Reconstruction and Visualization of Polyhedra

Using Projections

Masud Hasan

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2005

(© Masud Hasan 2005

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

Two types of problems are studied in this thesis: reconstruction and visualization

of polygons and polyhedra.

Three problems are considered in reconstruction of polygons and polyhedra,
given a set of projection characteristics. The first problem is to reconstruct a closed
convex polygon (polyhedron) given the number of visible edges (faces) from each of
a set of directions §. The main results for this problem include the necessary and
sufficient conditions for the existence of a polygon that realizes the projections.
This characterization gives an algorithm to construct a feasible polygon when it
exists. The other main result is an algorithm to find the maximum and minimum
size of a feasible polygon for the given set §. Some special cases for non-convex

polygons and for perspective projections are also studied.

For reconstruction of polyhedra, it is shown that when the projection directions
are co-planar, a feasible polyhedron (i.e. a polyhedron satisfying the projection
properties) can be constructed from a feasible polygon and vice versa. When the
directions are covered by two planes, if the number of visible faces from each of the
directions is at least four, then an algorithm is presented to decide the existence
of a feasible polyhedron and to construct one, when it exists. When the directions
see arbitrary number of faces, the same algorithm works, except for a particular

sub-case.

A polyhedron is, in general, called equiprojective, if from any direction the size
of the projection or the projection boundary is fixed, where the “size” means the
number of vertices, edge, or faces. A special problem on reconstruction of polyhedra
is to find all equiprojective polyhedra. For the case when the size is the number

of vertices in the projection boundary, main results include the characterization of

111

all equiprojective polyhedra and an algorithm to recognize them, and finding the

minimum equiprojective polyhedra. Other measures of equiprojectivity are also

studied.

Finally, the problem of efficient visualization of polyhedra under given con-
straints is considered. A user might wish to find a projection that highlights cer-
tain properties of a polyhedron. In particular, the problem considered is given a
set of vertices, edges, and/or faces of a convex polyhedron, how to determine all
projections of the polyhedron such that the elements of the given set are on the
projection boundary. The results include efficient algorithms for both perspective
and orthogonal projections, and improved adaptive algorithm when only edges are
given and they form disjoint paths. A related problem of finding all projections
where the given edges, faces, and/or vertices are not on the projection boundary is

also studied.

v

Acknowledgements

I wish to thank my two excellent supervisors, Alejandro Lépez-Ortiz and Therese
Biedl, for guiding my research throughout my PhD studies. Their encouragement,
friendship, and financial support are invaluable for me. Most of the results in this

thesis also come from the joint work with them.

I am grateful to Anna Lubiw, who first introduced me to the problems related

to polyhedra. Some results in this thesis come from the joint work with her.

I like to thank my other examiners, David Clausi, Jeff Erickson, and Craig S.

Kaplan, for their valuable comments, suggestions and corrections.

I also like to thank Jonathan Buss for his guidance in the early days of my PhD

studies.

Finally, I would like to express my gratitude to the School of Computer Science

for providing such a beautiful environment.

Contents

1 Introduction
1.1 Basic definitions o
1.2 Problems considered in this thesis

1.3 Organization of this thesis,

2 Background
2.1 Reconstruction of polyhedra
2.2 Viewsof polyhedra
2.3 Silhouette computation
2.4 Efficient visualization of 3D objects oL

2.5 Zonohedra,

3 Reconstruction of Polygons
3.1 Defining the problem L
3.1.1 Examples

3.1.2 Theproblem.

vi

10

11

11

16

19

20

21

22

3.2

3.3

3.4

3.5

3.6

Necessary and sufficient conditions 26

3.2.1 Properd-iset 26
3.2.2 Conditions for S and § are the same 27
3.2.3 The idea and the condition 28
Proof 29
3.3.1 Outline of the proof 29
3.3.2 Placing normal-points L oo 30
3.3.3 Correctness 32
3.3.4 Algorithm 33
Maximum and minimum size of feasible polygons 35
341 Anexampleo oL 35
3.4.2 Algorithm outline 0. 36
3.4.3 Computing the proper d-iset S(N) 37
3.4.4 Expressions for the view differences 37
3.4.5 Plotting D(N) 39
3.4.6 Finding the maximum and minimum 41
Non-convex polygons 42
3.5.1 Unique features Lo 42
3.5.2 The construction L. 44
Perspective projectionso 48
3.6.1 Comparing with orthogonal case 49

Vil

3.6.2 View points in convex position 50

3.6.3 The construction L oL 50

4 Reconstruction of Polyhedra 53
4.1 The reconstruction problem 0 0L, 54
4.2 Preliminaries 56
4.3 Construction for directions in one plane 57
4.3.1 Basicdefinitions. oL Lo 57
4.3.2 The construction L 58

4.4 Construction for directions in two planes 63
4.4.1 Basicdefinitions. 000 64
4.4.2 Insufficiency of individual feasibility 66
4.4.3 Construction outline L. 67
4.4.4 Valid assignment when planes have common directions . . . 71
4.4.5 Valid assignment when no common direction exists 74
4.4.6 Valid selection for arbitrary visibility 82
4.4.7 Valid selection for limited visibilty 84
4.4.8 A valid assignment is not enougho 95

4.5 Non-convex polyhedra L. 96
4.5.1 Thespecial case L. 98
4.5.2 The construction 98

4.6 Perspective projections oo 102
4.6.1 Construction of the polyhedron 103

Viil

5

6

Equiprojective Polyhedra 105

5.1 Preliminaries 106
5.2 Boundary-vertex equiprojective polyhedra 106
5.2.1 Characterization L. 107
5.2.2 Proof of characterization 110
5.2.3 Recognition algorithm, 116
5.3 Minimal boundary-vertex equiprojective polyhedra 117
5.3.1 Proof of minimality 117
5.4 Generalization of equiprojectivity 122
5.4.1 2D counter-parto 122
5.4.2 Relation among different types. L. 124
5.4.3 Generalized zonohedra 125
View Point Selection 128
6.1 Preliminaries 129
6.2 Perspective projectionso oL 129
6.2.1 Geometric duality and transversal theory 131
6.2.2 View point selection algorithm 132
6.2.3 Edgesinonepath., 136
6.3 Orthogonal projections L. 139
6.3.1 Edges in multiplepaths00 L. 139
6.4 Computing projections for hiding features 142

1X

7 Conclusions and Open Problems 147

Bibliography 155

List of Figures

1.1

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

An orthogonal projection of a convex polygon 4
Reconstruction of a polyhedron from two triangulations 12
Line drawings and their labeling for polyhedra 14
Events that change the view of a non-convex polyhedron 17
Aspect graph L L 18
A d-1 set and its corresponding feasible polygon 24
A d-1 set for which a feasible polygon does not exist 25
From d-iset to proper d-1set 27
Visible half-circle and d-arc o000 31
Selecting normal-pointso 32
Not all normal-points intersect a single half-circle 34
Feasible polygons of different sizes 36
Proper d-i set for unknown No 38
Plotting §; against N 39

x1

3.10

3.11

3.12

3.13

3.14

3.15

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

Plotting D(N) against N 40

Visibility in non-convex polygon L. 43
Base polygon and unique visible regions L. 45
Adding edges in unique visible regionso L 47
Visibility for perspective projection 49
Constructing feasible polygon for perspective projection 51
A feasible polyhedron when directions are planar 55
A d-i set for which a feasible polyhedron does not exist 55
Visible half-circle, visible half-sphere, d-arc, and d-lune 58
Obtaining feasible polygon and polyhedron from each other 60
Feasible polyhedron and polygon corresponding to each other 62
Arrangement of d-lunes when directions in two planes 65
Counter example for the insufficiency of individual feasibility 67
d-lunes when two planes have common direction 72
d-lunes when two planes have no common direction 75
Valid assignment when planes have no common direction 76
Explaining valid assignment: Step 1 78
Explaining valid assignment: Step 2o 79
Explaining valid assignment: Step 3o 80
Valid selection when max{D,D} < N 84
Partitioning d-lunes in valid selection for limited visibility 88

x11

4.16

4.17

4.18

4.19

4.20

4.21

5.1

5.2

3.3

0.4

3.5

3.6

5.7

3.8

3.9

5.10

5.11

6.1

6.2

6.3

Examples of partitioning d-lunes
Reassigning and reselecting normal-points for valid selection

Counter example for insufficiency of valid assignment
A square dipyramid and a base polyhedron created from that
Adding faces in the unique visible regions

Creating feasible polyhedron for perspective projection

Examples of equiprojective polyhedra
Edge directions and compensating edge-face pairs
Examples of face- and non-face compensating polyhedra
Moving the view direction around the plane of a face
Graphs of compensating edge-face pairs
Moving the view direction around anedge
Mustrating the proof of minimality
Cube is in all equiprojective classes
A parallel-sided 2m-gono
A prism is not equiprojective under extended definition

Chopping off a cube to make it visible-face equiprojective

The dual polyhedron associated with a face
Polyhedron with more than one resulting view

The ordering of faces around a vertex

X111

6.4

6.5

6.6

6.7

Example of only one viewing region 138

Arrangement of coneso 141
Dual graph of the arrangement of cones 143
Polyhedron with more than one view for hiding edges 146

x1v

Chapter 1

Introduction

Problems involving three-dimensional objects are often solved by exploiting the
relation between an object and its projection, such as in reconstruction of ob-
jects from their images, rendering objects using silhouettes, object recognition by
matching features in images, or effective visualization of an object by projections
representing desired features. In this thesis, among the problems just mentioned,
two types of problem have focused: reconstruction of polyhedra from projections

and visualization of polyhedra via projections.

Reconstructing polyhedra from projection information is an important field of
research due to its applications in geometric modeling, CAD, computer vision, ob-
ject recognition, geometric tomography, and computer graphics. The nature of
different reconstruction problems and the techniques to solve them depend upon
the types of information given, which include line drawings, images, silhouettes,
area/volume and shapes of shadows, texture, shading [35, 80|, and albedo' [65].

Based on the amount of information given it may not be possible to uniquely

IThe proportion of light or radiation reflected by a surface.

CHAPTER 1. INTRODUCTION 2

reconstruct a polyhedron, since more than one polyhedron may have similar pro-
jections. In that case all possible polyhedra are reconstructed from the geometric
information alone, and, if necessary, the best approximation is picked up with the

help of some other secondary information [80].

The problem of constructing new polyhedra based on certain mathematical
properties have also been extensively studied since antiquity in the fields of archi-
tecture, art, ornament, nature, cartography, and even in philosophy and literature.
(See the book [25] and the web page [40] for interesting discussions on the history of
discovering new polyhedra.) In this regard, regularity of faces, edges and vertices,
and symmetry are some properties that have been extensively studied. For example
in a platonic solid all faces are the same regular convex polygon and all vertices are

incident to the same number of faces.

Projections are an efficient way of conveying succient three-dimensional infor-
mation of an object, which is in turn useful in object visualization, object recog-
nition, and automatic visual inspection of objects. For example, projections are
used in representing three-dimensional graph drawings and visualizing knots. In
object recognition different features of an object are obtained from different pro-
jections and then matched with stored features. In automatic visual inspection, it

is important to find projections which highlight features to be verified.

We study two types of problems or reconstruction of polyhedra, deciding the
existence of feasible polyhedra that realizes some given projections and construing
new polyhedra given some projection properties. The projection information that
we consider are the quantitative measures of different features in the projections,
such as the number of edges and faces in the whole projection as well as in the

projection boundary.

CHAPTER 1. INTRODUCTION 3

For the problems on visualization we consider algorithms for efficiently finding
projections of polyhedra. We impose required properties on the projection bound-
ary, particularly those related to the inclusion of a given set of edges, vertices and

faces on the projection boundary.

1.1 Basic definitions

A polygon in two dimensions (2D) is the region bounded by a simple circuit formed
by finite number of line segments called edges. A polygon is convez if a line segment
connecting any of its two points is entirely inside of it, otherwise it is non-convex.
A polyhedron, which is the 3D counterpart of a polygon, is the region bounded by a
finite number of polygons called faces such that (i) if two faces intersect, then it is
only at a common edge or a vertex, (ii) every edge of every face is an edge of exactly
one other face, and (iii) faces surrounding each vertex form a simple circuit [23]. A
polyhedron is convez if a line segment connecting any of its two points is entirely
inside of it, otherwise it is non-convez. In a different way, a convex polygon is the
bounded region defined by the intersection of a finite number of half-planes and
a convex polyhedron is the bounded region defined by the intersection of a finite

number of half-spaces [87].

A projection of a polyhedron P from a view point p (from a view direction d)
is the mapping of every visible point of P onto the projection plane, where the
“mapping” of a point is the intersection of the line passing through that point
and p (the line passing through that point and is parallel to d) with the projection
plane. The projection of a polygon P has the same definition with “projection
plane” replaced by “projection line”. If a projection is defined with respect to a

view point, then it is called perspective and if it is defined with respect to a view

CHAPTER 1. INTRODUCTION 4

direction, then it is called orthogonal. See Figure 1.1 for an example. The view
direction of an orthogonal projection points towards the origin (instead of pointing

away from the origin.)

Figure 1.1: An orthogonal projection of a convex polygon.

In a perspective projection of a convex polygon P, an edge e of P is visible from
the view point p if and only if P and p are in two different half-planes of the line
containing e. In an orthogonal projection of P, e is visible from the view direction d
if and only if the inner product of d with the outer normal of e is negative. Similarly,
for a perspective projection of a convex polyhedron P, a face f is visible from the
view point p if and only if P and p are in two different half-spaces of the plane of f.
For an orthogonal projection, f is visible from the view direction d if and only if

the inner product of d with the outer normal of f is negative.

The similar definitions for non-convex polygons (polyhedra) are less formal,
since the non-convex cases are not studied in depth. For a non-convex polygon,
an edge e is visible (invisible) if and only if every point of e is visible (invisible),
and e is partially visible if some but not all points of e are visible. Similarly for a
non-convex polyhedron, a face f is visible (invisible) if and only if every point of f
is visible (invisible), and f is partially visible if some but not all points of f are

visible.

A projection of a convex polygon is a line segment, possibly divided into smaller

CHAPTER 1. INTRODUCTION 3

line segments that are mappings of visible edges. Similarly, for a convex polyhedron
a projection is a convex polygon, possibly divided into smaller convex polygons that
are mappings of visible faces. The projection boundary of a convex polyhedron P
is the set of edges in the projection each of whose corresponding edge in P has

exactly one face visible and the other incident face invisible.

The concept of silhouette is very close to that of projection boundary and can
be defined in general for both convex and non-convex polyhedra. In a projection
of a polyhedron P, the silhouette is the set of visible pieces of edges each of whose
corresponding edge in P has one adjacent face invisible and the other adjacent face
visible or partially visible. Observe that for a convex polyhedron, the silhouette is

the same as projection boundary and we will use these two terms as synonyms.

When a view point or a view direction changes, the set of visible faces in the
projection of a convex polyhedron P may or may not change. Over all projections
of P, each distinct set of visible faces is called a view of P. The set of all view points
or view directions for which the projections have the same view is called a viewing
region. Note that a viewing region is always a connected set and for orthogonal

projections it can be considered as a cone with its apex at the origin.

A convex polygon or polyhedron, or more generally a convex object in 2D or
3D, is centrally symmetric if it is symmetric to itself with respect to a point called
the center of symmetry [53, Page 37]. For example cube is centrally symmetric,
whereas a pyramid is not. A parallel-sided 2m-gon is a convex polygon with 2m
edges such that the edges are in parallel pairs. Observe that a parallel-sided 2m-
gon is centrally symmetric if the edges in each parallel pair are of equal length.
A zonohedron, or more formally a generalized zonohedron, is a convex polyhedron

whose faces are centrally symmetric [81]. See Chapter 2 for more on zonohedra.

CHAPTER 1. INTRODUCTION 6

1.2 Problems considered in this thesis

Problems on reconstruction of polyhedra

As mentioned briefly at the beginning, for the reconstruction of polyhedra the
projection information that has been considered previously is usually the exact ge-
ometry of the projections such as triangulations, line drawings, and silhouettes and
different geometric measures of the projections such as volume of the projections
along with some non-geometric surface information such as shading, texture, and
albedo. (See more on related works in Chapter 2.) In contrast, a very different type
of projection information, which is also very limited, is considered in this thesis.
The information for reconstructing polygons is only a given number of visible edges
in some projections, and for reconstructing polyhedra this is only a given number
of visible faces in some projections. The main focus is on convex polygons and

convex polyhedra and on orthogonal projections.

Although from the application point of view the problem of reconstructing poly-
hedra is more common than that of reconstructing polygons, surprisingly, the prob-
lems on reconstructing polygons that are considered in this thesis are themselves
very rich and their results and solution techniques will serve as foundation for
solving the analogous problems that are considered for reconstructing polyhedra.
Given the number of visible edges in some projections, the necessary and sufficient
conditions for the existence of a feasible polygon are given first. The proof of suf-
ficiency also gives an algorithm to construct a feasible polygon. Then, based on
this characterization, an algorithm to find the maximum and minimum size of a
feasible polygon is presented. Finally, the construction of non-convex polygons and

the case of perspective projections are studid in brief.

With the 2D results in hand, we will move proceed to the problem of recon-

CHAPTER 1. INTRODUCTION 7

struction of polyhedra given the number of faces in the projections. When all the
view directions lie in a single plane in 3D, we will show that the characteriza-
tion and reconstruction algorithms for feasible polygons can be used in the feasible
polyhedra case. When the directions are in more than one plane, the problem bo-
comes more complicated, since the interaction among the neighbouring directions
increases. Only the case of two planes is considered in this thesis. For this case an
efficient algorithm for reconstructing feasible polyhedra is presented, which works

for all but one sub-case.

The avobementioned problems on reconstruction are theoretically and intrin-
sically interesting. On the other hand, from an application point of view it may
be advantageous for several reasons to consider only the number of edges/faces in
the projections (which we consider for our problems). Quite often projections are
created by human beings, as opposed to extracting them from pictures, in the form
of line drawings [80, 84]. In that case the number of visible edges or visible faces in
the projections can be provided without drawing the actual projections and thus
simplifying the reconstruction process. Else, if the information is extracted from
pictures, then still extracting only the number of edges/faces should be easier and
more accurate compared to extracting other information like the line drawings,
since the user does not need to worry about the exact geometry of the projection.
As a further advantage, storing and handling only some integers should be much

simpler and faster.

Apart from the aforementioned advantages, our characterization of feasible poly-
hedra can be useful as a preliminary step in applications in which other type of
information is used for reconstruction purposes— the user can decide quickly the
existence of possible resulting polyhedra before starting a complicated and time

consuming reconstruction process.

CHAPTER 1. INTRODUCTION 8

As a final remark in favor of the problems considered here, to our knowledge
there is no work where only the number of visible edges/faces in projections have

been considered for reconstruction puposes.

Reconstruction of a special type of polyhedra

Consider the problem of reconstruction of polyhedra when every projection has
the same information. More precisely, how to re construct a polyhedron when the
number of vertices, edges and/or faces in every projection is the same? The fea-
sible polyhedra for this case are the so-called equiprojective polyhedra. The main
problem here is to reconstruct all equiprojective polyhedra. Although this problem
may be considered as a special type of the earlier problems of reconstruction (men-
tioned in the previous subsection), part of it was separately known in mathematics
since 1968 as an open problem. Shephard in his paper “Twenty problems on convex
polyhedra” [72] first posed the problem of constructing all boundary-vertez equipro-
jective polyhedra. A k-boundary vertex equiprojective polyhedron is one whose
number of vertices in all projection boundaries is k. Later, Croft, Falconer, and

Guy mentioned this problem in their book “Unsolved Problems in Geometry” [24].

As a first attempt to the problem posed by Shephard, we give a characterization
and recognition algorithm for boundary-vertex equiprojective polyhedra [41]. Then
we find minimal boundary-vertex equiprojective polyhedra, where the minimality

is in terms of the number of vertices in the projection boundary.

The pioneering definition of boundary-vertex equiprojective polyhedra given by
Shepherd [72] considers only the number of vertices in the projection boundary. In-
spired by the initial results on boundary-vertex equiprojective polyhedra, we extend

the definition of equiprojective polyhedra from boundary-vertex to wvisible-vertex,

CHAPTER 1. INTRODUCTION 9

visible-edge, and wvisible-face equiprojective polyhedra?. Under these new measures
of equiprojectivity, a polyhedron is k-visible vertex (similarly k-visible edge or k-
visible face) equiprojective if the number of visible vertices (similarly number of
visible edges or number of visible faces), is k for any projection. Our results on
these new types of equiprojective polyhedra include the relation among different

types and discovering that generalized zonohedra fall into these three classes.

Visualization of polyhedra

For visualization of polyhedra, the following problem is considered: given a convex
polyhedron and given some property of the silhouette, how hard is it to find one
or all projections that have the property? This question is motivated by numer-
ous applications of silhouettes, such as rendering in computer graphics and object
recognition in computer vision (see Chapter 2 for more on silhouette applications).
Two applications specifically benefit from the ability to bring certain features such
as edges or faces on the silhouette. In quality control of a manufacturing process
such as casting, checking for flaws such as air pockets can be done by examining
whether each edge is a smooth and continuous line. This can be done efficiently if
edges appear on the silhouette, using video cameras to acquire the silhouette of the
part. In visualization, crucial features should be forced to the silhouette to make
them easily detectable. Also, if features are to be labeled it is advantageous to

move them to the silhouette, since the outside area allows for space to place labels.

A straightforward approach to attack the aforementioned problem is to compute
all possible views and then check each view for desired properties, but that would

be inefficient. We give generalized algorithms to find all projections of a convex

2J. O’Rourke first mentioned the idea of this extension of equiprojective polyhedra in 15 th
Canadian Conference on Computational Geometry (CCCG), August, 2003, Halifax, Nova Scotia.

CHAPTER 1. INTRODUCTION 10

polyhedron such that a given set of edges, faces and/or vertices appear and/or do
not appear on the silhouette. For orthogonal projections and for edges only, the
algorithm is fully adaptive in the number of disjoint paths and thus improve the

time complexity.

1.3 Organization of this thesis

In Chapter 2 gives some background. Reconstruction of polygons and polyhedra are
in Chapters 3 and 4, respectively. Chapter 5 deals with equiprojective polyhedra.
Visualization of polyhedra is in Chapter 6. Finally, Chapter 7 concludes this thesis

with open problems and future work.

Chapter 2

Background

This chapter discusses in more details the related works for the following topics: re-
construction of polyhedra, views of polyhedra, silhouette computation, and efficient

visualization of 3D objects. Some background on zonohedra is also presented.

2.1 Reconstruction of polyhedra

There has been substantial work in reconstruction of polyhedra from projections. In
particular, the computational geometry community has studied certain theoretical
aspects of this problem, much of it motivated by Steinitz’ characterization of the
edge-graph of a convex polyhedron. In the edge-graph of a convex polyhedron P,
there is exactly one vertex for each vertex of P and two vertices are connected
by an edge if and only if the corresponding vertices in P form an edge. Steinitz’
characterization states that a graph is the edge-graph of a convex polyhedron if
and only if it is simple, planar, and 3-connected. The “if” part of his proof is

constructive, which means that given a simple 3-connected planar graph, it is always

11

CHAPTER 2. BACKGROUND 12

possible to construct a convex polyhedron whose edge-graph is the given graph.
See [87, Chapter 3] for a proof, among many that have been published, of Steinitz’
theorem. These proofs of Steinitz’ theorem can be implemented in O(n?) time, as
noted by Das and Goodrich [26]. They also describe a linear-time algorithm to

reconstruct a polyhedron from a given 3-connected and triangulated planar graph.

The following problem was studied by several authors. Given a convex polygon
of n vertices and its two distinct triangulations (share no diagonal), construct a
convex polyhedron of n vertices such that the two projections from the z axis are
the two triangulations and the given polygon is the projection boundary. (See
Figure 2.1, where two triangulations realize to a tetrahedron.) Here all the vertices
of the polyhedron are in the projection boundary. The technique for constructing
the polyhedron is to perturb the vertices in z axis. Guibas conjectured that such a
construction is always possible, but this was later disproved by Dekster [28]. Marlin
and Toussaint [57] gave an O(n?) algorithm for deciding whether such a polyhedron

exists and constructing a polyhedron where possible.

