design of simulation

We conduct a simulation study to investigate the performance of the proposed method

and compare it to the naive approach and the complete-cases approach. The configu-

ration of the simulation is based on the data set from the CCHS Cycle 3.1 described

in Chapter 1. Here we only consider simple random sampling from a superpopulation.

We set the sample size to be n = 100000. Covariates include a three-level ordinal Xi
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(valued at 1, 2 and 3) that is subject to misclassification, and a continuous Zi free

of measurement error. We first generate Xi with probabilities 0.2, 0.5, and 0.3 for

levels 1, 2, and 3, respectively. We then generate Zi independently under a standard

normal distribution Normal(0, 1) for all subjects. The binary response variable Yi is

generated under a logistic model

logit µi = β0 + β1I(Xi = 1) + β2I(Xi = 3) + βzZi.

The parameters are specified by β0 = −3, β1 = 0.3, β2 = 0.5, and βz = 0.5. One can

think of Xi as a categorical BMI variable, for which the levels represent underweight,

normal weight, and overweight or obese categories. The coefficients β1 and β2 are

specified in such a way that both level 1 and level 3 have positive effect on increasing

the risk of developing the outcome compared to the normal level 2.

The surrogate Wi for Xi is generated under multinomial logit models given by

log {πik,l/πik,k} = ϕkl(0) + ϕkl(z)Zi for |k − l| = 1.

The parameters associated with the misclassification process are specified by Table

5.1. The misclassification of Xi depends on Zi in a sense that Zi has a positive effect

on increasing the probability of misclassifying a higher level into a lower one. The

dependence is stronger for misclassification of Xi = 3 into Wi = 2 than for other

cases.

Table 5.1: Values of ϕ

X W ϕkl(0) ϕkl(z)

1 2 -1.5 -0.05

2
1 -3.0 0.05
3 -3.0 -0.05

3 2 -1.5 0.50

We obtain the final observed sample s = {(Yi,Wi, Zi), i = 1, . . . , n}. Also, we

obtain a validation subsample s2 = {(Yi,Wi, Xi, Zi)} by randomly selecting subjects

from s with probability 0.04. Therefore, the size of the validation subsample is around
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4000. The data is then analyzed using following approaches: a naive approach ignoring

error, a complete-cases analysis using only the validation subsample, and the expected

score method that accounts for misclassification in the whole sample. We replicate

the simulation 500 times. At this stage, obtaining bootstrap variance matrix for β̂ in

each simulation run will be time consuming. Therefore, we only include the empirical

variance of the estimators using the 500 samples, from which we can see how variable

each estimator is.

5.4.2 Simulation results

Table 5.2: Simulation results for the naive method, the
complete-cases analysis, and the expected score method (500
simulations)

Naive method Complete-cases Proposed
method

Parameter %RB † EV‡ %RB EV %RB EV

β0 -2.90 0.00036 -0.12 0.01148 -0.02 0.00068
β1 -42.31 0.00110 -4.42 0.02926 -1.42 0.00200
β3 -25.24 0.00085 -0.39 0.02244 -0.24 0.00157
βz 1.71 0.00017 -0.03 0.00444 -0.01 0.00017

† %RB = (β̂ − β)/β × 100
‡ Empirical variance based on 500 samples

Simulation results are shown in Table 5.2. All three estimators for βz have small

biases, although the naive estimator is slightly larger than the others. The estimates

of β1 and β2 from the naive analysis, however, are attenuated by 42.3% and 25.2%,

respectively, which are quite large compared to those from the other two approaches.

In general, the complete-cases analysis and the expected score approach perform

similarly regarding the relative bias, except that the bias in the estimate of β1 from

the complete-cases analysis is significantly larger than that from the expected score

approach. The magnitude of the empirical variance of the estimators are similar for

the naive approach and the expected approach, as both use the whole sample. The

empirical variance of the estimators from the complete-cases analysis are relatively
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larger.

