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Abstract

Less-Than-Truckload (LTL) carriers generally serve geographical regions that are

more localized than the inter-city routes served by truckload carriers. That lo-

calization can lead to urban freight transportation routes that overlap. If trucks

are travelling with less than full loads there may exist opportunities for carriers

to collaborate over such routes. That is, Carrier A will also deliver one or more

shipments of Carrier B. This will improve vehicle asset utilization and reduce asset-

repositioning costs, and may also lead to reduced congestion and pollution in cities.

We refer to the above coordination as “collaborative routing”. In our framework for

collaboration, we also propose that carriers exchange goods at logistics platforms

located at the entry point to a city. This is referred to as “entry-point collabora-

tion”.

One difficulty in collaboration is the lack of facilities to allow transfer of goods

between carriers. We highlight that the reduction in pollution and congestion under

our proposed framework will give the city government an incentive to support these

initiatives by providing facilities. Further, our analysis has shown that contrary to

the poor benefits reported by previous work on vehicle routing with transshipment,

strategic location of transshipment facilities in urban areas may solve this problem

and lead to large cost savings from transfer of loads between carriers.

We also present a novel integrated three-phase solution method. Our first phase

uses either a modified tabu search, or a guided local search, to solve the vehicle rout-

ing problems with time windows that result from entry-point collaboration. The

preceding methods use a constraint-programming engine for feasibility checks. The

second phase uses a quad-tree search to locate facilities. Quad-tree search meth-

ods are popular in computer graphics, and for grid generation in fluid simulation.

These methods are known to be efficient in partitioning a two-dimensional space
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for storage and computation. We use this efficiency to search a two-dimensional

region and locate possible transshipment facilities.

In phase three, we employ an integrated greedy local search method to build

collaborative routes, using three new transshipment-specific moves for neighbor-

hood definition. We utilize an optimization module within local search to combine

multiple moves at each iteration, thereby taking efficient advantage of information

from neighborhood exploration. Extensive computational tests are done on random

data sets which represent a city such as Toronto. Sensitivity analysis is performed

on important parameters to characterize the situations when collaboration will be

beneficial. Overall results show that our proposal for collaboration leads to 12%

and 15% decrease in route distance and time, respectively. Average asset utilization

is seen to increase by about 5% as well.
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Chapter 1

Introduction

Optimization of supply chain and logistics operations has received attention from

industry and academia alike over the last few decades. More recently, competi-

tive pressures, economic volatility and increased service expectations have forced

companies to look outside their own operations. By sharing information with poten-

tial competitors, and optimizing joint operations, companies try to eliminate costs

that cannot be individually controlled. Collaboration between less-than-truckload

(LTL) carriers provides such an opportunity, since local intra-city trucking costs

are a staggering annual US $ 435 billion (Wilson [50]). This high cost also means

that small improvements in operations will result in large cost savings.

Together with the greater service expectations and competition, there has also

been increasing concerns regarding pollution levels in urban regions. To make things

worse, urbanization has increased the volume of truck traffic in cities, which has led

to congestion problems among others. The cost of congestion caused by trucking

in Toronto and Peel regions was an annual US $ 2 billion in 1987 (Taylor [45]),

and this figure would have increased to a much larger value today. Commercial

trucking in cities has been identified as a major contributor to both the nuisances

of congestion and pollution.
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This thesis provides a collaborative framework for LTL carriers, where joint op-

timization of operations through collaboration will lead to savings in cost, and at

the same time, hopefully curb the negative effects of trucking on the environment

and the city. Understandably, trucking operations may now be more complicated,

but companies may accept this proposal if the accompanying cost savings are large.

As an added bonus, those firms will be identified as environmental stewards. Fur-

ther, benefits to the city from carrier collaboration may give incentives for the city

government to support that initiative. The main goal of this thesis is to show that

our proposed framework for carrier collaboration can lead to the preceding benefits.

The thesis thus has two main contributions. Firstly, we define a new framework

for collaboration between LTL carriers that contains two stages. The first stage

involves exchange of (partial) loads between carriers at the entry to the city, while

trucks make such exchanges during local delivery in the second stage. We also

explain that carrier collaboration needs to be studied independently of shipper

collaboration. We will define the latter, and show that the benefits differ in the

two cases.

Our second contribution is an integrated three-phase heuristic to solve the math-

ematically complicated problem that results from our two stage collaborative frame-

work. In the first phase, we use an integrated version of tabu search, or of guided

local search, to solve vehicle routing problems with time windows (VRPTWs). This

method uses a constraint-programming engine to check for feasibility and reduce

the search space.

In the second phase, we use an adaptive quadtree search method, which is popu-

lar in grid generation for fluid simulations and for data storage in image processing.

The quadtree search is used to efficiently explore the two-dimensional region which

represents the city, and to create clusters of customers that can be considered for

collaborative exchange of partial loads at transshipment points. The site of the
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transshipment point is also located in the cluster by the preceding method. In the

last phase, we use an integrated greedy local search method to construct collabo-

rative routes. This time, the integration is between heuristics and optimization.

To our knowledge, no previous work on the same problem exists. Therefore,

we also present a method to create random data sets for the carrier collaboration

problem. This is an extension of the method used to create random VRPTW

data sets in Solomon [41]. We perform extensive computational tests to show that

collaboration does indeed provide the benefits that we claim above.

The thesis is organized as follows. The next chapter provides the necessary

background for understanding the problem and solution methodology. In Chap-

ter 3, we present details of the proposed collaborative framework, some geometric

proofs, and the three-phase heuristic. Results from extensive computational testing

and evaluation are provided in Chapter 4. The final chapter provides a summary,

concluding remarks, and extensions for future research.
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Chapter 2

Background

This chapter introduces the required background knowledge to understand the re-

maining chapters of this thesis. It divides into subsections, which relate to collab-

orative logistics, the vehicle routing problem, constraint programming, quadtree

search and local search. Whereever exhaustive details are important, a suitable

reference will be given to guide the reader.

2.1 Collaboration in Carrier Logistics

The business landscape is constantly evolving and the internet has fostered op-

portunities that were once not available. Cooperation has become a buzzword

in industry; the internet serves as an ideal platform to nurture these cooperative

initiatives.

Though cooperation involves interaction between companies, it does not derive

the complete benefits that can be achieved through collaboration. Collaboration

indicates a stronger relationship, between firms or supply chains, than coopera-

tion. We broadly define collaboration as: “The coordinated flow of material and

information within and between supply chains’ vertical and horizontal structure.
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The goal is to mutually improve the efficiency of the supply chains locally, among

collaborating members, and globally across all supply chains involved.”

The key to supply chain collaboration is a mutually beneficial outcome for all

collaborating members. Still, many are skeptical about the outcome of collabo-

ration. Some suggest that collaboration may lead to a conflict if not managed

correctly. Therefore, the Voluntary Interindustry Commerce Standards Associa-

tion (VICS) developed Collaborative Planning, Forecasting, and Replenishment

(CPFR) to establish guidelines. CPFR is a nine-step business process model for

value chain partners to coordinate sales forecasting and replenishment in order to

reduce variance between supply and demand [1].

A typical supply chain has suppliers, manufacturers, retailers, customers and

other third parties. In addition to reduction of costs, Angelides and Angerhofer

[2] points out that increasing the number of players of each type in a collaborative

supply chain will lead to a reduction in uncertainty for a given length of the chain.

This improves the supply chain’s competitiveness and is of strategic importance.

Those authors also present a framework and a performance-measurement system for

collaborative supply chains. The model deals with collaboration at the strategic,

managerial and operational levels; at each stage the focus is on measurement of

results.

In the preceding paragraphs, we introduced collaboration in supply chain man-

agement. In the remaining subsections, we introduce collaborative logistics and

operational collaboration in more detail.

2.1.1 Collaborative Logistics

Collaborative logistics (CL) is a recent business model designed to eliminate trans-

portation inefficiencies by taking a holistic view of logistics operations. This also
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falls under collaborative supply chain management. Though many business models

have the same goal, the key difference is that CL is focused on reducing those costs

that cannot be controlled by individual firms. That reduction is achieved through

inter-firm collaboration.

CL can be seen as a process which has an overlap with CPFR, but which can

also be implemented independently. Similar to CPFR, guidelines are important

since it also involves a paradigm shift in viewing competitors as potential collabo-

rators. Collaboration between competitors necessitates a neutral platform, and the

pervasiveness of the internet has established a neutral and cost effective channel for

such collaborative partnerships. The seven immutable laws which set the ground

rules for CL are presented in Langley [28]. Collaborative transportation manage-

ment (CTM) is often the designation for CL in industry. We retain the use of CL

unless a distinction is required.

The search for collaboration in transportation is a direct result of global and

local supply chains reacting to competitive pressures. The roots of both CPFR

and CL are in Vendor Managed Inventory (VMI). In VMI, the vendor or supplier

monitors and controls the decisions related to quantity and timing of orders. VMI

involves a collaborative partnership between the supplier and retailer and has been

identified with many benefits (Gumus et al. [21], Waller et al. [49]). However, it

has two main deficiencies.

Firstly, VMI transfers responsibility to the manufacturer while the retailer still

dictates most of the rules, which makes the collaboration ineffective. Secondly,

VMI fails to consider the influence of the carrier. The benefits of collaboration

depend on transportation carriers, who need to be part of the collaborative process

to avoid surprises on the timing and sizes of planned shipments. Carrier capacities

and transportation lead times can then be aligned with supply chain efficiency.
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CPFR and CTM were developed by the VICS to address these two inefficiencies.

CTM (Sutherland [42]) was an extension of CPFR to include the carrier as a Supply

Chain player, to reduce costs, increase asset utilization, and improve service and

revenue. CTM views the shipper, carrier and receiver (consignee) as three principle

players in the supply chain. We think the progression from VMI to CTM is almost

evolutionary.

The basic principle underlying CL is quite simple. By collaborating with poten-

tial competitors, companies are integrating multiple supplier and carrier networks.

This allows firms to benefit from expanded opportunities. Collaboration itself is

enabled by sharing information and enhanced communication between all “collab-

orating partners.”

This raises two important questions. The first is: How much information should

be shared? This depends on the degree of collaboration. Several levels of collabo-

ration are suggested in [42]; the extent of information sharing increases with each

level (Figure 2.1). The second question is: How can information sharing be fa-

cilitated? It is facilitated by use of a safe and common information hub. Such

hubs are usually maintained by 3PLs such as Nistevo or Transplace, who provide

confidential and specialized collaborative services. For example, Nistevo [31] was

able to identify a particular dedicated continuous move route which resulted in a

19% cost savings for collaborating shippers, in addition to improving their truck

utilization and reducing driver turnover.

Another important benefit from CL is improvement in customer service. This

is a vital factor for firms to stay competitive. Over time, the service requirements

have become more stringent due to internet orders and promised delivery dates.

Therefore, transit time uncertainty needs to be reduced to attain the desired service.

One consequence of a company’s mission to achieve excellent customer service is the

resulting increase in transportation cost. In recent years, greater driver turnover
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Figure 2.1: Levels of collaboration

and deadhead miles, revised hours of operation and heightened security have all

contributed to the soaring cost of transportation. Companies have resorted to CL,

working together to eliminate inefficiencies, reduce costs and improve service.

CL also applies across different time horizons, from strategic to operational.

Strategic plans concern supply chain network design, fixed asset planning, etc.

Tactical-level plans involve collaboration in transportation procurement and con-

tracting. The most dynamic form of CL is operational collaboration. This pertains

to enhancing asset utilization through better shipment and carrier management,

and improved fleet routing and scheduling.

Operational collaboration is highly complex and requires information to be

shared between competitors. However, as competition forces carriers to reduce

costs, they have little choice but to master collaboration. This thesis focuses on

Carrier collaboration which falls in the operational category of CL.
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2.1.2 Operational Collaboration

There are two types of operational collaboration in CL, namely shipper and carrier

collaboration. In shipper collaboration, shippers form communities and collabo-

rate in order to bundle lanes. A lane is a contiguous portion of highway or road,

considered by the carrier as a single link for routing purposes.

Carriers prefer bundled lanes, as they may lead to what are termed continu-

ous moves. Continuous Move Routes (CMR) are ones in which the carrier’s truck

is always full. Such a route will ideally have zero deadhead miles and no asset-

repositioning costs. The latter costs are incurred when a truck travels empty be-

tween two stops. Reduction in asset repositioning costs can lead to large savings

for carriers, since trucks in the USA travel empty twenty percent of the time on

average (Wilson [50]).

This reduction in cost allows carriers to offer more competitive rates to the

shipper, thereby providing an incentive for shippers to collaborate. Shipper col-

laboration also leads to recurring work for drivers, which is important as driver

turnover has reached a record high in recent years.

CSCMP’s 18th Annual State of Logistics [50] report states that transportation

costs made the biggest leap by increasing 9.4% from 2005 to 2006. The cost incurred

in 2006 by motor carriers alone was a staggering US $635 billion. This further

splits into intercity and local (Figure 2.2) and amounts to $432 billion and $203

billion respectively. Therefore, even a small percentage decrease in cost through

collaboration can translate to substantial reductions in real cost.

Shipper collaboration enables lower costs because of the bundling of lanes by

a single carrier. Still greater benefits could be achieved if there were multiple

carriers, and they collaborated. We call this carrier collaboration/Less-Than-truck

Load (LTL) collaboration. There are two types of carriers, Truckload (TL) and
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Figure 2.2: Line haul and local delivery

LTL. TL carriers predominantly provide a point-to-point service, similar to the

linehaul or intercity route represented in Figure 2.2. In this case, repeatability of

routes and continuous moves from the combined lanes are worthwhile.

LTL carriers, on the other hand, are concerned with delivery of small shipments

(between 500-15000 lbs on average) , ultimately over a limited geographical region,

similar to local delivery shown in Figure 2.2. LTL collaboration aims at designing

continuous moves which minimize asset-repositioning cost. As before, the bundling

of routes is certainly beneficial, but the loads tendered to LTL carriers are usually

small in size and not predictable. Therefore, benefits from shipper collaboration

are much reduced for LTL carriers.

As mentioned above, continuous moves have been the focus of many optimiza-

tion models in transportation (Robin and Levary [35], Desrosiers et al. [13], Savels-

bergh [40]). Before proceeding further, we briefly define continuous moves to avoid

any confusion. Continuous moves are routes which possess characteristics aimed

at increasing truck utilization and taking advantage of the economies of scale from

combined loads. Certain restriction may also apply and include limits on dead

head miles, total route length, waiting time of trucks between each load delivery or

pickup, and minimal distance of a loaded leg. The preceeding list is not exhaustive
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and the characteristics vary depending on the application. The definition of contin-

uous moves changes depending on whether it refers to the TL or LTL industry. TL

CMs are defined as having a combination of inbound or outbound loads by Ronen

[37]. In contrast, LTL CMs consist of inter-woven pick-up and delivery opportuni-

ties. An elastic set partitioning problem for the dispatching of orders with different

truck modes and route types is also presented in [37]. Unlike many others Ronen

[37] makes a strong statement that CMs are only one type of route and should

be considered in addition to other route options. We take a similar stance in our

research on collaborative routes. This will be re-iterated in later sections. In the

remaining part of this section, we review the most relevant literature on operational

collaboration.

Shipper collaboration has been the focus of recent academic studies (Ergun et al.

[15, 14]). The lane covering problem (LCP) was introduced in [15] and finds a set

of minimum cost cycles which cover a given set of lanes. The paper suggests that

shippers should collaborate and submit routes to carriers, instead of submitting

individual lanes, in return for favorable rates. The authors present a polynomial

time algorithm for the unconstrained version of the LCP. They show that the length-

constrained LCP (CCLCP) is NP-hard and present a greedy heuristic which they

conjecture to be a 1.5 approximation algorithm.

The heuristic in [15] to solve the LCP has a pre-processing stage where feasible

cycles are generated. In the second stage, a greedy heuristic is used to find a set of

feasible cycles which cover the set of lanes at minimum cost. Their computational

results show that more lanes produce better results in terms of solution quality and

total routing cost. Further, they perform a trade-off study between generating all

cycles and cycles with only one repositioning arc. The results show that the former

case can realize total cost reductions of up to 40% compared to the latter case. The

solution quality (i.e. ratio of repositioning length to cycle length) is also better.

11



Though their experiments establish the anticipated fact that more collaborative

opportunities result in better collaborative outcomes, they fail to provide sufficient

evidence of why shippers must collaborate in the first place.

In their follow up paper [14], they study the time-constrained LCP. They develop

a two-phase heuristic for the CCLCP. In phase 1, a heuristic generates a large

number of time-feasible cycles and then greedily selects the subset of these cycles

which cover the set of lanes. Following this, a local improvement heuristic is used

to improve the quality of the phase-1 solution in phase 2. Though cycles are time

feasible, optimization is required to choose the starting arc, such that the total

cycle duration is minimized. Local improvement merges two cycles by removing

the largest repositioning arcs from both cycles and optimally reconnecting them to

form another single cycle.

Extensive computational testing is performed by varying R, the maximum travel

time of repositioning arcs in a cycle, and the ratio of number of lanes to number of

customers ( lane-point ratio). They use the percentage of the repositioning distance

to total distance, and the percentage of non-lane travel time to total distance as

criteria to measure quality. Results show that quality increases with increase in R,

and both criteria are lower by 2-3% for higher lane-point ratio. Experiments also

show that only a few lanes are present in a cycle, and that the local improvement

heuristic performs extremely well (20-50% reduction in cost of phase 1 solution).

Further, imposing a supply chain structure reduces the solution quality. The au-

thors suggest that this is due to the absence of incoming arcs to suppliers and

outgoing arcs from customers, thereby making natural cycles more difficult in this

case. A simplified version of a real-life case showed 5.5 - 13% savings through

shipper collaboration.

From the recent literature and the above discussion, it should be clear that ship-

per collaboration can be highly beneficial. However, carrier collaboration may lead
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to benefits different from shipper collaboration. Therefore, that needs to be studied

independently. We highlight these benefits in the context of LTL carriers by using

simple examples. To the best of our knowledge, carrier collaboration/LTL collabo-

ration has not been studied to date. Defining LTL collaboration and developing a

framework for its study, are among the main contributions of this thesis.

2.2 The Vehicle Routing Problem

In this section, variants of the vehicle routing problem relevant to collaborative

routing are introduced briefly to familiarize the reader with the important routing

characteristics to be discussed in later sections.

Definition 2.2.1. VRP: Given a set of m vehicles with capacities c1, .., cm and a

set of n customers with known demands, q1, .., qn, the problem is to solve for the

routes of each vehicle starting and ending at a depot, so that the customer demands

are served, vehicle capacities are not exceeded in any route, a set of side constraints

are satisfied, and an objective is optimized.

2.2.1 Multi-Depot Vehicle Routing Problem (MDVRP)

A company may have several depots from which it can serve its customers. If the

customers are clustered around depots, then the distribution problem should be

modeled as a set of independent VRPs. However, if the customers and the depots

are inter-mingled, then a Multi-Depot Vehicle Routing Problem should be solved.