Figure 2.1: Reconstruction of a polyhedron from two triangulations.

In this problem the union of two triangulations corresponds to the edge-graph
of a polyhedron. But since the vertex-coordinates are given in xy-plane, the two
triangulations may not realize to a convex polyhedron even if the corresponding
graph of their union is 3-connected planar. Marlin and Toussaint [57] proved that
if it 1s allowed to change the positions of the vertices of the polygon, then the

two triangulations always realize a convex polyhedron. In another variation of

CHAPTER 2. BACKGROUND 13

this problem, where the triangulations are isomorphic to two opposite projections
from z-axis, Bereg [10] showed that the polyhedron can always be reconstructed.

See [29] for a collection of similar problems on reconstruction of polyhedra.

Reconstructing polyhedra have got more attention from application point of
view. Based on different applications, various projection information have been
considered for reconstruction. Among them the line drawings [55, 56, 63, 65, 79,
80, 84, 86] are possibly the mostly considered one. Line drawings may be obtained
from images, may be geometric drawings from the designers [80, Chapter 1], or
even may be freehand drawings [52, 83]. The reconstruction algorithms differ on

whether the reconstruction is from a single drawing or from multiple drawings.

For multiple drawings there are two common approaches based on the represen-
tation of polyhedra that are to be reconstructed: constructive solid geometry and
boundary representation. Both approaches are used in engineering and product de-
sign such as designing complex mechanical parts and CAD [43, 84]. In constructive
solid geometry approach each object is represented by a set of primitive objects
like cube, prism and pyramid, a set of transformation like translation, rotation and
scaling, and a set of boolean operation like union, intersection and difference. The
reconstruction process can be represented by a tree, with leaves as primitive ob-
jects and internal nodes as boolean operation with associated transformation. The

primitive objects are identified, usually by users, from the line drawings [84].

In boundary representation approach an object is represented by its boundary
which in turn is represented by a finite number of faces, edges and vertices. The
major steps for reconstruction are to create 3D vertices and edges from those in the
drawings, then creating faces, and finally finding the adjacency among the faces to

create the real object [84].

CHAPTER 2. BACKGROUND 14

Although it is comparatively more difficult to reconstruct a polyhedron from
a single drawing [80, 84| there is a substantial amount of work on it. Here the
reconstruction process has two major steps. The first one is to decide whether a
given line drawing correctly represents a polyhedron. For example the line drawing
in Figure 2.2(a) does not represent any polyhedron since the dotted extensions of
four edges do not meet a point, although it looks like a truncated square pyramid.
During this verification step all possible 3D information are also collected. The

next step is the construction of the polyhedron from those information.

There are several approaches for deciding the validity of a line drawing. Labeling
the line drawing is one such approach. Huffman [44] and Clowes [22] independently
presented a pioneering labeling scheme where the idea is to find a correct labeling

“won

so that the convex, reflex, and silhouette edges are labeled with “47, “-”7 and “—”,

respectively. See Figure 2.2(b) for an example. This scheme was later extended by

several authors to include hidden lines and curves in the line drawings [79, 80, 84].

I) - - ’
.’

+

(@) (b) (©)
Figure 2.2: (a) An incorrect line drawing of a truncated tetrahedra. (b) Example
of a valid labeled line drawing. (c) A valid labeling of the incorrect line drawing

in (a).

For a line drawing to represent a polyhedron, it is necessary to have a consistent

labeling, but it is not sufficient [79, 80, 84]. For example Figure 2.2(c) shows a

CHAPTER 2. BACKGROUND 15

correct labeling of the incorrect line drawing of Figure 2.2(a). Several ideas have
been proposed for the sufficiency of a line drawing [44, 54, 80, 84]. Sugihara have
given necessary and sufficient conditions in term of linear programming for a labeled
line drawing to represent a polyhedron [79, 80]. Another idea is the use of reciprocal
figure in gradient/dual space where the faces, edges and vertices correspond to
vertices, edges and faces in the original line drawing [44, 54, 80, 84]. According to

this idea a incorrect line drawing can not have a reciprocal figure.

Among other projection information that have been considered for reconstruc-
tion of polyhedra the area and shape of projections have been considered in geomet-
ric tomography [35]. Usually the convex objects are reconstructed here. Geometric
tomography deal with more on the mathematics of reconstruction rather than its
application. A related but more application oriented field is computerized tomog-
raphy, where 3D objects are reconstructed from sectioning information such as area
of a plane section, of the objects. Medical CAT scanner is an important applica-
tion of computerized tomography where image of a part of a human body can be
reconstructed from X-rays [35]. Although projections and X-rays are not the same,
the information achieved through X-rays can give the lengths, widths, volumes
and shapes of different parts of an object, which are similar to area and shape of

projections.

Instead of whole projections, sometimes only silhouettes are used to reconstruct
polyhedra [13, 51, 58]. For example, in silhouette probing, which is one kind of
geometric probing, the only information available is a set of silhouettes that are
discovered interactively by probing the object. See the PhD thesis [75] and two
related articles [76, 77] by Skiena for a detailed discussion on reconstruction by
geometric probing. In volume intersection, which is a well-known technique in

computer vision, the only information available for constructing a polyhedron is a

CHAPTER 2. BACKGROUND 16

set of silhouettes [12, 13, 51], sometimes even with unknown view points [12, 13].

Problems of reconstruction of polyhedra have two different flavors based on
whether the input is achieved interactively or not. In interactive reconstruction,
the object is “proved” by a mathematical or physical measuring device (such as
measuring lengths) and the position of a subsequent prove may depend upon the
measurements achieved from the previous probes. The problem is to reconstruct
the object using fewest number of probes. In non-interactive reconstruction, all the

inputs are known beforehand. See also [76, 77] for more on both approaches.

Discovering and studying new polyhedra based on certain mathematical prop-
erties still continues to this date, while it started with platonic solids at forth
century BC [25, Chapter 2|. For example, there are algorithms to construct zono-
hedra [33, 34, 40]. In another example, Kaplan and Hart [45] introduced an infinite
class of convex polyhedra called symmetrohedra. The polyhedra in this class are
constructed by placing regular polygons at the rotational axes of a polyhedral sym-
metry group and filling the “gap” by placing polygons of a non-regular type. This

class contains a substantial number of new polyhedra.

2.2 Views of polyhedra

The number of all possible view points and view directions from which a polyhedron
can be projected are infinite. But the number of views of a polyhedron for both

perspective and orthogonal projections is finite.

For a convex polyhedron with n faces, this number is §(n?) for orthogonal pro-
jections and #(n?) for perspective projections [36, 37, 66, 70]. These bounds are in

fact for the viewing regions, each of which represents a view. Since a view changes

CHAPTER 2. BACKGROUND 17

when one or more faces change their visibility, the viewing regions are defined by
the planes of the faces. Each cell in the the arrangement of the planes of the faces
gives a viewing region, and it can be proved that this arrangement has 6(n?) cells
in total with 6(n?) cells unbounded. The unbounded cells, when translated to the

origin, consists of view directions and represent views for orthogonal projections.

For a convex polyhedron, computing the viewing regions is straight forward
and takes 8(n?) and 6(n>) time for perspective and orthogonal projections, respec-
tively, [36, 37, 66, 70]— for perspective projections simply compute the arrangement
of the planes of the faces of the polyhedron optimally in #(r®) time [68] and for
orthogonal projections translate the planes to the origin and then compute the

arrangement in #(n?) time [68].

For a non-convex polyhedron, the definition of view is lot more complicated.
(Since the views of non-convex polyhedra are not used in this thesis, its definition
is omitted. Only some ideas on how the views and their bounds are computed are
given.) There are several events in the projection that can change a view, such as a
face becomes a line, a vertex intersects a line, and three edges from three different
faces intersect into a point (see Figure 2.3). Observe that the first among the above
three is the only event that can happen for a convex polyhedra. See [36, 37, 66, 70]

for other possible events.

Figure 2.3: Three events that change the view of a non-convex polyhedron.

Computing viewing regions for non-convex polyhedra is also complicated. For a

CHAPTER 2. BACKGROUND 18

particular event the set of all view points or view directions are determined by the
type of the event. For example, if the event is due to a face becoming a line, then the
view points and view directions lie in the plane of that face, whereas if the event is
due to three edges intersecting into a point, then the view points and view directions
lie in a hyperboloid. In general the space of view pointsfor which events occur are
quadratic surfaces [36, 37, 66, 70]. The number of such surfaces depends upon the
number of triples consisting of edges or vertices or both, and for a polyhedron of
size n this number is §(n®). Moreover, the arrangement of those surfaces gives
8(n?) cells with 8(n®) of them unbounded. The time complexity to compute all
viewing regions by computing this arrangement takes 8(n?)log n and (n°)logn for

perspective and orthogonal projections, respectively [36, 37, 66, 70].

There is a graph-theoretic representation called aspect graphs for views of poly-
hedra [70]. In an aspect graph, a vertex represents a view and two vertices are
connected by an edge if and only if the two corresponding views are adjacent,
where by “adjacent” means the two viewing regions have common boundary. For
example see Figure 2.4, where the view in (a) has three adjacent views shown in

(b), and the corresponding subgraph is shown in (c).

A DD

Figure 2.4: Four adjacent views and corresponding subgraph of aspect graph.

In other related works, instead of considering whole projections, only silhouettes

have been considered to define views and aspect graphs [32, 50, 70, 71]. The views

CHAPTER 2. BACKGROUND 19

of polyhedral terrains and polyhedral scenes have also been considered [2, 3, 27].
See also [70] and references therein for advantages and disadvantages, variations,

and alternates of views and aspect graphs.

2.3 Silhouette computation

Silhouettes are useful in various settings, especially in the area of machine vision,
for example in 3D assembly purposes. In an assembly process performed by a
machine, it may be required to gauge the given parts. In order to gauge a part,
cameras are used to acquire back-illuminated silhouettes of the part along with the
location of the light source. The silhouette is processed so that key features can be
identified and the distances among these features can be calculated [61]. Similarly
silhouettes are used to compute the boundary and the orientation of the mechanical
parts to be picked up by a robot for assembly [60]. Silhouettes are also used for
quality control [73, 74], object recognition [73], illuminating critical features [62],

and others.

In computer graphics, silhouette edges represent discontinuities in the visibility
of an object, and are one of the strongest visual cues of the shape of the object [49].
When rendering the object, it often suffices to render only the silhouette edges,
which can result in substantial speedup [67]. This is because for a polyhedron
the number of silhouette edges is usually much smaller than the total number of

edges [48].

The use of silhouettes in reconstruction processes has already been discussed
earlier. In the applications of silhouette, as mentioned above, it is require to com-
pute the silhouette efficiently. The computation of silhouettes has been studied

extensively both in the computational geometry community and in the computer

CHAPTER 2. BACKGROUND 20

graphics community. Pop et al. [67] gave an algorithm for perspective projections
that maintains the silhouette of polyhedra efficiently during arbitrary changes of the
view point. They define a silhouette edge in terms of its dual (see also Section 6.2.1)

to develop a practical and efficient heuristic to maintain the silhouettes.

Efrat et al. [32] presented several combinatorial bounds on the silhouette struc-
ture of a collection of convex polyhedra when the view point moves along a straight
line or along an algebraic curve. They compute the silhouette map, which is the
arrangement of the silhouettes of all objects with their hidden parts removed. Their
combinatorial complexity is the bound on the number of combinatorial changes in

the silhouette map during the motion of the view point.

For orthogonal projections only, Benichoe and Elber [9] give output-sensitive
algorithms to find silhouettes from polyhedral scenes for a given view point. By
mapping all view directions onto the surface of a sphere and then mapping the
sphere onto the surface of a cube, they reduce this problem to a segment intersection
problem in 2D. Using known techniques for solving segment intersection problems

from [1, 20], they find the silhouette in time linear in the size of the output.

2.4 Efficient visualization of 3D objects

There are some studies on how to compute “nice” projections of polygonal objects
in 3D [11, 38, 82] and 3D graph drawings [30], where criteria for “nice” include
minimizing crossings among the edges, monotonicity of polygonal chains, and min-
imizing coincidences among the edges and vertices. For convex polyhedra the max-
imum area of projection [59] and for higher-dimensional polytopes the maximum
and minimum volume of projection [15, 16] have also been considered as the de-

sired criteria of the projections. Brunet et al. considered the case of computing

CHAPTER 2. BACKGROUND 21

the view points from which the projections of a given polygonal chain is a con-
vex polygon [14]. They apply this special case to compute efficiently the occlusion

properties in a 3D scene.

2.5 Zonohedra

Zonohedra have been studied a lot due to its beautiful mathematical properties.
There is some confusion in the definition of zonohedra. The term “zonohedra”
was first defined by the Russian crystallographer Fedorov but was later evolved
by Coxeter [23] to mean more special cases (see [81] for the history). Coxeter
addressed two special cases: all faces are parallelograms and all edges are of equal
length. Coxeter called these two types as zonohedra and equilateral zonohedra [23].

A parallelepiped and a cube are two examples of these two types respectively.

A theorem by Alexandrov on centrally symmetric objects state that: a convex
polyhedron whose faces are centrally symmetric is itself centrally symmetric [23,
Page 28], [53, Page 41]. By this theorem, a zonohedron is centrally symmetric. This
also 1mplies that each face of a zonohedron has a parallel pair with corresponding
edges parallel and of equal length. For more information on zonohedra, see the web

pages [33, 34, 40].

Chapter 3

Reconstruction of Polygons

This chapter considers the two-dimensional case of the reconstruction problem-—
construct of polygons from the given number of edges in some projections. The
main focus is to create convex polygons from orthogonal projections. After defining
the problem precisely, the necessary and sufficient conditions for the existence of a
feasible polygon of a given size N is presented. The proof of this characterization
gives an algorithm to construct a feasible polygon whenever it exists. Based on
the necessary and sufficient conditions, the maximum and minimum size of feasible

polygons, when the size N is unknown, can be computed.

We also study creating non-convex polygons from orthogonal projections, and
convex polygons from perspective projections. For non-convex polygons, if every
direction sees at least two edges, then it is always possible to create a feasible
polygon. For perspective projections, if the view points are in convex position,

then there it is always possibel to create a feasible polygon.

Some results and ideas of this chapter will work as foundations for similar results

for the reconstruction of polyhedra in the next chapter (Chapter 4).

22

CHAPTER 3. RECONSTRUCTION OF POLYGONS 23

This chapter is organized as follows. The problem definition is in Section 3.1,
the necessary and sufficient conditions are in Section 3.2, and their proof is in Sec-
tion 3.3. The maximum and minimum size of feasible polygons is computed in
Section 3.4. Finally, Sections 3.5 and 3.6 adress non-convex polygons and perspec-

tive projections, respectively.

3.1 Defining the problem

We only consider non-degenerate orthogonal projections, i.e. projections whose
view directions are not parallel to the edges of the polygon. A direction-integer pair,
or simply a d-i pair, (d,n) consists of a view direction d and a positive integer n.
A d-i set § is a non-empty set of d-1 pairs where no two directions of S are the
same or opposite to each other. (This assumption on directions not being opposite
to each other is for that we will ultimately generate and then use d-i pairs for
all opposite directions too.) A convex polygon P is feasible for S if for each d-i
pair (d,n) in S, d is not parallel to any edge of P and the number of visible edges
from d is n. See Figure 3.1, where a d-i set S = {(do, 3), (d1,4), (d2,4)} is shown in

(a) and a corresponding feasible polygon P is shown in (b).

3.1.1 Examples

Before the problem is stated formally, let us see some examples. For a particular
d-1 set, it may be possible that a feasible polygon only exists for some particular
sizes. For example the size of P in the example of Figure 3.1 is eleven and this is
the maximum size that a feasible polygon can have for this d-i set S. As we move in

a circular order, the angular distance between any two consecutive directions is less

CHAPTER 3. RECONSTRUCTION OF POLYGONS 24

<d07 3>

<d07 3>

@ (b)
Figure 3.1: (a) A d-iset S. (b) A corresponding feasible polygonP of eleven edges;
the pairs of parallel lines that are tangent to P are to distinguish the visible edges

for each direction of S.

than 7. For any feasible polygon, since the edges are not parallel to the directions,
each edge is visible from at least one direction, so the total number of edges that
a feasible polygon can have cannot be greater than the sum of the integers of 9,

which is eleven.

For a particular d-i set, it may also be possible that no feasible polygon exists
at all. For example, consider a d-i set S which has the d-i pairs (dy,5), (di,15),
and (da,5), possibly with some other d-i pairs, such that the direction d; is in
between the directions dy and d; in a circular order, and dy and d, are within 90°
of dy (see Figure 3.2). Then regardless of the polygon size, a feasible polygon for S
does not exist. For assume there were such a polygon P. If an edge e is visible

from d;, then the outer normal of e makes an angle less than 90° with at least one

CHAPTER 3. RECONSTRUCTION OF POLYGONS 25

<d27 5>

(dy,15)

<d07 5>

Figure 3.2: A d-i set for which a feasible polygon does not exist.

of dy and d,, and thus e is also visible from at least one of dy and d;. Therefore the
total number of edges of P that are visible from d; cannot exceed the total number

of edges that are visible from dy and d,.

3.1.2 The problem

The above examples illustrate the problems that will be considered for reconstruc-
tion of polygons. Let S = {(do,no),(d1,n1),...,{dx-1,nK-1)} be a d-i set and N
be an integer. We ask to create a feasible polygon of size N for S. Clearly, it must
be true that N > 3 and N > max {n;}.

For this we first give necessary and sufficient conditions for the existence of a
feasible polygon, which also gives an algorithm to construct a feasible polygon when
one exists. This algorithm runs in O(K + N) time if S is circularly ordered, either

clockwise or counter-clockwise, and O(K log K" 4+ N) time otherwise.

CHAPTER 3. RECONSTRUCTION OF POLYGONS 26

3.2 Necessary and sufficient conditions

We will use, instead of S, a proper d-1 set § derived from S. We will prove that
a polygon is feasible for S if and only if it is feasible for §. Then we will give the

necessary and sufficient conditions for the existence of a feasible polygon for S.

3.2.1 Proper d-i set

Given N, a proper d-i set S is a set of 2K d-i pairs, where every d-i pair (d, n) has
an opposite d-i pair (d', N — n) with d’ opposite to d. A d-i set S can be turned
into a proper d-i set S in the following natural way. For each d-i pair (d,n) in S
add both (d,n) and (d', N —n) in S, where d’ is opposite to d. The d-i pairs (d, n)
and (d', N — n) are called opposite to each other.

Remember that each direction in S is different and its opposite direction is not

in 5. So each direction in S is different and thus the size of S is 2K.

A proper d-i set is represented as § = {(do, no), (d1,n1), ..., (dex—1,n2K-1)},
where the d-i pairs counter-clockwise. Since 0 < n < N for each d-i pair (d,n) in S,
also 0 < n; < N for each d-i pair (d;,n;) in S. So d; and d,;x are opposite to each

other and and n, x = N — n;.

Both for the characterization of a feasible polygon and the algorithm for recon-
structing a polygon from a given d-i set S, mostly the proper d-i set § will be used
instead of S. From now on the indices of the direction-symbol d and the integer-
symbol n of § are always taken modulo 2K. The indices of other terms, such as
d-arcs, view differences, and final view differences (yet to be introduced) that are

derived from S and their symbols are also taken modulo 2K.

CHAPTER 3. RECONSTRUCTION OF POLYGONS 27

(dr,10) IR

(do.5) (dy,13)

Figure 3.3: A proper d-i set § created from the given d-i set S given N = 20. The

d-i pairs whose directions are represented by solid lines form S. All d-i pairs form S.

The angle between any two consecutive directions d; and d; 41 in § is the counter-

clockwise angle from d; to d;y; at the origin.

3.2.2 Conditions for S and S are the same

The feasibility of a polygon for aproper d-i ste S is defined similarly as it was for S:
a convex polygon P is feasible for § if for each d-i pair (d;, n;) in S, d; is not parallel
to the edges of P and the number of edges of P that are visible from d; is n;.

Lemma 3.1 A convez polygon P is feasible for S if and only if it feasible for S.

Proof. (<) This is trivial since S is a subset of S.

CHAPTER 3. RECONSTRUCTION OF POLYGONS 28

(=) In S, for any d-i pair (d;,n;) there is an opposite d-i pair (d;y+x,nitx).
Exaactly one of them, say (d;,n;), is in S. Since P is feasible for S, the number of
edges that are visible from d; is n;. Recall that we assumed that no edge is parallel
to a direction in S (and we did this exactly so that this lemma hols.) Since d;;x
and d; are opposite to each other, none of the edges of P is parallel to d;, i either.
So the number of edges of P that are visible from d;;x 1s N — n; = n;1x. So the

viewing criteria are satisfied for each d-i pairin §. O

With the above lemma, from now on by a feasible polygon it menas to be feasible

for § unless otherwise stated.

3.2.3 The idea and the condition

Let P be a feasible polygon of size N. The idea of the characterization of P is as
follows. Consider the sets of visible edges of P from the directions of S. When we
move from a direction d; to the next one d;;1, there may or may not be any change
in the set of visible edges of P, or there may be some edges of P that become newly
visible and/or newly invisible to d;y1. From n; and n,;; alone, it can not be said
exactly how many edges become newly visible or newly invisible to d;;;. However,

it 1s possible to get a lower bound on these quantities.

Observe that if an edge e becomes newly visible when going from d; to d;;q,
then it becomes newly invisible when going from d;, i to d; 4 k41, which are opposite
to d; and d, 1, respectively. This implies that although the change in the visibility
of each edge happens twice, the total change in the visibility for all edges can be
counted by only considering their change from invisible to visible. (This use of
opposite directions is the main motivation for us to consider the proper d-i set &

instead of the d-i set S.) Moreover, e is newly visible for exactly one direction of S.

CHAPTER 3. RECONSTRUCTION OF POLYGONS 29

The above observations give some idea why, while moving through all directions
of § according to their circular order, the sum of the lower bounds on the number

of newly visible edges over all directions can not be greater than the size of P.

We now state the characterization formally. For each i, define the i-th view
difference as §; = max{0,n,;41 — n,;}. There must be at least §; edges that become
newly visible while moving from d; to d;;1. Therefore if a polygon exists, then D =
E?ﬁ;l 6; < N. Hence the necessary conditions is D < N for the existence of a

feasible polygon P. Our main result is that this. is also sufficient.

Theorem 3.1 Given a proper d-i set S of 2K d-i pairs, and given an integer N,
where the integers in S are less than N, a feasible polygon P with N edges exists if
and only if D < N.

3.3 Proof

3.3.1 Outline of the proof

The proof starts with the following crucial lemma.
Lemma 3.2 For any i, n; — Z;;LK §; =N -D).

Proof. Observe that n;y1 = n; + 6; — d;1x. For if n;4 1 > n;, then n;piix =
N —n;41 < N —n; = nitg, 50 dixx = 0 and 6; = njp; — n;. If njpy < ny, then
0; = 0 and ;1 = Niyer41 — Nizk = —Nip1 + n;. Using this K times,

+K-1 i—1

N—n,':n,'“{:n,'—l— Z 5]‘— Z 5]‘.
j=t

=it K

CHAPTER 3. RECONSTRUCTION OF POLYGONS 30

By subtracting the term D = ijo_l d; on both sides and re-arranging,

i—1

i—1
N—D:2n,'—2 Z 5]‘:2(711'_ Z 5j)7

=it K =it K

which implies the result. O

Note in particular that therefore N — D is even. The idea of the proof can now
be outlined as follows. For each view direction d;, choose ¢; edges such that they
are newly visible for d;;1. The remaining N — D edges are chosen in antipodal
pairs, so that one becomes visible exactly when the other becomes invisible. To
avold constructing an unbounded polygon we have to be slightly more careful in

how to chose edges; we explain this in the next section.