5.5 Data Analysis

In this section, we apply the developed method to data from the CCHS cycle 3.1

in 2005. Our interest is in the association of health conditions with risk factors

including age, sex, physical activity, and body mass index (BMI). Based on Canadian

guidelines, which are in line with those of the World Health Organization, BMI for

adults is divided into six categories: underweight, normal weight, overweight, and

three obese classes (see Table 5.3 for the range of each category). As BMI was

derived from self-reported weight and height, the recorded category may be different

from the true category for some subjects. The subsample contains both self-reported

and measured weight and height and hence can be used as validation data. Five age

groups are formed with 18-24 being the reference group. Physical activity index is a

categorical variable with three levels: active, moderate, and inactive. Here the error-

contaminated variable is the self-reported BMI category, and the true underlying

variable is the measured BMI category. For this study, we exclude subjects who

were less than 18 years old, as children are in a stage of development where weight

and height may change over a short period of time. Women who were pregnant or

breastfeeding were also excluded. Observations in the subsample with self-reported

and measured BMI two categories apart are considered as outliers. Subjects with

missing any of the error-free covariates or missing both the self-reported and the

measured BMI were also excluded from the analysis. This left a sample of 114547

respondents with 4125 in the subsample.

We first present some results from exploratory analysis using the validation sub-

sample. Figures 5.1 and 5.2 show weighted estimates of population proportions for

high blood pressure and heart disease in each BMI category. There is a clear trend of

increasing proportion of subjects with high blood pressure as BMI category increases,

indicating that obesity is a strong risk factor in developing high blood pressure. We

observe a similar pattern in heart disease, except that the proportion is higher in

the underweight category than in the normal-weight category. Table 5.4 reports the
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Table 5.3: Body mass index categories

Category BMI kg/m2 range

Underweight (UW) Less than 18.5
Normal weight (NW) 18.5 to 24.9
Overweight (OW) 25.0 to 29.9
Obese class I (OB I) 30.0 to 34.9
Obese class II (OB II) 35.0 to 39.9
Obese class III (OB III) 40.0 or more

sample percentages for BMI (mis)classifications. One can see that the normal weight

subjects performed much better in BMI self-reporting than overweight or obese sub-

jects did. In general, the proportion of subjects who correctly self-reported their BMI

category decreases as BMI category increases. The subjects tended to under-report

their BMI.

Figure 5.1: Population proportions for high blood pressure in each BMI category

Along with the expected score approach, we also include the naive analysis, which

uses self-reported BMI except for subjects with measured BMI, and the complete-

cases analysis, which uses only subjects in the subsample with available measured

BMI. The normal-weight BMI category was treated as the reference group, and the

relative risk of the other five BMI categories on the probabilities of having some
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Figure 5.2: Population proportions for heart disease in each BMI category

Table 5.4: Estimated BMI (mis)classification rates in the CCHS subsample

Measured Self-reported BMI

BMI UW NW OW OB I OB II OB III Missing

UW 70.00% 27.50% 2.5%
NW 4.21% 90.06% 4.34% 1.38%
OW 29.33% 66.93% 2.00% 1.74%
OB I 46.42% 51.24% 0.58% 1.46%
OB II 57.79% 37.19% 3.02% 2.01%
OB III 32.43% 60.81% 6.76%

136



chronic conditions are of scientific interest. The variance estimations are based on

500 bootstrap samples with adjusted survey weights.

The result of parametric estimation and inference for high blood pressure is shown

in Table 5.5. There are some interesting findings here. First,the expected score

approach does not differ much from the naive approach in estimation of βz, namely the

regression coefficients associated with the error-free covariates: age, sex and physical

activity index. The estimates of βz from complete-cases analysis, however, are not

that close to those from the other two approaches with regard to the magnitude or even

the direction. The three approaches do not quite agree in the risk estimates of BMI

categories, although the trend of increasing risk across BMI categories is consistent.

The direction of the risk estimate of the underweight category is positive for the

expected score approach but is negative for the naive approach and the complete-cases

approach. All three associated variance estimates, however, are very large compare to

those for other BMI categories. This results in conclusion that the risk of having high

blood pressure is not significantly higher in underweight people than in normal-weight

people.

The result for heart disease is shown in Table 5.6. We observed similar patterns

in the estimates. Based on the result from the expected score approach, the risk of

having heart disease increases as BMI increases in general. However, subjects in un-

derweight BMI category has relative higher risk than those in normal-weight category.