A MDVRP requires the assignment of customers to depots, at each of which a

fleet of vehicles is based. Every vehicle originates at the depot, services its assigned

customers, and returns to the same depot.The objective of the problem is to service

all customers while minimizing the number of vehicles and travel distance.
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2.2.2 Pickup and Delivery Vehicle Routing Problems (PDVRP)

In Pick up and Delivery vehicle routing problems each customer is associated with a

pair of locations, one location being the pickup point and the other the destination.

Additional constraints, known as pairing constraints, need to be imposed to ensure

that the same vehicle that picked up the load of a particular customer does the

delivery. Further, precedence constraints must be added so that the pickup is

done before delivery. Therefore, this problem becomes more difficult to solve, and

due to the added restrictions, requires additional vehicles. It is common to use

transshipment points in PDVRP so that there can be exchange of loads between

the vehicles. Such a problem is referred to as the pickup and delivery vehicle routing

problem with transshipment (PDVRPT).

2.2.3 Vehicle Routing Problems with Time Windows (VRPTW)

Intrinsically, the VRP is a spatial problem. During the last few decades, however,

temporal aspects of routing problems have become increasingly important. Specific

examples of problems with time windows include bank deliveries, postal deliveries,

industrial refuse collection, school-bus routing, and situations where the customer

must provide access, verification, or payment upon delivery of the product or ser-

vice. Customers in these problems can be served only during certain hours of the

day, such as office hours or the hours before the opening of a shop. For example, a

warehouse may only accept deliveries within a particular time interval (time win-

dow). Therefore, much attention has been given to the Vehicle Routing Problem

with Time Windows (VRPTW).

The time windows can be “hard” or “soft”. In the hard time-window case, if a

vehicle arrives too early at a customer, it is permitted to wait until the customer is

ready to begin service. However, a vehicle is not permitted to arrive at a customer
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after the latest time to begin service. In contrast, in the soft time-window case,

those windows can be violated at a cost. The two variants with multiple pickups

or pickups and deliveries discussed above, can be complicated with the addition

of time windows. Though time window constraints are not simple, they can help

reduce the search space, depending on their tightness.

2.3 Quadtree Search

Tree data structures can be used to efficiently partition complex shapes in a logical

and efficient manner. An algorithm which uses a tree data structure for exploration

is known as a tree-search algorithm. This section will give an introduction to

quadtrees, which are employed in phase 2 of our three-phase heuristic method to

solve the problem of carrier collaboration.

Quadtrees were first proposed in Finkel and Bentley [16] for the storage of data

with two-dimensional keys. Quadtrees can be classified into region quadtrees and

point quadtrees. In region quadtrees, a two dimensional space is recursively decom-

posed into four smaller quadrants, starting from a bounding rectangle, until some

termination criteria ends the recursion. In point quadtrees, the two dimensional

point data are stored using quadtrees.

Quadtrees follow a “search-tree” property which allows efficient searching. For

example, consider the well known binary tree, where each node ni has two children

and a key[ni], which is the search key corresponding to node ni. The binary-search-

tree property states that if a node nk is in the left subtree of ni, then key[nk] ≤

key[ni], and key[nk] ≥ key[ni] if node nk is in the right subtree of ni. This property

can be used to decide whether the search for a key should proceed in the right or

left subtree. Therefore, searching can be done in O(d), where d is the height of the

binary tree.
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In a quadtree, each internal node has four children. Since the key has two

dimensions, a quadtree-search property can be developed. If we assume that the 2-

D key represents the coordinates of a region’s centroid, then it is logical to partition

such that child 1,2,3 and 4 correspond to the NE, NW, SW and SE quadrants

respectively. When searching the tree for a particular key, the above property can

be used to find the record in O(d), where d is the depth of the quadtree. Again, at

each node the above property directs the search to the subtree containing the key,

thereby avoiding wasteful search.

Another important property for trees in general is the idea of a Balanced Tree:

Its leaves must all be at the same depth, resulting in a tree depth of O(log(n)).

This is important in data storage as highly unbalanced trees in the worst case are

linked lists. However, in our application quadtrees are used to decompose regions,

and highly unbalanced trees improve the search speed in conjunction with the

quadtree-search property. Unbalanced trees are created using termination criteria,

which help to reduce the tree’s size.

Quadtrees are widely used in computational fluid dynamics to partition complex

bodies so that highly adaptive meshes can be generated for simulation. Applica-

tions in graphics include storage of data from pictures. In this thesis, an adaptive

version of the region quadtree is used. Adaptive quadtrees use multiple termination

criteria to reduce the size of the tree and ensure that only relevant information is

stored. Consequently, these trees have interesting results concerning computational

complexity, which are presented in Appendix 5.3.

We use an adaptive quadtree search to locate transshipment facilities, which are

then used to transfer goods between trucks of different carriers. More details can

be found in Section 3.5.1.
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2.4 Constraint Programming

This section explains constraint programming in a largely non-technical manner.

Our goal is to highlight the strengths of constraint programming and the reason

for its incorporation in the solution methods to be described later. Since we have

not contributed to any new constraint programming technology, this introduction

is sufficient to understand the thesis, but the reader is urged to refer to Rossi et al.

[38] for further details.

A constraint programming (CP) model is defined by a set of variables {x1, ..., xn},

a finite domain Di for each variable, and a set of constraints Ci1...ik over the vari-

ables xi1 , ..., xik . This is known as a Constraint Satisfaction Problem (CSP). The

domain of a variable is the set of all values it can be assigned. A constraint Ci1...ik

restricts the values that the variables in its definition can take simultaneously. The

number of variables over which a constraint is defined is known as the arity of a

constraint. Constraints of arity two are known as binary constraints.

A CP model of a problem is quite different from its Mathematical Programming

(MP) counterpart. Further, CP models are very “natural” and have a rich language

with which to model constraints. In contrast, MP constraints are either equalities

or inequalities, which are restrictive. As a result, an MP model usually does not

perform well in a CP solver. However, it is well known that MP solvers are superior

in solving optimization problems which possess certain mathematical structure.

Consider for example the infamous Travelling Salesperson Problem, where the

objective is to find the minimum-cost route over a set of visits, where each visit

must be performed exactly once. In an MP formulation, we use binary decision

variables xij, where xij = 1 when a visit to j is performed immediately after the

visit to i, and 0, otherwise. A CP formulation would use the variables si, where the

value of si would give the immediate successor of visit i. The domain of si would
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be set of all visits other than itself. Though both decision variables encode the

same problem, the two approaches vary because they try to exploit their respective

solution strengths.

Constraints are at the core of all CP solvers. In any CP framework, constraints

are actively used to reduce the domain of the variables. In simple terms, this

amounts to removing values of variables which will not occur in any feasible solution.

The values to be removed are decided using existing domains of variables and the

constraints connecting them. This is known as constraint propagation. For example,

consider the CSP defined by three variables, x,y and z, and binary constraints, C1,

C2 and C3, represented in a constraint graph (Figure 2.3). The initial variable

domains are specified in curly braces without a superscript. The constraints are

propagated in lexicographic order, and the resulting domain, if different, is given

in curly braces with the superscript of the constraint that was propagated.

y

x z

{3,5,7,9}c1 {5,7,9}c2
{1...10}

{1,2,3,4}c1

{2,3,4}c1

{1...10}

{1...6}c2
{1...10}

2z + 1 = y (C1)x 
< 

y 
–

2 
(C

2)

z < 2x + 1 (C3)

Figure 2.3: Constraint propagation

As shown in Figure 2.3, the domain of each variable is reduced by propagat-

ing the constraints. The interesting point is how constraints interact. After each

constraint has been propagated once, we have the following domains: x ∈ {1...6},
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y ∈ {5, 7, 9} and z ∈ {1, 2, 3, 4}. Now, when constraint C1 is propagated again

the domain of z reduces to {2, 3, 4}. This happens because C2 removes 3 from the

domain of y, in the first round of constraint propagation. This is a simple exam-

ple of how constraints in CP interact via the domain of variables. It should also

be noted that the order of propagation does not matter. Therefore, variable and

domain declaration during the modelling phase is extremely important, as these

factors dictate the effectiveness of constraint propagation.

The final domains for x,y and z are arc consistent. That is, for each binary

constraint Cij over variables (xi, xj), and for each value v1 ∈ Di, there exists a

value v2 ∈ Dj which together satisfy the constraint. In general, this is termed local

consistency. In the special case of binary constraint, as in our example, this is

referred to as arc consistency. For constraints with higher arity than two, this is

referred to as hyper-arc consistency or Generalized Arc Consistency (GAC).

Note that for a constraint Cij, whenever a value a in the domain of variable xi

does not have a corresponding value in the domain of xj, the value a is removed

from Di as it is said to be arc inconsistent. If there did exist a value b ∈ xj which

led to the feasible combination (a, b), then b would be referred to as the support of

a.

Though achieving GAC leads to the maximum reduction in the domain of a

variable, it can be time consuming. Since constraint propagation is interleaved with

search, it is important to trade off the time spent on constraint propagation with

time spent on search. For this reason, a weaker form of propagation called bounds

consistency is widely used. Here only the bounds on the domain are reduced via

propagation. This leads to improved performance in large problems such as VRPs.

Another, important concept in CP is that of global constraints. Global con-

straints are defined over a set of variables, and have specialized algorithms which
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exploit, as the name suggests, the global structure of the constraints. This leads

to more efficient constraint propagation than if the global constraint were imple-

mented using smaller relations. For example consider the constraint over a set

of variables x1, ...xn, which states that each variable is assigned a different value.

This can be posted as nC2, constraints of the type xi 6= xj. The all-different

global constraint in CP implements the same but more efficiently, and is written

as all− different(x1, ...xn). In addition to increased propagation it also promotes

ease of modelling.

CP has also been used to solve optimization problems. The main drawback is

that bounds on the objective function produced by constraint propagation are weak.

Therefore, linear relaxations of global constraints are widely used to strengthen

these bounds. This is also a popular method for integrating CP and OR. In the same

vein, heuristic methods used for large scale problems, can benefit from constraint

propagation. Search is performed by a local improvement method, while a CP

framework is used to check feasibility. Constraint propagation is used to reduce

variable domains, which in turn helps the local search. Since CP algorithms work

at the constraint level, this leads to a robust heuristic design and is another avenue

for integrated methods (Hooker [24]).

We use the latter method of integration to solve the collaborative vehicle routing

problem in Section 3.9.

2.5 Local Search

This section introduces the concepts of local search as used in the thesis. Local

search has been a well studied field, as a majority of real life problems cannot be

solved using complete (exact) methods. Exact methods are those that guarantee

an optimal solution when used to solve a problem. Understandably, local search
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methods do not make this guarantee. However, this does not make these methods

inferior, since high quality solutions are sufficient in most cases. This may also stem

from the fact that, input data itself contains a certain amount of error. Therefore,

when we claim optimality, it may not correspond to the actual problem. For this

reason and many other practical considerations such as running time, local search

is widely used and has also been used to solve the collaborative vehicle routing

problem.

In the following, we present a general framework for local search (Van Henten-

ryck and Michel [23]).

2.5.1 Local Search Framework

An optimization problem ℘ can be defined by an objective function, f , and a set

of constraints C = C1, , Cn over a set of variables ~x

℘ = {f(~x) | Ci : Aixi ≤ bi, 1 ≤ i ≤ n}

A solution s to ℘ is an assignment of values to all variables in ~x. A feasible

solution to ℘ is a solution s that satisfies the conjunction of constraints
∧n

i=1 Ci .

The set of feasible solutions is given by FS℘. The set of optimal solutions to ℘ is

defined by

OS℘ = {s ∈ FS℘ | f(s) = min
k∈FS℘

f(k)}

Local search algorithms used to solve ℘ have an objective function f to opti-

mize. They start from an initial solution s and move to another solution in its

neighborhood N(s), subject to legality restrictions, and improvement in its objec-

tive function. This implies that a neighborhood need not be defined to include only
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feasible solutions. In other words, the search space may be defined over a subset

of C. To handle this, local search algorithms usually define a legal set L(N(s), s),

indicating the set of legal moves in the neighborhood of a solution s. The selection

operator S chooses the next solution to move to as follows:

s = S(L(N(s), s), s)

This operator selects a solution from the legal set of solutions that can be

reached from s. A local search algorithm stops either at a global optimal solution

or more often at a local optimum. A local optimum is defined with respect to a

neighborhood N . Given two neighborhoods N1 and N2, a solution s which is a

local optimum in N1, need not be a local optimum in N2. This depends on the

resulting transition graph of a neighborhood, and therefore neighborhood definition

is extremely important.

Three neighborhood properties are usually taken into account during the design

of a local search algorithm, namely neighborhood size, neighborhood connectivity

and neighborhood constraints. The neighborhood size is usually a tradeoff between

high-quality solutions and exploration time. Larger neighborhoods usually lead to

better solutions, at the expense of greater computational time. The next property,

neighborhood connectivity, has two types, weakly connected and optimally con-

nected. A neighborhood is weakly connected if there exists a sequence of moves to

reach an optimal solution s∗ from any solution s in the search space. In contrast, an

optimally connected neighborhood must have a path between any pair of solutions,

s1, s2 in the search space. The neighborhood constraints focus on whether a search

space should contain only feasible moves, or if infeasible moves should be allowed

as well (i.e. if all or a subset of constraints in C should be considered).

The above description is concise and does not define local search rigorously.

22



However, the preceding definition highlights the flexibility available when designing

a local search heuristic. In the next section, we describe classical heuristics which

can be used to find an initial solution to vehicle routing problems.

2.6 Classical Heuristics

As the number of cities increases, exact solutions for the VRP become impossible

except in a few cases with special structure. However, good feasible solutions

to the VRP are usually sufficient. A well designed heuristic will in most cases

lead to such solutions. Heuristics can be broadly classified into two categories:

Classical Heuristics and Meta-heuristics. The former has the advantage of simple

implementation and leads to good solutions in less computational time. Meta-

heuristics are very much a research topic today, and are known to perform better

than the classical heuristics, but at the expense of complicated implementation and

greater run time. Metaheuristics which can be used to improve upon the initial

solutions from classical heuristics are presented in the next section.

This section will focus on classical heuristics, for which there are many research

articles. A good review of VRP heuristics is given in Laporte et al. [30]. The

heuristics described below are used to find initial solutions for the VRPs we solve.

The most popular classical heuristics are:

1. Clarke and Wright ( Savings Heuristic)

2. The Sweep Algorithm

3. Petal Algorithms

4. Cluster First, Route Second Algorithms
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The preceding heuristics can be mathematically described using the generic local

search framework from section 2.5.1. Each of these Heuristics are briefly explained

below.

2.6.1 Clarke and Wright Algorithm

The Clarke and Wright algorithm is a very effective heuristic when dealing with

VRPs without time windows or with loose time windows. Suppose we have two

nodes i and j which we had to visit. If we travelled to each node separately, the

total distance would be (d0i + di0 + d0j + dj0). In contrast, if we visit i and j on

the same route, the distance for this route will be (d0i + dij + dj0). Therefore, the

savings, defined as the improvement due to visiting i and j together on the same

route, is

Sij = (d0i + di0 + d0j + dj0)− (d0i + dij + dj0) = di0 + d0j − dij

The Clarke and Wright algorithm combines routes greedily based on savings as

follows:

Step 1: Compute the savings for each pair and order this in a non-increasing array.

Create n vehicle routes (0, i, 0) for i = 1 to n, with a vehicle of capacity C0

serving each route.

Step 2: Starting from the top of the savings list, execute the following. Given a

saving Sij, determine whether there exist two routes, one starting with (0, j),

and the other one ending with (i, 0), that can be merged feasibly. If so,

combine these two routes by deleting (0, j) and (i, 0) and introducing (i, j).
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2.6.2 Sweep Algorithm

Assume each vertex is represented by its polar co-ordinates (θi, ρi), where θi is the

angle and ρi is the ray length. Assign a value θ∗i = 0 to an arbitrary vertex i∗ and

compute the remaining angles centered at 0 from the initial ray (0, ρ∗i ). Rank the

vertices in increasing order of their θi∗ .

1. (Route initialization). Choose an unused vehicle k.

2. (Route construction). Starting from the un-routed vertex having the smallest

angle, assign vertices to vehicle k as long as its capacity or the maximal route

length is not exceeded. If un-routed vertices remain, go to Step 1.

3. (Route optimization). Optimize each vehicle route separately by solving the

corresponding TSP (exactly or approximately).

2.6.3 Petal Algorithm

This is a variation of the sweep algorithm. A number of routes, referred to as

petals, are created in a similar manner to the sweep algorithm. The two methods

differ in the route optimization stage. The petal algorithm uses a set partitioning

algorithm.

2.6.4 Cluster First, Route Second Algorithms

Instead of using a geometric method to form the clusters, this method solves a

Generalized Assignment Problem (GAP). Route construction can be performed by

solving a TSP within each cluster.
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2.7 Metaheuristics

A complete survey of meta-heuristics applied to VRP and VRPTW can be found

in Bräysy and Gendreau [6, 8]. This section will give a brief introduction to tabu

search (Glover [18]) and guided local search (Voudouris and Tsang [47, 48]), which

are the two metaheuristics used in this thesis. Following the notation of section

2.5.1, let S℘ denote the set of problem solutions. The basic local search template

given in Table 2.1 will be used for the purpose of illustration.

Choose initial solution s in S℘

s∗ = s
While not STOP do

k = k + 1
Choose S∗ solutions in N(s, k)
Find best s

′
in S∗

if(f(s
′
) < f(s)) s∗ = s′

End While

Table 2.1: Basic local search template

The search starts with an initial solution. It then moves to a best solution in the

neighborhood of the current one, provided the new solution has a better objective.

A stopping criteria STOP is used to terminate the search.

Metaheuristics are widely used in combinatorial optimization problems to obtain

high quality solutions in reasonable time. Each metaheuristic has its own unique

way of using information from neighborhoods and solutions visited in the past, to

avoid locally optimal solutions and search the solution space efficiently. In this vein,

almost all metaheuristics have a method to diversify the search to unvisited regions,

or intensify the search in promising areas of the solution space. The following

subsections deal with tabu search and guided local search.
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2.7.1 Tabu Search

Tabu search (TS) has its origins in artificial intelligence and was proposed at the

same time in both Glover [18] and Hansen [22]. Tabu search is a metaheuristic which

has been successfully used to solve various problems in combinatorial optimization.

In particular, it has been successful in solving VRPTWs.

A local search method moves from a solution s to another solution s
′

in the

neighborhood N(s) of s. A simple iterative improvement scheme, such as a descent

method, would choose the best solution s
′
in N(s) at every iteration and move to it.

When choosing the solution s
′
, we need to decide if the entire neighborhood will be

searched, or if only a subset S∗ of solutions in N(s) will be scanned. As an example,

if S∗ = N(s), we scan the entire neighborhood, which would be prohibitively time

consuming for large problems. On the other extreme, we can set |S∗| = 1, in which

case the best element will always be an arbitrary element in the neighborhood.