3.3.2 Placing normal-points

Let ¢ be a circle centered at the origin o. Rather than choosing edges directly,
choose points on ¢ instead. For a direction d, the (closed) half-circle of ¢ that is
visible from d is called the wvisible half-circle of d. A point x on arc a of ¢ is said to

be strictly within a if it is not an end-point of a.

Let P be an arbitrary convex polygon. The normal-point of an edge e of P is
the point of ¢ in which the outward normal vector of e, translated to the origin,
intersects ¢. Clearly an edge e is visible from a direction d; if and only if its normal-

point is strictly within the visible half-circle of d;.

Observe that that the arrangement of the normal-points of P on ¢ implies
whether P is bounded or unbounded. If all normal-points intersect a single (open)
half-circle of ¢, the direction for which this is the visible half-circle does not see an

edge of P and so P is unbounded. On the other hand, P is bounded means any

CHAPTER 3. RECONSTRUCTION OF POLYGONS 31

direction sees at least one edge of P and thus any closed half-circle of ¢ contains at

least one normal-point of P strictly within it.

Let us now explain how the normal-points can be placed for each direction, and
it needs some more notations. For all 7 denote by h; the visible half-circle of d;.
The arc 6; = h;y1\h; is called the i-th d-arc (“d” for difference). Normal-points will
never be placed on the boundary of 8;, and hence we will not distinguish carefully
as to whether 6; is open or closed. Observe that the i-th and (¢« + K)-th d-arcs are
the reflections of each other with respect to the origin, and are called opposite to
each other. (See Figure 3.4(a)). Since d;+1 # d;, ; is non-empty. Also 8, C h;4q
is at most a half-circle of ¢. Finally, U;;i_h 6; = U;;i_h hjyi\hj = h;. (See also
Figure 3.4(Db)).

(b)
Figure 3.4: (a) Definitions of visible half-circles and d-arcs; two opposite d-arcs are

drawn heavily. (b) h; = J'Zt_j 6;.

=i K

Now place §; arbitrary normal-point strictly within each d-arc ;. If D < N,
then by Lemma 3.2 the difference between N and D is even. Select N — D — 2

CHAPTER 3. RECONSTRUCTION OF POLYGONS 32

Figure 3.5: Selecting the last two normal points when D < N.

additional normal-points in antipodal pairs arbitrarily (but not on end points of
any |theta;) and the remaining two normal-points p; and py as follows: Let p be one
among N — 2 already selected normal-points. Let p’ be the opposite of p. Select p;
at clockwise ¢ circular distance apart from p, and p, at clockwise /2 distance apart
from p'. € is small enough so that p; and p, are within two opposite d-arcs. This

ends the selection process. See Figure 3.5.

3.3.3 Correctness

To prove that the construction is correct, two things need to be proven: (1) Each
direction d; sees n; normal-points, i.e., the visible half-circle k; of d; gets n; normal-
points strictly within it, and (2) the polygon in bounded, i.e., every open half-circle

gets at least one normal-point.
Lemma 3.3 If D < N, then each h; gets n; normal-points strictly within it.

Proof. Since each pair among the N — D lastly chosen normal-points goes into two

opposite d-arcs, exactly one in that pair is strictly within h;. Since h; = U;;i_h 6;,

CHAPTER 3. RECONSTRUCTION OF POLYGONS 33

the number of normal-points that are strictly within A; is Ei_l 6+ 3(N—-D),

j=i—K 93

which by Lemma 3.2 (with indices modulo 2K) is n;, . O

Lemma 3.4 Every open half-circle h of ¢ gets at least one normal-point.

Proof. If D < N, then the last two normal-points p; and p, were chosen such that
the minimuimn circular distance between any of p, p; and p, is less than a half-circle,

so the lemma holds.

If N = D, then each d-arc 6; gets exactly 4; normal-points. Among the end-
points of the d-arcs, let x; and x5 be the first and last end-points within £ in counter-
clockwise order. They are not necessarily the end-points of h. (See Figure 3.6).
If #; and x, are the end-points of h, then h = h; for some 7 and from Lemma 3.3
h gets n; > 0 normal-points. If x; and z, are not the end-points of h, then let, for
some 7, §; and #;,,x be the d-arcs that are partially intersected by h and have z;
and x4 as one of their end points respectively. Then 6,,1,8;12,...,6; k1 are strictly

within A. Recall from the definition of view difference that either §; or d,4 x is 0, say

0; = 0. So the number of normal-point in % is at least Z;—Lﬁ_ll 0; = Z;i?_l 0; =

n;+x > 0, where the last equality holds by Lemma 3.2 and D = N. O

3.3.4 Algorithm

We now summarize the algorithm for constructing a feasible polygon and give its

time complexity.

Theorem 3.2 Given a d-i set S of K d-i pairs ordered counter-clockwise sequence
and gwen an integer N > 3, where each integer in S s less than N, a feasible

polygon P with N edges can be computed, whenever it exists, in O(N + K) time.

CHAPTER 3. RECONSTRUCTION OF POLYGONS 34

Figure 3.6: Illustrating the proof of Lemma 3.4.

Proof. Compute § from S. For all 7 compute ¢;, and from there compute D.
It D > N, P cannot exist by Theorem 3.1. If D < N, then select N normal-points
from c as described in Section 3.3.2. Finally, compute P by taking tangents through
all normal-points and then taking the intersection of all half-planes defined by those

tangents and containing c.

Computing § and its ordering can be done in O(K’) time as follows: the ordering
of § is given; from there create another ordered list containing the opposite d-i pairs
of S in O(K) time; and finally, merge S with the second list in O(K) time. There
are 2K d-i pairs in S, so computing D also takes a total O(K) time. Selecting the
normal-points on ¢ takes a total of O(N) time. Within the same time, one can keep
track of their ordering within each d-arc. Since the ordering of the normal-points
are known and since the intersection of every two consecutive tangents according to
this ordering gives a vertex of P, P can be computed in O(N) time. So the overall

time is O(N + K). O

If S is not sorted, then we sort it in O(K log K') time and obtain:

CHAPTER 3. RECONSTRUCTION OF POLYGONS 35

Corollary 3.1 When the set S is unordered, the above algorithm takes O(N +

Klog K) time.

An immediate related problem is: Given a convex polygon P of size N and a d-1i
set S of K d-ipairs, how fast can we decide whether P is feasible for S7 Observe that
this problem has a trivial solution of time O(mlogm), where m = min{N, K}—
traverse the boundary of P and the directions of S in a circular order and use
binary search to keep track of the range of directions (or range of edges, based on
the minimum among N and K) that sees an edge (similarly that are visible from
a direction). If P is allowed to rotate, then the problem becomes more interesting.
All possible rotation of P also need to counted, and the time complexity is likely
to increase. An interesting open problem is to find algorithm that would solve
the above problems in a more efficient way, possibly by using the necessary and

sufficient conditions of a feasible polygon (Theorem 3.1).

3.4 Maximum and minimum size of feasible poly-

gons

This section shows show how to find the maximum and minimum size over all
feasible polygons for a given d-i set S but unknown N. The algorithm finds the

maximum and the minimum simultaneously.

3.4.1 An example

For a particular d-i set S there may be feasible polygons of various sizes. Figure 3.7

shows two feasible polygons of size eleven and nine, respectively, for the d-1 set § =

CHAPTER 3. RECONSTRUCTION OF POLYGONS 36

<d17 4>

(d2,4) / (d2,4) o

<d07 3> <d07 3>

€Y (b)
Figure 3.7: Example of feasible polygons with two different sizes for the d-i set S =
{(0°,4), (130°,4), (250°,4) }. The sizes are eleven and nine in (a) and (b) respectively.

{(0°,3),(130°,4), (250°,4)}. The reason for different sizes of the feasible polygons
is that there may or may not be edges that are commonly visible from more than
one direction. For example, for the polygon in Figure 3.7(a) no edge is commonly
visible from two or more directions in S, whereas the polygon in Figure 3.7(b) has

edges that are commonly visible from two directions in S.

3.4.2 Algorithm outline

As before, N represents the size of a feasible polygon, but N is not given. Observe
that if S contains two opposite d-1 pairs, then the sum of the two integers would
give the value of N. Hence, once again it is assumed that no opposite d-1 pair

appears in S.

The overall idea of the algorithm is as follows. As an initial step we will compute
a proper d-i set S(N) from S, where the d-i pairs of S(N) will be functions of N.

The view differences ¢; and their sum D(N) also become function of N. Recall

CHAPTER 3. RECONSTRUCTION OF POLYGONS 37

from Theorem 3.1 that a feasible polygon exists if and only if D(N) < N. By
analyzing D(N), we find the maximum and minimum values of N such that D(N) <
N.

The algorithm takes O(K + vlogwv) time, where K is the number of d-i pairs
in § and v is the number d-i pairs in S(N) that come from S and whose next d-i
pairs (in counter-clockwise order), are not from S. Of course v € O(K), but v

could be as small as one if all directions in S are within a half-plane.

3.4.3 Computing the proper d-i set S(N)

We create a proper d-i set S(N) from S as in Section 3.2.1. Thus for each d-i
pair (d,n) in S, we let d’ be the opposite direction of d and add (d,n), and (d', N—n)
to &, but now N is unknown, and the integer in the second d-i pair is a function

depending on N. We call (d,n) original and (d', N — n) derived. See Figure 3.8.

As before, S(N) is represented as {(do, no), (d1,n1),...,(dsx—1,n25-1)}, where
the d-1 pairs are ordered counter-clockwise by directions. From the above construc-
tion, for 0 < ¢ < 2K — 1, if (d;,n;) is original (derived), then the opposite d-i

pair (di+x, it) is derived (resp. original), and the sum of n; and n,4x is N.

3.4.4 Expressions for the view differences

Remember how we defined, for 0 < ¢ < 2K, the i-th view difference §; from
two consecutive d-i pairs (d;,n;) and (dit1,ni41): 6; = max{0,n;11 — n;}. (It is
naturally expected that similar to other symbols, the symbol for view differences
and the symbol for integers in the d-i pair of § should be written as function of IV,
e.g. 0;(N), n;(N). We omit “(N)” is omitted from these symbols for simplicity.)

CHAPTER 3. RECONSTRUCTION OF POLYGONS 38

<d7, 10>

s) (dy, N — 7)

Figure 3.8: The proper d-i set S(N). The d-i pairs whose directions are represented

by solid lines form S.

The following lemma finds the expressions for d;.

Lemma 3.5 For the following four cases, we have

(1) 0; = max{n;y1 — n;,0}, if both (d;,n;) and (dit1,nip1) are original,
(1t) 0; = max{nirx — niyx+1,0}, if both (d;,n;) and (d;y1,n,41) are derived,

(117) 6; = max{N — (nipx+1 + n:),0}, if (di,n;) is original and (diz1,nip1) s

derived, and

() & = max{n;;1+nirx—N,0}, if (d;, n;) is derived and (d;11,nit1) is original,
where all the terms except N are known.

Proof. Recall that é; = max{0,n;41 — n;}. Replacing n; by n;yx if (d;,n;) is
derived, and n;41 by niyx41 if (diy1,n,41) is derived yeilds the result after basic

manipulations. 0O

CHAPTER 3. RECONSTRUCTION OF POLYGONS 39

So, D(N) = lefl_l d; is a sum of piecewise linear function, and it comes as
no surprise that “D(N) < N7?”7 can be tested easily. We give an especially fast

algorithm to do so in the following.

3.4.5 Plotting D(N)

Note that §; (as function of N) is increasing if §; falls into case(iil), decreasing
if it is in case(iv), and constant otherwise. Observe that ¢; is increasing if and
only if ;1 is decreasing, and in such cases their two corresponding lines meet
at N = n; + nj3x+1, and at which both of them are zero. Such a meeting point is
called a walley for both §; and d;, 5. See Figure 3.9. The total number of valleys is

denoted by v. v is what will determine the run time of our algorithm.

9;
A

Figure 3.9: Plotting §; against N.

Let valleys occur at N = Ny, Ny, ..., N,, respectively, in increasing sequence.

These values divide the real line into v 4+ 1 intervals with Iy = {N|3 < N < Ny},

CHAPTER 3. RECONSTRUCTION OF POLYGONS 40

I ={N|N: < N < Ny}, ..., I, ={N|N > N,}. (See Figure 3.9). Clearly D(N)
is linear within each interval; the following lemmas will determine its slope and

abscissa.

Lemma 3.6 Ininterval Iy, D(N) = —v-N+C, where C = > &+ > (n;+

4:8;constant i:8;decreasing

NitK)-

Proof. Each constant view difference contributes é; to D(N) throughout, and
each decreasing view difference §; contributes (n;41 + niyxk — N) by Lemma 3.5.
Increasing view differences contribute notheing since we are before the first valley.
The result follows since there are v decreasing view diferences. Also see Figure 3.10.

O

_[0 _[1 _[2 .[3 -[4

Figure 3.10: Plotting D(N) against N.

CHAPTER 3. RECONSTRUCTION OF POLYGONS 41

Lemma 3.7 In interval I;,5 > 1, the slope of D(N) is D;(N) = D;_1(N) + 2,
where Do(N) = —v.

Proof. In Iy, the slope of D(N) is Do(N) = —v by previous lemma. For 1 < j <,
when N moves from I;_; to I}, one decreasing view difference becomes zero and the
corresponding increasing view difference becomes positive. This means the slope
of D(N) increases by two from I;_y to I, so D;(N) = D;_1(N) + 2. Also see
Figure 3.10. O

3.4.6 Finding the maximum and minimum

A feasible value of N is the one for which a feasible polygon exists. All feasible
values of N are primarily determined by the necessary and sufficient conditions in
Theorem 3.1, which is N > D(N). The only other criteria for a feasible N is to
ensure that N is not too small, namely N > Np,o = max {nil{d;,n;) € S} +1 to

ensure that the derived d-i pairs have positive integers.

We are now ready to summarize the algorithm that finds the maximum and

minimum N.

Theorem 3.3 Given a nonempty d-i set S of K d-i pairs ordered counter-clockwise,
then the maximum and minimum size N of a feasible polygon can be computed
in O(K + vlogv) time, where v is the number of original d-i pairs in S(N) whose

corresponding next d-i pairs are derived.

Proof. First compute the ordered proper d-i set S(N) from S in O(K) time as

in theorem 3.2. During the creation of §, one can remember which d-1 pairs are

CHAPTER 3. RECONSTRUCTION OF POLYGONS 42

original and which d-1 pairs are derived. Then according to Lemma 3.5 compute
the expressions for all 2K view differences, and find all valleys in O(K) time. Then

sort the valleys to find the intervals of N in O(vlogv) time.

According to Lemmas 3.6 and 3.7 compute C and D;(N), and from there the
expressions of D(N). D(N) is convex, so intersecting it with the line of slope one
gives the interval where D(N) < N. This takes O(v) time. Next, find Ny in O(K)
time and add the inequality N > Np., which gives the final interval of feasible

values of N. O
If S is not sorted, we sort it in O(K log K') time and get:

Corollary 3.2 When the set S is not ordered, the above algorithm takes O(K log K)

time.

3.5 Non-convex polygons

In this section we briefly study the problem of creating non-convex polygons from
orthogonal projections, but first let us see how it differs from that for convex poly-

gons.

3.5.1 Unique features

The issue of creating non-convex polygons from projections differs in many ways
from that of creating convex polygons. Omne such difference is in the visibility of
edges. For an edge of a convex polygon, either all points are visible or all points

are invisible. For a non-convex polygon, from a view point p the visibility of an

CHAPTER 3. RECONSTRUCTION OF POLYGONS 43

edge e which is not collinear with p may be partial due to obstructions created
by other edges. See Figure 3.11(a). So when creating a non-convex polygon from
projections, how to consider the partially visible edges— are they considered as
visible or as invisible?

p p N

N

(a) (b) (©)
Figure 3.11: (a) The edge e is partially visible from the view point p. (b) The
edge e is collinear with the view point p but no end-points of e is visible from p. (c)

Two opposite orthogonal projections may not see all edges of a non-convex polygon.

Another difference is in the degeneracies among the view points and the edges
of the polygon. For a non-convex polygon, an edge e may be collinear with a view
point p while neither of the two end-points of e is visible from p (see Figure 3.11(b))
while for a convex polygon this type of situation cannot happen. So again, when
creating a non-convex polygon from projections, how to consider these types of
projections — are they considered as degenerate projections or allowed as non-

degenerate projections?

Further differences may appear regarding the size of the polygon. For any convex
polygon, any two non-degenerate opposite orthogonal projections determine the size

of it. But this is not true for non-convex polygon, as there may be many edges that

CHAPTER 3. RECONSTRUCTION OF POLYGONS 44

are “hidden” from a d-i pair of opposite directions. (See Figure 3.11(c).)

Keeping the above differences in mind, in this section we will study creating
non-convex polygons with some particular assumptions, which include that the size
of the feasible polygon is not given, the partially visible edges are not counted as
visible, and all directiona see at least two edges. With the above assumptions, we
will show that it is always possible to construct a feasible polygon, whose size will be
linear in the sum of the number of visible edges from all directions. Reconstructions
involving alternative interpretations of visible edges, degeneracies, known size of the

feasible polygon, and/or arbitrary visibility are left as open problems.

3.5.2 The construction

The result on non-convex polygons is the following theorem. (Here the model of

computation is a real-RAM.)

Theorem 3.4 Let S be a set of K d-i pairs, where K > 2. For any d-i pair (d,n)
in S, assume n, which is the number of visible edges from d, is at least two. Let N
be the sum of the integers in S. Then there always exists a non-convex polygon P of
size O(N) such that for each d-i pair (d,n) in S the edges of P that are not parallel
to d and are visible from d is n. Moreover, such a polygon can be constructed in

time O(N) if S is ordered according to a circular sequence of its directions.

Proof. The overall idea of the construction is as follows. First take a very “skinny”
parallel-sided hexagon so that no direction in S is parallel to the edges of P. P,
being a parallel-sided 2m-gon in more general term, has the property that any
direction sees exactly three edges of P (see Chapter 5 for detail on this argument.)

Also ensure that one pair of parallel edges of P, which are called transient edges,

CHAPTER 3. RECONSTRUCTION OF POLYGONS 45

are very very small in length and for each of them the two internal angles at the
two vertices are more than a right angle. (The reason for choosing two edges in

that way will be clear later.) At this stage P is called a base polygon.

If all integers in S are three, then P is the resulting polygon. Otherwise divide
the directions of S into two groups based on which transient edge they see. Then
for each group not having all integers three, replace the respective transient edge
by a convex polygonal chain as follows. Put, inside of P, an arc which is almost
a circle and has the transient edge as its chord. Then for each d-i pair (d.,n) in
that group, find a “visible region” in the arc that is visible only to d and put the
necessary number of edges in that region. See Figure 3.12.

A transient edge

P o ?

Figure 3.12: The base polygon with one of its transient edges replaced by a circular

arc. The unique visible regions for two directions in this arc has been shown in bold.

Let us now examine the construction in detail. Create a base polygon P as

decribed above. Let the edges of P be ey, €, ..., €6, with e; and e4 being transient.

Assume that not all integers are three. Partition the d-i pairs of S into two
subsets: §; are d-1 pairs with directions that see e, and S, are d-i pairs with

directions that see e4. Consider the set S;. If any integer in S; is not three, then

CHAPTER 3. RECONSTRUCTION OF POLYGONS 46

replace e; by a polygonal chain ¢; as follows. First replace e; by a circular arc ay
inside of P so that e; is a chord of a;. Remember that the two internal angles at
the two ends of e; are more than a right angle, so a; is inside of P. The radius of
the circle of a; is small enough so that if a similar arc as is drawn in place of ey,

then a and a2 do not intersect.

Now for each d-i pair (d,n) of Si, do the following. Compute the wvisible region
of d in a;. This region can be computed by considering two lines that are parallel
to d and pass through the two end-points of e;, and then taking the arc from a
that 1s “trapped” between these two lines. Not that the length of e;, which is the
size of the “entrance” of ay, is chosen to be so small that for any two consecutive
directions in Sy, their corresponding visible regions in a; do not overlap, not even
at a common boundary point. Since the number of directions in 5 is finite, it is
always possible to find such a small entrance of a; (or equivalently such a small
length for e;). Now, divide this visible region d into n — 1 pieces and put one vertex
somewhere near the middle in each piece of arc. Note that a; has other regions in
between d-1 pairs of consecutive visible regions, call them nvisible. Put one vertex

for each such invisible region.

After putting vertices for all d-1 pairs, connect them sequentially by edges to
form a chain. Finally, connect the two end-points of (the deleted) e; to the two end
vertices of this chain by two edges. This ends the construction of ¢; (see Figure 3.13

for an illustration).

Similarly handle the d-i pairs of S5 and replace e4 by a polygonal chain ¢y if

necessary. This ends the construction of P.

Justification. Consider an arbitrary d-i pair (d,n) in S;. Apart from e, and eg,

the edges of ¢; that are visible from d are exactly the edges that have both end-

CHAPTER 3. RECONSTRUCTION OF POLYGONS 47

visible region‘;"‘ »
of dy | visible region

of dz

(d2,4) (d1,2)
Figure 3.13: Here 51 = {(d;,2), (d2,4)}. The edges of P whose vertices are in a;
are shown. The two edges of the base polygon that are visible to all directions of Sy

are shown as incomplete lines due to limited space.

vertices in the visible region of d. There are n — 2 such edges. Note that there
are two edges in ¢; for which only one vertex is in the visible region of d. These
two edges are partially visible and thus, from the assumption, are not counted as
visible from d, The edges of ¢, are invisible from d and from the other four edges
of P exactly two which are adjacent to ¢; are visible from d. So over all edges of P
the number of edges that are not parallel to d and are visible from d is n. Finally,

both ¢; and ¢y are inside of P and do not intersect each other. So P is simple and

bounded.

Let us now justify the time complexity and the size of P. Creating P as the
initial equiprojective base polygon of size six should take O(K') time. Checking the

integers in all d-i pairs takes O(K) time.

CHAPTER 3. RECONSTRUCTION OF POLYGONS 48

For each d-i pair (d,n) in S, finding the visible region of d in a; or ay (as
appropriate) takes constant time. For this d-i pair, putting n — 1 vertices in the
visible region takes O(n) time. At the same time one can remember their circular
ordering. The number of invisible regions in a; and a3 is proportional to the number
of directions in S. So putting all vertices on ¢; takes a total of O(N + K) time,

where N is the sum of all integers in S.

From the ordering of the d-i pairs of S, one can find the circular ordering of
the visible and invisible regions in each of a; and a,, and the circular ordering of
the vertices in each visible region is already known. So one can create ¢; and ¢y

by connecting the vertices according to their circular ordering in O(N + K) time.

Finally, K € O(N). So the total time is O(N).

The size of the polygon is linear on the total number of edges in ¢; and ¢y which

is in turn linear on the sum of all integers in S. So the size of P is O(N). O

Corollary 3.3 When the set S is not ordered according to any sequence, the above
algorithm takes O(N + K log K') time.

Proof. Sort the d-i pairs of S by the directions in O(K log K') time. O

3.6 Perspective projections

We briefly study the problem of creating convex polygons from perspective projec-
tions. We first see how the problem in this case differs from that of the orthogonal
case. Then we will give a construction for projections with a particular restriction

on the view points.

CHAPTER 3. RECONSTRUCTION OF POLYGONS 49

3.6.1 Comparing with orthogonal case

There are some considerable differences between the problem of creating convex
polygons from perspective projections rather than orthogonal projections. For ex-
ample, the size and “position” of the feasible polygon for orthogonal projections is
scaling- and translation-invariant, but for perspective projections it is not. On the
other hand, for perspective projections if there are n edges of P that are visible
from a view point d, then after scaling up, scaling down, or translation it is highly
likely that the number of visible edges of P from d is no longer n. For scaling up
the number of visible edges will decrease and for scaling down it will increase. For
translation it may change arbitrarily. See Figure 3.14(a) for an example where the
number of visible edges of a polygon from a view point is one before scaling and is

two after scaling down.

Figure 3.14: A polygon for perspective projection is not scaling-invariant. The
outer polygon has been scaled down to the inner polygon. The bold lines are the

visible edges from the view point drawn as a circle.