In contrast, the risk for subjects in overweight category is not significantly different

from those in norma-weight category. Due to the relatively smaller sample used in

the complete-cases analysis, the variances associated with the BMI risk estimates are

very large, resulting in conclusion of non-significant BMI effect on heart disease.

5.6 Discussion

In this chapter, we consider logistic regression analysis using survey data when an

ordinal categorical covariate is subject to misclassification. We propose to use the

expected score estimation method for analysis of this type of error-contaminated data.

The implementation of the algorithm is relatively easy, as expectation over estimating
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Table 5.5: Analysis results for high blood pressure

Naive method † Complete-cases ‡ Expected score
(n = 114325) (n = 4120) (n = 114325)

Parameter Estimate SE p-value Estimate SE p-value Estimate SE p-value

Intercept -4.137 0.045 < 0.001 -4.670 0.375 < 0.001 -4.345 0.075 < 0.001
BMI

Underweight -0.099 0.106 0.349 -1.082 1.280 0.398 0.298 0.487 0.540
Normal weight 0.000 . . 0.000 . . 0.000 . .
Overweight 0.660 0.036 < 0.001 0.645 0.173 < 0.001 0.787 0.052 < 0.001
Obese I 1.178 0.021 < 0.001 1.043 0.201 < 0.001 1.345 0.040 < 0.001
Obese II 1.638 0.042 < 0.001 1.488 0.316 < 0.001 1.849 0.100 < 0.001
Obese III 1.806 0.099 < 0.001 2.548 0.574 < 0.001 2.084 0.106 < 0.001

Age
18-34 0.000 . . 0.000 . . 0.000 . .
35-49 1.152 0.047 < 0.001 1.307 0.384 < 0.001 1.133 0.021 < 0.001
50-64 2.468 0.052 < 0.001 2.655 0.356 < 0.001 2.444 0.080 < 0.001
65+ 3.431 0.063 < 0.001 3.812 0.355 < 0.001 3.369 0.058 < 0.001

Sex
Male -0.105 0.016 < 0.001 0.036 0.130 0.784 -0.115 0.067 0.084
Female 0.000 . . 0.000 . . 0.000 . .

PAI
Active -0.119 0.043 0.006 0.149 0.217 0.494 -0.130 0.038 < 0.001
Moderate 0.000 . . 0.000 . . 0.000 . .
Inactive 0.109 0.042 0.009 0.206 0.186 0.267 0.111 0.010 < 0.001

† Self-reported BMI is used except for subjects in the validation subsample
‡ Only the validation subsample is used
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Table 5.6: Analysis results for heart disease

Naive method † Complete-cases ‡ Expected score
(n = 114370) (n = 4123) (n = 114370)

Parameter Estimate SE p-value Estimate SE p-value Estimate SE p-value

Intercept -5.638 0.112 < 0.001 -5.052 0.646 < 0.001 -5.663 0.117 < 0.001
BMI

Underweight 0.381 0.142 0.007 0.494 0.803 0.539 0.846 0.268 0.002
Normal weight 0.000 . . 0.000 . . 0.000 . .
Overweight 0.118 0.044 0.007 -0.170 0.248 0.494 -0.005 0.092 0.957
Obese I 0.458 0.057 < 0.001 0.255 0.326 0.4339 0.480 0.079 < 0.001
Obese II 0.648 0.098 < 0.001 0.248 0.420 0.555 0.510 0.159 0.001
Obese III 0.850 0.130 < 0.001 0.883 0.578 0.126 0.955 0.152 < 0.001

Age
18-34 0.000 . . 0.000 . . 0.000 . .
35-49 0.918 0.130 < 0.001 0.156 0.735 0.832 0.930 0.131 < 0.001
50-64 2.382 0.107 < 0.001 1.859 0.686 0.007 2.403 0.108 < 0.001
65+ 3.692 0.106 < 0.001 3.179 0.675 < 0.001 3.695 0.107 < 0.001

Sex
Male 0.460 0.041 < 0.001 0.689 0.202 < 0.001 0.470 0.042 < 0.001
Female 0.000 . . 0.000 . . 0.000 . .