Therefore, efficient heuristics search for solutions in the neighborhood of an

existing solution in a strategic manner. Tabu search maintains a tabu list, based

on selected attributes of moves and solutions, which controls the solutions it scans

in N(s) at every iteration. This is equivalent to using information from previous

solutions and neighborhoods, making it an informed search method. A simple

tabu list could be based on “recency”, where moves which were recently visited are

forbidden. Usually, multiple tabu lists are maintained, and multiple criteria are

evaluated to decide if a move is “tabu” (i.e. is forbidden)). For more detail, the

reader is referred to Glover [19, 20].

A tabu list will certainly help direct the search at every iteration, but the

following two situations will still be encountered and must be resolved.

1. A tabu list that is too large, in addition to requiring extra memory overhead,

will also lead to a highly restricted search. On the other hand, if the list is
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too small, it will have little or no effect in directing the search. In both cases,

the purpose of having a tabu list will be defeated.

2. Regions of a solution neighborhood which are tabu may actually contain the

best solution. This may lead to the best solution never being found, or being

found much later in the search.

Situations 1 and 2 can be dealt with through two important features of the tabu

list, tabu tenure and aspiration which will now be explained. Tabu tenure is the

length of time, usually measured in number of iterations of the heuristic, for which

an item in the list remains tabu. This is a parameter which needs to be tuned

when using a tabu search, and may be used to address the first concern above.

Aspiration levels are set to accept highly attractive solutions which are tabu. A

commonly used aspiration criteria accepts any tabu solution which is better than

the best solution found so far. This solves the second problem mentioned above.

In general, intensification and diversification schemes (Rochat and Taillard [36])

have been developed to address the first issue. Dynamically changing the length of

the list or tenure during search is one such option, and this would make the tabu

search reactive.

For the VRPTW, tabu search has performed extremely well; the implementa-

tions by Gehring and Homberger [17] and by Cordeau et al. [10] are among the

best. The former paper uses a parallelized tabu search. It employs an evolutionary

algorithm which utilizes Or-opt, 2 − opt∗ and λ-interchange moves, while a spe-

cialized Or-opt is used for reduction of vehicles. The initial solution is found via

a stochastic variant of the Clarke and Wright algorithm (refer to Section 2.6.1).

Similar to other metaheuristics, the primary objective is to reduce the number of

vehicles, while the secondary objective is to minimize the distance.

The tabu search in [10] is simple and effective. Cordeau’s implementation allows
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infeasible solutions at a penalty. A simple insertion operator, which relocates a

customer, is used for local search; a variant of the sweep algorithm (Section 2.6.2)

is employed to instantiate the routes. The objective is the same as in [17]. Post

optimization is performed through a heuristic for the travelling salesman problem.

On the problem set from Solomon [41], the results of both [17] and [10] were only

2-3% percent worse than the best known solutions.

The heuristic in De Backer and Furnon [3] and De Backer at al. [4] requires

a special mention, as a variant of it is applied in the present work. They use

both a tabu search heuristic and a guided local search to solve VRPTWs (The

latter method will be explained in Section 2.7.2). The neighborhood is defined by

two intra-route operators, 2-opt and Or-opt, and three inter-route operators, cross,

exchange and relocate. Two tabu lists are maintained, one for edges added and the

other for edges removed. A constraint programming framework is used for checking

feasibility. The search has a single objective, to minimize total travel distance.

Understandably, the tabu search performs worst in terms of number of vehicles,

but surprisingly, it only performs better than the other approaches in R2 and RC2

of the Solomon’s benchmark. We attempt to enhance the implementation in [3].

Tan et al. [44] develop a tabu search heuristic and a simulated annealing heuris-

tic for the VRPTW. They use a modified version of Solomon’s insertion heuristic to

find an initial solution. Local minima are avoided through a diversification scheme,

which uses λ-interchange with a 2 − opt∗ operator. Throughout the search, elite

solutions are recorded, to be used as a starting point for intensification. References

[3] and [44] furnish the only tabu search heuristics that minimize route distance,

and will used for the performance evaluation of the proposed tabu search in Section

4.4.
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2.7.2 Guided Local Search

Guided local search (GLS) (Voudouris and Tsang [47, 48]) is a rather recent ad-

dition as a metaheuristic. In GLS, the objective function is modified to guide the

search. Once again, the search requires memory to remember and use the infor-

mation it gains. For this purpose, a set F, of features of a problem is defined. An

indicator function Ii(s) and a penalty factor pi, are defined for each feature. For

each candidate solution, Ii(s) = 1 if feature i ∈ F is present in solution s, and 0

otherwise. The penalty pi is initialized to zero, and keeps track of how many times

feature i has occurred so far. With the above definitions and a penalty factor, λ,

which is the only parameter of the search, the modified objective function can be

written as

h(s) = f(s) + λ
∑

i

piIi(s) (2.1)

In equation 2.1 each feature has a cost penalty of one. However, we may want to

penalize each feature differently using a cost vector c, where ci is the cost of feature

i ∈ F . Penalties only serve to diversify the search and not for intensification. The

most interesting aspect of GLS is that it penalizes only a subset of the features

using a novel feature selection mechanism. A utility value Ui(s) is calculated for

each feature, where

Ui(s) = Ii(s)
ci

1 + pi

(2.2)

The above equation will result in higher values of Ui(s) for those features which

exist in solution s but have not been previously penalized. Each time a feature is

penalized, the corresponding pi is incremented by one. However, if a feature has

been encountered often, it is penalized less. In other words, the equation promotes

candidate solutions with “good features,” where a good feature is one which occurs

often at a local optimum, and therefore has a high penalty value, pi.

GLS has the advantage of having to configure only the single parameter, λ.
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Therefore, tuning a GLS heuristic is much easier than tuning a tabu search, which

is far more complex. Similarly, one can decide much faster if GLS is suitable for a

given problem much faster than one can for tabu search; this is an added bonus.

De Backer et al. [4] use GLS as a diversification scheme on top of tabu search and

report excellent results on the benchmark problems of Solomon [41], Taillard et

al.[43] and Fisher. Three new best solutions are reported for Solomon’s data set.

They conclude that guided local search, together with the tabu search, gives the

best performance on the benchmark problems that they solved.

A drawback of their implementation is that the number of vehicles is reduced

using knowledge from existing best known solutions. They begin with as many

vehicles as there are in the best known solution. Dummy vehicles with high cost

are then added to ensure feasibility. This discourages solutions whose number of

vehicles exceeds that in the best known solution. More importantly, the preceding

logic cannot be applied to real life problems, such as the those solved in this thesis,

for which no advance knowledge is available of the best solutions. Results reported

using such a method do not reflect the “real” performance of the heuristic, hence

we refrain from using their approach for evaluation purposes.
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Chapter 3

Problem and Proposed Solution

The necessary background for the thesis was established in the last chapter. This

chapter describes in detail our proposal for carrier collaboration in section 3.1. Ex-

amples of simple cases where collaboration can be beneficial are also given. Once

the framework is complete, the collaborative vehicle routing problem is mathe-

matically defined in section 3.2. Section 3.3 presents some geometric results for a

restricted version of the COL-VRPTW. Interesting reasons are given for carriers

to collaborate in 3.4. Sections 3.5- 3.8 present heuristics related to the location of

transshipment facilities and collaborative routing respectively. Finally, a summary

of the overall solution procedure in given in Section 3.9.

3.1 Carrier Collaboration

The linehaul truckloads that arrive at a breakbulk point are disaggregated into

smaller shipments and delivered using LTL carriers. As LTL carriers performing

the local deliveries serve geographical regions that are compact, especially in urban

freight transportation, this leads to overlapping routes.

If routes overlap, and vehicles are travelling less than full, there may exist
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opportunities for carriers to collaborate, improve asset utilization and reduce asset-

repositioning costs. This question led to the investigation of carrier collaboration.

The benefits to LTL carriers of carrier collaboration are similar to the benefits

to TL carriers of shipper collaboration. However, the underlying process is quite

different, and there is a need to study carrier collaboration independently. It should

also be noted that not all shippers will be able to tender TL loads and benefit

from TL collaboration. Therefore, LTL collaboration may be seen as having wider

applicability, though assembling these collaborative routes is more complex than in

the TL case.

Carrier collaboration initiatives are important, since pressure to ship sooner

(i.e. with shorter lead times) has led to partially loaded trucks delivering goods in

urban regions. This poor asset utilization leads not only to low carrier revenues,

but also to greater congestion in cities. Congestion in urban areas is becoming an

increasingly important problem for both commuters and environmentalists.

Urban areas are thus particularly suited for carrier collaboration. In many cities,

there are a limited number of points of entry for trucks. (In Toronto, for example,

there are about four points of entry from major highways.) Breakbulk points often

are located at these entry points. Once carriers break down their loads into smaller

shipments there, they may combine some of those loads, resulting in fewer trucks

entering the city. This would also lower congestion. Feasibility of such operations

depends on spatial orientation of routes, time windows, and truck capacity, which

all result in a complex problem.

Before proceeding further we define two important terms. Deadhead miles are

those that the truck travels empty, while extra miles are those that the truck travels

inefficiently. Consider carriers A and B. Carrier A is travelling extra miles if carrier

B can accommodate a customer of carrier A on its route, and incur a smaller

increase in its route distance than the decrease in route distance of carrier A. This
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is the inefficiency indicated in the definition of extra miles. Therefore, reducing

extra-miles can lead to a decrease in pollution.

Next we explain the details of carrier collaboration. For simplicity we assume no

time windows in the examples to follow. One of the possibilities for collaboration

occurs when the routes of each carrier overlap (Figure 3.1), and one of the trucks

(red/solid route) has sufficient space to accommodate the loads of all customers

from another carrier’s route (black/dashed route). In this case, the black carrier

saves a truck, and has lower deadhead and extra miles, while the red carrier has

higher asset utilization and lower deadhead miles. The decrease in cost can be

shared between the collaborating carriers.

 

Figure 3.1: Collaboration results in the reduction of vehicles, extra miles and empty
miles, while increasing asset utilization

Due to lack of space, it may not be possible to accommodate all the customers

from another carrier’s route. However, assuming that some customers can be ac-

commodated, collaboration may still be beneficial if it can result in reduction of

extra miles travelled.

To illustrate, consider the two routes shown in Figure 3.2. The nodes of the

red/solid route marked R1, R2 and R3 are the customers that can be profitably

transferred to the black/dashed route. After collaboration, the resulting routes

(shown on the right) allow the red carrier to reduce extra miles travelled, and allow

the black carrier to reduce deadhead miles while increasing its asset utilization. If

revenues can be shared, this exchange is mutually beneficial.
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Figure 3.2: Collaboration reduces extra miles and deadhead miles, while increasing asset
utilization

The situations described above, of collaborating and transferring loads at an

entry point, may not be possible if trucks are full and have large loads to be delivered

early in the route. Once these initial loads are delivered, the trucks will have

excessive empty space and low asset utilization. To counter this disadvantage we

need to make the collaboration more dynamic. Carriers must be able to transfer

goods, if possible, after they have left the depot and while they are still performing

deliveries.

A stylized example of this is shown in Figure 3.3. The transshipment point

is marked TP. B1 is the node on the black/dashed route from which the truck

deviates to pick up the loads of R1 and R2 at node TP. The tradeoffs here are the

increase in deadhead miles as a result of the deviation to pick up loads at TP, and

the reduction in extra miles as a result of collaboration. The new routes resulting

from collaboration do not overlap. Again, collaboration leads to a win-win situation

for both carriers. Figure 3.3 considers transshipment at a customers site, but the

transshipment point need not coincide with a customer.

Once time windows are introduced, collaboration results in yet another advan-

tage. By transferring customers from one route to another, we will definitely reduce

the routing time of the former carrier. Although this may increase the routing time
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Figure 3.3: Transshipment at the customer’s site

of the other, the route from which customers are transferred will definitely have a

shorter routing time. In addition to fewer extra miles, the associated truck will be

available for reuse much earlier. This may allow the same vehicle to be employed for

the next set of local deliveries. Therefore, we not only save in distance but also in

time, which may translate to better service and higher overall asset utilization. In

fact, even the carrier to which passengers are transferred will enjoy increased asset

utilization. The case of time windows will be handled in detail when describing the

local search algorithm in Section 3.8.

The features and benefits of carrier collaboration have been defined using simple

examples in this section. However, the implementation of collaboration is quite

challenging, and requires strong commitment from all carriers in the community.

Further, efficient transfer of goods is also crucial in achieving substantial gains

through collaboration.

3.2 The Collaborative Vehicle Routing Problem

Vehicle routing problems (VRP) or their mathematical equivalents arise in every

day life. Solutions of these models improve or enable the use of a telephone, travel
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for business, receipt of mail, etc and have been extensively studied. The reader is

referred to Laporte [29] for an introduction and to Toth and Vigo [46] for an in-

depth review of the VRP. As mentioned in the previous section, LTL collaboration

during routing can be modeled as a variant of the vehicle routing problem. This will

be referred to as the COLlaborative Vehicle Routing Problem with Time Windows

(COL-VRPTW).

COL-VRPTW has some features of the Multi Depot Vehicle Problem (MD-

VRP), the Vehicle Routing Problem with Time Windows (VRPTW), and the

Pickup and Delivery Problem with Time Windows and Transshipment (PDPTWT).

The capacitated vehicle routing problem (CVRP) is one of the simplest variants of

the VRP. CVRP concerns a fixed fleet of delivery vehicles of uniform capacity which

must service known customer demands for a single commodity from a common de-

pot at minimum transit cost. The VRPTW is similar to the ordinary VRP, with

the additional constraint that each customer should be supplied within a specified

time window. In the PDPTWT, each customer has pickup and delivery locations

associated with it, and goods may be transshipped at pre-specified points.

Mitrović-Minić and Laporte [34] proposed an insertion heuristic for the PDPTWT.

They develop a two-phase heuristic consisting of a construction phase followed by

an improvement phase. The paper concludes that the advantage of transshipment

increases with problem size and with time window size. However, they reported

that for random instances, the transshipping of goods is not very beneficial.

A partial reason for this non-satisfactory result is the fixing of transshipment

points a priori, without any consideration of the structure of the particular instance.

It should also be noted that the transshipment itself is quite different in their case

and in ours. In the PDPTWT, transshipment takes place by splitting a pickup

and delivery request. A truck first drops off the load at a transshipment point.

Following this, another truck handles the request from the transshipment point to
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the destination.

In the COL-VRPTW, the requests are not of the nature of a pickup and delivery

pair. Goods are loaded at the depot and are destined to be delivered to customers,

with the allowance of exchanging goods with other carriers at transshipment points.

Further the transshipment is between two trucks belonging to different carriers.

This restriction is added since we are interested in the benefits from inter-carrier

collaboration. It can be relaxed otherwise.

For these reasons the, COL-VRPTW has distinct features which cannot be

handled by the solution methodologies designed for the aforementioned problems.

COL-VRPTW arises in urban cities where the routes of different carriers overlap,

and the aim is to exploit goods transfer between collaborating carriers in a mutually

beneficial manner. Different scenarios for this have been explained in the previous

section through simple examples; additional possibilities specific to the time window

case will be shown in a later section.

To the best of our knowledge, the COL-VRPTW has not been studied until

now, and therefore no literature on solving the same problem exists. We suggest a

formal definition of the COL-VRPTW. In the following definition we assume that

there are p points of entry into the city. For example, p would be equal to four, in

a city like Toronto. In VRP terminology, this would correspond to p depots. They

may be taken as the break-bulk points discussed previously. Further, these depots

are added as the last p nodes in the customer set. The required sets and problem

definition follow:

Definition 3.2.1. COL-VRPTW: Let us assume a set of K carriers, C = c1, · · ·, cK

; a set of Nc customers for each carrier, Ic = {ic1, · · ·, icNc
}, c ∈ C; a set of

NT transshipment points T = {t1, · · ·, tNT}, and a set of NVc vehicles of equal

capacity, Vc = {vc
1, · · ·, vc

NVc
}, c ∈ C. The carriers’ depots are given by the,
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D = {D1, · · ·, DK}, where Di =
∑K

c=1 Nc + i. Duplication of depots for each

carrier, allows its set of vehicles to have unique starting and return times at the de-

pot. The set UC = [
∑K

c=1 Ic]
⋃

D
⋃

T is the universal set containing all customers,

depots and transshipment points. Each customer j ∈ UC \ T has an associated

time window [Ej, Lj], where Ej is the earliest time at which service can start and

Lj is the latest time at which service can begin. The earliest and latest start times

Ed and Ld, ∀d ∈ D, correspond to the earliest time at which the carriers’ trucks

can leave the depot, and the latest time by which they must return to the depot

respectively. Along with the nodes (customers) of the problem, there is a set A of

arcs with non-negative weights (distances) and associated travel time tij.

A vehicle is allowed to arrive before Ej and wait at no cost until service becomes

possible. The time bj, j ∈
K⋃

c=1

Ic, at which service begins at a customer is a decision

variable. Each node j ∈ [UC \ {D
⋃

T}] imposes a service requirement, qj, that is

a delivery or a pickup. A route, rc1 , of carrier c1 ∈ C is allowed to serve customers

in the route rc2 of a carrier c2 ∈ C (i.e. a customer in the set {j|j ∈ Ic2}), if and

only if rc1 meets rc2 at a transshipment point t ∈ T and is able to collect the load

corresponding to the customers being transferred from rc2 to rc1 . The objective is

to find the minimum cost set of tours R∗ for a set of identical vehicles, such that all

nodes j ∈ UC are served within their time windows, and the accumulated load up

to any node Lj does not exceed a positive number Q, the vehicle’s weight capacity.

We assume that all distances and travel times satisfy the triangle inequality.

The conventional way of handling a large VRP instance has been through two-

phase heuristics. The first phase focuses on route construction, while the second

phase is a post-optimization phase, which usually involves a variant of 2 and 3 arc-

exchange moves. Local search methods have been applied to a variety of VRPTWs

with great success (Mester and Bräysy [33], Rochat and Taillard [36], Taillard et al.

[43]). The papers by Cordeau et al. [10] and Bräysy and Gendreau [7, 8] provide
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an excellent review of heuristics and exact algorithms for the VRPTW.

Effort has also been guided towards using constraint programming techniques,

namely constraint propagation with local search to improve the efficiency of the

local search scheme (Caseau and Laburthe [9], De Backer et al. [4], Kilby et al.

[25]). The basic idea is to perform constraint propagation and local optimization

of routes during tour construction itself (e.g. in the case of an insertion heuristic

for route construction, tour optimization and constraint propagation are performed

after every insertion). Experiments in [9] with such integration establish that it

provides substantial improvements in performance and quality for large vehicle

routing problems.

The COL-VRPTW does result in large problems due to the involvement of mul-

tiple carriers. Further, because of the interaction between multiple-carrier routes

at transshipment points, it involves side constraints which constraint propagation

can handle efficiently. The side constraints include:

1. Inter-carrier Constraints: Only customer loads from routes of different

carriers can be transferred at transshipment points, when they enter into a

collaborative exchange. This restriction is imposed to allow the evaluation of

the benefits from collaborative exchanges between different carriers alone. If

this requirement were relaxed, the resulting version would be unrestricted in

allowing both traditional transshipment between routes of the same carrier

and collaborative exchanges between carriers.