The problem of scaling-dependency gives rise to another problem, which is im-
portant from a practical point of view. For perspective projections, the size of a
feasible polygon may be too small. But since it is not scaling-invariant, it cannot

be scaled up. So for practical purposes the one may not get a reasonable size of

CHAPTER 3. RECONSTRUCTION OF POLYGONS 50

the feasible polygon.

3.6.2 View points in convex position

Keeping the difficulties for perspective projections in mind, we study a special case
in some detail. In this special case we assume that the given view points are in
convex position. This assumption is motivated by a practical point of view, where
it may be easy for a camera to take projections of a polygon from the view points

in convex position.

For perspective projections a direction-integer d-i pair (d,n) in S consists of
a view point d and a positive integer n. A convex polygon is feasible for S when for
any d-i pair (d,n) in S the number of visible edges from d is n. Like with orthogonal
projections for convex polygons (from Sections 3.1 to 3.3.4), only non-degenerate
projections are considered. Moreover, similar to the non-convex polygons (Sec-

tion 3.5), there is no restriction on the size of the feasible polygon.

With the above assumptions, we observe that there always exists a feasible
convex polygon of size equal to the sum of all integers in S. In the following section

we show how to create such a feasible polygon.

3.6.3 The construction

The main result for perspective projection is the following theorem.

Theorem 3.5 Given a d-i set S of size K > 3, where all the view points are in
convex position, it is always possible to create a convexr polygon P of size N such

that for each d-i pair (d,n) in S the edges of P are not collinear with d and the

CHAPTER 3. RECONSTRUCTION OF POLYGONS 51

number of visible edges of P from d is n. Moreover, N is the sum of all integers

mn S.

Proof. Let S = {(do,no),{d1,n1),...,{drx—1,nk-1)}, where the ordering of the d-i
pairs are according to the counter-clockwise sequence of the view points in their

convex hull h. So the vertices of h are dg, dy,...,dx_1 in counter-clockwise order.

Create a “dual” polygon ' of h as follows. For each edge of h find its middle
point. For each vertex d; in h create an edge ¢; in A’ by connecting the two middle
points of the two adjacent edges of d;. See Figure 3.15. Note that the size of b’ is

also K.

<d17 3>

e

<d07 2>

(d2,1)
—

<d37 2>
Figure 3.15: Tllustrating the proof of Theorem 3.5. Here h is the outermost bigger

polygon, b’ is the innermost quadrilateral, and P is the polygon drawn in bold lines.

Now convert 2’ to P. For each 0 <1 < K — 1, replace ¢; by a convex chain ¢; of

size n; such that the edges of ¢; are visible only from d; and the resulting polygon

CHAPTER 3. RECONSTRUCTION OF POLYGONS 52

is still convex. This is possible if the chain ¢; is entirely within a connected region

of h —h'.

The correctness of the above construction lies in the fact that e; is the only edge

in A" which is visible from d; and that ¢; is entirely within A — 2’. So ultimately d;

K-1

sees only the n; edges of ¢;. Moreover, the size of Pis > ." " n;, whichis N. O

Chapter 4

Reconstruction of Polyhedra

This chapter considers the generalization of the previous problems to three dimen-
sions. We study the problem of reconstruction of polyhedra from the given number
of faces in some projections. The 2D-results from the previous chapter will work

as a foundation for 3D-results of this chapter.

Similar to 2D, the primary focus is on creating convex polyhedra from orthog-
onal projections. The first case considered is that the view directions are in one
plane. In this case, a feasible polyhedron can be constructed from a feasible poly-
gon and vice versa, which will imply that the necessary and sufficient conditions
for the existence of a feasible polyhedron, and the algorithm to find maximum and

minimum size of a feasible polyhedron also follow from 2D.

Next, the view directions are considered to be covered by two planes. The
construction becomes more complicted here. We give an algorithm that always

constructs a feasible polyhedron, if it exists, except for one sub-case.

Finally, constructing non-convex polyhedra from orthogonal projections and

convex polyhedra from perspective projections are studied in brief. In these two

33

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 54

cases the ideas are similar to that in 2D.

This chapter is organized as follows. The reconstruction problem is intoduced
in Section 4.1. Section 4.2 gives some preliminaries. Section 4.3 and 4.4 deal with
the cases when the directions are in one plane and two planes respectively. Finally,
Section 4.5 and 4.6 briefly address the problem for non-convex polyhedron and for

perspective projections respectively.

4.1 The reconstruction problem

Given a d-i set S a convex polyhedron P is feasible for S if for each d-i pair (d,n)
in S, d i1s not parallel to any face of P and the number of visible faces from d
is n. For example see Figure 4.1, where S has four d-i pairs (do,4), (d1,4), (da, 3),
and (ds,1) and the three directions are coplanar. In this example, the feasible
polyhedron is a pyramid and the visible faces from dy and d; are the four triangular
faces, from dy are two triangular faces and the rectangular face, and from dz are

the rectangular face only.

It should be conceivable that as in 2D for some particular d-i set S there may
not be any feasible polyhedron because of the “mismatch” among the direction and
integers in the d-i pairs in S. For example, consider a d-i set S which has the
d-1 pairs (dy,100), (dy,5), (d3,5), (ds,5), and (d4, 5), possibly with some other d-i
pairs, such that the directions dy, dy, d3, and d; surround the direction dy very
closely. See Figure 4.2 where the directions are represented by points on a sphere s.
Then there may not exist any feasible polyhedron for S. It may be possible that
for any feasible polyhedron P for S, if a face f of P is visible from dp, then it is

visible from at least one of dy, ds, d3, and d4. Therefore, the total number of faces

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 35

Figure 4.1: Example of S and P where the directions of S are planar.

of P that are visible from d;, dy, d3, and d4, which is twenty, cannot always be

more than the number of faces that are visible from dy, which is one hundred.

Figure 4.2: A d-i set for which a feasible polyhedron does not exist.

Similarly, for a particular d-1 set S there may be feasible polyhedra only for
some particular sizes. For example, a feasible polyhedron can never have size more

than the sum of the integers in the d-i pairs of S assuming that the directions of S

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 56

are not within a half-space. Similarly, a feasible polyhedron can never have a size
equal to an integer in 9, simply because from a single direction not all faces can be

visible.

Like in 2D, instead of S, the proper d-i set &, which is derived from S, is used
for all the results. The size N of a feasible polyhedron is the number its faces.

Clearly, N > 4. The main problem is to create a feasible polyhedron of size N
for §.

4.2 Preliminaries

Throughout this chapter the surface of the sphere will be used quite often, so let us
give some preliminaries on spherical geometry. Most of the contents of this section

can be found in [46, 69, 78].

Let s be a sphere centered at the origin 0. The normal-point of a face of a convex
polyhedron P is the intersection points of the outward normal of f, translated to
origin, with s. The (closed) hemisphere of s that is visible from a direction d is
called the wisible hemisphere of d. Observe that f is visible from a direction d if
and only if the normal-point of f is strictly within the visible hemisphere of d. Also
observe that P is bounded if and only if not all the normal-points of P intersect a

single open hemisphere.

Two points p and ¢ of s are called antipodal if they are the two opposite points
of a diameter of s. Any region on s is considered as closed and connected. A point p
a region r is said to be strictly within r if p is in the interior of r. A region r’ is said
to be strictly within r if every point of r’ is strictly within r. A spherical segment,

or simply a segment, between two points p and ¢ in s is the shortest spherical arc

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 37

of the great circle containing p and ¢. A region r of s is called convez if for any
two non-antipodal points p and ¢ of r the segment between p and ¢ is also in r.
Each of the four regions of s that are in between two planes passing through o is

called a spherical lune, or simply a lune, with respect to the angle made by the two

planes.
A spherical polygon with vertices vy,vq...,v, 1s a region within a single hemi-
sphere and bounded by a closed path of ordered segments vyv3, 0705 . ..,0,0; that

does not intersect itself. The opposite of a spherical polygon x is the reflection of x

through the origin.

4.3 Construction for directions in one plane

This section considers the case when all the directions lie in one plane. This case
can be treated as a “warm up” for the more general cases. (An example of S, where
all directions are in one plane, and a corresponding feasible polyhedron was shown
earlier in Figure 4.1). In this case a feasible polyhedron of a given size can be always
constructed, if it exists. More interestingly, it is constructed from a feasible polygon.
In fact, a stronger result can be achieved by showing that a feasible polygon can
also be constructed from a feasible polyhedron. The construction algorithm takes
O(N log N) and O(N) time for the two cases, respectively, where N is the given

size.

4.3.1 Basic definitions

Let § = {(do,n0), (d1,n1), ..., (d2k—1,n2K-1)} be the given proper d-i set. For

any ¢, the visible hemisphere of d; is represented by h;. The region 8, = h;11\h;

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 38

pole

pole

Figure 4.3: The i-th d-lune 6;.

is called the i-th d-lune of §. All d-lunes of & have two common antipodal points
which are called poles of §. See Figure 4.3. Observe that 6; is non-empty and at
most a hemisphere. Also observe that h; = Ui_1 6;.

j=i-K
The d-lunes and visible hemispheres are 3D analogous of d-arcs and visible

half-circles.

4.3.2 The construction

Let p be a feasible polygon of size N. The overall idea of creating a feasible
polyhedron P from p is as follows. Consider the normal-points of the edges of p
on s. Initially all of them are in the great circle c of s. Create P so that these normal-
points are also its normal-points. But this current arrangement of normal-points
will make P a cylinder with two ends unbounded. In order to make it bounded,
slightly incline two of its faces in opposite directions by moving two normal-points

towards the two poles of §. The detail construction is the following theorem.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 59

Theorem 4.1 Given a proper d-i set S of size 2K, where all the directions are in
one plane and are ordered according to a circular-sequence of the directions, and
giwen N > 4, then, a feasible polyhedron P for & of size N exists if and only if a
feastble polygon p for S of size N exists. Moreover the time required to construct P
from p is O(Nlog N) and p from P is O(N).

Proof. Constructing the polyhedron from the polygon.

Let T be the set of normal-points of p. They will finally be the normal-points
for P. At this point all these normal-points intersect a single hemisphere bounded

by ¢. Move two of these normal-points according to the following claim.

Claim 4.1 It is possible to change the positions of two normal-points of T strictly
within their respective d-lunes such that not all the normal-points of T intersect a

single closed hemisphere any more. Moreover, the time required for such a mouve-

ment is O(N), where N is the size of T .

Proof. Choose four normal-points tg, t;, t and t3 from 7 so that their convex
hull strictly includes the origin o. As the points of 7 do not intersect a single
half-circle of ¢, four such points always exist. Let the four vectors from the origin
to these four points be to, t;, t3, and t3 respectively. Then, for some positive

value of Ao, A1, Ay and A3, the following equality holds,

/\ot—0>-|-/\1t—1>-|-/\2t—2>—|-/\3t—3>:0- n

Let in a circular sequence of the four normal-points be tq,t,ts,t3. Let 7 be
the normal vector of the plane of ¢. We will assign new position for to and #;.
%
Let ¢, = t_0> + M 7. Assign the new position of ¢y to ty, where the position of)

7 litall

TR (Here ||z|| means the Euclidean length of

%
is according to the vector t; =

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 60

pole

pole
@) (b)
Figure 4.4: (a) Moving the normal-points ¢y and #; for creating the polyhedron

from the polygon. (b) Move the normal-points ¢ for creating the polygon from the

polyhedron.

- =
i 4 [t
where t] =t

THE This ends the movement.

%
the vector 7) Similarly, let ¢] = t_1> — Ao 7. Assign the new position of #; to !,
14
1

Let us consider the justification now. The length of the new vectors t_g and t_’1’>
remain the same as that of t_0> and t_1>, which 1s the radius of s. So ¢y and t; are on s.
Moreover, to and t; move to ¢ and t; due to the vector 7, which is perpendicular
to both tg and ¢;. This means the movement of ¢y and t; are along circular curves

towards the poles. Therefore their movement are strictly within their respective

d-lunes. See Figure 4.4(a).

We next prove that the four normal-points ¢, ¢/, ¢, and ¢3 no longer intersect
a single hemisphere. For this, we first prove that #;, ¢/, t2, and #5 do not intersect a
single great circle. t5 and t3 are not antipodal, because otherwise their line segment
in the convex hull would intersect o, which would be a contradiction to the choice
of tg, t1, t3, and t3. Since any two great circles intersect into antipodal points, any

great circle passing through ¢ and ¢! cannot pass through t; and ¢3. Therefore ¢,

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 61

t7, t2, and t3 cannot be in a great circle.

With the above argument in hand, we now prove that ¢, ¢/, t2 and ¢3 cannot
intersect a single hemisphere. By way of contradiction assume that ¢;, t/, ¢, and ¢3
intersect a single hemisphere h. Let 75 be the inner (i.e., inside h) normal vector of
the plane of the great circle of A. Then for any positive value of A{, A, A} and A3,

the following inequality of the dot product holds,
— —
N7 N N N Es) e i > 0. 12

Disprove (12) will eiyld the proof of the claim. Choose \j = Ao Ll A = A Il

lItoll” [la]]

AY = Ay, and A = A3, which are all positive. By (Iy),
— —
N 4 N 4 M0+ M0 Es = Do(To + M)+ M(F — AT) + Aats + Aats = 0.

This means that if (/2) holds, then it holds only for the equality. But since t{, ¢/,
ty, and t3 intersect a single hemisphere, the equality in (/2) holds only when the
vectors of ty, t], ty, and t5 are coplanar, i.e., t, t{, t5, and t3 are in a great circle,

which was already proved to be impossible.

For time complexity, the only place that may require more than constant time is
to select the four points from 7. For this simply take any three consecutive points

and select the fourth one by going through the remaining points of 7 in O(N) time.

O

With the above claim, not all N normal-points that do not intersect a single
hemisphere of s. Create P by taking the intersection of the half-spaces defined by
the tangent planes through these normal-points and containing s. This ends the
construction of the polyhedron. See Figure 4.5 for a possible example of P and p
corresponding to each other, where the arrows show the ways through which the

normal-points of two edges of p have been lifted for the construction of P.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 62

N

P

~—

p

Figure 4.5: A possible example of P and p of size four that correspond to each
other.

Since the points of 7 remain in their respective d-lunes, we continue to see n;
normal-points from d;, hence the construction is correct. Claim 4.1 takes O(N)
time. Finally, creating P by taking the intersection of the half-spaces takes O(N log N)
time [68]. Therefore the total time is O(N log N).

Constructing the polygon from the polyhedron.

First find the normal-points of the faces of P. Let their set be 7. For each
point ¢ in T, then do the following. If ¢ is in ¢, then leave it as it is. Otherwise let g
be the great circle passing through ¢ and the poles. Let ¢t be strictly within the d-
lune 6;. Let ¢’ be the intersection of g and ¢. Move t to t'. See Figure 4.4(b). Finally,
construct p from these normal-points in O(N) time, as mentioned in Section 3.3.4.

This ends the construction of p.

Since P is feasible, the points of T are not in the boundary of the d-lunes, and h;
contains n; points strictly within it. By the above movement and since H; = h; N,

H; has those n; points strictly within it too, and so d; sees n; edges of p. O

After the above theorem the necessary and sufficient conditions for the existence

of a feasible polyhedron of size N for § is the same as it is for a feasible polygon of

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 63

size N for §. Moreover, the maximum and minimum size of feasible polyhedra are

the same and can be computed similarly as for feasible polygons.

Corollary 4.1 Given a proper d-i set S of size 2K, where all directions are co-
planar and the d-i pairs are ordered according to a circular sequence of the direc-

tions, and given N > 4. Then,

o The necessary and sufficient conditions for the existence of a feasible poly-

gon P of size N is D < N.

e The mazimum and minimum size of P can be found in O(K + vlogwv) time,
where v is the number original d-i pairs of § whose corresponding next d-i

pairs are derived.

Proof. Follows when Theorem 4.1 is combined with Theorem 3.1 and Theorem 3.3.

a

4.4 Construction for directions in two planes

This section considers the case when the directions of § are covered by two planes
through the origin. Note that the planes are not unique and are given. The main
result in this section are the followings. When all directions see at least four faces,
we can construct a feasible polyhedron, when it exists. When the directions see
arbitrary number of faces, we can construct a feasible polyhedron, if it exists, except
for one sub-case when the maximum among the two sums of the view differences

for the directions in two planes is N.

The construction processes are much more complicated than earlier and for

better understanding, a road map is presented before we start.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 64

Road map

We will start with some basic definitions in Section 4.4.1. It is obvious that the
existence of a feasible polyhedron for each plane of directions is necesary and one
can check the existence for indivual planes as described in the previous section.
But we will see in Section 4.4.2 that this is not sufficient. The construction starts
with an outline in Section 4.4.3. The whole construction process is a sequence of
two phases: finding a “valid assignment” and then finding a “valid selection” of
the normal-points (these terms are defined later). A valid assignment will ensures
that each direction see required number of faces and a valid selection will ensure
that the polyhedron is bounded. Finding a valid assignment is divided into two
cases based on whether two planes have common directions or not and they are
in Sections 4.4.4 and 4.4.5, respectively. Finding a valid selection is also divided
into two cases based on whether all directions see at least four faces or not. The
case when the directions see arbitrary number of faces is handled in Section 4.4.6.
When all directions see at least four faces, the construction is in Section 4.4.7.
(Construction is very lengthy here). Finally, Section 4.4.8 shows by an example
why the technique of finding a valid assignment and then a valid selection does not

always work when the directions see arbitrary number of faces.

4.4.1 Basic definitions

When the directions of § are in two planes (or in general, more than one plane), the
arrangement of the d-lunes becomes more complicated, There are two distinct cases:
(1) two planes have a pair of opposite directions in common (note that two planes
can have exactly one pair of opposite direction in common, and (2) no common

directions among the planes. For example, see Figure 4.6(a), where the directions

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 65

drawn bold and very small are common to both of them. In the case of a common
pair of directions, the arrangement of the d-lunes is relatively simple. The poles
are on the bounding great circle of the two visible hemispheres of the two common
directions. The d-lunes and their arrangement are partitioned into two by these

two hemispheres. See Figure 4.6(b) and (c) for the two cases respectively.

O

(b) ()

Figure 4.6: Arrangement of d-lunes when directions in two planes. (a) Example

of § with two planes having a common d-i pair of opposite directions. (b) Arrange-
ment of the d-lunes when such a common d-i pair of opposite directions exists. (c)
Arrangement of the d-lunes when no such common d-i pair exists; also in this figure

the shaded d-polygons have size three and four respectively.

The arrangement of the d-lunes divides s into spherical polygons called d-
polygons. The sizes of these spherical polygons depend upon the number of planes.
When the number of planes is two, then the d-lunes from two planes create s-
polygons of sizes three and four. For example see Figure 4.6(b), where S has two

planes of directions and two d-polygons of size three and four are shown shaded.

Since the d-lunes are non-empty and at most a hemisphere and since a d-polygon
is the intersection of more than one d-lune from different planes, a d-polygon is

non-en and stric ess than hemisphere. For each d-polygon ere is an
pty and strictly less than hemisph F. h d-polygon 6 there i

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 66

opposite d-polygon #" which is the intersection of the d-lunes opposite to the d-
lunes intersecting to . A d-polygon resulting from the intersection of i-th and j-th

d-lunes from the two planes of directions, respectively, is denotd by 6, ;.

4.4.2 Insufficiency of individual feasibility

Let S and S be the two proper d-i sets corresponding to two planes of directions (-
and ~ are used over the notations that are related to S and S, respectively). So § =
SUS. To construct a polyhedron for § it is necessary that each of S and S has a
feasible polyhedron separately. But it is not sufficient, because there may be two
separate feasible polyhedra for & and S but no single feasible polyhedron for S.

This is shown in the following example.

Let § = {(do,1), (d1,2), (d2,99), (d3,98)} and S = {(da, 1), (ds,2), (ds,99),
<cz7,98>} in Figure 4.7(a) and (b) respectively. Here N is one hundred. S and S
are the same except that the two planes are perpendicular. For both sets the view
differences are 1, 97, 0 and 0, and so their sum is less than N. From Corollary 4.1

a feasible polyhedron exists for both of them.

Now, for the two d-i pairs (dy,1) and (d;,2) of S the total number of visible
faces is three. The union L of the visible hemispheres kg and h; contains exactly
three normal-points (of these three faces) strictly within it. The remaining lune [
contains exactly ninety-seven normal-points strictly within it. See Figure 4.7(a).
Similarly, the two lunes L and [for the second set contain three and ninety-seven
normal-points strictly within it. See Figure 4.7(b). But when & and S are combined
together, because of the combination of the two sets of directions, [is a subset of L.
See Figure 4.7(c). So it is not possible to select normal-points so that lNgets ninety-

seven of them and L gets three of them at the same time.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 67

(b) ()
Figure 4.7: (a) S,land L; |I| =97 and |L| = 3. (b) S, land L; |I| = 97 and |L| = 3.
(c) When S and S are combined together, [C L.

Observation 4.1 The existence of a feasible polyhedron for each plane of directions
of § is necessary but not sufficient for the existence of a feasible polyhedron for S.

Since the existence of a feasible polyhedron for individual planes is necessary, for

the rest of this section we will assume that for each of § and § D < N and D < N.

4.4.3 Construction outline

Let us go back to the example of the previous section. The reason that a feasible
polyhedron does not exist in that example is that one cannot simultaneously assign
normal-points to L and ZNaccording to their required number, which in turn cannot
simultaneously satisfy the required number of normal-points on the visible hemi-
sphere of all directions. So we need to find a “distribution” of the normal-points
among the d-polygons so that all d-lunes as well as all hemispheres get their required
values. More formally, we need to assign N normal-points to the d-polygons such

that for each d-i pair {(d,n) in S or S the number of points in the visible hemisphere

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 68

of d is n. Such an assignment to the d-polygons is called a valid assignment, and
the specific number A, ; assigned to d-polygon 6, ; the final view difference of 6, ;.
We will see that it is always possible to find a valid assignment when it exists. Note

that there may be more than one valid assignment.

As already indicated earlier, a valid assignment only ensures that each direction
will see corresponding number of normal-points despite how we choose the actual
positions of the normal-points. So if the feasible polyhedron is allowed to be un-
bounded, then the existence of a valid assignment is necessary and sufficient for the

existence of a feasible polyhedron.

For a bounded polyhedron, the actual positions of the normal-points are im-
portant— the feasible polyhedron is bounded if and only if not all normal-points
intersect a single closed hemisphere. So on top of a valid assignment, we need a
valid selection. Formally, a valid selection is the process of selecting the positions of
normal-points on s so that the number of normal-points that each d-polygon gets
is equal to its final view difference (as assigned by the valid assignment) and that

not all normal-points intersect a single hemisphere.

The following observation formally states that the existence of a valid assign-
ment and a valid selection is necessary and also sufficient for the existence of a
feasible polyhedron. The implication of this observation in 2D is that a valid as-
signment always implies a valid selection, and that is why it was possible to create

a feasible polygon as long as D < N (see Chapter 3).

Observation 4.2 Given S, the existence of a valid assignment of a total value
of N among the d-polygons of S and a valid selection of N normal-points on s is

necessary and sufficient to create, when possible, a feasible polyhedron P of size N

for S.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 69

We will quite frequently use the term “the sum of the final view differences of the
d-polygons” of a particular d-lune or visible hemisphere, and they are called poly-

sum for short.

A helper lemma

Earlier in Section 4.4.1, we saw that the arrangement of the d-lunes of S and S
is similar to a collection of two dimensional matrices where each spherical polygon
corresponds to a cell of a matrix. For finding a valid assignment we have to as-
sign the final view differences of spherical polygons, and we will do that through
assigning numbers to the corresponding matrix cells. In the following we present

an auxiliary lemma which in general assign numbers in a matrix.

The general version of this lemma, where assigning a value to a particular loca-
tion has some cost function and it is required to minimize the total cost, is known
as the transportation problem [8, 21, 42, 47, 64]. A similar problem, called latin
squares, 1s to assign a n X n matrix where each row and column is a permutation

of the integers from 1 to n [7, 85].