PAI
Active -0.122 0.063 0.052 -0.206 0.333 0.536 -0.115 0.063 0.070
Moderate 0.000 . . 0.000 . . 0.000 . .
Inactive 0.223 0.047 < 0.001 0.442 0.292 0.130 0.225 0.047 < 0.001

† Self-reported BMI is used except for subjects in the validation subsample
‡ Only the validation subsample is used
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functions with respect to a categorical variable can be written as summation over a

few enumerated possible cases.

Expected score estimation calculates the posterior weights for all possible values

of the unobserved true covariate, hence it relies on full parametric assumptions for the

misclassification mechanism as well as covariate distribution. Robustness to model

misspecification needs to be investigated. Also, the parameters ϕ and α are estimated

from the validation data and are treated as fixed in the estimation of β. When

calculating the bootstrap variance of β̂, one can account for the extra uncertainty by

obtaining estimates of ϕ and α in each bootstrap sample. Otherwise, the standard

error of β̂ would be underestimated in general. The main problem is that some

bootstrap samples do not contain enough validation data to obtain stable estimators

for ϕ and α, especially for cases where the ordinal covariate has many levels, and the

misclassification process involves large number of precisely measured covariates.

As mentioned before, the marginal distribution of Xi may be of interest, e.g.,

estimation of population frequency of each BMI category can be one objective of

health surveys. When the dimensions of ϕ and α are small, we can simultaneously

estimate β, ϕ, and α. Specifically, one can use the extended data with pseudo-survey

weights d
(t)
ik to update the estimates of ϕ and α. When Xi is independent of Zi, for

instance, the estimate of α = (α1, . . . , αK)T can be updated during each iteration by

α
(t+1)
k =

∑
i∈s1∪s2

diI(Xi = k) +
∑

i∈s3
d

(t)
ik∑

i∈s di
, k = 1, . . . , K.

In the data analysis example, the BMI variable is used as a risk factor for health

conditions. However, BMI itself can be viewed as a response variable, and studying the

association of obesity with some effects such as age, sex and physical activity index

may be of interest. Misclassifications in both categorical response and categorical

covariate are commonly seen in large scale surveys. Furthermore, data that arise

from clustered and longitudinal studies are correlated. Full parametric models may

not be available for the joint distribution of the clustered responses. This adds some

difficulties in the direct application of the parametric approaches. Our future research

will consider possible extension of existing methods to account for misclassification
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in both response and covariate.
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Chapter 6

Concluding Remarks and Future

Work

6.1 Response Measurement Error in Mixed Mod-

els for Correlated Data

In Chapter 2, we considered linear mixed models for clustered data with measurement

error in the response variable. It is known that when response error follows the

classical additive model, the induced error can be absorbed into the random error

term in a linear or linear mixed model. Therefore, naively fitting a linear mixed model

to clustered data gives consistent estimators for the fixed effects. The estimator for

the conditional variance of the true response, however, is no longer correct. When

measurement error is nonlinear, naive analysis with error ignored may lead to biased

estimators and invalid inference. We showed by some examples that naively fitting a

mixed model leads to seriously biased estimators for the fixed effects.

We considered another naive approach, which fits standard models to transformed

data obtained from inverting the link function in the error process, provided that

the link function is fully specified. Although the bias in the fixed-effect estimators

can be reduced by a certain amount, the estimators for the variance parameters

are seriously biased, because the transformed surrogate is not unbiased for the true
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underlying response. We proposed to use likelihood-based methods. For cases where

the error parameters are unknown and validation data are available, the pseudo-

likelihood approach, which uses a two-stage estimation procedure, give consistent

estimators for both fixed-effects parameters and variance components. We conducted

simulation studies and showed that the methods performed reasonably well under

various settings.

As already pointed out, the likelihood-based approaches can be computational in-

tensive, as the accuracy of the estimators relies on the order of the Gaussian quadra-

ture approximations to the integrals involved in the likelihood function. We found in

our simulation studies that an order of 10 quadrature approximation performs well

enough for one-dimensional random effect. For mixed models with multi-dimensional

random effects, the computation can be very slow.