2. Precedence constraints: The truck of the carrier giving the load (“Load

Giver”) must arrive at the transshipment point before the truck of the car-

rier taking the load (“Load Taker”). In our implementation, we restrict the

difference in arrival times of the two carriers, to avoid storage of inventory at

the transshipment facility.
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3. Load constraints: The inter-route and inter-carrier transfers at transship-

ment points must result in routes which satisfy the weight capacities of the

collaborating vehicles.

4. Savings constraints: For a transfer to be successful, the resulting savings

should be positive. Savings need not necessarily imply a reduction in routing

distance. A transfer resulting in negative distance savings may lead to a large

reduction in the load giver’s routing time. Reduction in total route time

will give the load giver added potential to take part in good collaborative

exchanges in later iterations of the algorithm. This may lead to an overall

positive distance savings, or a savings in the number of vehicles as the vehicle

corresponding to the load giver will be able to return to its depot at an earlier

time and perform another set of local deliveries.

The above explanation takes the liberty of assuming that the load giver’s

partial route will be feasible when one or more customers are removed. A suf-

ficient condition for this is that the travel times satisfy the triangle inequality.

The important difference between local search and constrained local search is

the active use of constraints (constraint propagation) to reduce the search space.

As an alternative, the moves of a local search algorithm can be modified to check

for the complicated infeasibilities introduced by the side constraints. However, it is

more beneficial to remove invalid moves through propagation, than to complicate

the move itself. The former strategy can lead to savings in the running time of the

algorithm.

In our methods, we solve the problem of carrier collaboration during local deliv-

ery in a city where carrier routes overlap. The opportunities for carrier collaboration

are not limited to this situation alone. A mirror problem related to the pick-up

of loads can be solved independently using the heuristics we propose. However, in
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that case the time windows will be those for dispatch.

We either use a modified tabu search algorithm or a guided local search algo-

rithm to solve for the routes specific to a carrier’s VRPTW. As stated above, many

excellent local search methods have been proposed for the VRPTW, and we do

not attempt to design a heuristic for this purpose. Our effort has been focused on

finding good collaborative routes. However, our work is similar to the preceding

references in using constraint programming and optimization techniques with in

heuristics, wherever such integration proves beneficial in reducing the search space

or in improving solution quality. If the initial route building for each carrier were

to be considered, our proposed method would become a three-phase heuristic.

3.3 Geometric Results

Collaborative vehicle routing involves solving large vehicle routing problems with

hundreds, or even thousands, of customers. When the number of customers is

this large, it is extremely difficult, if not impossible, to derive analytical results.

Therefore, we analytically study simple cases, the results of which can be used to

characterize the savings from larger problems solved using heuristics, or to design

the heuristic itself. Route overlap is defined as

Definition 3.3.1. Route Overlap: An overlap of routes between carriers CA and

CB implies that some customers of CA lie within the boundaries which define one

of the routes of CB, vice versa or both.

The term “collaboration” is used to characterize a symbiotic relationship be-

tween carriers. Consider two carriers CA and CB. Collaboration implies that CA

serves some customers of CB or vice versa, or both. Both collaborating partners

benefit because savings are assumed to be shared. In this section, we present inter-
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esting geometric proofs of savings for simple collaborative scenarios. The central

idea behind the proofs is given in Remark 3.3.1, the proof of which is simple, and

has hence been omitted.

Remark 3.3.1. Suppose we have shown that savings are positive for all points

within a region for a particular route r. Although, there may or may not be another

route with savings greater than that of route r, there exists at least the latter route

for which the savings is positive at all points within the region. In other words,

collaboration will be beneficial within this region.

Theorem 3.3.2. For two carriers having a common depot located at a corner of

a square, and one of the carriers having customers located at any two of the three

remaining corners of the square, a positive savings will result due to collaboration

as long as the other carrier’s customer is located within the square as well.

Proof. Let the two carriers be CA and CB. CA has two customers A1 and A2, while

CB has just one customer B1 (Figure 3.4). The common depot of CA and CB is

represented by O. The initial routes are O − A1 − A2 −O and O −B1 −O.

A1
A2

O

B1

y

x

Figure 3.4: Collaboration between two carriers with the same depot

For the proof, we consider the collaborative route O −A1 −B1 −A2 −O. The

links added are B1 − A1, and the links severed are B1 − O, O − A1. This implies
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that the savings from collaboration is

Savings = d(B1 −O) + d(O − A1)− d(B1 − A1) (3.1)

In Eq 3.1, d(a) returns the length of arc a. The savings is positive for any position

of B1, in light of the triangle inequality. Using Remark 3.3.1 and the symmetry of

the square, the proof is complete.

Conjecture 3.3.3. Consider two carriers CA and CB. CA has its depot OA at the

corner of a square, and has two customers A1 and A2 located at two non-diagonal

corners of the three remaining corners of the square. A positive savings will result

if carrier CB has its depot on the edge connecting OA and the uncovered corner,

and if the routes overlap (Definition 3.3.1).

Now we explain the reasoning behind Conjecture 3.3.3. Carrier CA has two

customers A1 and A2, while CB has just one customer B1. The respective depots

are represented by OA and OB. OA is located at a corner of the square, while OB

lies on the edge connecting OA and an uncovered corner, as shown in Figure 3.5

(A unit square simplifies the analysis and the results for a general square can be

obtained by scaling the results we present).

The customers are distributed such that A1 and A2 are on two vertices of the

square, while B1 overlaps with the route of CA.

Consider the area represented by the triangle O1 − A1 − A2. Let us assume

that the coordinates of B1 are (xB1 , yB1), with the origin of the coordinate system

located at OA. The distance between OA and OB equals b, where 0 ≤ b ≤ 1. The

route OA − OB − A1 − A2 − B1 − OA is the collaborative route for the analysis to

follow. The initial or non-collaborative routes of CA and CB are OA−A1−A2−OA

and OB − B1 − OB, respectively. The savings will depend on the distance of the
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Figure 3.5: Collaboration between two carriers with unique depots

links added and removed.

Edges Added : OA −OB, OB − A1, A2 −B1, B1 −OA

Edges Removed : OB −B1, B1 −OB, OA − A1, A2 −OA

Let d(edges added) and d(edges removed) represent the distances of the sum of the

edges added and removed respectively.

d(edges added) = b +
√

(1− b)2 + 1 +
√

x2
B1

+ (1− yB1)
2 +

√
x2

B1
+ y2

B1

d(edges removed) = 2
√

(xB1 − b)2 + y2
B1

+
√

2 + 1

Savings = d(edges removed)− d(edges added)

At present, we are able to only graphically show that the above savings expres-

sion is positive for all values of 0 ≤ x, y, b ≤ 1, which from Remark 3.3.1 implies

that savings are positive when B1 is located within the route of CA. In other words,

savings from collaboration are positive when the routes overlap. We are currently,

trying to find either a transformation or a bounding function which will allow us
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to analytically prove Conjecture 3.3.3.

3.3.1 Graphical Analysis

In this section, variation in distance savings will be analyzed by changing the pa-

rameters of the savings expression given by Eq ??. Figure 3.6 is a plot of the

variation of distance savings with change in m, after fixing b = 0.5 and yB1 = 0.5.

Recall that m is the slope of a ray starting from OA and ending at the edge A1−A2.

Therefore varying m from 0 to 1 is equivalent to horizontally translating B1 from

OA −A2 to OA −A1, as shown in Figure 3.6 (a). The savings is a maximum when

m = 0 and reaches its minimum value at m = 1. The collaborative route which we

considered when deriving the savings expression is OA −OB −A1 −A2 −B1 −OA.

Since we add B1 in between A2 and OA, as m increases B1 moves further away from

this edge which leads to the reduction in savings. Therefore, during local search,

it will be sufficient to consider only those customers that are close to an edge for

insertion. It is for this reason that VRP insertion heuristics employ a “radius”

parameter.

A1
A2

OAOB

B1

y

x

m=0m=1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

m-slope

D
is

ta
nc

e 
S

av
in

gs

(b)

Figure 3.6: Distance savings as a function of slope m, when b = 0.5 and yB1 = 0.5
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Next, we analyze the variation of distance savings with change in yB1 . Again,

b = 0.5, and we have fixed m = 0.5. This is equivalent to moving B1 along the

line with slope 0.5, starting at OA and ending at the edge A1 − A2. As shown in

Figure 3.7 (b) the savings initially decreases to zero and then starts to increase

again, reaching a maximum at yB1 = 1. This is due to the tradeoff between the

distance saved by not travelling from OB to B1 and back, and the distance incurred

by adding B1 in between A2 and OA. If the same graph were plotted for b = 1, the

savings would be a maximum at yb1 = 0 and continue to decrease as yb1 increases.

Therefore, even though we select customers that are close to the edge for insertion,

the relative position of a customer to its depot and to the customer defining the

edge are also important in defining the savings.
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Figure 3.7: Distance savings as a function of the y coordinate of B1 (yB1), when b = 0.5
and m = 0.5

As shown in Figure 3.8, varying the distance b between depots, has a similar

effect to varying y, due to the tradeoff between distance added and removed. The

preceding results show that collaboration even in such a simple example, can be

non-intuitive. That will certainly be the case for instances with less structure and

more customers. However, simple geometric results, such as those just discussed,

can be used to define a “relatedness” parameter, to restrict the number of customers

considered for collaboration during local search. This will be explained in Section

47



3.8. In the next section, we highlight interesting benefits which result from carrier

collaboration.
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Figure 3.8: Distance savings as a function of the distance between depots, when yB1 =
0.5 and m = 0.5

3.4 Why Collaborate?

Before proceeding to explain the algorithms and solution procedures, we highlight

some interesting reasons for carriers to collaborate within the structure of our pro-

posed framework for collaboration (Section 3.1).

To better understand collaboration, we first explain the non-collaborative sce-

nario. Trucks belonging to different carriers come to the entry points of the city

after their line haul leg. On arrival, drivers may take a break, if required, and

proceed to perform their respective local routes. Therefore, carriers do not collab-

orate at the entry to the city, nor while routing. The results are referred to as

“non-collaborative entry” and “non-collaborative routing”, respectively.

Next, we explain collaborative entry. In the proposed framework, logistics plat-

forms exist at the entry points to the city. These platforms allow goods exchange

between trucks from different carriers, and trucks of the same carrier coming from

different origins. Those exchanges lead to the construction of superior local routes,

resulting in higher asset utilization, and cost savings from lower route distance.
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The above exchange of goods between carriers is referred to as “collaborative en-

try”. Once local routes are dispatched, carriers can then collaborate by exchanging

goods at transshipment points as outlined in Section 3.1. This is referred to as

“collaborative routing”, and its primary benefit, in addition to those already listed

in Section 3.1, is now described.

Carriers entering from different corners of a big city have a geographical ad-

vantage by virtue of their entry location. For example, consider a rectangular city

with four points of entry. A carrier entering from the north-east corner will travel

less distance to serve customers located in that sector than will a carrier entering

from the north-west, south-west or south-east corners. Therefore, by collaborating

at transshipment points and exchanging goods, carriers will be able to spread this

geographical advantage. From the above description, it can also be inferred that

collaboration between the routes of different carriers entering from distinct corner

points will be more beneficial than the same exchange between carriers entering

from the same corner point.

For this reason, we consider all routes from a corner point to belong to the same

carrier for routing purposes. This restriction acts as a good pre-processing step,

reducing the running time and leading to high quality results, when using the greedy

heuristic to solve the COL-VRPTW. That heuristic will indeed return collaborative

scenarios between carriers entering from different corner points. Understandably,

after the collaborative routes have been constructed, a post-processing step can be

used to assign savings to individual carriers. Sections 3.5-3.9 will detail the solution

methodology.
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3.5 Transshipment Facility Location

The collaborative vehicle routing problem was described Sections 3.1 and 3.2. Col-

laboration requires vehicles from different carriers to exchange goods at transship-

ment points. Those points are facilities which do not store much inventory, if any,

but allow a transfer of goods between carriers.

An interesting aspect of the COLVRP is its dynamic nature. Good facility

locations depend on the availability of vehicles to serve the demand points. For

LTL carriers, these demand points keep varying, which causes the transhipment

locations to change as well. Therefore, a good transhipment location in week w

may not be suitable in week w+n, where n is a positive integer. Since collaboration

is driven by the resulting savings, the location of transshipment points is crucial to

beneficial collaboration.

The variation in transshipment locations mean that it is impractical to build

dedicated facilities. Rather, the focus should be on identifying existing urban spaces

which can be used for transshipment. Crainic et al. [11, 12] and Mancini et al. [32]

suggest that city bus terminals and tour bus parking lots can be used as transship-

ment points. These are indeed good sites for collaborative transfers, but we propose

the additional possibility of transshipping at a consignee’s location. The feasibility

of transshipment at a customer’s location will depend on the infrastructure of the

loading dock. The idea is to give carriers and customers an incentive to collaborate.

The distribution of the savings from collaboration, among carriers and consignees,

is another interesting problem that stems from collaborative routing.

From a modelling perspective, the problem is to locate transshipment facili-

ties such that the savings from collaboration is maximized. Finding those savings

involves solution of the COLVRP, which is highly complex. In the literature, feed-

back mechanisms have been used for two-stage models, where decisions in one stage
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affect decisions in the next. A feedback mechanism was used in Bookbinder and

Reece [5] to solve a two stage distribution model. The first stage located facilities,

and the second stage solved the resulting problem of routing from facilities to cus-

tomers. In their next iteration, the second stage results from the previous iteration

are used to obtain facility costs. Considering the “richness” and complexity of the

COLVRP, however, a feedback mechanism would not be a desirable option in terms

of solution time for us.

A good transshipment location, in terms of cost, may be infeasible in practice.

Infeasibility may arise due to lack of facilities in the vicinity of the points suggested

by the model. This can be overcome by using location models from network design.

The term “network design” is used loosely since the decisions taken by discrete

location models are always related to the opening of facilities from a candidate list.

The model chooses facilities such that a single objective or multiple objectives are

optimized. Many efficient solution methodologies exist, but these methods are not

sufficiently robust to handle varying side-constraints and objective functions.

Considering that many subjective elements need to be considered in our location

model, and accounting for temporal variations, we suggest instead a heuristic plan-

ning module for transshipment location. Our heuristic uses an adaptive quadtree

search (refer to Section 2.3) which is highly flexible in handling changes to the

objective function. Secondly, the search algorithm will turn out to run within a

few seconds, even for large data sets. This will allow the planner (the user) to test

different objective functions, before selecting the transshipment points. Finally,

similar to many scheduling systems which allow user input, we alow the user to

change the location of the transshipment point. It is widely accepted that planning

systems with human intervention perform better. Therefore, the transshipment lo-

cation model is only a guide to potentially beneficial locations, which the user can

accept or change.
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3.5.1 Quadtree Search

In this section, the quadtree search algorithm will be explained in detail. As men-

tioned before, the quadtree search locates transshipment points, which in turn affect

the carriers and routes which can enter into a collaborative goods exchange. In-

troducing a transshipment facility is accompanied by fixed and operational costs,

which need to be justified by the benefits from collaboration. The appropriateness

of the chosen location can only be evaluated once the second phase is complete.

Therefore, if we wish to open three transshipment facilities, we would ideally

want phase one to return the three best locations. Phase one would indeed give

the best transshipment points if the heuristic evaluation function used by the quad-

tree search were exact, but such a function is not available. Therefore, it is used to

produce a set of potential transshipment points, which are used in phase two. The

savings that result from these potential sites, are then used to decide if they are to

be operated or not.

As is the case for most heuristics, we thus use an approximate function. The

output of phase one consists of clusters of customers. The distribution of customers

within each cluster is used to locate the corresponding transshipment point. Clus-

ters with desired characteristics rank higher than those that do not. For example,

we may consider a good cluster to be one with customers from different carriers

close together. Therefore, the evaluation function would seek clusters with a bal-

anced ratio of customers from different carriers, and a high density of points per

unit area. If np
k is the number of customer points of carrier k in cluster p, K is the
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number of carriers, and Ap is the area of cluster p, then the evaluation function is

fp =
K−1∑
k=1

[
δp
k

np
k

np
k+1

+ (1− δp
k)

np
k+1

np
k

]
+

∑K
k=1 np

k

Ap

δp
k = 1, if np

k ≤ np
k+1; 0, otherwise

Similarly, clusters can be characterized in various ways by using different evaluation

functions. The quadtree search can incorporate these changes by modifying only

the module which handles heuristic function evaluations alone.

The quadtree search procedure (Table 3.1) will now be explained. The coding

was done in Java and the tree data structure from the Java Data Structure Library

(JDSL) was used. The function QuadtreeSearch takes as inputs an array of evalu-

ation function parameters −→α , the number of transshipment points or clusters to be

returned, Np, the minimum area of a cluster Athresh and the minimum number of

customer points in a cluster N cust
thresh. The array −→α contains the weights associated

with each term in the evaluation function. In the present work, we always employ

a convex combination, so that
∑

i αi = 1. The user can vary the values in −→α to

change the importance of the different terms.

Once the input values are given, the InputData() function reads the customer

coordinates and other characteristics such as demand and time windows. Using

spatial coordinates of customers, the InitBoundRect function initializes the bound-

ing rectangle which encloses all the points, and assigns it to the root of the quadtree

indicated as quadtree.root. In an actual data set, InitBoundRect would just involve

reading coordinates of the points of entry to the urban region. For data sets that

we create, this function finds the bounding rectangle and locates the entry points

at its vertices.

Once initialized, the root of the quadtree is used to call the Buildtree function
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QuadtreeSearch(−→α Np, Athresh, N cust
thresh):

InputData()
InitBoundRect(minx, maxx, miny, maxy)
Buildtree(quadtree.root)
FindBestClusters(−→α )
ComputeTransshipCoords()

Table 3.1: Quadtree search algorithm

which recursively builds the quadtree. A quadrant is stored at every node in the

quadtree and a unique “position” is used to retrieve it. When that is completed,

the FindBestClusters function obtains the best Np clusters. Finally, the Compute-

TransshipCoords function determines the transshipment points within the chosen

clusters. The location of those points can be calculated using a simple approach

such as the demand-weighted centroid or something more complex. The methods

used for siting transshipment points will be elaborated in the results section.

Buildtree(p)
if(quadtree.isExternal(p)):

if(quadrant(p).area/4 ≥ Athresh)
partitionPoints(quadrant(p))
for each(quadrant(p).child)

if(child.size ≥ N cust
thresh)

child.heurval = HeurFn(child)
Buildtree(Position(child))

Table 3.2: Function which recursively builds the adaptive quadtree

Next, the function which builds the quadtree will be described, based upon the

pseudo code given in Table 3.2. Buildtree takes the “position” of the quadrant

in the quadtree as input. The position can be used to extract the corresponding

quadrant and information associated with it. Since every quadrant that is passed

to the function will be split, the function checks if the position p is an external

node. If the node is internal the function does nothing, in reality it would return
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an error. On the other hand, if the node is external, the function checks if the

split quadrants (children) satisfy the minimum area (Athresh). If the minimum area

criterion is met, then the points in the original quadrant are partitioned into the

quadrants that represent the four children.