Lemma 4.1 Let R and C be two arrays of non-negative integers of size m and n,
respectively, such that > 0o R; < 2?21 C;. Then, it is always possible to assign
non-negative integers M; ; with 1 <1 < m and 1 < j < n such that 2?21 M, ; = R,
and Y M;; < C;. Moreover, the time required is O(m + n) if the outputs are

only the elements that have been assigned and all other elements are zero.

Proof.

The following pseudocode will assign the elements of M.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 70

fore=1...m,let t; = R,
for j=1...n,let u; = C,; // ti and u; are temporary variables
let j =1

fori=1...m

while ¢; > 0
M,'J‘ = min{ti, u]‘}
t,' = t,' — M,'J'

Uy = Uy — M,'J‘

ifu; =0, then y=75+1

Let us now consider the justification. .- | R; < 2?21 C; implies that for any ¢,
R, < 2?21 C;. Since R; intersects all columns, its elements can be assigned a
maximum value of 2?21 C; in total. So from the algorithm, the elements of the
first row of M are assigned a total value of Ry. After assigning the first row the
elements of second row can be assigned a total of 2?21 C;— Ry, which is at least R;.
So the elements of the second row are assigned a total value of Ry. In this way

for all ¢, the elements of i-th row get a total value of R;. Therefore the sum of all

elements of M is > ;" | R;.

For the columns of M. for all 7 we keep track of the total value assigned to
the j-th column by checking u; to be zero. Therefore the j-th column is assigned

a total value of no more than the initial value of u;, which is C;.

Finally, we increment j only if u; becomes zero. Since Y . R; < 2?21 C;,
u; becomes zero at most n times before the assignment is complete, so during the

assignment the value of 5 does not exceed n.

If the outputs are only the elements that have been assigned and all other

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 71

elements are zero, then the time complexity is clearly O(m +n). O

4.4.4 Valid assignment when planes have common direc-

tions

We will now show that it is always possible to find a valid assignment of the final
view differences of the d-polygons when S and S have common d-i pairs. In addition
to that, at the same time it is also possible to find two opposite positive d-polygons.
This latter work is part of the next step of valid selection but is being done here in

advance as a relevant work.

Lemma 4.2 Given S and S, where S and S have a common d-i pair of opposite
d-i pairs and D, D < N, then, it is always possible in O(K + .7{’) time to assign the
final view differences of the d-polygons such that for any d-i pair (d,n) of S or S,
the poly-sum of the visible hemisphere of d is n. Moreover, if maX{D,D} < N,

then it is possible within the same time to find two opposite positive d-polygons.

Proof. The overall idea of the proof is as follows. We will first see how the d-
lunes of S and S are arranged in this case. Then the final view differences of the
d-polygons are assigned through assigning the final view differences of the d-lunes.
Initially a total value of max{D, D} will be assignmed, then if max{D, D} < N,

the remaining value of N — max{D, D} are assigned to two opposite d-polygons.
We now describe the process in detail. Without loss of generality let the d-i
pair of opposite d-i pairs of § that are common to S be (do, 7o) and (dg,ng). So

the great circle of the visible hemispheres hg and hz passes through the poles of S

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 72

pole
- great-circle for common
duples of § and S
pole pole
pole

Figure 4.8: The d-i pair (do, ho) of S is common to S and for that the great circle

corresponding to hg passes through all four poles.

and S. This great circle also divides the d-polygons into two similar sets — one

in o and the other one in hg. (See Figure 4.8).

We start by assigning a total value of max{D, D} to the final view differences
of the d-lunes. First consider the d-lunes of S. For all 7, set A; as &;. If D # D,
without loss of generality assume that D < D. Then choose an arbitrary d-i pair
of opposite d-lunes and increase both of their corresponding final view differences
by %(D — D). (By Lemma 3.2 in Chapter 3, both (N — D) and (N — D) are
even, so %(D — D) is also even). For the d-lunes of S, for all j, set A; to Sj.

We now assign the final view differences of the d-polygons. We will describe
how to assign the d-polygons of kg only. Assigning the d-polygons of kg is similar.

Without loss of generality assume that ho contains the d-lunes from éo from i
of 8. In hg all the d-lunes of S intersect all d-lunes of S. This intersection forms
a K x K matrix of d-polygons. See Figure 4.8. Apply Lemma 4.1 to get the values
of the final view differences of these d-polygons as follows. The d-lunes from S
and S correspond to the rows and columns of M respectively. For 0 < i < K — 1,

set R = A;, and for 0 < j < K — 1, set C; = 3] In return from this lemma,

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 73

the value of each cell M; ; gives the value of A; ;. Similarly assign the d-polygons
Of hR’.

Finally, if D < N, then choose the two arbitrary opposite d-polygons and
increase both of them by (N D) At the same time, also adjust the final view
difference of their corresponding d-lunes by increasing each of them by the same

amount (N — D). This ends the assignment.

Justification. Let us now consider the justification. We first consider that the
assignment is a valid one. Lemma 4.1, after being applied, confirms that for any d-
lune, the poly-sum is same as its final view difference. Moreover, this equality holds
for the case when D < N, since we increased the value of two opposite d-polygons
and adjusted the value of all corresponding d-lunes.

i—1

I=i+K 017 ac-

Now consider an arbitrary d-i pair (d;,n;) from S. Since h; =
cording to the algorithm the poly-sum of A; is 21 i+ A1 We need to prove that
this value is n;. Observe that among any two opposite d-lunes exactly one is in A;.

So A= Z+B S+1 (D —D)+1(N - D), where the last two terms come

l z—}-]&

from the increased value of d-lunes in the two cases when D < D and D < N
respectively. After simplification, this value becomes E;;LR &+ %(N — D), which
according to Lemma 3.2 is n,.

j—1
I=j+K

and thus the poly-sum of iLj 18 Ejil 7 A;. We need to prove that this value
A -

Similarly, consider an arbitrary d-1 pair <Jj, ;) from S. Since iL]‘ = 6,

is ﬁj. By an argument similar to that in the previous paragraph, El R

l J+B 5 + (N D) where the last term comes from the increased value of the

d-lunes in the case when D < N. But from Lemma 3.2, this value is n;. So the

assignment 1s valid.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 74

Finally, for the last part of the lemma observe that the two opposite d-polygons . 4

and 0, x 4, have (possibly the same) positive view differences.

For the time complexity. the initial assignment of the final view differences of
the d-lunes of S and S takes O(K + R’) time. While applying Lemma 4.1 for the
d-polygons of hg and kg, the size of the matrix is K x K and thus it takes O(K + K))
time for both cases. Finally, when D < N, all the extra work takes constant time.

So the total time is O(I{’ + Ig’). O

4.4.5 Valid assignment when no common direction exists

The following lemma will find a valid assignment, when it exists, for the case when S
and S have no common d-i pairs. Similarly to the previous case, whenever a valid
assignment exists we will also find two opposite positive d-polygons in the same

lemma.

Lemma 4.3 Given S and S, where S and S have no common d-i pair of opposite
d-i pairs and D,D < N, then, it is possible to assign final view differences of the
d-polygons, if it exists, in O(K + K) time such that for any d-i pair (d,n) of S or S,
the poly-sum of the visible hemisphere of d is n. Moreover, if max{D,D} < N,

then it is possible within the same time to find two positive opposite d-polygons.

Proof. The overall idea of the proof is as follows. We will first see how the d-lunes
of § and S are arranged in this case. Then we will give necessary and sufficient
conditions for the existence of a valid assignment. The proof for this condition is
constructive and will give an algorithm for the valid assignment. It will also ensure

that there are two opposite d-polygons when max{D, D} < N.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 75

Figure 4.9: The two opposite views of the arrangement of the d-lunes when S and S
do not have any common d-i pair. fy and fz (the lightly shaded d-lunes) contain
two poles of § and 6y and 0 (shown with their boundary in bold) contain the two

poles of S.

Let us now go through the details. As § and S do not have any common d-i
pair, the two poles of S (similarly 5’) are strictly within two opposite d-lunes of §
(similarly S). Without loss of generality let these two d-lunes of S be 8, and 8 and
two d-lunes of S be 6y and éﬂ. Observe that both §y and f intersect all d-lunes
of § and similarly both 8o and éjgr intersect all d-lunes of S. (See Figure 4.9).

Let W, and W, be the two sets of d-lunes that are in between 8, and fz and
let X; and X, be the sum of the view differences of the d-lunes of W; and W,

respectively. More formally,

W1 = {gla é?) sy 07];_1}, Wz - {§I§'+17 é]§'+27 ceey éz]%'—1}7

K-1 2K—1

Xl = Zgl, and Xz = Z 5,
=1

=K +1

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 76

éK’ 00

(c)
Figure 4.10: (a) Wy, X, W, and X, by two opposite views of s. (b) Wy, X,

W, and X, by two opposite views of s for each. (c) The two opposite views of s

when Wy, W, ﬁ/'l and Wg are combined together.

For example, for S = {{do, 25), {dy,50), (do, 85), {do, 75), (do, 50), {do, 15)}, W =
{6:}, Wy = {84}, X; = 60, and X, = 10. Similarly, let

I/T/l = {éla §27 SR gli’—1}7 WZ = {512’4-17 é[§'+27 SR 521{'—1}7

K-1 2K—1
X1 = E (S], and X2 = E 5J
Jj=1 j=K+1

Without loss of generality assume that all d-lunes of W, (similarly W) intersect
all d-lunes of W, (respectively Wz) (See Figure 4.10).

Claim 4.2 There exists a valid assignment for the final view differences of the

d-polygons if and only if the following two conditions are satisfied.
Xl — min{X—l,X—l} + Xz — min{Xz,Xz} S 50 + Sﬁr + (N — D) (C].)
Xl — min{X—l,X—l} + Xz — min{Xz,Xz} S 50 + 5R’ + (N — D) (62)

Proof. (=) There are four combinations for the left hand side of (¢l), and for
each of them we will show that (¢1) holds.

Case (i): X; < X, and X, < X,. In this case the left hand side of (cl) is 0.
Since 4o, SRV, and (N — D) are non-negative, (¢l) holds.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 77

Case (ii): X; > X, and X, < X,. In this case the left hand side of (cl)
is X; — X;. For any valid assignment, the number of normal-points in Wy, which is
at least X7, is less than the number of normal-points in Wl Uéouéﬁ,. But the number
of normal-points in W, U 8y is 7o, which is, by Lemma 3.2, X; + dg + %(N — D)
Therefore, X; < X, + &y + %(N — D), so (¢l) holds.

Case (iii): X; <)Nfl and X, >)N(Z. The proof for this case is analogous to that

for Case (ii) above.

Case (iv): X; > X, and X, > X,. Here the left hand side of (el) is (X; —
Xl) + (X, —)N(Z) In Case (ii) and Case (iii) we have seen that for any valid
assignment, X; < X, + &y + %(N — D), and X, < X, + SR’ + %(N — D) There-
fore, (X — X1) + (X, — X;) < 0o+ 6 + (N — D).

(«<=) The proof is constructive here— when the conditions are satisfied, a valid
assignment can be found as required by the lemma. First assign the final view
differences of the d-lunes. Without loss of generality assume that, when D # D,
D < D. For all i, set A; = §. If D < N, then increase both Ag and Ag
by +(N — D). Similarly, for all j, set A; to Sj. If D < N, then increase both Ag

and Ay by (N - D)

Next assign the final view differences of the d-polygons. This assignment is
divided into three steps. In Step 1 assign the d-polygons that are in the intersection
of W and Wy, and W, and W, respectively. In Step 2 assign the remaining d-
polygons of Wy, W, W; and W,. Finally, in Step 3 assign the d-polygons that
belong to neither of Wi, W, Wl and Wz.

Step 1: First assign a total value of min{X—l,)N(l} among the d-polygons that
are in the intersection of W and W, by using Lemma 4.1. If X; < X, (alternatively
if X; > Xl), then consider the d-lunes of W, (alternatively Wl) as the rows of M

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 78

A total value of
min{X,, X»} here

A tot@l va}ue of
min{ X7, X;} here

Figure 4.11: Tllustrating Step 1 of Claim 4.2 by showing two opposite views of s.

and their final view differences as the elements of R, and similarly the d-lunes of W,
(alternatively W) as the columns of M and and their final view differences as the
elements of C'. After applying the lemma, the value of each cell of M becomes the
value of the final view difference of the corresponding d-polygon. Similarly, assign a
total value of min{ Xy, X—z} among the d-polygons that are in the intersection of W,
and W,. See Figure 4.11

Step 2: This step will assign: (i) a total value of X; — min{ X, X;} among
the remaining d-polygons of Wi, which are in the intersection of W; and 8o, or W,
and ék, (ii) a total value of X, — min{X;, X;} among the remaining d-polygons
of W,, which are in the intersection of W, and éo, or W5 and ék, (iii) a total value
of X; — min{O,)N(l,Xl} among the remaining d-polygons of W1, which are in the
intersection of W, and , or W; and 6%, and (iv) a total value of X, —min{0, XQ, X,}
among the remaining d-polygons of W, which are in the intersection of W; and 6,
or Wy and 6. The above four assignments will be done by using Lemma 4.1

twice, once for the first two and another for the remaining two. For the first case

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 79

A total vall{e of~ A total vall{e of~
X1 —min{Xl,Xl} Xz—lnin{Xz,XQ}
here by Step 2(1) ~ here by Step 2(ii)

4 total value of~ ’ % total value)
JYI - min{z.Q'l’ _/Yl} _/YQ - lnin{z?27 _/YQ}
here by Step 2(iii) here by Step 2(iv)

Figure 4.12: Tllustrating Step 2 of Claim 4.2 by showing two opposite views of s.

the d-lunes of W; and W, correspond to the rows of M. Each element of R is
the final view difference of the corresponding d-lune minus the total value already
assigned to the d-polygons of that d-lune in the previous step (i.e., in Step 1). The
d-lunes 6 and éﬂ correspond to the columns of M and their final view differences
are the elements of C. Because of condition (cl), the sum of all elements of R,
which is X; — min{Xl,Xl} + X, — min{Xz,)N(Q}, is no more than the sum of all
elements of €', which is &y + SR, + (N — D), which justifies the use of Lemma 4.1.
After applying Lemma 4.1 the value of each element of M becomes the value of the

final view difference of the corresponding d-polygon.

Perform the remaining two assignment similarly and use (¢2) as justification for

using Lemma 4.1. This ends Step 2. (See Figure 4.12).

Step 3: After the above two steps, we have assigned a total value of max{Xj, Xl}
among the d-polygons of W, and Wl and a total value of maX{X—z, X'z} among the
d-polygons of Wy and W;. Those assignments, through Lemma 4.1, also guarantee

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 80

Figure 4.13: The d-polygons 6y, 07];770, éo 7 and é[«? 7 are assigned in Step 3 of
Claim 4.2.

that for each of the d-lunes in Wy, Wi, W, and W, the poly-sum is equal to the
final view difference. This last step will assign a total value of N — max{X;, X;} —
max{Xz,Xz} among the d-polygons that are not in any of Wy, Wy, Wy and W.
These d-polygons are g, 671;'70, éo,]i’ and 51&',1&'- See Figure 4.13. It will also ensure
that when max{D, D} < N, there are two opposite d-polygons with positive final

view differences.

Remember that we assumed D < D when D # D. Observe that when D < N,
from the assignment of final view differences of the d-lunes, all of Ay, Ag, Ag
and AK are positive. It also implies that N — X; — X, > 1, and N —)Nfl — X'z > 1.
Choose the d-i pair of opposite d-polygons oo and 8z (the d-i pair of b0,z and O o
would also work) and set each of their final view differences as one. This two

opposite d-polygons prove the second part of the original lemma.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 81

Then assign the remaining value of N — max{X;, X;} — max{X,, X} or N —
max{X;, X;} — max{Xy, Xo} — 2, as appropriate after the previous paragraph,
among 0o.0,0% o, 0 and O z by applying Lemma 4.1 as follows. Here M is a 2x2
matrix with 6y and Az corresponding to two rows and 6y and gﬂ corresponding to
two columns. One element of R is Ay minus the total value already assigned to
the d-polygons of 8y and the other element is Az minus the total value already
assigned to the d-polygons of 8. Similarly, one element of C' is Ay minus the total
value already assigned to the d-polygons of 6, and the other element is A 7 minus
the total value already assigned to the d-polygons of é[&'- After applying the lemma
the value of each of 8y, 85, 6y and é[(’ is the value of the corresponding element
of M plus its previous value, which is zero or one, as appropriate, from the previous

paragraph. This completes Step 3 and the assignment.

For justification, Lemma 4.1 guarantees that for any d-lune 8 of S or S the
poly-sum is equal to the final view difference of 8. So for any d-i pair (d;,n;) of S,
—1

the poly-sum of &; is DitR & + L(N — D), which is n; according to Lemma 3.2.

The justification for a d-i pair in & is similar. O

With the above claim in hand one can decide whether a valid assignment is
possible or not by checking the conditions (¢1) and (¢2) and then can find an

assignment, when it exists, as in the manner indicated in the proof of the claim.

We now study the time complexity. Computing Wy, Wy, Wy, W, X1, X,, X3
and X—z takes a total O(R’ + IE’) time. Checking (c1) and (¢2) takes constant time.
The matrix size in Step 1 is (K —1) x (R’— 1) for both cases. So Lemma 4.1 in Step
1 takes O(K’ + R’) time. The size of the two matrices in Step 2 are (Q(K’ —1)x2)
and (2(.7{’ — 1) x 2) respectively. So Step 2 takes O(K + IE’) time too. Finally, the

matrix size in Step 3 is (2 x 2) and thus Step 3 takes constant time. So the overall

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 82

time is O(R’ + K’). O

4.4.6 Valid selection for arbitrary visibility

After obtaining a valid assignment, we will find a valid selection of N normal-
points on s. Remember that when the directions see arbitrary number of faces,
we can not find a valid selection for all cases. The condition when we can find

is max{D, D} < N. So throughout this subsection assume that max{D, D} < N.

The overall idea of choosing N normal-points is as follow: Select N — 2 normal-
points arbotrarily (according to A; ;), and the remaining two normal-points in two
opposite d-polygons such that they preclude any hemisphere from containing all.

The fllowing auxiliary lemma will be used to select the last two normal-points.

An auxiliary lemma

Lemma 4.4 Let x1, x5 and x3 be three points of s such that they are not all on
a great circle. Let t be the (spherical) triangle defined by the segments T1x, Tols
and T3x;. Let t' be the opposite of t. Let x4 be a point strictly within t'. Then,

there does not exists a hemisphere of s containing all of xy, x4, r3 and x4.

Proof. Let h be a hemisphere of s containing x;, x5, 3. Then the interior of ¢’
must be strictly within s\%, which implies that x4 is strictly within s\k. So h does

not contain z4. O

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 83

The valid selection

Lemma 4.5 Given S and S, and a valid assignment of total value of N among the
d-polygons of s, if max{D, D} < N, then one can select in O(N + K + Ig’) time N
normal-points from s such that for each d-polygon 6; ; the number of normal-points

strictly within it is A; j and not all N normal-points intersect a hemisphere of s.

Proof. From Lemma 4.2 and Lemma 4.3 remember that when max{D,D} <
N, there are two positive opposite d-polygons oo and 6z . Choose all normal-
points arbitrarily except one from each of 8, and GR',R" Let z; and z4 be two
of the chosen N — 2 normal-points. If (by any chance) z; and x, are antipodal,
then move one slightly strictly within its respective d-polygon. Now consider a
hemisphere h that contains x; and x, strictly within it; this exists since x; and x,

are not antipodal.

For rest of the proof please refer to Figure 4.14. At least one of 6y and 0 ;
intersects h. Say r = o N h # 0. Add one normal-point z3 # x1,z strictly
within r. such that x;, z3, z5 do not lie on a great circle. (Observe that since g is
strictly within a hemisphere, r can be at most 2 and thus it is possible that x,, x5, x3

lie on a great circle). For the final normal-point, consider the spherical triangle

defined by the three segments 7173, Toxs and T3x;. Since zj is strictly within r,
this triangle intersects r. Let this intersection be ¢t. Let the opposite of ¢ be ¢,
which is a subset of 65 . The last normal-point is an arbitrary point x4 strictly

within #/. From Lemma 4.4, x1, x5, 3 and x4 do not intersect a hemisphere of s.

Now consider the time complexity. From any d-polygon one can choose any
number of normal-points strictly within it in linear time. Moreover, while using
Lemma 4.1 to find a valid assignment in Lemma 4.2 and Lemma 4.3, one can get

the list of all positive d-polygons in total of O(K + IE’) time. So the selection of

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 84

Figure 4.14: Illustrating the proof of Lemma 4.5.

first N — 2 points from the positive d-polygons can be done in O(N + K + .7{’) time.
Selecting z; and x5 from already chosen normal-points and shifting one of them,
if necessary, takes constant time. Computing h should take constant time. As the
size of each d-polygon (in terms of segments) is four, computing the intersection
of 00 and Oy z with & takes constant time. For similar reasons, computing ¢ and #'
also takes constant time. Finally, choosing z3 and x4 takes constant time. So the

overall time is O(N + K + Ig’). O

4.4.7 Valid selection for limited visibilty

In this section we choose normal-points when all direction see at least four faces. We
show that there always exists a valid selection and show how to find one. The overall
idea of the selection is as follows. Any three great circles without two antipodal
points common to all of them divide s into eight octants. As a preliminary, we will
first prove (in the following subsection) that any eight points strictly within these

eight octants, respectively, can not intersect a single hemisphere. Then we will

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 85

prove that when all directions see at least four faces, there always exist three such
great circles so that it is possible to find a valid selection with at least one normal-
point in each of the eight octants (This will be proven without finding the actual
valid selection). Then we will first find three such great circles. Finally we select
all N normal-points as follows. Initially we will select them arbitrarily according
to A, ;. This initial selection may not gurantee that all eight octants get at least
one normal-points each. If such case happens, we will move some normal-points
so that no octant remain empty. This movement may change the valid assignment

(remember that there may be more than one valid assignment.)

An auxiliary lemma

Lemma 4.6 Consider any three great circles of s that do not intersect in a common
d-i pair of antipodal points. The arrangement of these three great circles divides s
into eight octants. For each octant consider an arbitrary point that is strictly within

it. Then, these eight points cannot intersect a hemisphere of s.

Proof. This proof is similar to the proof of Claim 4.1 in Section 4.3.

Let g1, g2 and g5 be the three great circles and let u;, uy and usz be the normals
of the planes that define g1, g2 and g3. Pick eight arbitrary points that are strictly
within the eight octants of g;, g» and ¢3. By way of contradiction assume that there
exists a hemisphere A that intersects all of them. Let u be the normal of the plane
of the great circle of h and let u be in h. Since g1, g2 and g3 do not have a common
d-1 pair of antipodal points, their normals form a basis of 3D space, and hence one
can write: u = A\juy + Aqug + Azus for some value of A, Ay and A3. Note that Aq,

Ao and A3 cannot all be zero since v is non-zero.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 86

Now pick an octant as follows. If A; > 0, pick the hemisphere of ¢; that
contains ny; else pick the other hemisphere. Similarly pick a hemisphere from g
and g3. Take the intersection of these three hemispheres. Let the resulting octant
be o*, and let p™ be the chosen point in it. Since p* is strictly within o™, <pj :
u;y # 0, for i = 1,2,3. By our choice of octants, we also have the same sign

for A; and <pj - u;) for those ¢ = 1,2,3 for which A; # 0. Therefore <pj Suy =
S? /\,<pj -u;) > 0, and in fact we have <pj -u) > 0 since not all A; can be zero.

i=1
Now let 0~ be the octant opposite to octant o™, and let p~ be the chosen point in
%
it. Since p~ is strictly within o™, (p~ -u;) < 0. Here the signs of A; and <?_ -u;) are

— —
opposite for those 1 = 1,2, 3 for which A; # 0. Therefore (p~-u) = 2?21 Ai(p~

) <
. — :

0, and in fact we have (p~ - u) < 0 since not all A; can be zero. Thus p* and p~

are on opposite hemispheres defined by wu, and not all eight points intersect the

hemisphere h. O

Valid selection

Instead of directly finding three great circles for the whole set S, first we will select
a great circle g, common for S and S and then find a great circle g; for S and
another great circle g, for S. We will find gup, ga, g5 in such a way that each of
the four lunes created by ¢.s and ¢,, and g, and g, can have at least two normal
points each. It will allow us to select N normal-points so that the eight octants

created by these two sets of four lunes contain at least one point each.