6.2 Correlated Binary Responses with Misclassifi-

cation

In Chapter 3 we considered correlated binary data with misclassified responses. There

are many statistical models developed for analyzing correlated data arising from lon-

gitudinal studies and clustered studies. Misclassification, which is a special type

of measurement error, is commonly seen in these studies. Naive analysis ignoring

misclassification leads to biased estimates of model parameters. Neuhaus (2002) in-

vestigated the bias and efficiency loss due to the presence of misclassification in binary

responses in a logistic mixed model. However, the approximate adjusting factor de-

rived by the author is for simple models, e.g., only one covariate is involved and

misclassifications are independent of each other.

We proposed marginal methods, in which only the marginal and second-order

association models are specified for the clustered responses. We took an estimat-

ing equations approach for correcting the bias induced by misclassification. We also

constructed unbiased second-order estimating functions when misclassifications are

correlated. Several cases were discussed, including known error parameters, unknown
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error parameters but with validation data or replicated measures available. For repli-

cation studies, response and error parameters are required to be jointly estimated.

The estimators from our developed approaches have good properties such as consis-

tency and normality. Simulation studies showed that they performed very well under

a variety scenarios for different cases. More scenarios for association structures in the

response process as well as in the misclassification process need to be considered and

more simulation studies need to be conducted.

Proportion of validation data and cluster size play important roles in making

inference about the misclassification process, especially for the dependence structure.

In situations where a small validation subsample does not provide enough information

for estimating the correlation between misclassifications, assuming an independent

misclassification process may be unavoidable. For studies where neither validation

data nor replicated measures are available, which are very common in practice, the

misclassification model can not be identified. The best one can do is to conduct

sensitivity analysis.

6.3 Marginal Models for Longitudinal Ordinal Data

with Misclassification in Responses and Co-

variates

Many health outcomes are ordinal, such as severity measure of a particular disease.

These variables may be subject to misclassification when the measuring system is

not gold standard or it is impossible to obtain accurate measurements. Similarly,

many risk factors such as dietary intake and systolic blood pressure are measured

with error. In Chapter 4 we developed marginal methods for analysis of longitudinal

ordinal data with misclassification in both responses and covariates. Our simulation

studies showed that the methods performed very well under a variety of scenarios.

In practice the misclassification processes for response and covariate are unknown.

We assume that a validation subsample is available for making inference about the

processes. The number of nuisance parameters involved in the processes, however, can
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be very large. Small validation subsample therefore may not provide enough informa-

tion. In such situation, the best one can do is to assume very simple misclassification

models as well as impose extra constraints such as adjacent misclassifications.

We have only considered independent misclassification processes for both the re-

sponse and the covariate. Correlated misclassifications can occur in longitudinal clin-

ical trails, in which same defected measuring devices are applied repeatedly, or family

studies, in which self-report measures of family members may share a common bias.

Replicated measures instead of validation data may be available in some studies.

While a joint estimation procedure must be employed, the minimum number of repli-

cates required for valid inference about the misclassification process may be different

for categorical or ordinal variables than for binary variables discussed in Chapter 3.

6.4 Future Work: Analysis of Correlated Data with

Measurement Error, Incomplete Observations,

and Complex Survey Designs

6.4.1 Marginal and association models with dropouts and

measurement error

As mentioned in Chapter 3, marginal methods have been widely used for analysis of

longitudinal and clustered data, where the marginal mean and association structure

are of interest. Longitudinal categorical data often contain incomplete observations,

e.g., dropouts, and non-response. Yi and Thompson (2005) described a likelihood-

based approach to characterizing longitudinal binary data with drop-outs, in which

marginal and dependence structures are specified as regression models to link the re-

sponses to the covariates. Estimating equation approaches such as inverse probability

weighted (IPW) GEE are also widely employed (see, e.g., Yi and Cook, 2002; Chen

et al., 2010). The weight matrix, which is constructed for each cluster that contains

missing data, may be dependent on the history of response outcomes and/or covari-

ates. Therefore, direct application of the IPWGEE approach may be hindered by the
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presence of misclassification in responses and/or covariates. Yi (2008) and Yi et al.