The preceeding partitioning operations takes time O(np), where np is the number

of points in quadrant p, and is the most costly operation in building a quadtree.

Once partitioning is complete, the function checks if the number of points in each

child is greater than the minimum threshold (N cust
thresh) set by the user. If this

condition is satisfied, the heuristic value of the child is computed and Buildtree

is called recursively with the position corresponding to the child. The objective

function of the quadtree is calculated by calling HeurFn.

We show in Appendix 5.3 that the depth of the quadtree described above is

bouded by
3

2
+min

[
log2

(
l

d

)
, 1 + log4

(
Ainit

Athresh

)]
. Further, in the same appendix,

we also show that the quadtree has O((d + 1)nmax) nodes and can be constructed

in O((d + 1)n) time, where nmax =

⌈
n

N cust
thresh

⌉
.

3.6 Constraint Programming Formulation of VRP

Now that the quadtree search has been explained, this section will start to detail

the algorithms used to solve the VRPTWs that result from carrier collaboration,

namely entry-point collaboration. The formulation most commonly used in CP

based VRP solvers is presented next. This formulation is used to check feasibility

in the Tabu Search and Guided local search metaheuristics. More details can be

found in Kilby and Shaw [26]. The reader may wish to read Section 2.4, which gives

an introduction to constraint programming, before proceeding with this section.

Let us assume that the VRP concerns n customers to be served by m available

vehicles. Each point on the route is termed a “visit”, as it corresponds to a visit
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made by a vehicle. We define the required sets, decision variables, and constraints

in Table 3.3. In this table, C is the set of customers; M is the set of vehicles and

V the set of visits. Each vehicle has two visits, corresponding to its first and last

visit, which in the case of the VRPTW would be at the depot. For a vehicle k its

depot is denoted by visits n+ k and n+m+ k. The set of all first visits is given by

F , and the set of all last visits is given by L. Then, V can be written as C
⋃

F
⋃

L.

The decision variables of the CP model (Table 3.3) are the successor and the

predecessor of each visit. Both these constraint variables are maintained, as it leads

to better constraint propagation.

Sets:

C = {1...n}
M = {1...m}
V = {1...n + 2m}
F = {n + 1...n + m}
L = {n + m + 1...n + 2m}

Decision Variables:

pi ∈ V \ L predecessor of visit i ∈ V \ F

si ∈ V \ F successor of visit i ∈ V \ L

vi ∈ M vehicle serving visit i ∈ V

tqi quantity of goods on the vehicle after visiting customer i ∈ V

bi time at which service begins at visit i ∈ V

cost total cost

Constraints:

pi 6= pj ∀i, j ∈ V and i < j (1)

psi
= i ∀i ∈ V \ L (2)

spi
= i ∀i ∈ V \ F (3)

vi = vpi
∀i ∈ V \ F (4)

vi = vsi
∀i ∈ V \ L (5)

vfk
= vlk = k ∀k ∈ M (6)

tqi = tqpi
+ qi ∀i ∈ V \ F (7)
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tqi = tqsi
− qsi

∀i ∈ V \ L (8)

tqi ≤ Qvi
∀i ∈ V (9)

bi ≥ bpi
+ tpi,i ∀i ∈ V \ F (10)

bi ≤ bsi
− ti,si

∀i ∈ V \ F (11)

Evi
≤ bi ≤ Lvi

∀i ∈ V (12)

tqi ≥ 0 ∀i ∈ V \ F (13)

bi ≥ 0 ∀i ∈ V \ F (14)

Table 3.3: CP formulation of the VRPTW

Next, we describe the constraints. The difference constraint (1) ensures that a

visit occurs only once. The link between the successor and predecessor variables is

given by constraints (2) and (3). Equations (4), (5) and (6) ensure that all visits on

a route are performed by the same vehicle, and that this vehicle’s route starts and

ends at a depot. The capacity of each vehicle, and the time window for every visit

are maintained through path constraints. For any vehicle, the corresponding path

constraints are (7) and (8), while (9) imposes the capacity Qvi
of vehicle vi on the

constrained variable tqi. Similar relations are used to model the time windows, and

are given by (10), (11) and (12). The last two ensure that the constrained variables

tqi and bi are non-negative. To complete the formulation, the objective function is

defined as

mincost =
∑

i∈V \F dpi,i +
∑

i∈V \L di,si

where di,j is the distance between visits i and j.

The above formulation with minimal modification can be used to solve a variety

of routing models such as the pickup and delivery problem, open vehicle routing

problem, site dependent vehicle routing problem, and the case of vehicle routing

with multiple time windows. The propagation methods employed for each of the

above constraints can be found in Kilby and Shaw [26].

The strengths of constraint programming include the ability to model rich con-
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straints in a natural manner, its ability to handle nonlinearities with ease, and the

efficient propagation methods for specialized global constraints. In the above for-

mulation, the constraints can be written as a combination of all-different, element

and path constraints, each of which has its own efficient propagation algorithm.

Given a solution, the CP engine will be able to efficiently check feasibility and use

its specialized algorithms to reduce the domain of the constrained variables.

For search, backtracking methods are very popular in CP. These methods are

efficient at finding solutions to satisfiability problems. However, backtracking is not

a suitable search method for VRPs. Therefore, we use the constraint programming

framework to check for solution feasibility, and to perform constraint propaga-

tion. Search is implemented as an independent component using metaheuristics. It

should also be noted that the constraint propagation helps the local search through

domain reduction. The CP framework explained above is used within two meta-

heuristics: Tabu search and Guided local search. These methods are explained in

the following two sections.

3.7 Metaheuristics

Details specific to the implementation of metaheuristics; Tabu Search (TS) and

Guided Local Search (GLS), are described in this section. These metaheuristics

were employed in solving the VRPTW, and the solution was used to create the

COL-VRPTW instances. Refinements to the TS, and details of parameter settings

for the GLS are also given here.
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3.7.1 Tabu Search

Tabu search (Section 2.7.1) is a metaheuristic which uses structured learning to

escape local optima and obtain high quality solutions. In this thesis, we use the

standard tabu search template from Solver 6.6 from ILOG and their Dispatcher 4.6

to implement a modified version of the basic tabu search heuristic implemented in

Debacker and Furnon [3]. The tabu search uses two tabu lists of fixed and equal

size, one for the most recently-added arcs, and the second for the most recently-

removed arcs. A move m is tabu if the sum of the number of removed and added

arcs in the tabu list is greater than a threshold limit. We use the same threshold

limits as in [3], and these values are reproduced in Table 3.4.

Operator Arcs Threshold

Cross 4 3
Exchange 8 6
Relocate 6 5
Or-opt 6 5
2-Opt ≥ 3 3

Table 3.4: Thresholds for tabu moves

The Cross, Exchange, Relocate, Or-opt, and 2-Opt neighborhoods (Kindervater

and Savelsbergh [27]) are used for search, and an insertion neighborhood for diver-

sification. The diversification method used has two phases. Firstly, a solution is

declared as a local optimum if the search has Nnoimp non-improving iterations. The

number of non-improving moves is stored in a counter, Cnoimp. Once a local opti-

mum is detected, the tabu tenure, t, is decreased by a fixed amount δ1. This serves

to diversify the search. If an improving move is then found, Cnoimp is reset to zero.

Otherwise, the tabu search continues to reduce t, until Cnoimp ≥ 2Nnoimp. At this

stage, we use a probabilistic diversification method, motivated by the WALKSAT

(Russel and Norvig [39]) algorithm. The idea is to randomly reinsert a fixed number
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of customers to another route from their current one.

TabuSearch(Nimp,Nnoimp,t,Ninsert,δ1,δ2)

Cnoimp = 0

Cimp = 0

tenure = t

s = InitSolution()

s = LocalSearch(s)

s∗ = s

while not STOP

M = RankMoves(s)

moved = false

while |M |
m = first(M)

if not Tabu(m)

Perform(m)

moved = true

ModifyTabuList(m)

if f(s) < f(s∗) s∗ = s

Cimp = Cimp + 1

Cnoimp = 0

else

Cnoimp = Cnoimp + 1

Cimp = 0

if Cnoimp > 2Nnoimp

s = Diversify(Ninsert,s)

else Cnoimp > Nnoimp

SetTenure(t - δ1)

if Cimp > Nimp

SetTenure(t + δ2)

Table 3.5: Tabu search statement

First, a customer c is chosen at random and removed from the solution. The

current vehicle serving that customer is stored in v. Then we add the constraint
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: vc 6= v. This states that the vehicle which serves the customer c cannot be

the current vehicle v. Now we perform an insertion operation. This is repeated

a fixed number of times, before restarting the tabu search. Finally, we remove all

constraints added during diversification. Our results indicate that this scheme pro-

duces superior results in comparison to the basic tabu search. This is not surprising,

as randomized algorithms have performed extremely well in satisfiability problems,

where local optima are escaped by flipping variables in clauses. Though our di-

versification method was motivated by randomized algorithms for the satisfiability

problem, probabilistic diversification schemes have been used with great success in

the VRPTW by Rochat and Taillard [36]. For intensification of the tabu search,

Diversify(Ninsert,s)

s
′
= s

for i = 1 to Ninsert

visit := RandomVisit(s
′
)

v := Vehicle(visit,s
′
)

s
′
:= RemoveVisit(visit,s

′
)

addConstraint(vvisit 6= v)
s
′
:= insert(Visit,s

′
)

RemoveAllConstrants()
return s

′

Table 3.6: Statement of Diversify

we reverse the first step of the diversification method by increasing the tabu tenure

if Nimp consecutive improving iterations have been encountered. A summary of the

overall algorithm is given in Table 3.5. In that statement, RankMoves(s) returns

all legal moves in increasing order of their cost. First(M) returns the first element

of the set M . The condition STOP represents the stopping criteria for TS, which

was set to be a maximum number of iterations. The Diversify method implements

the diversification scheme already explained. The details are given in Table 3.6.
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3.7.2 Guided Local Search

Guided local search was introduced in Section 2.7.2. There and here, we use the

standard GLS template from ILOG Dispatcher 4.6. The weight of the penalty term

(λ) in the objective function (Eq 2.1), is the only parameter that needs to be tuned.

For VRPTWs of size less than one hundred customers, the best value of λ varied,

but for larger problems, a value of 0.2 gave the best average case performance. This

value was used for all the numerical results that we report in the next chapter.

For small data sets, our modified TS was consistently better than GLS. Mainly

because of the random nature of the diversification scheme used in TS, the deter-

ministic GLS sometimes outperformed the modified TS. Therefore, in certain cases

GLS, rather than our enhanced version of TS, was used to obtain the VRPTW

results. In particular, for larger data sets, we employed the least-cost solution from

the two methods.

3.8 Greedy Local Search for Collaborative Rout-

ing

So far we have covered the heuristics required to solve VRPTWs. However, collab-

oration between carriers has two stages: Collaboration at the entry to a city, which

involves the solution of VRPTWs, and then collaborative routing. For the latter

form of collaboration, which involves the solution of the COL-VRPTW, we use an

integrated greedy local search heuristic. Our method is integrated since we use

an exact optimization method within local search to return a set of feasible moves

(“Super Move”). This integration will be explained in this section. To define a local

search method (Section 2.5.1) we need to specify a local improvement strategy, a

neighborhood, and a stopping criteria. The design in light of these three decisions
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will be explained below.

We first describe the three moves that define the search neighborhood. A move

is an operator, governed by a set of rules, which allows a tractable neighborhood

to be described. This in turn has great impact on the search, as complex moves

may lead to larger neighborhoods, but may also be prohibitively time consuming to

explore. For example, consider the move operators, 2-opt and 3-opt (Kindervater

and Savelsbergh [27]). A 2-opt neighborhood can be searched very quickly and is

used in almost all VRP local improvement schemes. On the other hand, 3-opt is

considerably better at improving the solution but is time consuming, and therefore

a more restricted version called Or-opt is used instead.

Heuristics for VRP with transshipment tend to use traditional move operators

to handle transshipment. In contrast, we use transshipment-specific moves and

consider transferring a sequence of consecutive customers from one route to another.

The route from which customers are transferred is called the load giver (LG) route,

and the destination route for the transferred sequence is referred to as the load

taker (LT) route. For all move operators, the following decisions need to be taken:

1. The customer after which the LT truck leaves the route to visit the transship-

ment point. The same decision has to be taken for the LG as well.

2. The customer that is first visited after the LT truck returns to its route from

the transshipment point. Similarly for the LG.

3. The sequence of customers that are transferred from the LG route to the LT

route.

Our three move operators differ in how these decisions are made, and hence

define exclusive neighborhoods. We make the assumption that the transferred

sequence is inserted in between successive customers in the LT route. Our test
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runs showed that allowing sequence splitting and multiple insertions make the move

extremely complex and prohibitively time consuming. All three moves consider the

transfer of customers between a single route from a load taker and another route

from the load giver.

Figure 3.9: Transshipment heuristic sequence move 1

First let us consider Sequence Move 1 (SM1) represented in Figure 3.9. In

this figure and other move representations, dotted arcs represent a sequence of

customers, solid lines together with dotted arcs represent each carrier’s route before

the move, and dark-dashed and light-dashed arcs are those added to the load giver

and load taker, respectively, during the move. We assume that the load giver

leaves the route at customer LG1, visits the transshipment point T, and returns

to the route at LG2, which was the initial successor of LG1. In other words, T

is inserted in between consecutive customers LG1 and LG2. The start and end

of the transferred sequence is identified by the customers labelled Transshipment

Sequence Start (TSS) and Transshipment Sequence End (TSE) respectively.

The load taker leaves its route at customer LT1 and visits the transshipment

point T. From T, the truck proceeds to serve the customers in the sequence (i.e.

{TSS...TSE}), before returning to its route at LT2. Therefore, the nodes T
⋃
{TSS...TSE}

are inserted between consecutive customers LT1 and LT2.
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Figure 3.10: Transshipment heuristic sequence move 2

In Sequence Move 2 (SM2) (Figure 3.10), the load taker’s operations are iden-

tical to SM1, but now the transferred sequence is removed from between LG1 and

LG2. Therefore, LG1 and LG2, unlike in SM1, are not successive customers.

Figure 3.11: Transshipment heuristic sequence move 3

In SM1 and SM2, the load taker visited TSS immediately after the transship-

ment point. Sequence Move 3 (SM3) considers the situation where the load taker

returns to the route at LT2, after receiving loads corresponding the transferred

sequence (i.e. {TSS...TSE}), but before actually serving those customers (Figure

3.11). To deliver the loads collected at T, the load taker deviates from the route at

LT3, a customer later in the route, and serves the customers {TSS...TSE}, before
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return to its own route at LT4.

SM3 is understandably the most complex move, as additional decisions regard-

ing LT3 and LT4 have to be made. All the preceding moves preserve the direction

of the transferred sequence. In this regard, our moves have some similarity to Or-

opt. A summary of the edges removed and added when using each move is given in

Table 3.7. In VRP algorithms, the number of edges added and removed are used to

indicate the complexity of a move. From this and our empirical tests, it was seen

that SM2 was least time consuming, while SM3 was an expensive operator to use

in terms of computational time.

Operator Edges Removed Edges Added

SM1 4 6
SM2 3 5
SM3 5 7

Table 3.7: Edges added and removed when using SM1, SM2 and SM3

The search takes the following as input: VRPTW routes corresponding to each

entry point to the city, transshipment points output by the quadtree search algo-

rithm, and the cluster of customers associated with each transshipment point. A

step-wise explanation of the algorithm is presented below.

1. For each transshipment point tp ∈ T , propagate time window feasibility con-

straints for all customers in the cluster. This is done by keeping a feasibility

record for each customer c ∈ Clustertp for all tp ∈ T . That is, we check if

adding tp in between c and its predecessor, or c and its successor violates the

time window constraints. A unique tag is attached to c which can be used

to check if both or only one of the above cases is feasible. c is removed from

Clustertp if both the preceding insertion cases are infeasible.
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2. Sort the clusters resulting from Step 1 in decreasing order of size. Within

each cluster, sort the customers in decreasing order of time window slack,

li − (bi + si) for all i ∈ C

3. Call the transship module (Table 3.8), which returns one of the following:

(a) The first feasible transshipment opportunity in the neighborhood; (b) the

best opportunity, or (c) the set of transshipment opportunities that maximize

savings. The above setting is controlled by a parameter called type. If type

equals “greedy set”, then an optimization model is called to find those trans-

shipment opportunities that maximize the savings. If type is instead “first

accept” or “best accept”, the module returns the first feasible neighbor or the

best feasible neighbor, respectively.

4. Update the routes, using the the set of chosen transshipment opportunities.

This is when we actually make the move to a new solution.

In the preceding description, we only consider those customers in the same

cluster as the transshipment point for collaboration. This is equivalent to inherently

using a radius parameter (Section 3.3.1). The transship module used in the above

description will now be explained. This module takes as input the type of search.

As explained in Step3, the value of the parameter type can be first feasible, best

feasible, or greedy set. For each cluster tp ∈ T , we first check if its size, represented

by cluster.size(), is at least one. This is necessary to ensure that at least one unique

customer which represents a load taker, is available.

Next, we check if the cluster size is at least two, and if this is the case, we assign

SM1 and SM3 to variable Moves. This variable defines the operators to be used in

constructing the neighborhood for search. After time propagation, the preceeding

condition has to hold for moves SM1 and SM3, because we need a unique load

taker and load giver in those cases. Unfortunately, this is not possible for SM3. In
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l

Transship( Type )

for all tp ∈ T

if Cluster.size() > 0

if Cluster.size() > 1

Moves = SM1 + SM3

else

Moves = SM2

for LT ∈ Clustertp

LTFeas = FeasibleLT(LT)

LGSet = ChooseFeasibleLG(LT)

for LG ∈ LGSet

LGFeas = FeasibleLG(LG)

Collaborate(Moves, c, LG, LTFeas, LGFeas, Type)

Table 3.8: Statement of the Transship module

that case, the location of LG2 is decided during the move itself, and therefore time

propagation cannot be used to eliminate infeasible load givers before the move.

Next, we iterate over all nodes in Clustertp. For each node LT , we retrieve

its feasibility status using the tag assigned to it during time window propagation

(Step 1). Then, given LT, we find the set of all possible load givers using the

ChooseFeasibleLG(LT) function, which searches for the set of all nodes in the same

cluster which also belongs to a different carrier than LT. This restriction is added

to ensure that only inter-carrier collaboration is considered. Once that is done, the

information is passed to the Collaborate function which actually makes the move.

This completes the transship module. A description of the optimization module

used in step 3 is given below.

Recall that this module is needed only if the parameter type is equal to greedy

set in the transship module input. Assume that we are at a solution s. We define a

68



transshipment opportunity to be a move from the current solution to a new feasible

solution, which also results in distance savings (i.e. it represents an improving feasi-

ble move). We define TO to be the set of all possible transshipment opportunities.

Each element in this set will contain the information required to make the changes

and move to the new solution it represents.