All of these are done in the following two lemmas. In the first lemma we will
show that for any proper d-i set with all its integers at least four and all directions

planar (i.e. a d-i set like S or 3), given one great circle we can always find another

Yz - y) means the inner product of the vector z and y.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 87

great circle so that four lunes created by them can contain at least two points each.

In the second lemma we will select the actual position of the normal-points.

Lemma 4.7 Given a proper d-i set S of size 2K, where the directions are planar
and n; > 4 for any d-i pair (d;,n;), assume that we have assigned the final view
differences of the d-lunes of S such that for any 1, n; = Z;;_h Aj. Then, given
an arbitrary great circle g1 passing through the poles, it is always possible in O(N)
time to find another great circle gy also passing through the poles such that there
exist a selection of N normal-points on s where for each d-i pair (d;,n;) of S the

number of normal-points in the visible hemisphere h; of d; and each of the four

lunes created by g, and gy contains at least two normal-points strictly within it.

Proof. Let the four lunes that will be created by ¢; and ¢, be ¢, ¢2, g3 and qq,
where q¢1, q2, g3, q4 is their circular sequence. Maintain four variables xi, x9, x3,
and x4 corresponding to the number of normal-points in qq, g2, g3 and g4 respectively.

We will describe the algorithm in two steps: (1) Initialization and (2) Rotation.

Step 1: Initialization. In this step initialize g, x1, x2, 3 and x4. There are
two cases depending on whether g; is a great circle of a visible hemisphere of some
direction of § or not. First consider the case when ¢, is such a great circle. Without
loss of generality let g; be the great circle of the visible hemisphere kg (and hg).
In this case assign g, to be same as ¢, ¢; and g3 as the two quadrants whose
widths are zero, ¢» and g4 as ho and hx respectively, and x; and x3 as zero. (See
Figure 4.15(a)). Note that with this assignment, all d-lunes are a subset of either ¢,

or q4. Assign x, as ng and x4 as ng.

Next consider the case when ¢; is not a great circle of a visible hemisphere of

some direction of §. Here ¢; intersects two opposite d-lunes and without loss of

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 88

(a) (b)

Figure 4.15: Initialization step of Lemma 4.7. Example of the case (a) when ¢; is

a great circle of a visible hemisphere of §, and (b) when it isn’t.

generality let them be 6y and 0. Assign g, as the great circle of hy, ¢; and g5 as
the two lunes that are subsets of 6y and 0 respectively, ¢ as hy\gs, and ¢4 as the
opposite of gs. (See Figure 4.15(b)). As before assign x; and x3 as zero, x3 as no,

and x4 as ng. This concludes Step 1.

Step 2: Rotation. Rotate g; until we can assign one of x; and 5 two and the
other one at least two. When the rotation stops it is guaranteed that all of xy,
Ty, x3 and x4 are at least two— which will be proven in the justification. The
rotation of gy is performed consistently in the direction which is used to define the
order of the directions of §. At any time 6; and 6, x are the two opposite d-lunes
from ¢, and ¢4, respectively, such that they either intersect g, or are next to g,.

Initially + = 0 (from the Step 1 above).

At each step of rotation check the values of zy + A; and z3 + A x. If at

least one of them is less than two, then do the followings: both increase z; and

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 89

€) (b)

Figure 4.16: Example Two examples of selection of g; and gs.

decrease z9 by A;, both increase x3 and decrease x4 by A,k , move g, to the great
circle of h;4q, increase ¢ by one, and repeat. If both of them are at least two, do the
followings: both increase x; and decrease o by max{0,2 — z1}, both increase x3
and decrease r4 by max{0,2—x3}, move g, to the somewhere in between its current
position and h;4q or g, whichever comes first, and stop the rotation. This ends the

algorithm for rotation.

Let us see some examples. Please refer to Figure 4.16, where the d-lunes are
shown in 2D. In the first example, given ¢g; as the great circle of dy and d4, then
the final position of g, is the great circle of dy and dg. Here zy, z9, x3, x4 are three,
eight, two, and two respectively. In the second example, given g;, which intersects
and 6, the final position of g, intersects #; and 5. Here x1, x5, x3, x4 are two, eight,

two, three respectively.

Now we justify why the x1, x4, 3 and x4 normal-points can be selected from ¢,
G2, g3, and g4 respectively. We only show this for ¢; the others are similar. All z,

normal-points are selected from the d-lunes of § that are strictly within ¢; or

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 90

partially intersect ¢;. (In fact, all d-lunes that intersect ¢; are strictly within ¢,
except the “last” one which may intersect ¢, partially). During the initialization
and rotation steps, one can keep track of the number of points that each d-lune
“contributes” to this set of x; points. In fact, the number of points contributed
by each d-lune which is strictly within ¢ is the final view difference. On the other
hand, the number of points contributed by the partially intersected d-lune is one or
two. One can select these z; normal-points from the intersection of these d-lunes
and ¢; by avoiding their boundaries so that each d-lune gets the number of points

equal to their contribution in ;. This completes the description of the algorithm.

Justification. In the algorithm it was ensured that one among z; and x3 be
two and the other one be at least two. We now show that z, and x4 are also at least
two. The initial position of g, is the great circle of hg or a great circle intersecting
the d-lunes 6y and fx. Let the final position of g, be the great circle of h,, or be a

great circle intersecting #,, and 6,,, x for some 0 < m < K — 1.

We first prove that zo > 2. The final value of z, is its initial value, which
is ng, minus the final value of x;, which is two. But from the assumption, ng > 4.

So xq > 2.

Next we prove that x4 > 2. Let s; = E:’;l A;. From the algorithm, z; can

be written as s; + max{0,2 — s;}, where the term max{0,2 — s;} is the updated
A,.

value of z; in the last step. As zy = 2, sy < 2. Similarly, let s, = Z?:m-u(

From the algorithm, z4 can be written as s, + max{0,2 — s3}. So x4 > s;. Now

consider n,,, which, from the given conditions, is at least four. Moreover, from

m—1

the given condition, n, is Y 70 &

Aj, which in turn can be written as s; + s3.
So s1 + sy > 4. We already know that s; < 2. Using this inequality in sy + s > 4,

we get sy > 2. Since x4 > sq, we get x4 > 2.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 91

Finally, consider the time complexity. In the initialization step, finding the
position of g; with respect to the great circles of the visible hemispheres of S
takes O(K) time. All other initialization take constant time. Now, for the number
of moves for g, during the rotation, observe that before g, moves through the whole
hemisphere of hy and the whole hemisphere of hg, both x; and x3 become at least

two since ng and ng are at least four. So the number of moves by ¢, is at most K.

During the rotation, each step of the rotation takes constant time. So total time

for rotation is O(K'). The overall time is thus O(K). O
We can now proceed with the actual selection of N normal-points from s.

Lemma 4.8 Given S and S, where n > 4 for each d-i pair (d,n) in S or S, and
given a valid assignment of a total value of N among the d-polygons, then one can
select in O(N—I—R’—I—Iz’) time N normal-points on s such that for each d-polygon the
number of normal-points is equal to its final view difference and all N normal-points

do not intersect a hemisphere of s.

Proof. Remember that after the valid assignment for each d-lune of S or S the
final view difference and the poly-sum are the same. That means one can write, for

any i, n; = E::li_ﬁ, A;, and for any j, n; = Z::li_ﬂ, A,. Now, let gup be the great
circle that passes through the poles of S and S. Apply Lemma 4.7 twice, once for §
and once for S, by considering gup as the given great circle in both cases. Let the
two great circles that we get from Lemma 4.7 for S and S be g, and ¢, respectively.
The great circles g3, g, and g divide s into eight octants. We will only show how
to select normal-points from one hemisphere of gq. Selecting normal-points from

the other hemisphere is similar. Any normal-point will avoid the boundary of the

d-polygons.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 92

Let o1, 02, 03 and o4 be the four octants of the hemisphere of g, that are being
considered, and assume that o; and oy are in one hemisphere of g, and 0, and o3
are in one hemisphere of g,. (See Figure 4.17(a)). The selection process have two

steps.

Step 1: First find all positive d-polygons that are strictly within oy, 0y, 03 or 0s4.
For each such positive d-polygon, select all its points strictly within it. Then look
at the positive d-polygons that intersect two or all of o1, 02, 03 and o4. (Observe
that a d-polygon cannot intersect three octants and there can be at most one d-
polygon that intersects all of them). This type of octant may arise when g, or gs
or both are not the great circles of visible hemispheres of S and S. To select their
normal-points look at the intersecting octants. If there are octants that still do
not have any normal-point selected, select normal-points in such a way that these

octants get at least one normal-point each.

Step 2: After selecting normal-points in Step 1 it may still be possible that
there are some octants that do not have any normal-point selected. This may
happen when an octant does not intersect any positive d-lune at all, and those
octants are called empty. The following claim will show that if there exists any
empty octant, then one can reassign d-polygons and reselect normal-points among

them such that there does not remain any empty octant.

Claim 4.3 Assume there are some empty octants. Then,

o The number of empty octants is at most two. Moreover, either oy and o3 or 0q

and o4 are non-empty.

o [t is possible to reassign the final view differences of the d-polygons and reselect
some normal-points among them so that each octant gets at least on normal-

point and the validity of the assignment is preserved.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 93

pole

pole
9o

pole

(@ (b)
Figure 4.17: (a) The four octants o1, 02, 03 and o4. (b) Reassigning the d-polygons

and reselecting the normal-points for the case of one or more empty d-polygons.

Proof. (i) By way of contradiction assume that there is only one positive d-polygon.
Without loss of generality let it be 0;. This means that under any selection process
the number of normal-points that can be selected from each of the pairs 0, and o3,
and o3 and o4 1s zero. But according to Lemma 4.7 it is possible to have a selection
so that each of them get at least two normal-points. A contradiction. So there are
at least two octants which intersect positive d-polygons. Moreover, by the same
reason any two consecutive octants cannot be empty. So either o; and o3, or o,

and o4 are not empty.

(i1) Without loss of generality assume that o; is an empty octant. By Lemma 4.7
as o; and o0y together have at least two normal-points, o, intersects positive d-
polygons with their total view differences at least two. Similarly, o4 intersects
positive d-polygons with their total view differences at least two. Let 8,3 and 6. 4 be
two positive d-polygons intersecting o, and o4 respectively. Recall that 8,5 = 9aﬂ§b

and 6.4 = 6.N8,. (See Figure 4.17(b)). Observe that the intersection of 6, and éd,

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 94

which is the d-polygon 6, 4, intersects o;. Similarly, the intersection of 8, and b,

which is the d-polygon 6.4, intersect os.

Now we perform the reassignment and reselection. For reselection, remove one
normal-point from each of 8,5 and 6. 4 and select one new normal-point from each
of 8,4 and .. For reassignment, decrease the value of A, and A, 4 by one and
increase the value of A, 4 and A, by one. Figure 4.17(b) shows the reassignment
and reselection as one normal-point moving from 8,4 to 6,4 and another normal-

point moving from 6. 4 to 6.5.

The justification is easy to follow. The view difference for any d-lunes has not
been changed. Moreover, after Step 1 both 0; and o3 had at least two normal-points
each and after the reselection in Step 2 they still have at least one normal-point
each. So the modified assignment of the d-polygons is valid and after the modified

selection all octants get at least one point each. O

With the end of this claim, Step 2 as well as the whole selection process is

completed.

We now study the time complexity of the entire selection process. We consider
the time required to select normal-points from oy, 02, 03 and o4 only, as the time
required to select normal-points from other three octants is the same. As mentioned
in the proof of Lemma 4.5, while using Lemma 4.1 to find a valid assignment in
Lemma 4.2 and Lemma 4.3, one can get the list of all positive d-polygons in total
of O(I{’ + .7{’) time, and within the same order of time one can find their intersection

with the octants.

Normal-points within all the positive d-polygons that intersect one octant each
can be selected in linear time. A d-polygon can intersect at most four octants. So

for each d-polygon that intersects more than one octant the normal-points can be

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 95

selected from the intersecting octants with a target of minimizing the number of
empty octants, which again can be done in linear time. So the Step 1 takes O(N)
time. Finally, Claim 4.3 and thus Step 2 take constant time. So overall time

isO(N+ K+ K). O
The following theorem summerizes the results.

Theorem 4.2 Given a proper d-i set S and an integer N > 4, where the direc-
tions of & are in two planes through the origin, then one can construct a feasible
polyhedron P, if one exists, in O(Nlog N + K + IE’) time, where K and K are the

number of directions in the two planes, for the following two cases:

e n >4 for each d-i pair (d,n) in S, and

e max{D,D} < N.

Corollary 4.2 If the feasible polyhedron is allowed to be unbounded, it can be al-
ways constructed, when it exists, in O(Nlog N + K + Ig’) time.

4.4.8 A valid assignment is not enough

This section shows by an example why the technique of finding a valid assignment
and a then valid selection fails to decide the existence of a feasible polyhedron for &
when n < 3 for some d-i pair (d,n) of S. The idea is to show that for any valid

assignment there may not be a valid selection.

We refer to Figure 4.18. First consider the proper d-i set of (a). It has twelve d-i
pairs and N = 4. The only positive view differences are &g, d4, and dg with respective

values value one, one, and two respectively. So D = N, and by Corollary 4.1 there

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 96

always exists a feasible polyhedron for this proper d-i set. The key property of
this proper d-i set is that the two directions in each d-i pair of (do,dy), (ds,ds),
and (ds,dg) are almost parallel and for that reason their corresponding positive
d-lunes on s are very thin. Moreover, the circular distance between other d-i pairs
of consecutive directions can be adjusted to increase/decrease the relative circular
distance among the positive d-lunes. For example, (b) and (c) show the positive

d-lunes for two different versions S and S of the proper d-i set of (a).

Now, consider a proper d-i set S which is the union of S and S. There are two

possible valid assignments for the d-polygons of & which are shown in (c).

Let us explain these two assignments. Consider S. As D = N, Lemma 3.2
implies that for any d-i pair (d;,n) in S, in any valid assignment the poly-sum of h;
should be EzR:o 8;, which further implies that for each d-lune 8; of S the poly-sum
should be §;. Similarly for each d-lune éj of S the poly-sum should be Sj. So in the
example the poly-sum of each of 6y, 84, 8o, and 8, should be one and the poly-sum
of each of g and és should be two. That means the d-polygon é&g must be assigned
two, and among the d-polygons éop, 9074, §470, and 67474 either éop and §474 or §074
and 8,4 should be assigned one. No other d-polygon can be positive. But in either
case all three positive d-polygons are strictly within a single hemisphere as shown

in (d). So no valid selection can exist.

4.5 Non-convex polyhedra

This section briefly studies the problem of creating non-convex polyhedra from
orthogonal projections in the case when at least four faces are visible from every

direction.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 97

o (d11,2)
(do,2) (d1o, 3)

(,3) | |
(dz, 3) } < (do, 3) 5 ‘;“ “7‘_8
<d3,1>*> ‘\<d87 1> : ;

(ds 1>/ \\\\ (d7,1)
<;l5, 2> <d67 2>

(©) (@
Figure 4.18: (a) A sample proper d-i set from which will give two proper d-i set S
and S for the example. (b) Positive d-i pairs for S and S. Here each of § and S
is similar to the proper d-i set in (a) except that the relative distance among the
directions has been adjusted. (c) The two possible valid assignments. (d) For each

valid assignment all positive d-polygons are strictly within a hemisphere of s.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 98

4.5.1 The special case

The differences between creating convex and non-convex polyhedron are similar to
those for convex and non-convex polygons mentioned in Chapter 3. are quickly
reviewed here. For a non-convex polyhedron, the visibility of a face from a view
direction may be partial or full, whereas for a convex polyhedron a face is always
fully visible. A face of a non-convex polyhedron may be parallel to a view direction
while it is not visible at all; so it is not clear whether a projection is to be considered
as degenerate when this type of degeneracies happen. On the other hand, for a
convex polyhedron, a degenerate face is visible as a line segment. Finally, the
size of a non-convex polyhedron does not depend upon the number visible faces
from the view directions, whereas two opposite non-degenerate projections uniquely

determine the size of a convex polyhedron.

Keeping the above difficulties in mind, we will study a special case with the
assumption that the size of a feastble polyhedron is not given, the partially visible
edges are not counted as visible, and the number of visible faces from each direction
is at least four The size of this feasible polyhedron will be linear to the sum of the
number of visible faces from all directions. Reconstruction under alternative defi-
nitions of visibility, degeneracy of a face, and/or the size of the feasible polyhedron

are left as open problems. (The coputation model is assumed to be a ral-RAM.)

4.5.2 The construction

Theorem 4.3 Let S be a d-i set of size K. For any d-i pair (d,n) in S, let n > 4.
Let N be the sum of the integers in S. Then it is always possible to create a non-
convex polyhedron P of size O(N) such that for each d-i pair (d,n) in S the faces

of P that are not parallel to d and are visible from d is n. Moreover, the time

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 99

asquare dipyramid

atransient face

a base polyhedron

Figure 4.19: A square dipyramid and a base polyhedron created from that.

required is O(N log N).

Proof. We will give a proof sketch. First create a base polyhedron P, which is very
“skinny” and 1s 5-visible face equiprojective, as follows. Take a very skinny square
dipyramid (a square dipyramid is 4-visible face equiprojective) so that one pair of
opposite apices is very close and the vertex angle at each of them is almost flat.
Create two very small parallel quadrilateral faces f; and f; by chopping off these
two apices. This is P. In Chapter 5 it is proven that the faces of a visible-face
equiprojective polyhedron are in parallel pairs. Since a square dipyramid is 4-visible
face equiprojective, adding parallel faces f; and f, makes it 5-visible face equipro-
jective. Observe that the dihedral angle at each edge of f; and f, is almost 180°.
Call f; and f; transient. (See Figure 4.19).

If all integers in S are five, then P is the resulting polyhedron. So assume that
some integers are not five. Fix a position of P so that the directions of s are not

parallel to its faces. Divide the directions of S into two groups 5; and S based on

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 100

which transient face they see.

Consider the group S;. If any integer in S; is not five, then replace f; by an
unbounded polyhedron oy so that all directions in S; get the necessary number of
additional visible faces from o;. There may be several ways to create o;. One way
to do that is as follows. Place inside of P a small spherical ball b; in such a way
that a tiny spherical cap is chopped off from by by the plane of f;. Remember that
the dihedral angle at each edge of f; is almost 180°. So b; is inside of P (i.e. by
does not intersect the faces adjacent to fi). The radius of the sphere of b; is small
enough so that if a similar (truncated) ball b, is placed on fs, then b; and by do
not intersect. Note that f;, which is the “entrance” of by, is made small enough
so that for any two directions in Sy their corresponding visible regions in b do not
overlap. Since there are finite number of directions in 57, it is always possible to

find such a small entrance of by (or equivalently such a small f;).

For each d-i pair (d,n) of S; compute the unique visible region rq of d in the
inner surface of b;. The region ry can be computed by projecting f; from d on b;.
Chop off a small spherical cap from b; such that the bounding circle ¢ of that cap
is strictly inside r4. Now put vertices on ¢ to create visible faces for d. If n = 4,
simply put a vertex on c. If n = 5, create a triangle by taking three vertices on c.
If n > 5, create n — 4 triangles as follows: take n — 4 vertices on ¢ so that no two
are opposite with respect to the center of ¢ and if n > 6, then all of them are not
within a half-circle of ¢; take another vertex v in the center of ¢ and lift it slightly

above the plane of ¢; finally connect v to the vertices on c¢. (See Figure 4.20).

After creating vertices and triangles for all d-i pairs in this way, take the convex
hull of all of them including the vertices of f;. The face f; will be in this convex

hull and removing f; from it will give the resulting unbounded polyhedron o.

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 101

Figure 4.20: Creating visible faces of d in 0.

Similarly create a an unbounded polyhedron oy, if necessary, for the set S, by

replacing f,. This completes the construction of P.

Justification. Consider an arbitrary d-i pair (d,n) in S;. When creating
triangles in r4, keep the height of the lifted vertex from the plane of ¢ very small to
ensure that all triangles and all vertices on ¢ are in the convex hull. Then the faces
of 0y that are visible from d are exactly the triangles that have all three vertices
on ¢ or on its center. There are n — 4 such faces. Note that there are some faces
in 07 for which only one vertex is on ¢. These faces are partially visible, and thus,
from the definition of a visible face, are invisible, from d. After f; is replaced by o1,
there are four other faces from the base polyhedron that are visible from d. So over
all faces of P, the number of faces that are not parallel to d and are visible from d

1s n.

Finally, both 0y and o0y are inside of P and do not intersect each other. So P is

simple and bounded too.

Now consider the time complexity and the size of P. Creating P as a base

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 102

polyhedron and choosing its position takes O(K') time. For each d-i pair (d,n)
in S, finding the visible region, computing ¢, putting necessary vertices on, inside
or above ¢, and finally creating triangles from them takes O(n) time. Same can
be done for all d-i pairs in O(N) time. Finally, taking the convex hull twice take
O(N log N) time, as the size of the convex hull is O(N) in each case [19, 17].
With K € O(N), the total time is O(N log N).

The size of the polyhedron is linear to the total number of faces in 0; and oy,

which are linear to the sum of all integers in Sy and S3. So the size of P is O(N).

O

4.6 Perspective projections

This section briefly studies the problem of creating convex polyhedra from perspec-
tive projections. The differences between constructing polyhedra from perspective
and orthogonal projections are similar to those for constructing polygons from per-
spective projections, which have already been discussed in Section 3.6. Such differ-
ences include that in perspective projections, the number of visible faces changes
during the scaling and during the change of position of the feasible polyhedron, and

that the volumetric size of a feasible polyhedron may be too small or too big.

We study a special case by assumng that the given view points are in the convex

position. (The motivation behind this assumption has been discussed already in

Section 4.6).

Each d-1 pair in a d-i set consists of a view point d and an integer associated
with d. A face e of a convex polyhedron is wvisible from a view point d if e faces

towards d. More formally, e is visible from a view point p if and only if at some

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 103

point x of e, the outward normal vector of e has a positive inner product with the

vector from z to p.

4.6.1 Construction of the polyhedron

The main result for perspective projection is the following theorem.

Theorem 4.4 Given a d-iv set S of size K > 3, where all the view points are
in convexr position, then it is always possible to create a convexr polyhedron P of
size N+ O(1) such that for each d-i pair (d,n) in S the faces of P are not coplanar
with d and the number of visible faces of P from d is n. Moreover, N is proportional

to the sum of all integers in §.

Proof. We give a proof sketch. For each view point d of S take a plane which is
very close to d and separates d from all other view points. Take the half-space of
this plane that does not contain d. Compute the intersection, which is convex, of all
such half-spaces. If this intersection is unbounded, intersect additional half-spaces,
which contain all view points of 5, to make it bounded. Let the resulting convex
polyhedron be P. For each view point d there is a face of P which comes from the
corresponding plane for d and is visible only from d. Let this face be f. If n > 1
in the d-i pair (d,n), one can cut f as many times as necessary so that the total
number faces created from f (including f) is n and all of them are visible only
from d. (See Figure 4.21). Such a cut can be performed by a plane that separates d

and the remaining part of P.

The size of P is N plus the number of extra half-spaces used to make P bounded,
which should not be more than two. So the size of P is N + O(1). O

CHAPTER 4. RECONSTRUCTION OF POLYHEDRA 104

Figure 4.21: Increasing the number of visible faces for d (a) by cutting, and (b) by
replacing the face f.

Chapter 5

Equiprojective Polyhedra

This chapter addresses the problem of reconstructing equiprojective polyhedra.
As a first step of constructing equiprojective polyhedra, a characterization and
an O(n)-time recognition algorithm for boundary-vertex equiprojective polyhedra
are presented. Then it is proved that there are no 3- or 4-boundary vertex equipro-
jective polyhedra and that the triangular prism is the only 5-boundary vertex

equiprojective polyhedron.