(2010) considered correcting estimation bias induced by dropout and mismeasured

covariates in longitudinal data. We will explore extending our developed marginal

methods to simultaneously handle missing response and covariates as well response

and covariate measurement error in data from longitudinal and clustered studies.

6.4.2 Transition models for longitudinal categorical data with

misclassification

While a marginal regression model is used to characterize the dependence of the re-

sponse on covariates, a conditional regression model, or transition model (Diggle et

al., 2002), is used to capture the serial dependence in the response process. Azzalini

(1994) described a first-order Markov chain model by assuming that the current state

of a categorical response is dependent on the history only through the immediate

previous response. Heagerty (2002) extended this marginalized transition model to

allow pth-order serial dependence that is common in longitudinal data, in terms of

the combination of a marginal regression model and a transition model. Chen et al.

(2009) developed a Markov model for longitudinal categorical data which facilitates

modelling both marginal and conditional structures. Pan et al. (2009) considered

semiparametric transition models with one covariate measured with error and pro-

posed an estimating equation approach, in which no distributional assumption was

made for the underlying unobserved covariate. When the responses are subject to

misclassification, however, naive inference about the dependence structure will lead

to incorrect conclusions. Cook et al. (2000) described a latent Markov model for

longitudinal binary data in the absence of a gold-standard reference test and adopted

log-linear models for the dependence of the classifications of multiple diagnostic tests

that are applied repeatedly over time. The case of correlated replicates is of particular

relevance to physical examinations, diagnostic tests, as well as self-reported variables

such as food intake in longitudinal studies. Similarly, Rosychuk and Thompson (2001,

2003) considered two-state Markov models with misclassified responses and proposed

iterative biased-adjusted methods.
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As mentioned before, categorical responses and covariates can be subject to mis-

classification at the same time. Some of our future research will focus on developing

methods for analysis of categorical and ordinal data under transition models with

misclassified responses and covariate measurement error.

6.4.3 Semi-parametric methods for correlated data with mea-

surement error and incomplete observations

Semiparametric models combine both parametric models and non-parametric models,

such as partially linear models and single index models (e.g., Ruppert et al., 2003).

The effect of the error-prone covariate, which is often of interest, is usually mod-

eled parametrically, while the effects of some, if not all, precisely measured covariates

are modeled nonparametrically (e.g., Carroll et al., 2006). Some research work has

been done for univariate data, e.g., Huang and Wang (2001) considered linear lo-

gistic regression with replicated error-prone covariates, and Liang (2000) proposed

deconvolution methods for partially linear models with measurement error. Tsiatis

and Ma (2004) proposed a class of semiparametric estimators in the general setting

of functional measurement error models. Ma and Carroll (2006) constructed locally

efficient semiparametric estimators for a general class of semiparametric models with

measurement errors, in which a parametric model estimator and a local kernel estima-

tor are combined through backfitting. Liu and Wu (2010) proposed and investigated

the theoretical properties of a computationally efficient approximate method for a

class of semiparametric nonlinear mixed-effects models with measurement error and

incomplete data.

In contrast, not much work has been done for handling response measurement

error (or misclassification) in the framework of semiparametric regression models.

In our future work we will extend existing approaches and develop novel semipara-

metric methods for analysis of correlated data with measurement error and missing

observations.
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6.4.4 Analysis of data from complex surveys

In Chapter 5 we discussed covariate misclassification problems in data collected from

surveys. We focused on logistic regression analysis of univariate binary data with

misclassification in an ordinal covariate. It is well known that survey weights derived

from the sampling design can be incorporated into estimating equations so that the

population parameters and superpopulation model parameters can be simultaneously

estimated (e.g., Godambe and Thompson, 1986). We proposed the expected score

approach that can correct estimation bias induced by misclassifications. Data from

large scale surveys often contain both measurement error and missing observations,

which can occur during measuring, data recording, editing, etc. The main source

of missing data is unit or item non-response. Our future research will include the

development of statistical techniques to handle complex survey design, missing data,

and measurement error in data from longitudinal surveys and family surveys.
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