When searching for the best improving feasible move, we explore the neighbor-

hood of a solution (or a subset of the neighborhood) before declaring that solution to

be the best. During exploration, we encounter many improving feasible moves that

might not be used. In the greedy set case, we try to combine those opportunities in

an attempt to more efficiently use the information gathered during neighborhood

exploration. To combine these moves, we use a mathematical programming model

which greedily selects the savings-maximizing subset of moves which, when used on

the current solution, will lead to a feasible solution. We refer to this combination of

feasible moves as a “super move.” Understandably, not all combinations of moves

are feasible. Therefore, we use the optimization model in Table 3.11 to find the

greedy set.

Parameters:

Savto Savings if transshipment opportunity to is used

C lt
to Load taker carrier associated with to

Rlt
to Load taker route associated with to

C1lt
to Customer LT1 associated with to

C2lt
to Customer LT2 associated with to

rC3lt
to rank of customer LT3 in route Rlt

to

rC4lt
to rank of customer LT4 in route Rlt

to

CRlg
to Load giver carrier associated with to

Rlg
to Load giver route associated with to
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C1lg
to Customer LG1 associated with to

C2lg
to Customer LG2 associated with to

rSto rank of TSS in route Rlg
to

rEto rank of TSE in route Rlg
to

IDto ID of the move operator associated with tpo (i.e. SM1, SM2 or SM3)

Sets:

S1
to { to′ | C lt

to′ = C lt
to and Rlt

to′ = Rlt
to and to′, to ∈ TO }

S2
to { to′ | C lg

to′ = C lt
to and Rlg

to′ = Rlt
to and to′, to ∈ TO }

S3
to { to′ | to′ ∈ S2

to and IDto′ 6= SM3 }

S4
to { to′ | to′ ∈ S1

to and ( C1lg
to′ 6= C1lg

to or C2lg
to′ 6= C2lg

to ) }

S5
to { to′ | to′ ∈ S1

to and to′ 6= to and (rEto ≥ rEto′ ≥ rSto

or rEto ≥ rSto′ ≥ rSto or (rSto′ ≤ rSto and rEto′ ≥ rEto ) ) }

S6
to { to′ | to′ ∈ S2

to and ( rEto′ = rC3lt
to or rSto′ = rC4lt

to

or rSto′ = rC3lt
to or rEto′ = rC4lt

to) }

S7
to { to′ | to′ ∈ S2

to and IDto′ = SM3 and ( C1lt
to 6= C1lg

to′ or C2lt
to 6= C2lg

to′ ) }

Model:

Tto =

 1, if transshipment opportunity to is chosen;

0, otherwise.

max
∑

to∈TO

SavtoTto (1)∑
to′∈S1

to

Tto′ ≤ 1 ∀to ∈ TO (2)

∑
to′∈S5

to

Tto′ ≤ |S5
to| (1− Tto) ∀to ∈ TO (3)

∑
to′∈S4

to

Tto′ ≤ |S4
to| (1− Tto) ∀to ∈ TO (4)
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∑
to′∈S3

to

Tto′ ≤ |S3
to| (1− Tto) ∀to ∈ TO and IDto 6= SM3 (5)

∑
to′∈S6

to

Tto′ ≤ |S6
to| (1− Tto) ∀to ∈ TO and IDto = SM3 (6)

∑
to′∈S7

to

Tto′ ≤ |S7
to| (1− Tto) ∀to ∈ TO and IDto = SM3 (7)

Table 3.11: Greedy set optimization model

Table 3.11 contains the parameters, sets, the objective function and constraints

of the optimization model. The rank of a customer is the index of that customer

in its route, starting with the depot as zero. The binary decision variables Tto

represent whether a transshipment opportunity is chosen or not. The objective

is to maximize the savings from the chosen TOs. Constraint (1), ensures that

each chosen TO has a unique LT carrier and route. The fact that no transferred

sequences can overlap is captured by the second inequality. Constraint (3) ensures

that multiple sequences can be transferred from a load giver, if it has the same

customers as LT1 and LT2. The condition that the same carrier route cannot be

both a load taker and load giver, for moves other than SM3, is represented by

constraint (5). If a move of type SM3 is used, then if it acts as both a load taker

and load giver, the transferred sequence should not coincide with LT3 and LT4.

This condition is encoded in (6). (7) enforces the condition that if a carrier and

route are involved in an SM3 type move as both a load taker and a load giver, then

LT1 must equal LG1 and LT2 must equal LG2. We would like to highlight that

there exists considerable redundancy in the formulation, but our tests showed that

the model is actually solved to optimality within a few seconds.
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3.9 Summary of the Overall Solution Procedure

The algorithms employed to solve the COL-VRPTW have been presented in this

chapter. In the following, we summarize the steps to solve the COL-VRPTW with

references to the algorithms used.

1. Create l1 random VRPTW problems for each corner of the rectangular region

used to model the city. The problems are generated as described in Appendix

5.3 and Section 4.2.

2. Solve each VRPTW generated in step 1, using tabu search (Section 3.7.1) or

guided local search (Section 3.7.2)

3. Group l2 problems, where l2 ≤ l1 from each corner and create a larger

VRPTW instance.

4. For each corner, solve the VRPTW created in the previous step using tabu

search or guided local search.

5. Create the COL-VRPTW problem using the four VRPTWs from step 3. In

other words, the COL-VRPTW is made up of four VRPTWs, each corre-

sponding to a unique corner of the rectangle.

6. Use the quadtree search algorithm described in Section 3.5.1 to locate trans-

shipment points and define clusters

7. Solve the collaborative routing problem using the greedy local search from

Section 3.8. Use the routes from step 4 as an initial solution.

Now we proceed to explain each step in the above summary. The problem of

collaboration starts at logistics platforms located at the boundary of the urban

region. We take this to be a rectangle with a logistics platform at each corner.
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Inbound loads carried by multiple carriers arrive at these facilities after inter-city

line haul.

In step 1, we assume that logistics platforms do not exist. This corresponds to

the non-collaborative entry case. In this step, each VRPTW generated for a corner

corresponds to a carrier’s delivery schedule from that point of entry. The routes

obtained in step 2 are therefore the non-collaborative entry routes.

In step 3, we consider collaboration. Now we assume that logistics platforms are

present at each corner. Therefore, carriers can exchange goods after the inbound

leg, before planning their intra-city routes. The loads or orders that are exchanged

depend on the distance savings produced by the resulting collaborative local route.

This is determined from the solution to a VRPTW instance, which is created by

combining l2 VRPTWs that correspond to a particular corner. An instance of this

type is generated in step 3, and is solved in step 4. The initial solution to the latter

step is provided by the non-collaborative routes from step 2. That idea is similar

to the warm-start technology in mathematical programming, where a solution to a

smaller problem is used as a feasible starting solution to the larger one.

A comparison between the collaborative entry routes from step 4, and the non-

collaborative entry routes from step 2, will indicate which loads are to be exchanged

between carriers. A similar comparison, in terms of distance, time and vehicles

saved, can also be used to evaluate the benefits of collaborating at a logistics plat-

form. Now that the individual collaborative-entry routes have been generated, the

collaborative routing problem can be solved. To do this, the COL-VRPTW (Sec-

tion 3.2) instance has to be generated. As described in Section 3.4, only carriers

entering from different corners of the city can collaborate during routing. To achieve

this, we assign the same carrier number to all routes starting from the same corner

when generating the COL-VRPTW in Step 5.
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Once the problem has been generated, we use the quadtree search to locate the

transshipment points, and define the cluster of customers assigned to that point in

Step 6. Now we have all the required information to solve the collaborative routing

problem. That solution is obtained using a greedy local search heuristic in Step

7. This completes the description of the solution procedure, for which results are

provided in the next chapter.
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Chapter 4

Results and Evaluation

We present computational results from three algorithms (Tabu Search, Quadtree

Search and Greedy Local Search), and interpret the results in light of our pro-

posed framework for carrier collaboration. At each stage of our solution exposition,

we refer to the overall solution procedure outlined in Section 3.9. Therefore, the

reader is encouraged to review it. This chapter is structured as follows: Section

4.1 presents results from our modified tabu search for constructing vehicle routes

on Solomons [41] VRPTW benchmark. Results from entry-point collaboration are

given in Section 4.2. Finally, Sections 4.3 and 4.4 contain results from the quadtree

search algorithm and the greedy local search for collaborative routing, respectively.

For all computations to follow we use a speed of 30 Km/hr to link time and distance

(Appendix 5.3), except for Solomon’s benchmark (Section sec:BenchmarkResults)

which assumes that distance travelled equals travel time.

4.1 Benchmark Results

Results of using our modified Tabu Search algorithm on Solomon’s [41] benchmark

data set are presented here. The data sets in [41] are made up of six classes: C1,
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C2, R1, R2, RC1 and RC2. Each problem has 100 customers. We assumed that

unlimited vehicles are available and all vehicles in a given problem have uniform

capacity. Time windows on customers and vehicles are also present. The C prob-

lems have clustered customers and are relatively easy to solve. The R problems

are randomly generated and have no inherent spatial structure. The RC problems

are a mixture of random and clustered customers. Further, C1, R1 and RC1 are

short horizon problems. There solutions require more vehicles, and the number of

customers per route is small. In contrast, problem sets C2, R2 and RC2 have a

long horizon and require fewer vehicles. TS has four main parameters which have

Parameter Value

Nimp 10

Nnoimp 10

t 5

Ninsert 30

δ1 5

δ2 3

Table 4.1: Tabu search parameter values

to be tuned. They are: the number of improving moves before an increase in tenure

(Nimp), number of non-improving iterations before a decrease in tenure (Nnoimp),

the starting tenure (t), the number of insertions performed during diversification

(Ninsert), reduction in tenure after Nnoimp non-improving moves (δ1), and increase

in tenure after Nimp improving moves (δ2). After rather exhaustive computational

testing on C1, R2 and RC1, these parameter were set to the values shown in table

4.1. Tuning the values of an algorithm is similar to manually training it. To obtain

the true performance, the training set should only be a subset of all the problems

being solved. Therefore, we used C1, R2 and RC1 as our training set, and C2, R1

and RC2 as the test set.
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Our implementation of TS minimizes the route distance and not the number of

vehicles. Further, parameters are tuned with the goal of good performance on large

data sets. We use DeBacker and Furnon [3] (DF) and Tan et al. [44] (TLZ) for our

comparison as these are the only two tabu search implementations which minimize

distance.

Method R1 R2 C1 C2 RC1 RC2 CNV/CTD

TS 13.83 5.5 10.00 3.00 14.00 6.63 500

1204.47 875.70 828.38 591.66 1398.34 1020.57 54751

DF 14.17 5.27 10.00 3.25 14.25 6.25 508

1,214.86 930.18 829.77 604.84 1,385.12 1,099.96 56,998

TLZ 13.83 3.82 10.00 3.25 13.63 4.25 467

1,266.37 1,080.24 870.87 634.85 1,458.16 1,293.38 62,008

Table 4.2: Results on Solomon’s VRPTW data set

Table 4.2 contains the results of our TS implementation using ILOG Solver 6.6

and ILOG Dispatcher 4.6. The first and second rows for each method give the

average number of vehicles used and the average route distance, respectively, for

each data set. The last column gives the Cumulative Number of Vehicles used

(CNV) and the Cumulative Travel Distance (CTD) in the first and second rows,

respectively, over all data sets.

Our modified tabu search outperforms both DF and TLZ. DF has a shorter

average route distance than ours only in RC1. In all other data sets, TS finds routes

of lower distance. We also either equal or do better in the number of vehicles used

for the R1, C1 and C2 data sets.

The stopping criteria was set to be a maximum iteration limit of thousand. The

results on Solomon’s benchmark are certainly encouraging. However, we would like
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to emphasize that when compared to Debacker et al. ([3]) which is the closest im-

plementation to ours, the number of iterations used was much less, in fact one-third.

This reduced number of iterations was because our design goal was to to obtain

high quality results very quickly, as some of the random data sets to be described

shortly are quite large and more difficult to solve. In the following sections, we

evaluate the results from our three-phase heuristic for carrier collaboration.

4.2 Vehicle Routing Problem with Time Win-

dows: Collaboration at Entry Points

In this section, we describe the VRPTW instances that were created and solved

in Steps 1 - 4 of the solution procedure outlined in Section 3.9. Generation of the

VRPTW data sets is detailed in Appendix 5.3.

In the VRP literature, most papers evaluate a known benchmark or provide

results for one combination of parameters. The latter is because running times are

usually large for these problems. Even those papers which solve multiple random

instances report only the mean of their computational results. This can be quite

misleading, since the corresponding distribution can have a large dispersion, which

would make the mean a very poor estimate of the reported statistic. To overcome

this, we generate 40 sample points for each parameter combination (i.e. l1 from Step

1 of Section 3.9 equals 10). This consequently involved solving 1440 VRPTWs for

every value of n in Step 2, and 360 problems for each n in Step 4. The parameters

used to define these random instances will be explained next.

We use Toronto, which has an area of 1749 km2 (www.statcan.ca), as our test

city. We also assume the city to be bounded by a rectangular region, and locate

the logistics platforms at its corners. These platforms can be used to transfer loads
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between carriers, once the inbound loads arrive and before those outbound are

dispatched (Figure 2.2). Three cases are evaluated for the “region type”: (i) the

region is a square [i.e. length (l) = breadth (b)], (ii) the region is a rectangle with

l = 1.5b, and (iii) l = 2b. The preceding cases will be referred to as RType equals

1, 2 and 3 respectively. A test case is characterized by the following parameters:

number of customers per instance for the no collaboration case (n), number of

customers per instance for the collaboration case (N), the region type (RType),

percentage of customers with time windows (%TW ), the tightness of time window

width (TWw) and the percentage of customers with low demand (%LD). The

different values of these parameters are given in Table 4.3.

Parameter Values

n 25 50 75 150 300

N 100 200 300 600 1200

RType l = b l = 1.5b l = 2b

%TW 50 75 100

TWw 2 5

%LD 80 95

Table 4.3: Parameter values used to create the VRPTW test set

Recall from Section 3.9, that we first solve an individual VRPTW for each carrier

at the four corners of our region. This corresponds to the Non-collaborative Entry

Case (NEC). For the Collaborative Entry Case (CEC), we combine four individual

problems from each corner to create a problem of size N = 4n (i.e. l2 from Step 3 of

Section 3.9 equals 4). These problems are solved using TS or GLS as in the NEC,

but now we use the non-collaborative routes of individual carriers as the starting

solution. Comparison of these two cases will give the benefits of collaboration at

the logistics platforms (Section 3.4) located at the entry points

A summary of results is given in Table 4.4 for N ∈ {100, 200, 300}. For each
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statistic, we provide the mean (µ) and Coefficient of Variation (CV), except for

one case where the standard deviation (σ) is given. For a given value of N , the

mean corresponds to the average over all parameter combinations shown in Table

4.3. This is important, as real-life problems encountered by carriers are random,

and could correspond to any of these parameter combinations or others.

CV measures the width or dispersion of a distribution. If the CV is less than

one, the distribution is said to have a low dispersion. The closer CV is to zero,

the better is the sample mean at estimating the actual value. Note that, even CV

may not be the best measure, but this thesis takes a step to report more than just

the mean. An ideal measure would be distribution-free confidence intervals, which

are more complicated, as they require a substantially higher number of samples.

However, this is an extension of the current work that is being pursued.

Table 4.4 contains the values of the total distance Savings (Sav) in kilometers,

Average distance Savings per Vehicle (ASV), the average percentage Increase in

Asset Utilization (IAU), the number of Vehicles Saved (VS) and the Route Time

Reduction (RTR) in minutes. We give the standard deviation for RTR because the

routing time increased in certain samples. When a distribution has negative values,

the CV is less meaningful. An increase in routing time is acceptable, as route time

minimization was not an objective in the VRPTWs that were solved.

N Sav ASV IAU VS RTR

µ σ
µ

µ σ
µ

µ σ
µ

µ σ
µ

µ σ

100 212.11 0.18 4.85 0.22 5.69 0.19 1.4 0.36 341.61 222.74

200 289.24 0.16 4.20 0.24 3.75 0.25 1.7 0.30 306.49 368.85

300 387.63 0.26 4.17 0.31 2.92 0.17 2.1 0.26 93.55 541.24

Table 4.4: Results for Mean and Coefficient of Variation
(
CV = σ

µ

)
for the CEC

The coefficients of variation for Sav, ASV, IAU and VS are all less than 0.5,
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which indicates that the mean is a representative value. Savings increase with

N , since more opportunities exist to build better loads. ASV and IAU decrease

with N . These parameters are averaged over the vehicles, therefore, the decrease

demonstrates that the improvement in ASV and IAU do not scale with the increase

in number of vehicles. However, the average utilization increases by approximately

6% and 4%, while the number of vehicles used decreases by 1.4 and 1.7 on average,

for N = 100 and N = 200. RTR on the other hand has a high value of σ, which in

the cases of N equals 200 and 300, respectively, is greater than µ. This corroborates

our previous statement that the mean alone is not sufficient to decide whether the

results are beneficial.

N Sav ASV RTR

% Q1 Q3 % Q1 Q3 % Q1 Q3

100 14.3 183.20 235.96 6.92 4.07 5.59 3.60 153.02 503.66

200 9.70 253.53 322.41 6.03 3.24 4.74 1.55 64.53 503.05

300 9.10 317.77 477.69 6.16 3.33 4.53 0.03 -324.08 404.26

Table 4.5: Percentage improvement and quartile results for the CEC. The quartiles have
the respective dimensions, km, km and min, for Sav, ASV and RTR.

To get a better sense of the benefits from entry-point collaboration, we provide

the first quartile (Q1) and third quartile (Q3) of each distribution in Table 4.5.

Q1 and Q3 respectively represent the values below which 25% and 75% of the

sample observations fall. In particular, for RTR in the case N = 100, note that

even though the standard deviations were high, we save over 2.5 hours for 75% of

the observations and more than 8.5 hours for 25% of the observations. Results for

N = 300 are striking as we reduce RTR by over 1 hour for 75% of the cases, and

by 8.5 hours for 25% of the observations, even though the value of σ was about five

times that of µ.

Further, the results in Table 4.5 show that the total route distance reduced by
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approximately 14%, 10% and 9%, for N = 100, 200 and 300, respectively, which

is a considerable saving. Over 183 kms for N = 100 and more than 317 kms for

N = 300, each case for 75% of the observations. On average, the route distance of

each vehicle also decreased by about 6% in each of the above cases.

N Sav ASV IAU VS RTR

100 227.51 4.85 7.00 1.28 184.59

200 310.98 3.69 5.00 2.25 435.72

300 489.54 4.36 3.00 3.33 395.89

600 974.76 6.51 2.00 1.14 -471.25

1200 1107.56 3.74 1.17 1.92 1673.97

Table 4.6: Results for mean and Coefficient of Variation for the CEC, where RType = 1,
%TW = 75, TWw = 2 and %LD = 95

Average results for the case where RType = 1, %TW = 75, TWw = 2, %LD =

95 and N ∈ {100, 200, 300, 600, 1200} are given in Table 4.6. This set of parameters

was chosen as one most likely to occur in practice. We do not report the coefficient

of variation as it was below 0.1 for all the variables indicated. Distance savings

increase with N , as shown in Table 4.6 and in Figure 4.1. IAU decreases with

increasing N . This trend makes sense as the graph of the number of vehicles used

as a function of N (Figure 4.1) has a slope of 2. Therefore, for IAU to show an

increasing trend, its value should more than double when there is a two-fold increase

in N . The results for VS showed no particular trend, though its values suggest that

collaboration is beneficial.