The notion of equiprojectivity from vertices in the projection boundary can be
extended to visible vertices, edges, and faces in the projection. Under this exten-
sion, a characterization and O(n) recognition algorithm of visible-face equiprojec-
tive polyhedra are shown. The most interesting result under this extension is that
the generalized zonohedra are visible-face, visible-vertex, and visible-edge equipro-

jective. Finally, some relations among the different classes are discussed.

This chapter is organized as follows. After some preliminaries in Section 5.1, Sec-
tion 5.2 contains the characterization and recognition of boundary-vertex equipro-

jective polyhedra. The minimality of boundary-vertex equiprojective polyhedra in

105

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 106

Section 5.3 and extend the definition of equiprojective polyhedra in Section 5.4.

5.1 Preliminaries

Throughout this chapter only convex polyhedra and their orthogonal projections are
considered. Moreover, non-degenerate orthogonal projections are not considered,
since in a degenerate projection a face f which is parallel to the view direction
looks like an edge in the projection boundary and all the vertices and edges of f
will coincide with that line. The reason for not considering perspective projections
is that the concept of equiprojectivity does not hold for perspective projections,
because the number of vertices, edges, and/or faces in the perspective projections

as well as in their projection changes with the view point.

5.2 Boundary-vertex equiprojective polyhedra

Let us start with some examples— a cube is 6-boundary vertex equiprojective,
a triangular prism! is 5-boundary vertex equiprojective, and a tetrahedron is not
boundary-vertex equiprojective. Figure 5.1 shows two projections of the tetrahe-
dron with different sizes of projection boundaries. Note that the cube and triangular
prism can be generalized: for any p > 3, a prism based on a regular p-gon is (p+2)-
boundary vertex equiprojective. An example of a boundary-vertex equiprojective

polyhedron that is not a prism is given in Figure 5.3(a) on Page 110.

LA p-gonal prism consists of two parallel copies of a p-gon (the bases) with all other faces being
parallelograms determined by the corresponding edges of the bases [46]. Note that oblique prisms

are also included (i.e. not just right prisms).

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 107

@ (b) (©
Figure 5.1: (a) A cube is 6-boundary vertex equiprojective, (b) a triangular prism
is 5-boundary vertex equiprojective, and (c) a tetrahedron is not boundary-vertex

equiprojective.

One way to test if a polyhedron is boundary-vertex equiprojective would be to
check all the combinatorially different projections, which are called views, and for
each of them count the number of edges of the projection boundary. Since the
number views of an n vertex convex polyhedron is O(n?) and can be computed
in O(n?) time (see Chapter 2), this method of testing for boundary-vertex equipro-
jectivity is inefficient. In this section we give a characterization of boundary-vertex
equiprojective polyhedra, and show that this characterization provides an O(n)

time algorithm to test if a polyhedron of size n is boundary-vertex equiprojective.

Our characterization can be used to show that all generalized zonohedra are
boundary-vertex equiprojective, and we identify other interesting subclasses as well
(see Section 5.2.1). The whole class seems surprisingly rich, and we do not yet know

of a method to generate all of its members.

5.2.1 Characterization

The flavor of the characterization is as follows. Any edge e of the projection bound-
ary of P corresponds to some edge of P. As the view direction changes, e may leave

the projection boundary. This only happens when a face f containing e in P be-

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 108

comes parallel to the direction. In order to preserve the size of the projection
boundary, some other edge ¢ must join the projection boundary. In order for
these events to occur simultaneously, ¢’ must be an edge of f, or of a face parallel
to f. This gives some intuition that the condition for equiprojectivity involves a
pairing-up of parallel edge-face pairs of P. For a more precise statement of our

characterization, see the following section.

Which polyhedra are boundary-vertex equiprojective?

We begin with the precise statement of the characterization, and then explore some

classes of boundary-vertex equiprojective polyhedra.

For an edge e in face f, call (e, f) an edge-face pair. Two edge-face pairs (e, f)
and (€', f') are parallel if e is parallel to ¢’ and f is parallel to, or equal to, f'.
Observe that in a convex polygon, an edge can have at most one parallel edge;
and in a convex polyhedron, a face can have at most one parallel face. Thus an

edge-face pair has at most three parallel pairs.

Define the direction of pair (e, f) to be a unit vector in the direction of edge e
as encountered in a clockwise traversal of the outside of face f. The edge-face
pairs (e, f) and (€, f') compensate each other if they are parallel and their directions
are opposite (i.e. one is the negation of the other). In particular, this means that
if f=f, then e and ¢’ are parallel (in which case they must be on “opposite sides”
of f). On the other hand, if f and f’ are distinct parallel faces, then e and €
are parallel edges lying on the “same side” of f and f’, where by “same side” it
means that the plane through e; and e; will have f; and f; in the same half-space.
See Figure 5.2. An edge-face pair has at most two compensating pairs. Using this

concept, we can characterize boundary-vertex equiprojective polyhedra.

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 109

f2

h

Figure 5.2: Example of some edge directions and compensating edge-face pairs. Di-

rection of the edges of f; are shown. (€1, f1) is compensated by (eq, f1) and by (e, f2)
but not by (es, f2).

Theorem 5.1 Polyhedron P is boundary-vertex equiprojective if and only if its set

of edge-face pairs can be partitioned into compensating pairs.

Th proof of this theorem is given in the next section.

One of the simplest subclasses of boundary-vertex equiprojective polyhedra are
the polyhedra where every face consists of parallel pairs of edges, i.e., a parallel-sided
2m-gon. In this case an edge-face pair is compensated by the parallel edge in the

same face. Note that generalized zonohedra fall in this class. (See Figure 5.3(b)).

For a zonohedron, since every face has a parallel pair with corresponding edges
parallel, each edge-face pair could alternatively be compensated by the corre-
sponding edge in the parallel face. More generally, we obtain the class of “face-
compensating polyhedra”, where any face not composed of parallel pairs of edges
has a parallel face with corresponding edges parallel. The prisms based on odd

regular polygons are in this class, but are not zonohedra.

Finally, there are boundary-vertex equiprojective polyhedra that are not face-

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 110

@ (b)

Figure 5.3: (a) A boundary-vertex equiprojective polyhedron which is not face
compensating: the bottom face includes edges (m,b’) and (n,c’) that compensate
each other, but the remaining edges are compensated by corresponding parallel
edges in the top face (a,b,c). (b) A generalized zonohedron is boundary-vertex

equiprojective.
compensating, for example the one shown in Figure 5.3(a).

5.2.2 Proof of characterization

Let P be a polyhedron. Given a view direction d, we can distinguish faces of P
parallel to d, faces visible from d, and faces invisible from d. If there are no faces
parallel to d, then the edges of the projection boundary of P projected in direction d
are in one-to-one correspondence with the edges of P common to a visible and an
invisible face of P. For a given direction d, let S; be the set of edges of P that
form edges of the projection boundary. As d changes continuously, S; changes only
when faces become parallel to d, on their way between visibility and invisibility or

vice versa.

Note that if two faces of P are parallel to each other, then they both become

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 111

parallel to d at the same time. The starting point is the claim that apart from such
parallel faces, we can concentrate on the case where d crosses the plane of at most

one face at a time.

Lemma 5.1 We can change viewing directions continuously from any initial direc-
tion dy to any other direction d;, so that for any direction d along the way, the set
of faces parallel to d is empty, or consists of one face—and its parallel counterpart
if there is one. Furthermore, we can ensure that d crosses the plane of each face

orthogonally in a small enough neighborhood.

Proof. The set of all possible directions d corresponds to the set of points on
a sphere. The directions parallel to a face f correspond to a great circle on the
sphere, and the directions parallel to more than one face correspond to points on
the sphere where two such circles intersect. There is a path on the sphere from any
point d, to any other point d; that avoids the intersection points of two circles, and

crosses circles orthogonally in a small neighborhood. O

Thus to show that a polyhedron is boundary-vertex equiprojective, it suffices
to consider the changes in Sy as d orthogonally crosses the plane of one face f—
and its parallel counterpart f’ if it exists—causing f to become visible or invisible.
Let S4(f) be the edges of f that form edges of the projection boundary of P in
direction d. We will use the notation Su(f, f'), where f and f’ are always parallel,
to mean Sy(f) together with Sy(f) if f' exists—i.e. the edges of f and f’ that are

edges of the projection boundary.

Take a direction d parallel to face f, but not parallel to any other face (except f’
if it exists), let € be a small vector normal to the plane of f, and consider the

directions d + ¢ and d — ¢. These two directions make f invisible and visible,

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 112

respectively, and affect no other faces except f’ if it exists. For the polyhedron
to be boundary-vertex equiprojective, Sgt-(f, f') and Sq_.(f, f') have the same

cardinality.

Given a direction d parallel to face f, let the upper chain Uy(f) of f with respect
to direction d be the edges of f whose adjacent faces are visible from d, and let the

lower chain Lq(f) of f be all other edges of f. (See Figure 5.4(a)).

d—l—ad d—e

La(f)

(@ (b) ©
Figure 5.4: (a) Illustration of ¢, and Uy(f) and Lg(f) for a face f; (b) Sqt-(f) =

Ua(f); (¢) Sa—<(f) = La(f).

Lemma 5.2 Let d and ¢ be as above. Then Sqy(f) = Ua(f) and Sa—.(f) = La(f).
Proof. See Figure 5.4(b, ¢). O

Corollary 5.1 If f has a parallel face f' then Sare(f') = La(f') and Sa—.(f') =
Ua(f').-

The above results give us the machinery we need to prove the sufficiency of the

condition for equiprojectivity, and we now turn to a proof of the characterization.

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 113
Proof of Theorem 5.1

(<=) Let P be a polyhedron whose edge-face pairs can be partitioned into com-
pensating pairs. We will show that every orthogonal projection of P, except in

directions parallel to faces, has the same number of edges.

By Lemma 5.1 it suffices to show that S; maintains its cardinality as d orthog-
onally crosses the plane of one face f—and its parallel counterpart f', if it exists.
Thus, using the notation above, we need to show that Syi.(f, f') and Sa—(f, f')

have the same cardinality. By Lemma 5.2 and Corollary 5.1 we need to show that
[Ua(F)] + | La(f)| = |La(f)] + [Ua(f)]

Edge-face pairs involving f and f’ can only be compensated by other edge-face
pairs involving f and f’. Furthermore, an edge of Uy(f) can only be compensated
by an edge of L4(f) or Us(f'), etc. Thus the fact that edge-face pairs can be

partitioned into compensating pairs yields the equation above.

(=) Let P be a polyhedron whose edge-face pairs cannot be partitioned into

compensating pairs. We will find two projections of P with different sizes.

Consider an edge-face pair (e, f). It lives in a “family” of at most 4 parallel
edge-face pairs. An edge-face pair can only be compensated by others in its parallel

family, and furthermore, can only be compensated by two others.

Consider the graph of compensating edge-face pairs, which has a vertex for
each edge-face pair, and an edge when two pairs could compensate each other. The
parallel family of (e, f) may consist of: (1) one node; (2) two isolated nodes; (3)
two nodes joined by an edge; (4) three nodes joined in a path; (5) four nodes joined

in a cycle. See Figure 5.5.

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 114

) [) o—o
(€, f) (e, f) (€, f") (e, f) (€, f)or (€,)
Case 1 Case 2 Case 3
€ 62 61
(e) 5
/ (ehf)Q(%,f)
€f) (2. f) Y
Case 4 Case 5

Figure 5.5: Graphs of compensating edge-face pairs within one parallel family.

Faces f and f’ are parallel. Edges drawn in bold are parallel.

In cases (3) and (5) the parallel family of (e, f) partitions into compensating
pairs. In cases (1), (2), and (4) there is no partition into compensating pairs, and

it must be shown that P is not boundary-vertex equiprojective.

Find a direction d in the plane of face f such that directions d + ¢ and d — ¢
yield projections of different sizes, for ¢ a small vector perpendicular to f. More
precisely, choose d in the plane of face f (and its parallel counterpart f’ if it exists)
but not in the plane of any other face. For ¢ small enough, changes in the size of

the projection between d+ ¢ and d — ¢ are then due to the changes in f and f only.

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 115

By Lemma 5.2 and Corollary 5.1 it suffices to choose d in the plane of f [and f']

but not in the plane of any other face so that:

Ua()| + [La(f)] # | La(H)] + [Ua(f)]

We now have a 2-dimensional problem. Let ¢ be the direction of edge e. Staying
in the plane of f, let v be a small vector perpendicular to e and directed to the
outside of face f, and consider directions ¢ — v and ¢ + v. We argue that, for one
or the other, the above inequality holds. Then for v small enough we can avoid the

plane of any other face, and we have our value of d. See Figure 5.6(a).

Our argument is by contradiction. Suppose that we have equality for both ¢ —~

and ¢ + 7. Then, rearranging to put f on the left hand side:

Ueery ()] = [Leery (F)] = [Ueer (F)] = | Lemr (f)]

and

|Uc+7(f)| - |Lc+v(f)| = |Uc+v(f/)| - |Lc+v(f/)|

Subtracting yields

[Uery ()] = [Uesr (F)| + [Leary (F)] = [Le—ry ()] =
|Uc—7(f/)| - |Uc+v(f/)| + |Lc+7(f/)| - |Lc—v(f/)|

Now e is in U._,(f) but not U.iy(f), and e is in L.y (f) but not L._.(f).
There are no other changes due to f between ¢ — v and ¢ 4 7. Thus the left hand

side of the above equation is 2.

Now consider the right hand side. If f’ doesn’t exist or has no edges parallel to e
(case (1)) then there are no changes between c—+ and ¢+, i.e. Ue—y(f') = Uerr (f')
and Loy (f') = Le—y(f'), so the right hand side is 0. This is a contradiction.

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 116

If f" has two edges parallel to e (case (4)) then one is in U and one in L for each
of ¢ —+ and ¢+ 7, and, since there are no other changes, |U._y(f")] = |Ues~(f')]
and |Lety(f')] = |Le—y(f')|. Again, this makes the right hand side 0 and gives a

contradiction.

Uc+v(f)

+y -7

c—yc ¢t

@ (b) (c)
Figure 5.6: (a) Illustration of v; (b,c) effect of 4 on the number of edges in the

projection boundary from two parallel faces in case (2).

Finally, if f* has one edge €' parallel to e (case (2)) then, since (€', f’) does not
compensate (e, f), they are on opposite sides of their faces, and €’ is in Uiy (f)
but not U._(f"), and it is in L. (f") but not L., (f"). See Figure 5.6(b,c). Since
there are no other changes due to f’ between ¢ — v and ¢ + v, the right hand side

of the above equation is —2. Contradiction. O

5.2.3 Recognition algorithm

Our characterization provides an O(n) time algorithm to test if a polyhedron is
boundary-vertex equiprojective: There are O(n) edge-face pairs. The pairs of par-

allel edges around a single face can be found by a clockwise or counter-clockwise

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 117

scan using two pointers, one always diametrically opposite to the other. Similarly
one can find the pairs of parallel faces by systematically exploring the diametrically
opposite faces. Since each parallel family of edge-face pairs has at most 4 members,
it is then a trivial matter to see if it can be partitioned into compensating pairs,

see Figure 5.5.

Theorem 5.2 An boundary-vertex equiprojective polyhedron can be recognized in

O(n) time.

5.3 Minimal boundary-vertex equiprojective poly-

hedra

As a first step to explore the whole class of boundary-vertex equiprojective poly-
hedra, we will find the smallest boundary-vertex equiprojective polyhedra, where
“smallest” is in terms of the number of vertices in the projection boundary. We
prove that there are no 3 or 4-boundary vertex equiprojective polyhedra. Note that
there is an arbitrary number of polyhedra which have some projection boundaries
(but not all of them) with three or four vertices. We also prove that the triangular
prism is the only 5-boundary vertex equiprojective polyhedron, and thus we call it

the smallest boundary-vertex equiprojective polyhedron.

5.3.1 Proof of minimality

The idea of our minimality proof is as follows. We will first prove that any
boundary-vertex equiprojective polyhedron P has at least one pair of parallel faces f

and f’. Then we will argue that the two polygonal chains formed by the edges of f

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 118

and f’ in the boundary of any projection of P are disjoint. Thus we will prove
that the size of the projection boundaries of P is at least the total number of edges
in the two smaller chains from f and f’ plus two (for connecting the two chains
to form the projection boundary polygon.) Then, because of f and f’ have size
at least three, it can be proved that f and f’ together contribute at least three
edges in the projection boundary. This will imply that the size of the projection

boundary cannot be less than five. We now give the detailed proof.

Lemma 5.3 Let P be a boundary-vertex equiprojective polyhedron. Then P has at

least one pair of parallel faces.

Proof. By way of contradiction assume that P does not have any parallel pair of
faces. Then all the faces of P are self-compensating. In other words, all faces of P
are parallel-sided 2m-gons. But we know that a convex polyhedron all of whose
faces are parallel-sided 2m-gon is a generalized zonohedron and zonohedra have the
property that for each face there is another parallel face, which is a contradiction.

O

By the above lemma, let f and f’ be two parallel faces of P. Consider a view
direction d in the plane of f and f’ and not in the plane of any other face. Let the set
of visible and invisible edges of f from d be Uy(f) and L4(f) respectively. Let ¢ be a
small outward normal vector to the plane of f. From Lemma 5.2 and Corollary 5.1,
in the projection boundary of direction d + ¢, the edges of f and f" are Uy(f)
and L4(f') respectively. Similarly in the projection boundary of direction d — ¢, the
edges of f and f’ are Lq(f) and Uy(f') respectively.

Now we have the following lemma.

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 119

Lemma 5.4 The two sets of edges in the projection boundary that correspond
to Ua(f) and La(f'), respectively, and similarly that correspond to Ly(f) and Uq(f'),

respectively, are vertex (and hence edge) disjoint.

Proof. We prove this for Uy(f) and L4(f’) only. We know that the projection
boundary of a convex polyhedron is a convex polygon. Since f and f’ are parallel,
they cannot have any common vertex or edge in P. This implies that in the

projection boundary of P from direction d + ¢, an edge of f is disjoint to an edge

of f'. So Uy(f) and Lg(f') are disjoint. O

We are now ready for the main results regarding the minimal boundary-vertex

equiprojective polyhedra.

Lemma 5.5 Let P be k-boundary vertex equiprojective with two parallel faces f
and f' respectively. Then neither f nor f' can have size more than 2k — 7, where

the size of a face is the number of edges in it.

Proof. By Lemma 5.4, the projection boundary of P from each of the directions d+
¢ and d—¢ contains two disjoint chains from f and f’. But any projection boundary
of P is a convex polygon. So each of these two projection boundaries contains at
least two more edges from the faces other than f and f’. As P is k-boundary vertex

boundary-vertex equiprojective,

\Ua()] + |La(f)] <k —2

and

[La(F)| + [Ua(f)] <k —2.

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 120

After adding them together,

|Ua() + 1 La()] + | La()] + [Ua(f)] < 2k — 4.

As the sum of |Uy(f)| and |La(f)| is the size of f, and similarly the sum of |Uz(f')]
and |La(f')| is the size of f', the sum of the sizes of f and f’ is no more than 2k —4.
So if f (similarly f’) had size more than 2k — 7, then f’ (similarly f) would have

size less than three, which is impossible. O

Corollary 5.2 Let P be k-boundary vertex equiprojective. Then k > 5.

Proof. Obviously k£ cannot be one or two. From Lemma 5.5 the size of two parallel
faces f and f’ of P are no more than 2k — 7. If k is three (four), then the sizes of f

and f’ are negative (less than 2), which is not possible for any face of P. O

Theorem 5.3 A triangular prism, which is defined as the two parallel copies of
a triangle with corresponding vertices connected by edges, is the only 5-boundary-

vertex equiprojective polyhedron.

Proof. Let P be a 5-visible vertex equiprojective polyhedron. By Lemma 5.3, P
has a pair of parallel faces, let them be f and f’. By Lemma 5.5 (with k& =
5), f and f’ are triangles. Let the counter-clockwise vertex-edge sequences of f
and f' be vy, e1,vq, €2,v3, €3 and v}, €], v}, €, v§, €5 respectively. Since no edge in a
triangular face can be compensated by an edge of the same face, each edge of f
must be compensated by an edge of f'. So assume that ej,e; and ez of f are

compensated by €/, €, and e} of f’ respectively. We have the following claim.

Claim 5.1 For 1 <:< 3, ¢; and €} are two opposite edges of a parallelogram.

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 121

Vi1

Uit2 €it+1

Figure 5.7: Illustrating the proof of Theorem 5.3.

Proof. We know that for 1 < 7 < 3, ¢; is parallel to e/ and they are in the
same side. So assume that for some 1 < ¢ < 3, Ua(f) = {ei,eir1}, La(f) =
{eiva}, Ua(f') = {ei, el }, and La(f') = {ei,,}. This gives the counter-clockwise
vertex-edge sequence of the chain formed by Ui(f) as v;, €;, viy1, €41, Vipe and that

for La(f') as vj, e} 4, vi.,. (See Figure 5.7).

From Lemma 5.4, Uy(f) and La(f') in the projection boundary of P from the
direction d+¢ are disjoint. As the sum of |Uy(f)| and |Lq(f')| equals three, there are
exactly two more edges. So v; is connected to v by an edge and v;;2 is connected
to v;,, by another edge. In general, each edge e¢; is connected with e} by two edges
and thus form a polygon. Let this polygon be f;. As e and ¢’ are parallel, they and

their two connecting edges are coplanar. So f; is planar.

Finally, we prove that f; is a parallelogram. It was proved at the beginning of
the theorem that the only parallel faces of P are triangles. In other words, we say
that if a face of P has size four or more, then it cannot have a parallel face. So f;

must be self-compensating and thus a parallelogram. O

From the above claim, we see that P is composed of a pair of triangles with
corresponding edges parallel and connected by a parallelogram. Moreover, the

two triangles are equal, since the corresponding edges are of equal length. So P

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 122

cannot be anything but a triangular, not necessarily right triangular, prism. As
from Corollary 5.2 there is no 3- or 4-visible vertex equiprojective polyhedra, we
conclude that the triangular prism is the smallest boundary-vertex equiprojective

polyhedron. O

5.4 (eneralization of equiprojectivity

In this section we will see 2D counter-part of and give relations among visible-
vertex, visible-edge, and visible-face equiprojective polyhedra. We will also show
how generalized zonohedra fall in these different types. But first, let us see an
example— a cube is 7-visible vertex, 9-visible edge, and 3-visible face equiprojective

polyhedron (see Figure 5.8(a)).

Figure 5.8: A cube is 7-visible vertex, 9-visible edge, and 3-visible face equiprojec-

tive polyhedron.

5.4.1 2D counter-part

What is the concept of equiprojectivity in 2D? The object we have to deal with

is a convex polygon. The view directions are in the plane of the polygon. The

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 123

projection of a polygon is always a line. The number of vertices in this projection
boundary is always two, which are the two end vertices of the projected line. So
under the actual definition of boundary-vertex equiprojective polyhedra, where the
number of vertices in the projection boundary are the measure of equiprojectivity,
all polygons are 2-boundary vertex equiprojective. Not that significant! If we con-
sider the number of visible vertices and/or number of visible edges as the measure of
equiprojectivity, then still it is easy to find such equiprojective polygons: They are
parallel-sided 2m-gons. Because in any projection of such a polygon, among each
pair of parallel edges, one is visible and the other one is invisible (see Figure 5.9(a),
where m = 3). On the other hand, a polygon P which is not a parallel-sided 2m-
gon has an edge e without any parallel pair, and P always has two projections of
different size, where e is visible in one and invisible in the other while all other

edges of P do not change their visibility, see Figure 5.9(b).

T AN

(a) (b)
Figure 5.9: (a) A parallel-sided 2m-gon, which is also visible-vertex and visible-
edge equiprojective. (b) Two projections of a polygon, which is not a parallel-sided
2m-gon. The lines in bold are the visible edges from corresponding directions shown

by the arrows.

These new measures of equiprojectivity are more interesting in 3D and we study

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 124

them in the remaining of this chapter. We start with finding relations among

different types of equiprojective polyhedra.