Tables 4.7 and 4.8 contain more granular results, which show the effects of vari-

ations in Rtype and PTW, respectively. The distance savings increase with an

increase in the number of customers having time windows. This trend is because,

non-collaborative problems which are highly restricted can benefit more from col-

laboration. The preceding result highlights exactly why trucking companies should
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RType 1 2 3

N Sav VS RTR Sav VS RTR Sav VS RTR

100 251.88 1.6 395.57 208.06 1.4 273.39 176.40 1.3 355.87

200 337.21 1.5 420.48 280.54 1.7 110.13 249.96 1.8 388.84

300 516.80 2.6 114.76 340.09 2.1 287.34 306.01 1.7 -121.46

Table 4.7: Results for the CEC with variations in RType. The values of Sav, VS and
RTR in each column are averages over all observations where RType is equal
to the corresponding value in row 1

collaborate. A surprising result, however, is that there is a clear reduction in dis-

tance savings (Sav) when the shape of the region deviates from a square (Table

4.7).

We conjecture, based upon analysis of the actual routes, that this is due to the

following. As a region becomes skewed, there is an increase in the largest distance

of any customer from the depot. These customers are served near the end of their

route, and closer to their latest starting times. There will thus be only a few

other routes with which such a route could feasibly collaborate, and even if they

did collaborate, there would likely be little to no distance savings. The latter is

because these would be fewer customers on an elongated route through a skewed

region. Our reasoning is also supported by the trend of decreasing VS with RType

for N = 100 and 300.

PTW 50 75 100

N Sav VS RTR Sav VS RTR Sav VS RTR

100 220.99 1.4 328.48 204.52 1.4 242.16 235.93 1.4 485.63

200 - - - 267.49 1.7 309.66 310.98 1.6 303.31

300 - - - 364.79 2.3 439.79 410.47 2.0 -252.69

Table 4.8: Results for the CEC with variations in PTW. The values of Sav, VS and
RTR in each column are averages over all observations where PTW is equal
to the corresponding value in row 1
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Figure 4.1: Graphical summary of CEC results when RType = 1, %TW = 75, TWw =
2 and %LD = 95

The effects of variations in TWw is given in Table 4.9. As TWw becomes

smaller, which corresponds to tighter time windows, the distance savings decrease

as expected. For RTR, we see that for N = 200 and 300, more routing time is

saved when time windows are tighter. This is because problems with tighter time

windows lead to greater waiting times, which can be considerably reduced through

collaboration.

TWw 2 5

N Sav VS RTR Sav VS RTR

100 205.76 1.5 322.40 218.46 1.4 360.82

200 281.61 1.8 480.95 296.87 1.6 132.02

300 376.95 2.3 283.63 398.31 2.0 -96.54

Table 4.9: Results for the CEC with variations in TWw. The values of Sav, VS and
RTR in each column are averages over all observations where TWw is equal
to the corresponding value in row 1

Results for variations in the percentage of customers with LTL loads (%LD) is
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given in Table 4.10. As %LD is increased, the distance savings increased as well.

An increase in the number of customers with small demands allows the construction

of routes of greater efficiency, without violating the capacity constraint of a vehicle.

Similarly, an increase in %LD allows better loads to be created, which results in

the higher IAS values. We present results for %LD only in the case N = 100, since

runs for different values of N exhibited the same trend.

%LD 80 95

N Sav VS IAU Sav VS IAU

100 204.92 1.4 5.00 219.31 1.4 6.39

Table 4.10: Results for the CEC with variations in %LD. The values of Sav, VS and
RTR in each column are averages over all observations where %LD is equal
to the corresponding value in row 1

In summary, entry-point collaboration reduced route distance and increased

asset utilization significantly. Route time savings were not as high, except in a few

cases.

4.3 Quadtree Search: Location of Transshipment

Facilities

The preceding section discussed the results for entry point collaboration, which cor-

responded to steps 1 - 4 in Section 3.9. Now we proceed to analyze the performance

of our quadtree search algorithm, using different heuristic evaluation functions.

These results are used to choose the best heuristic function to locate transshipment

facilities. The quadtree search method had an average execution time of only a few

seconds on smaller problems. The average running time on the largest instance of

4800 customers was 40 seconds.
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As mentioned in Section 3.5.1, we took a convex combination of terms in the

evaluation function. The number of such terms was limited to two, so that tuning

the quadtree search algorithm would be manageable in practice. In this section,

we evaluate four potential heuristic functions. They are, with α1 + α2 = 1 in each

case:

H1 α1
Cdiff

K
+ α2

Amin

Aquad

H2 0.5α1

Cdiff

K
+

nquad

K∑
k=1

Nk

 + α2
Amin

Aquad

H3 α1
Cdiff

K
+ α2

 nquad

Aquad

× Amin

K∑
k=1

Nk



H4 α1

∑
k∈Cquad

[
δk

nk

nk+1

+ (1− δk)
nk+1

nk

]
Cdiff

+ α2
nquad

Aquad

δk =

 1, if nk ≥ nk+1;

0, otherwise.

The first term in H1 represents the ratio of the number of different carriers

(Cdiff ) in the quadrant to the total number of carriers in the problem (K). The

second term is the ratio of the minimum allowable area (Amin) to the area of the

quadrant (Aquad).

H1 tries to score the competing objectives that the clusters have customers from

different carriers, and that those customers be spaced closely. The first objective

recognizes that a cluster with customers from different carriers will lend itself to

collaborative routes with higher probability. The second term captures the fact
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that clusters with small area will likely result in higher customer density, and this

will lead to better collaborative routes because of the close packing.

Our computational tests, however, showed that H1 yields clusters with poor

point density, as the first term of the evaluation function does not encourage clusters

with a sufficiently large number of points. To overcome this issue, we added a new

term to H2, which is the number of points in the cluster (nquad) divided by the

total number of customers in the problem (
K∑

k=1

Nk). This term encourages clusters

with a greater number of customers. Note that equal weights are asigned to the

first term of H1 and to the new term, to form the aggregated first term of H2.

H3 also differs from H1 in trying to promote high density clusters. It achieves

this by having a normalized density term (i.e. second term), given by the ratio of

nquad

K∑
k=1

Nk

and
Aquad

Amin

. Observe that this normalized density will have a value of one

when all customers are contained with in a cluster of area Amin.

The final evaluation function H4, has its second term identical to the second

term of H1. However, H4 uses a different first term than H1 to promote the collab-

orative nature of the cluster. As we have explained before, two aspects of a cluster

make good collaborative routes more probable. The first relates to cluster having

customers from different carriers. The second is the high point density in clusters.

Both these factors, however, overlook the situation where a cluster can have a large

imbalance in the mixture of customers from different carriers.

For example, a problem with 4 carriers and a cluster with 20 customers could

have a customer from each of the first three carriers and 17 customers from carrier

4. A cluster of this type is unlikely to promote collaborative routes. Therefore,

term one of H4 tries to balance the number of customers from different carriers,

by summing the pairwise ratio of the numbers of customers from different carriers.

The parameter δk ensures that the ratio always contains a smaller number in the
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numerator.

Each of the preceding evaluation functions has different competing objectives.

To allow fair evaluation of the heuristic functions, common evaluation criteria were

used. The first evaluation criterion (CTN1) is the customer point ratio, which is a

ratio of the number of customers in the quadrant to the total number of customers

in the problem. The second evaluation criterion (CTN2) is the number of different

carrier points in the cluster divided by the number of carriers in the problem.

Pairwise ratio between the number of customers from different carriers is given by

the third (CTN3). The final statistic (CTN4) relates to the area ratio, which is

given by
Aquad

Atot
, where Atot is the area of the city or the initial bounding rectangle.

In this section, we randomly select a VRPTW created for entry-point collab-

oration from each corner of the city. This implies that problems handled by the

quadtree search have four times the number of points as the VRPTWs used in the

collaborative-entry case. The number of customers for collaborative routing is Nc,

where Nc = 4N (i.e. l2 from Step 3 of Section 3.9 equals 4). Figure 4.2 shows the

variation of the different criteria with α1 for Nc = 400. We do not show results for

CTN2 as all findings indicate this to attain a best value of unity, which means that

it does not discriminate between good and bad clusters.

Figs 4.2(a) and (b) show the variation of CTN1 with α1. H3 dominates the

other heuristics for most values of α1, while H2 closely follows and actually does

better for high values of α1. H2 performs best in CTN3 as shown in Figs 4.2(c)

and (d). H4 performs the worst in CTN3, but H2 and H3 have good average

performance. Comparing the graphs for CTN1 and CTN3, it can be seen that

H3 and H2 produce high density clusters, while H1 closely follows. The poor

performance of H4 in CTN1 and 3, can be attributed to finding clusters with a

balanced mixtures of customers [Figs 4.2(e) and (f)]. The CTN4 results indicate

that the average performance of H4 is the best for α1 ≥ 0.6.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Variation of CTN1, CTN3 and CTN4 with α1 for Nc = 400

The results for Nc = 400 indicate that clusters with high density, and clusters

containing customers from different carriers, do not necessarily contain a balanced

mixture of customers from different carriers. Our results for Nc = 1200 (Figure

4.4), also show this to be the case. For larger problems, it seems that H4 not

only performs best for CTN4 but also for CTN3. The rankings of the heuristics for
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criteria CTN1 and CTN3 [Figs 4.3(a)-(d)] imply that H4 exhibits good performance

in terms of cluster density as well as for CTN4. Our computational test for Nc = 800

also showed the same trend. The poor performance of H4 under CTN1 and CTN3

for Nc = 400 is probably because of the sparse distribution of customers here,

relative to larger problems.

(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Variation of CTN1, CTN3 and CTN4 with α1 for Nc = 1200
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The next section will use the results from the greedy local search algorithm to

further experiment with the quadtree search.

4.4 Greedy Local Search: Collaborative Routing

The second stage of collaboration, referred to as collaborative routing, involves the

transfer of goods at transshipment facilities. The previous section presented some

results for the quadtree search algorithm which was used to locate these facilities.

Our greedy local search uses the routes from entry point collaboration and the

location of potential transshipment facilities to construct collaborative routes. The

distance savings and time savings from collaborative routing are presented in this

section. The distance savings (Sav) are given in kilometers, while the time savings

(RTR) are given in hours.

We selected H4 as the best heuristic using scores from predefined criteria in the

previous section. However, no results were given regarding the variation with α1 of

the actual distance and time saved as a result of collaborative routing.

After solving the collaborative routing problem, results of both time and dis-

tance saved are shown as a function of α1 in Figure 4.4. α1 = 1, results in the

highest savings. This corroborates our assumption in the previous section that a

cluster with a balanced mixture of customers from different carriers leads to better

collaborative routes. From the average measures, we can also claim that more col-

laborative opportunities lead to both increased distance savings and time savings.

The result for distance savings was expected since an “improving move” is defined

using those savings. The substantial savings in time is an added bonus, and leads

to reduction in congestion, as trucks spend less time in the city. The time savings

refers to RTR, which is the total route time reduction.

There is still one more aspect of the quadtree search that we have not analyzed.
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(a) Nc = 400 (b) Nc = 400

(c) Nc = 800 (d) Nc = 800

(e) Nc = 1200 (f) Nc = 1200

Figure 4.4: Variation of time and distance saved with α1

This decision relates to the actual location of transshipment points. Once clusters

are formed, the search has to use the information from customers present in the

cluster to locate a transshipment point. We propose two methods for this: the

demand weighted centroid (DW-Centroid) method and the time-slack weighted

centroid method (TSW-Centroid).
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Given a cluster p, let Cp represent the set of customers in the cluster. Following

the notation of Section 3.2, let xj, yj, qj and slj = lj − bj represent the coordinates,

demand and time slack of customer j ∈ Cp respectively. We define the coordinates

of the transshipment point
(
xdw

p , ydw
p

)
using the demand weighted centroid of a

cluster as

xdw
p =

∑
c∈Cp

qjxj∑
c∈Cp

qj

(4.1)

ydw
p =

∑
c∈Cp

qjyj∑
c∈Cp

qj

(4.2)

Similarly, the coordinates of the TSW-Centroid can be derived by substitut-

ing qj with slj in Eqns 4.1 and 4.2. Note that using DW-centroid results in the

transshipment points located closer to customers with higher demand. Table 4.11

gives the average distance and time saved for the preceding two cases. The results

are mixed, but if the distance and time saved are averaged over all values of Nc,

TSW-Centroid is marginally better. However, our analysis showed that the average

load transferred using DW-Centroid is about 8% greater than if TSW-Centroid is

used. The transfer of larger loads results in higher asset utilization on the route,

and often a greater reduction in dead-head miles.

In addition carriers would want to collaborate with other carriers on large loads,

as this is more profitable, and better justifies the work at the transshipment facili-

ties. We thus employ the results from DW-Centroid to locate those transshipment

points.

To investigate the benefits of collaborative routing in more detail, we analyze

the results with α1 = 1.0. Tables 4.12 and 4.13 present the variation with RType of

distance and of time saved from collaboration, respectively. The results show that
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DW-Centroid TSW-Centroid

Nc Sav RTR Sav RTR

400 64.30 13.52 50.03 8.18

800 94.44 23.41 128.41 44.84

1200 132.48 45.05 135.08 44.00

Table 4.11: Results of average distance (Sav) and time (RTR) saved for DW-Centroid
and TSW-Centroid. Sav and RTR are reported in kms and hrs respectively

the savings increase as Rtype changes from 1 to 2, and then decrease again when

RType equals 3. This variation is due to a tradeoff between geographical advantage

(Section 3.4) and route overlap.

For RType = 1, the routes are separated evenly and they all have the same

geographical advantage from their entry point. When RType = 2, the routes from

east and west (i.e. NE and NW, and SE and SW) overlap more, while the routes

from the north and south (i.e. NE and SE, and NW and SW) overlap less. An

increase in overlap leads to better collaborative routes, even though the east-west

geographical advantage has diminished. However, when RType changes to 3, the

savings drop, because the increase in overlap does not counter the effect of the

decrease in geographical advantage. In addition, the overlap between north-south

routes is much less, but collaboration between these routes, if it should take place,

is certainly more beneficial now.

RType 1 2 3

N µ Q1 Q3 µ Q1 Q3 µ Q1 Q3

400 66.20 57.84 74.06 66.31 48.73 82.96 60.78 49.59 70.96

800 86.36 74.90 132.95 108.09 76.90 132.95 82.43 65.92 100.89

1200 106.93 87.18 131.40 170.07 131.42 176.12 134.52 115.44 145.65

Table 4.12: Mean and quartile results for distance saved (kms) with variations in Rtype

Therefore, contrary to the results from entry-point collaboration, asymmetries in
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the geometry can help collaborative routing. However, this is not to say that more

asymmetry is always better, as there are tradeoffs as explained above. Though

tradeoffs exist, results for the minimum average distance and time with RType

equals 3, and Nc equal to 400, 800 and 1200 are respectively 60.78, 82.43 and

106.93 kms, and 11.88, 19.23 and 41.50 hrs (Tables 4.12 and 4.13). These values

indicate that collaboration is indeed beneficial, in both symmetric and asymmetric

rectangular geometries.

RType 1 2 3

N µ Q1 Q3 µ Q1 Q3 µ Q1 Q3

400 13.50 9.00 20.04 14.47 9.97 20.50 11.88 7.76 15.56

800 24.46 16.82 28.94 23.15 10.33 37.71 19.23 14.04 25.27

1200 47.06 39.49 54.65 51.71 31.70 61.87 41.50 31.96 45.69

Table 4.13: Mean and quartile results for time saved (hrs) with variations in Rtype

Analysis of the quartile results shows that collaborative routing leads to sub-

stantial savings in time, and distance savings as well. For Nc = 800 and RType = 1,

Table 4.13 shows that route time is decreased by more than 16.82 hours for 75% of

the observations, and 28.94 hours are saved on 25% of the samples. The distance

saved is lower in comparison to the CEC (Table 4.7), and for the preceding setting,

is more than 74.90 kms for 75% of the observations, and exceeds 132.95 kms for

25% of the cases (Table 4.12). Variations with %LD are not reported as they are

similar to entry-point collaboration.

In collaborative routing, distance and time savings decrease (as expected) as

a function of %TW (Tables 4.14 and 4.18). However, the variation of savings

with TWw is the exact opposite: The results are counter-intuitive, as tighter time

windows lead to greater time and distance savings than the case where the time

windows are wider.
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%TW 75 100

N µ Q1 Q3 µ Q1 Q3

400 73.72 59.64 70.05 55.14 46.78 62.50

800 101.28 73.07 116.95 83.29 66.47 100.23

1200 152.26 102.14 174.03 122.08 124.14 134.71

Table 4.14: Mean and quartile results for distance savings (kms) with %TW .

%TW 75 100

N µ Q1 Q3 µ Q1 Q3

400 15.12 10.65 19.58 11.45 5.01 14.49

800 21.43 12.99 34.14 23.13 19.01 31.27

1200 48.26 34.68 48.91 45.25 29.63 61.60

Table 4.15: Mean and quartile results for time saved (hrs) with %TW .

Although the number of collaborative opportunities will drop as time windows

get tighter, the important effect is on the construction of VRPTW routes. Tight

time windows lead to inefficient routes in terms of distance and contain only a few

customers. Routes whose customers are a large distance from the depot tend to

be less efficient. When carriers then exchange loads at a transshipment point the

average savings from a collaborative opportunity increases substantially due to the

initial inefficient routes. From a route-time perspective, tight time windows lead to

excessive wait times as well. The trends observed in tables 4.16 and 4.17 are due

to these reasons.

TWw 2 5

N µ Q1 Q3 µ Q1 Q3

400 68.34 56.45 78.43 60.52 45.83 69.82

800 115.64 100.89 122.83 68.92 64.48 75.38

1200 168.12 131.52 176.01 106.22 93.18 120.93

Table 4.16: Mean and quartile results for distance saved (kms) with TWw.
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TWw 2 5

N µ Q1 Q3 µ Q1 Q3

400 15.69 7.57 22.27 10.88 7.63 14.49

800 32.32 26.94 39.01 12.24 5.70 16.82

1200 51.77 33.39 62.49 41.74 30.52 48.19

Table 4.17: Mean and quartile results for time saved (hrs) with TWw.

Next, we present results for the case RType = 1, %TW = 75, TWw = 2,

%LD = 95 and N ∈ {400, 800, 1200, 4800}. Figure 4.5 clearly shows that distance

savings and route time reduction increase with Nc.

(a) (b)

Figure 4.5: Variation of time and distance saved with Nc when RType = 1, %TW = 75,
TWw = 2 and %LD = 95

Table 4.18 contains the average number of transshipment facilities used to enable

construction of collaborative routes. The number of facilities employed increases as

the size of the problem increases, but our analysis of more granular data showed that

not all transshipment sites selected can be profitably utilized. Some of these sites

are used only for a few transfers and therefore the associated savings are low. In

practice, this raises an important question of when a selected transshipment point

should be actually be considered. We believe this depends on who owns the trans-

shipment facility, and who takes the decisions regarding which carriers collaborate.

These are challenges faced by any new proposal, and answers to these questions
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can only be obtained from carriers and the government authorities themselves.

Nc 400 800 1200 2400 4800

ANTF 3.33 4.33 5.00 6.00 8.67

Table 4.18: Average number of transshipment facilities (ANTF) used for different values
values of Nc

Finally, the average running time for greedy local search was 76.72, 210.68 and

580.09 seconds for Nc equals 400, 800 and 1200, respectively. Problems of size

Nc equals 2400 and 4800 resulted in running times of 2141.9 and 3765.63 seconds.

By restricting the size of the transferred customer sequence in each move operator

(Section 3.8) to a maximum of four, we were able to reduce these running times by

nearly half, with marginal reductions in savings.
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Chapter 5

Summary and Conclusions

This chapter presents the summary of the work done and concluding remarks in

Sections 5.1 and 5.2. Future research extensions are provided in Section 5.3.

5.1 Summary

The problem of collaboration between LTL carriers in an urban region is addressed

in this thesis. To our knowledge, no literature exists on this problem. Therefore, we

use simple examples to explain the benefits of carrier collaboration. These benefits

include reduction in dead-head miles and in extra miles, an increase in carrier

revenue and leads to both reduced congestion and pollution. From these benefits,

we identify LTL trucking companies and the municipal government as potential

beneficiaries of our work.

To solve the above problem, our main contribution was a two stage collaborative

framework, which carriers can use to benefit from collaboration. These stages are:

1. Collaborative entry : Transfer of goods between trucks at logistics platforms

located at the entry to the urban region.
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2. Collaborative routing : Transfer of goods between trucks during local delivery

at pre-specified transshipment sites.

The first stage of collaboration involves the solution of VRPTWs. We math-

ematically define the Collaborative Vehicle Routing Problem with Time Windows

(COL-VRPTW), which corresponds to the second stage of collaboration. Two

proofs, which show that collaboration leads to positive distance savings, are given

for cases where carriers collaborate within a square. Then, graphical analysis of

simple cases is used to show that the tradeoffs in collaboration can be non-intuitive.

These results highlight that an algorithmic or mathematical study of carrier col-

laboration is warranted.

To solve the two stages described above, we provide a novel three-phase heuris-

tic. Phase one uses an integrated tabu search (TS) or a guided local search (GLS)

method to solve the VRPTWs encountered in entry-point collaboration. A ran-

domized diversification strategy, motivated by satisfiability solvers, is employed to

improve the performance of the TS used in Debacker and Furnon [3]. The GLS

that we utilize is the same as in DeBacker et al. [4]. GLS is of course a local search

method by itself. Our approach to that algorithm is an integrated one, whereby

a CP engine aids the given local search method by acting as a “rule-checker.”

Similarly, our approach to the TS algorithm is also integrated.

The second phase of our algorithmic framework employs an adaptive quadtree

search to create clusters of customers, given a COL-VRPTW instance. Once clus-

ters are defined, based on a heuristic evaluation function, the preceding method

utilizes information such as the customer demand and time windows to locate a

transshipment point. By associating a transshipment point with a cluster of cus-

tomers, we inherently apply a radius function to limit the set of customers consid-

ered during collaborative routing. Unlike this methodology, other VRP methods
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use a radius parameter during local improvement. Complexity proofs for our imple-

mentation of the quadtree search are also given. We show that the quadtree depth

is bounded by 3
2
+min[log2(

l
d
), 1+log4(

Ainit

Amin
)], and that it has O((d+1)nmax) nodes

and can be constructed in O((d + 1)n) time, where nmax = d n
nmin

e. Definitions of

the terms used in the preceding expression can be found in Appendix 5.3.

Our final algorithm is an integrated greedy local search method. Here we use

the clusters and transshipment points from the quadtree search algorithm, together

with routes from the first phase, to search for collaborative routing opportunities

during local delivery. Three new transhipment-specific move operators for neigh-

borhood definition were created. These move operators transfer a sequence of cus-

tomers from one route to another, by exchanging goods at a transshipment point.

The neighborhood of each move operator is exclusive.

In a different sense than before, the preceding algorithm is also an “integrated

method,” because an optimization model is used to group feasible moves encoun-

tered during neighborhood search. At each iteration, the optimization model re-

turns a “greedy set” of moves, all of which will be combined and then used to

transition from the current solution to a new one. By doing this, we were able

to more efficiently utilize the information generated during neighborhood search.

The optimization model to combine moves was solved using the commercial solver,

ILOG CPLEX 11.

Finally, we perform extensive computational tests by solving over 10 000 VRPTWs.

For our modified tabu search, we benchmark its performance on the VRPTW data

set from Solomon [41]. For our three-phase heuristic, applied to carrier collabora-

tion, we report results on random data sets that we created. Details of data-set

creation are given in Appendix 5.3. The test city for our computations was Toronto.

We also provide comprehensive evaluation of the results, and give managerial in-

sights as to why our framework should be employed. A summary of the results and
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conclusions drawn are given in the next section.

5.2 Conclusions

Our main contribution is a framework for LTL carrier collaboration and an accom-

panying solution methodology. Solution of this problem involved the definition of a

new VRP variant which we term the “collaborative vehicle routing problem”. We

present geometric proofs in a square, for that problem under certain restrictions,

which show that collaboration will lead to distance savings, as long as there is an

overlap between collaborating routes.

For problems of realistic size, we define an integrated three-phase heuristic. The

performance of our modified tabu search used in the first phase was tested on the

data sets in Solomon [41]. When compared with other TS methods that minimize

distance, the results showed that our modified TS was better than that in Tan et

al. [44] for all data sets, and better than DeBacker and Furnon [3] for five out of

six data sets.

Using TS and GLS on the random data sets that we created, we evaluated

the impact of parameters such as city shape, percentage of customers with time

windows, tightness of those time windows, and percentage of customers with LTL

loads. Our results indicated that the distance savings from stage-one collabora-

tion diminishes as the region deviated from a square. This result has important

practical implications, as it suggests that not all cities are suitable for entry-point

collaboration.

Further parameter analysis of entry-point collaboration showed that distance

savings decline when there is more tightness in the time windows, or for a smaller

percentage of LTL loads. The preceding observations are due to a reduction in
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collaborative opportunities. A non-intuitive variation of distance saved with the

percentage of customers having time windows was also observed. We argue that this

variation occurs because increasing time windows leads to more restricted problems,

which may benefit to a greater extent from collaboration.

Following that, we performed tests on our adaptive quadtree search to choose

the best heuristic evaluation function. Computational tests showed that the best

criterion for good collaborative clusters was a balanced mixture of customers from

different carriers. Our parameter study on the evaluation function supported the

preceding statement.

Once clusters were created, we tested two methods to locate a transshipment

site. The first used a demand weighted centroid, while the second used a time-slack

weighted centroid. Though the latter technique yielded slightly greater average

savings, the demand weighted centroid resulted in the transfer of larger loads.

From a practical standpoint, carriers would prefer transferring larger loads, since

that implies higher asset utilization. Therefore, we chose the demand weighted

centroid to locate facilities. Finally, we used an integrated greedy local search

method to construct collaborative routes.

Next, we briefly summarize the benefits from collaboration and tie them to the

three main goals of carrier collaboration: increase in carrier revenue, reduction in

congestion, and reduction in pollution.

To begin, Table 5.1 shows the various percentage benefits. The first two columns

give the percentage reduction in distance and time, respectively, for collaboration

at the entry point to the city (CEC). Columns three and four contain the same

two statistics for collaborative routing (CR). The last two columns relate to the

combined, overall framework. Those findings correspond to the case RType = 1,

%TW = 75, TWw = 2 and %LD = 95, the combination of parameters most likely
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CEC CR Overall

n N Nc %Sav %RTR %Sav %RTR %Sav %RTR

25 100 400 12.37 2.06 3.58 15.44 15.51 17.18

50 200 800 8.96 2.27 3.90 13.24 12.51 15.21

75 300 1200 9.78 3.99 2.91 31.89 12.40 34.61

150 600 2400 10.31 -0.84 1.93 3.58 12.03 2.77

300 1200 4800 6.20 1.85 1.49 7.42 7.60 9.13

Table 5.1: Overall percentage reductions in route distance and route time when
RType = 1, %TW = 75, TWw = 2 and %LD = 95

to occur in practice.

Our results show that distance savings from entry point collaboration are be-

tween 6.2 and 12.3%, depending on the number of customers. Such a decrease

in route distance will also lead to substantial cost reductions, which will in turn

provide an incentive for carriers to participate in collaboration. The reduction in

route distance due to collaborative routing is between 1.4 and 3.9%. Though this

is low compared to the collaborative entry case, as mentioned in Section 2.1.2, the

cost of inter-city routing is $435 billion. Therefore, even a small percentage savings

in distance can lead to considerable savings in real cost. With this in mind, the

overall route distance savings from our proposed collaborative framework is very

encouraging. The savings percentages are approximately between 3 and 15.5%. We

believe that if savings in this range can be attained annually, carriers will be willing

to participate in collaborative efforts.

Results for percentage route time reduction by collaborating at the logistics

facilities at the entry point give savings between -0.9 and 4%. Though the reduction

in time is not very high for this stage of collaboration, we reasoned in section 4.2,

using our first and third quartile results, that the route time reductions were still

substantial in most cases. In contrast, the savings in time from the collaborative
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routing are quite high. For the values of n that we studied, collaborative routing

resulted in route time reductions between 2.7 and 34.5%. Therefore, as a whole, the

collaborative framework leads to significant savings in distance and time. Savings

in time will permit the vehicle to return to the depot early, which may allow the

utilization of that vehicle for either a second local delivery or for other hire purposes.

Results from Sections 4.2 and 4.4 show that average asset utilization can also

be increased by about 4% and 8% for each stage of collaboration. This increase

makes each vehicle more profitable, and leads to less dead-head miles as well.

Figure 5.1: Green house gas emissions. Source: Transportation and climate change:
Options for action. National climate change program, transportation table,
November, 1999

Distance and time savings, in addition to providing financial and operational

gains to carriers, also provide incentives for the city government to take our col-

laborative proposal into serious consideration. These incentives include route time

reductions which lead to trucks spending less time doing local delivery. The reduced

time that trucks spend in the city directly lessens congestion. It was estimated in

Taylor [45] that the cost of congestion due to trucking in the city of Toronto and

Peel regions was a shocking US$2 billion in the year 1987. Congestion in Toronto

has increased considerably since then, and we expect the current cost of congestion
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to be many times more. Therefore, reduction in congestion from our model has

cost benefits as well.

Figure 5.2: Truck weight and efficiency. Source: Trucks and air emissions, final report,
Air pollution prevention directorate, Environmental protection service, En-
vironment Canada, 2001

Trucking in the city has been a major contributor to pollution. Figure 5.1 shows

commercial trucks to be the second biggest emitter of green house gases. Therefore,

the reduction in route distance from collaboration of commercial trucks will have

a direct impact on reducing pollution. Further, Fig 5.2 shows how the efficiency of

a truck improves with weight. The increase in asset utilization from collaboration

will therefore lead to enhanced trucking efficiency, which will lower pollution.

In this thesis, our framework for carrier collaboration was designed to provide

a reduction in the carrier’s routing costs and give environmental incentives for the

local government to participate. Our results and evaluations confirm that LTL

carrier collaboration in the city could indeed benefit these groups.
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5.3 Research Extensions

We have analyzed carrier collaboration in urban regions, once the line haul delivery

is complete. An open research question is to what extent line haul collaboration

will help carriers and shippers? Work on shipper collaboration deals with this issue,

but synergies between shipper and carrier collaboration have not yet been explored.

For example, will combining both types of collaboration lead to a higher combined

payoff, or individually higher payoffs? This has serious implications to government

authorities who may try to implement such frameworks.

The presentation and evaluation of results in this thesis was done to prove that

collaboration was beneficial. Our algorithmic contributions, such as the the modi-

fied tabu search and the integrated greedy local search, warrant more exploration

in terms of performance testing and benchmarks.

Further, during the development phase of the modified tabu search, experiments

on using predicates to reduce the neighborhood size and strategically intensify the

search showed promise. This can be partially attributed to the highly efficient

propagation algorithms for simple predicates in CP. That is a research direction,

independent of this thesis, which is being pursued. In general, problems in collabo-

rative logistics are mathematically complex, and therefore are rich in opportunities

for developing good heuristic methods.

Finally, another unexplored avenue is the development of a holistic framework

for collaboration which accounts for inventory replenishment issues. This may lead

to great benefits as well.

107



Appendix A

Proof of Theorems

Definition .0.1. Quadtree: A quadtree Q is a rooted unbalanced tree. Each

internal node has four children.

Theorem .0.2. The maximum depth of a quadtree Q is bounded by 3
2
+min[log2(

l
d
), 1+

log4(
Ainit

Amin
)], where Amin is the minimum allowable area of a quadrant and Ainit is

the initial area of the bounding rectangle.

Proof. Q has two termination criteria based on minimum allowable quadrant area

and minimum number of points within a quadrant

1. Minimum Area

At depth i, Ai is the area of a quadrant

⇒ Ai =
Ainit

4i

∴
Ainit

Amin

≥ 4i

⇒ i ≤ log4(
Ainit

Amin

)
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Since the depth of a tree is one more than the maximum depth of an internal

node, the depth of the quadtree (dQ) satisfies:

dQ ≤ 1 + log4(
Ainit

Amin

)

2. Minimum Number of Points

Let there be a total of n points in the bounding rectangle. Let S contain all

the subsets of points in the bounding rectangle such that each set s ∈ S has

card(s) = nmin, where nmin is the minimum number of points that must be

present in a quadrant.

Let us define:

Sepmin = {max(d) : d =
√

[s(xp
i )− s(xq

k)]
2 + [s(yp

i )− s(yq
k)]

2, si, sk ∈ S

, i 6= k, xp
i ∈ si, x

q
k ∈ sk}

Let linit be the length of the largest side of the bounding rectangle.

⇒ At a depth i, the side of the current square corresponding to the largest

side will have length li = linit

2i

Within a quadrant the largest separation between two points is bounded by

the diagonal distance, which at depth i is diagi =
√

2linit

2i
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The termination criteria imposes that

√
2linit

2i
≥ Sepmin

⇒
√

2linit

Sepmin

≥ 2i

⇒ i ≤ log2(

√
2linit

Sepmin

)

⇒ i ≤ log2(
linit

Sepmin

) +
1

2

Since the depth of a tree is one more than the maximum depth of an internal

node, the depth of the quadtree (dQ) satisfies:

dQ ≤ log2(
linit

Sepmin

) +
3

2

As one of the above bounds must hold strictly, the bound on the depth follows.

Theorem .0.3. A Quadtree Q of depth d and storing n points, has O((d+1)nmax)

nodes and can be constructed in O((d + 1)n) time, where nmax = d n
nmin

e

Proof. Each internal node has four children and the total number of nodes can be

derived from the number of internal nodes. Therefore, it is sufficient to analyze the

internal nodes alone. At a given depth, the internal nodes representing different

quadrants are disjoint and cover the entire bounding rectangle. This implies that

they collectively store at most n points. Since the minimum number of allowable

points within a quadrant is nmin, the maximum number of nodes at a given depth
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is nmax = d n
nmin

e. From this, the bound on the number of nodes follows.

The main operation at every node is to assign points to different quadrants. The

time consumed by this operation is linear in the number of nodes in the current

square. Since the maximum number of points which can be associated with a square

is n, the time bound follows.
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Appendix B

Data Set Creation

In this appendix, details regarding the method used to create data sets for the

VRPTW will be described. These are subsequently used to create the COL-

VRPTW data sets as explained in section 3.9. Recall that the test region is rect-

angular and represents a city. The corners of the rectangle are the points of entry

into the city, where logistics platforms are located. The data sets need to contain

information regarding the entry points or vehicle depots (i.e NW, NE, SE or SW

entry point), starting and return times of vehicles, vehicle capacity, spatial distri-

bution of customers and their time windows, service time at a customer and the

service requirement there (i.e. quantity of goods to be delivered).

The user needs to provide information such as the rectangular regions length

(L) and breadth (B), the number of customers, n, the vehicle capacity, Cv, the

percentage of customers with small demand, p1, and the percentage of customers

with time windows, p3.

The vehicle depot is chosen by generating a uniformly distributed random inte-

ger between 1 and 4 (i.e. NW = 1, NE = 2, SE = 3, SW = 4). Next the customer

coordinates (x, y) are generated. The x coordinate of each customer is randomly

selected from an equilikely integer random distribution between zero and the length

of the rectangle. y is selected in a similar manner, but the range of the distribution
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is between zero and the breadth of the rectangle. Once n coordinates have been

generated, the spatial distribution of customers is fixed. The starting time of a

vehicle is set to zero, without loss of generality.

The latest return time of a vehicle to the depot is set to be 13 hours (i.e 780

minutes). This restriction is imposed by the truck drivers maximum hours of oper-

ation (http://gazetteducanada.gc.ca). The service time, St at each customer is set

to 20 minutes, based on the unloading rate of an average LTL load by two drivers.

The average speed of a truck in an urban region is assumed to be 30 kilometers per

hour. We use this speed to link time and distance.

The demand is obtained as follows. A uniform random number between 0 and

1 is generated for each customer. If the number generated is less than or equal to

p1/100 a random value from an uniformly distributed distribution over the range

[0.01Cv, 0.36Cv] is assigned. This percentage range is based on the fact that, LTL

loads are around 500-15000 lbs. If the random number is greater than p1/100

a random demand is assigned from an uniformly distributed random distribution

within the range [0.37Cv, 0.5Cv]. The second set of higher demands are to account

for the random nature of LTL shipments (Chapter 2.7.2, Page 10). However, the

percentage of these high quantity requests is small.

Following this, we generate time windows for each customer. A uniform random

number between 0 and 1 is generated for each customer. If the random number

is greater than p3/100, we assign a time window identical to that of the depot

(i.e. the customer has no time window). If the random number is less than or

equal to p3/100 we generate a time window as explained below. The center of the

time window for customer i is generated via a uniform random number between

[et + t0i, l0 − ti0 − Si], where Si is the service time and t0i is the travel time from

the depot to the customer.
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Next we use a truncated normal distribution to generate the half width of the

time window. A truncated normal distribution is a normal distribution which is

bounded above and below. To define a truncated normal distribution TN(µ, σ2, a, b),

the following need to be specified: the mean, µ, standard deviation σ, the lower

bound a, and the upper bound b. µ is equal to the time window center just gener-

ated, and a and b are [et+t0ij and l0−tij0−Sij ] respectively. The standard deviation

is used to vary the tightness of time windows. This concludes the procedure for

generating a VRPTW data set.
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