5.4.2 Relation among different types

Observation 5.1 (i) A boundary-vertex equiprojective polyhedron may not nec-

essarily be visible-vertex, visible-edge, or visible-face equiprojective.

(it) If a polyhedron is equiprojective under any two of three measures— visible-
vertex, visible-edge, and visible-face, the it is also equiprojective under the

third measure.

Proof. (i) We show it by an an example. Let P be a prism. So P is boundary-
vertex equiprojective. But P may have more than one projection with different
number of visible vertices, visible edges, and visible faces. For example, Figure 5.10
shows two projections of a triangular prism where in one projection the number of
visible vertices, visible edges, and visible faces are six, eight, and three, respectively,

and in the other projection these numbers are five, six, and two, respectively.

Figure 5.10: A prism which is not visible-vertex, visible-edge, or visible-face

equiprojective.

(ii) Let P be a convex polyhedron. Observe that any projection of P is a plane

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 125

graph?. From Euler’s formula,? in any projection of P two among three numbers—
the number of visible vertices, the number of visible edges, and the number of visible

faces, are constant implies the third number is also constant. O

Our next observations are related to the classification of generalized zonohedra

in different types of equiprojective polyhedra.

5.4.3 Generalized zonohedra

We first show that generalized zonohedra are visible-face equiprojective, although
the reverse direction is not true— there are visible-face equiprojective polyhedra

that are not zonohedra.

Observation 5.2 (i) A convex polyhedron P is visible-face equiprojective if and
only if each face of P has a parallel face; moreover P can be recognized in O(n)

time.
(i1) A generalized zonohedron is visible-face equiprojective.
(11) There are visible-face equiprojective polyhedra that are not zonohedra.
Proof. (i) While rotating P arbitrarily, whenever a face f of P moves from visible
to invisible, another previously invisible face f’ should become visible. This can

happen if and only if f and f’ are parallel. So all the faces of P should come in

parallel pairs.

2A plane graph is a drawing of a planar graph where the edges are allowed to cross each other

only at their end-vertices.

3For any plane graph with v vertices, e edges, and f faces, v —e + f = 2.

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 126

For recognizing P, one can find the pair of parallel edges in O(n) time in the

same way as described in Section 5.2.3.
(i) Faces of a zonohedron come as parallel pairs.

(iii) For example consider the polyhedron P which is created from a cube by
chopping off two vertices of each diagonal and thus creating four pairs of parallel
triangles. See Figure 5.11. Now every face of P has a parallel pair, so P is visible-

face equiprojective. But a zonohedron cannot have a triangular face. O

Figure 5.11: A pair of parallel triangles are created at the two ends of each diagonal

of a cube.

Our most interesting observation regarding generalized zonohedra is that they
are visible-edge and visible-vertex equiprojective. To our knowledge this property

of generalized zonohedra, has not been indicated by anyone before.

Theorem 5.4 Generalized zonohedra are visible-verter and visible-edge equiprojec-

tive.

Proof. Let P be a generalized zonohedron. First we prove that it is visible-edge
equiprojective. P is boundary-vertex equiprojective. So for all projections of P

the number of edges in the projection boundary is the same, let it be k. Let e be

CHAPTER 5. EQUIPROJECTIVE POLYHEDRA 127

an edge defined by two faces f; and f;. As the faces of P are in parallel pairs,
each of f; and f; has a parallel pair. Let f; and f) be these two parallel faces
respectively. Let €’ be the edge defined by f; and f;. Now, in any projection of P,
exactly one among f; and f{ and one among f; and f; is visible. So if e is in the
projection boundary, then €’ is also in the projection boundary; moreover, if € is not
in projection boundary but visible, then €’ is also not in projection boundary but
invisible. It means that for any projection of P, the number of visible edges that
are not in the projection boundary is equal to the number of invisible edges that
are also not in the projection boundary. Let this number be [. So P is (k+1)-visible

edge equiprojective.

From Observation 5.2, P is visible-face equiprojective and then from Observa-

tion 5.1, P is visible-vertex equiprojective. O

Chapter 6

View Point Selection

This chapter studies how to select view points of convex polyhedra such that the
silhouette satisfies certain properties. Specifically, it gives algorithms to find all
projections of a convex polyhedron such that a given set of edges, faces, and/or
vertices appear on the silhouette. Remember that “projection boundary” and “sil-
houette” are the same for convex polyhedra, and the term “silhouette” will be used

throughout this chapter.

We present algorithms to solve this problem in O(k?) time for k edges and
in O(r?a(n)) time for k edges, vertices and faces, where a(n) is the inverse Ack-
erman function. For orthogonal projections, we give an improved algorithm that
is fully adaptive in the number [of edge-disjoint paths formed by the given edges,
and has a time complexity of O(klogk + kl). We then generalize this algorithm
to vertices and/or faces appearing on the silhouette. Finally we study how to hide

edges, faces, and/or vertices from the silhouette.

This chapter is organized as follows. After some preliminaries in Section 6.1,

we deal with perspective projections in Section 6.2 and orthogonal projections in

128

CHAPTER 6. VIEW POINT SELECTION 129

Section 6.3. We study hiding in Section 6.4.

6.1 Preliminaries

Throughout this chapter we consider only convex polyhedra. We assume that the
origin o is inside of the polyhedron. Also note that we do not consider an edge to
be on the silhouette if its projection is the degenerate case of a single point. We
will study how to find all view points for which a given set of edges, face, and/or
vertices is on the silhouette. Note that the set of such view points may consists of

more than one viewing regions.

We further investigate, in a different way, when exactly is an edge on the silhou-
ette. Assume edge e is incident to faces f; and f, which are defined by half-spaces hq
and hy with supporting planes m; and 7y and containing the polyhedron. Remem-
ber that for « = {1,2}, face f; is visible from view point p if and only if p is not in
half-space h; (recall that the origin is inside the polyhedron and hence belongs to
all half-spaces of all faces). Edge e is on the silhouette if and only if exactly one of
its incident faces is visible from p, so p must be in exactly one of the half-spaces h;
and hy. Thus, p belongs to (hy N k) U (hy N hy) (or more precisely, to the maximal
open set contained within this set), which is a double-wedge formed by planes m

and .

6.2 Perspective projections

In this section, we study how to find efficiently all view points of a convex poly-

hedron such that a given set of edges, vertices and/or faces is on the silhouette

CHAPTER 6. VIEW POINT SELECTION 130

under perspective projections. Some of our results rely heavily on duality theory

and transversal theory, which we review in Section 6.2.1.

We would like to recall the reverse search technique by Avis and Fukuda [5].
Reverse search is an exhaustive searching technique which can be implemented
for various object-enumeration applications, including enumerating all cells in an
arrangement of hyper-planes [5]. However, this technique is not directly applicable
to our problem. The reverse search algorithm expects at least one object among all
that are to be enumerated to be given. For our problem, finding an initial object
which would be one of the resulting cells is not easy and its cost is comparable
to computing the entire solution in the case when only edges are given and they
form a single path. Moreover, in general the time complexity of reverse search is
at least O(d - a - 0), where d is the maximum degree of “adjacency” among the
objects, a is the time required for finding an adjacent object of a given one, and o is
the output size (see [5] for details). In an implementation of reverse search for our
problem for k edges, the value of d and o would be k and k2, respectively, leading
to a time complexity of at least O(k?).

On the other hand, a straightforward approach to find all view points from
which a set £ of edges is on the silhouette is to compute all possible views, or more
efficiently, to compute only the views that are defined by the intersection of all the
double-wedges associated with the edges in £. In general, the number of views of
convex polyhedron for perspective projections are #(n3) [66]; moreover, under per-
spective projections the arrangement of k& double-wedges may result in (k3) views.
Therefore, finding all projections with certain properties can be done in O(k*T)
time, where T' is the time to check whether a projection from a given viewing

region has the desired property. In what follows we improve on this.

CHAPTER 6. VIEW POINT SELECTION 131
6.2.1 Geometric duality and transversal theory

Given a point p = (a,b,¢), the dual of the point is a plane dual(p) = {(z,y,2) :
ax + by + ¢z = 1}. For a plane 7 = {(z,y,2) : ax + by 4+ ¢z = d}, the dual is a
point dual() = (a/d,b/d,c/d). If = passes through the origin, then dual(7) is at
infinity. Recall that a point p lies in plane 7 if and only if dual(r) lies in dual(p).

We will make use of a simple observation.

Lemma 6.1 Let m be a plane that does not contain the origin o, and let p be a
point that is not the origin o. Then m intersects the line segment [o,p| if and only

if dual(p) intersects the line segment [o, dual(m)].

Proof. Let 7 = {(z,y,2) : ax + by + ¢z = 1} and p = (py,py,p.). Plane 7
intersects [o, p] if and only if ap, + bp, + ¢p. > 1, which in turn holds if and only
if the plane {(z,y,2) : pyx + pyy + p.z = 1} has o on one side and (a,b,c) on the
other side, thus dual(p) intersects [o, dual(m)]. O

For an edge e, the dual is defined as the line segment [dual(m), dual(ms)],
where m; and 7wy are the planes supporting the two incident faces of e. Pop et

al. [67] made the following crucial observation.

Lemma 6.2 [67] An edge e of a convex polyhedron is on the silhouette from view

point p if and only if dual(p) intersects dual(e).

A geometric transversal to a family of convex set in R? is an affine subspace,
such as a point, line, plane, or hyper-plane, that intersects every member of the
family. Geometric transversal theory, more familiarly in two and three dimensions,

concerns the complexity and efficient computation of the space of all [point, line,

CHAPTER 6. VIEW POINT SELECTION 132

plane, or hyper-plane] transversals. See [31, 39] for detailed discussions on geometric

transversal theory. We will use the following result:

Theorem 6.1 ([31], see also [39], Theorem 5.6) Let C be a family of compact convex
polytopes in 3D with a total of n vertices. All plane transversals of C can be found
in O(n*a(n)) time, where a(n) is the inverse Ackerman function. IfC consists of n

line segments, then all plane traversals can be found in O(n?) time.

We combine duality with transversal theory. Interestingly enough, Theorem 6.1
in turn uses dual geometric space (thus returning to the primal space) and analyzes
double-wedges; it would thus be possible to express our algorithm directly in terms

of double-wedges by tracing the results from transversal theory.

6.2.2 View point selection algorithm

Lemma 6.2 characterizes when an edge is on the silhouette of a projection. Com-
bining this with transversal theory gives an algorithm to find all projections with
a given set of k edges in O(k?) time. We apply the same approach to obtain an
algorithm for given sets of vertices and faces. We first need to clarify what it means
for a vertex or a face of a convex polyhedron to be on the silhouette. This is rel-
atively straightforward for a vertex, which is on the silhouette if and only if two
incident edges are on the silhouette. The notion of a face being on the silhouette is
not entirely obvious, since the silhouette by nature consists of line segments, so the
entire face cannot be on it. However, for the purpose of displaying the face “near”
the silhouette, the following definition seems appropriate: A face f is considered to
be on the silhouette from view point p if and only if f is visible from p and at least

one edge of f is on the silhouette.

CHAPTER 6. VIEW POINT SELECTION 133

” instead of “at least one vertex” is used

One might ask why “at least one edge ’
in the above definition of a face on the silhouette. We decided on this since a vertex
which is on the silhouette can have unknown number of adjacent visible faces and

thus does not uniquely define a face on the silhouette, while an edge which is on

the silhouette has exactly one adjacent visible face.

As in Lemma 6.2, we characterize when a vertex or a face is on the silhouette.
Assume that v is a vertex, and let fi,..., f; be the faces, in circular order, adjacent
to the vertex v. In dual space, the dual of v is a plane and the duals of the
planes supporting fi,..., fi are points in dual(v). So the dual points of the planes
of fi,..., fi are co-planar and thus form a polygon, which we call the dual polygon
associated with vertex v. Observe that this dual polygon is convex since we assume

that the origin is inside the polyhedron.

Lemma 6.3 A vertex v is on the silhouette from view point p if and only if its

associated dual polygon is intersected by dual(p).

Proof. The polygon associated with v consists of the union of the dual of the edges
incident to v. If dual(p) intersects this polygon, then it intersects exactly two edges
incident to v. These two edges are then on the silhouette, and in consequence, v is

also on the silhouette. O

For a face f, proceed as follows: Let fi, f2,..., fi be the faces adjacent to f
and let 7, mq,...,m be the planes that support f, fi,..., fi, respectively. Define
the dual polyhedron of face f to be the convex hull of dual(r), dual(my), ..., dual(m)

(see Figure 6.1).

CHAPTER 6. VIEW POINT SELECTION 134

| dual(m)
fe ! ¢ f2
dual(me) \ ¢ . + dual(ms)
X Ve ‘
du.al(ﬁg)
RRNAN

15 fa f3

@ (b)
Figure 6.1: The dual polyhedron associated with a face f. (a) All necessary faces,

and dual vertices of their supporting planes. (b) The resulting dual polyhedron.

Lemma 6.4 A face f with supporting plane m of a convex polyhedron is on the
silhouette from view point p if and only if dual(p) intersects both the line seg-
ment [0, dual(m)] and the dual polyhedron associated with f.

Proof. Let P’ be the dual polyhedron associated with f. This polyhedron has one
vertex vy for f, which is adjacent to all other vertices. Now, if dual(p) intersects P’,
then it separates the vertices of P’ into two groups and in particular intersects some
of the edges incident to vy, since all vertices are adjacent to vy. Therefore, some of

the edges of f are on the silhouette if and only if dual(p) intersects P’.

For f itself to be on the silhouette, we additionally need that f is visible (i.e.,
not occluded) from view point p. This holds if and only if the plane through f
separates the origin o (which is inside the polyhedron) from p. By Lemma 6.1, this
holds if and only if dual(p) intersects the line segment [0, dual(7)]. O

Using the above lemmas, in combination with transversal theory, we can now

compute all projections that have a given set of features on the silhouette.

CHAPTER 6. VIEW POINT SELECTION 135

Theorem 6.2 Let P be a convex polyhedron with n vertices, and let £,V and F be
sets of edges, vertices and faces, respectively. All view points from which all edges
in &, all vertices in V, and all faces in F are on the silhouette under perspective
projections can be found in O(n*a(n)) time. The time reduces to O(|E|*) if only
edges are specified.

Proof. Compute the dual edges of the edges in £, the dual polygons associated
with vertices in V, and the dual polyhedra associated with faces in F. Also, for each
face f € F, compute the line segment [0, dual(r)], where 7 is the plane supporting f.
Now find all plane transversals that intersect these convex objects. By the above
lemmas this gives exactly the perspective projections for which the features are on

the silhouette.

Every edge creates one line segment to be transversed; by Theorem 6.1 we can
find the projections for a set of edges in O(|€|?) time. For a vertex v, the associated
polygon has degree(v) many vertices. So for a set of vertices, the total size of the
associated polygons is no more than twice the number of edges in P, which is O(n).
Similarly for a face f, the associated polyhedron has degree(f) 4+ 1 many vertices,
and so for a set of faces, the total size of the associated polyhedra are no more than
twice the number of edges plus the number of faces in P, which is O(n). Hence,
by Theorem 6.1 we can find all projections for a set of edges, vertices and faces

in O(r?a(n)) time. O

Transversal theory allowed us to force not only edges, but also vertices and faces,
on the silhouette but at a higher cost since the size of the objects to be transversed is
proportional to the degree of the vertex or face involved. Can the time complexities

be improved in general? We leave this open for perspective projections.

CHAPTER 6. VIEW POINT SELECTION 136

€1 €1 €1

s

€2

€2 €3 3

@ (b) (©)
Figure 6.2: This polyhedron has more than two viewing regions with edges ey, ey
and ez on the silhouette. (a) One incident face of e; is visible. (b) A rotation such

that e; reduces to a point; this view point is on the boundary between two viewing

regions. (c) The other incident face of e is visible.

We next consider the case when the set £ contains only edges and all of them
form a single path. For this case we give an improved algorithm of time O(k log k)

and do not use duality theory.

6.2.3 Edges in one path

If a set of edges forms a path in the polyhedron, then it is easier to compute viewing
regions for which they are on the silhouette, mostly because (as we will show) there
are at most two viewing regions. This is not the case for arbitrary edges. For
example Figure 6.2 shows a polyhedron where we have at least four viewing regions
with edges €1, e, and ez on the silhouette. Two views from two different viewing
regions are shown in (a) and (c); the other two viewing regions are origin-symmetric

to the ones illustrated here.

We now show that there are at most two regions from which the path can be

on the silhouette.

CHAPTER 6. VIEW POINT SELECTION 137

Theorem 6.3 Given a path of k edges on a convex polyhedron P, there are only
two viewing regions from which all k edges of the path are on the silhouette of P,
and we can find them in O(klogk) time.!

Proof. Let the path consist of edges e1,...,ex. For 1 <1 <k, let f; be the face
to the left of edge e;, where “to the left” is taken with respect to walking along the
path from e; to eg. Let f! be the other face incident to e;. The crucial observation
is that if the path is on the silhouette, then we either see all of fi,..., fr or all
of f1,..., fi. To prove this, let v be the common vertex of e; and e;. The clockwise
order of faces around v is then fi, (possibly) some other faces, fa, f5, (possibly)

some other faces, f; (see Figure 6.3).

Figure 6.3: The ordering of faces around a vertex.

Since the visible incident faces of v are connected, but for each of {fi, f}
and {fs, f} exactly one is invisible, there are only two possibilities: either all
of fi,..., f2 are visible (and the others are invisible), or all of fj,..., f are visible
(and the others are invisible). So either {fi, f2} are visible or {f{, f3} are visible,
but it is not possible (for example) that f; and f} are visible. Assume f; and f;
are visible. Repeating the argument for e; and e3, this shows that f3 must also

be visible, and so on, so fi,..., fi are all visible (and fi,..., fi are invisible).

IThis theorem is implicitly assumed without proof in [14].

CHAPTER 6. VIEW POINT SELECTION 138

Alternatively, if f| and f} are visible, then all of f], ..., f are visible (and fi,..., fx

are invisible).

Recall that a face f is visible if and only if the view point is not in the half-
space that defined the face. Thus, the view points from which fi,..., fx are all
visible and f{,..., fi are all invisible are defined as the intersection of 2k half-
spaces. This defines one viewing region. A second viewing region is the one from
which fi,..., f{ are all visible and fi,..., fx are invisible. This viewing region is
again the intersection of half-spaces (in fact, the opposite half-spaces as those for

the first viewing region).

Now, observe that any of these two viewing regions may be empty. It is easy to
perceive when both regions are empty. An example when only one region is empty
is shown in Figure 6.4. The polyhedron in this figure is a truncated pyramid. The
set £ consists of the edges of the smaller rectangular face f only. The only viewing
region from which the edges of f are on the silhouette is the smaller pyramid that

were truncated from the actual pyramid.

(a) (b)
Figure 6.4: There is only one viewing region for all the edges of f to be on the

silhouette, which is the complementary pyramid (shown in (b)) of the truncated

pyramid in (a).

We now consider the time complexity. The half-spaces which form the view-

ing regions can be found in O(k) time, and their intersection can be computed

CHAPTER 6. VIEW POINT SELECTION 139

in O(klogk) time (see e.g. [68]). Thus, all viewing regions can be computed
in O(klog k) time. O

6.3 Orthogonal projections

In this section, we show how to compute efficiently all orthogonal projections such
that a given set of edges is on the silhouette. This can be done with the same
approach as in Theorem 6.1 (i.e., using duality theory and transversal theory.)
However, a much simpler approach also works. Since the location of the origin
is irrelevant in an orthogonal projection, we can identify directly the wedge for
each edge and translate it such that all wedges intersect in one point. Then the
hyper-plane arrangement defined by the k& wedges has only O(k?) cells. Thus it can
be possible to find all projections in O(k*T) time, where T is the time to check

whether a projection from a given viewing region has the desired property.

We improve on this further to give an algorithm that is adaptive in the number of
paths formed by the set of edges. We study the case of many paths in Section 6.3.1.
The ability to search all O(k?) cells of the arrangement allows us more flexibility in
choosing projections; we study in Section 6.4 how to choose projections such that

certain features (i.e. edges, vertices, faces) are not on the silhouette.

6.3.1 Edges in multiple paths

Note that Theorem 6.3 applies to orthogonal projections too, where the two viewing
regions, after translated to the origin, are two opposite convex cones with their

common at the origin and possibly both of them empty.

CHAPTER 6. VIEW POINT SELECTION 140

Corollary 6.1 Given a path of k edges on a convex polyhedron P, for orthogonal
projections there are exactly two viewing regions, possibly both of them are empty,
from which all k edges of the path are on the silhouette of P, and we can find them
in O(klogk) time.

We now show how to use the above results to improve the time complexity in
the case when k edges are not all disjoint. Assume that k edges are in [edge-disjoint
paths Py, ..., Py obviously [< k. From Corollary 6.1 we know how to compute all
projections from which P; is on the silhouette. We now show that for orthogonal
projections, we can intersect these viewing regions in O(klogk + kl) time, which
is an improvement over the O(k?) result of Section 6.2 if [is significantly smaller
than k. As mentioned earlier, for orthogonal projections the set of view points
from which e is on the silhouette is translation-invariant, since the view points are
at infinity and correspond to directions. Hence, we are allowed to translate the
double-wedge arbitrarily, and in particular we may assume that the intersection of

the two planes contains the origin.

Theorem 6.4 Given [disjoint paths of a convex polyhedron P, we can find all
orthogonal projections of P such that all k edges of the paths are on the silhouette
in O(klogk + kl) time.

Proof. From Corollary 6.1 we know that for 1 < ¢ <[there are exactly two viewing
regions, say C;" and C;”, with their common apex at the origin. Let C; = Cf UC[
be the double-cone for path P;, and set C* = [C;; the desired viewing regions are

then exactly the connected components of C*.

In general, | double-cones may have #(/®) connected components in their in-

tersection. For double-cones with origin at the apex this reduces to O(I?), but

CHAPTER 6. VIEW POINT SELECTION 141

./

A cone polygon

(b)
Figure 6.5: (a) Intersection of a double-cone C; with a face f. (b) The corresponding

cone polygon B; has two disjoint components.

computing all connected components of C* directly is still too slow. We therefore
consider a projection of the double-cones onto a 2D surface (similar as in [9, 11]).
Consider a unit cube D centered at the origin. To compute C*, it suffices to com-
pute the intersection of C* with each face of D. We explain how to do this in the
following for one face f of D only.

For any 4, where 1 <7 < [, both C;" and C; can intersect f, but these inter-
sections are disjoint (see Figure 6.5). Set B, = C; N f; then B; is a single convex
polygon or the union of two convex polygons. We call each B; a cone polygon.
Let B* = () B;, then each connected component of B* corresponds to one viewing

region.

To compute B*, we compute the arrangement A of the cone polygons By, ..., By,
which has at most 2/ convex polygons with a total of at most 2k edges. This can
be done in O(klogk + I) time where I is the number of intersection points [6, 18].
Within the same time bound, we can also compute the planar graph G defined by
this arrangement (see Figure 6.6(a)). G has O(k +I) vertices, edges and faces. Now

we want to find all cells in the arrangement A that belong to all cone polygons. To

CHAPTER 6. VIEW POINT SELECTION 142

do so, we compute a modified directed dual graph G' of G by computing the dual
graph of G and replacing each edge by a directed 2-cycle (see Figure 6.6(b)). Note
that here we use the term “dual” in the graph-theoretic sense, which is distinct

from the geometric duality used before.

Each vertex in G’ is a cell in A and each directed edge e in G’ corresponds to
entering or leaving a polygon of By, ..., B;. We store with each edge of G’ whether
traversing this edge means entering or leaving a cone polygon. Finding all cells
for which we are inside all [cone polygons can then be done by traversing the
graph G’ in such a way that all vertices are visited (e.g. with a DFS-traversal) and
maintaining a counter of the number of cone polygons that the currently visited
vertex is in. Since G’ has O(k + I) vertices and edges, this can be done in O(k + I)

time.

The time complexity of our algorithm hence is O(klog k + I). To find an upper
bound on I, observe that there are O(I) convex polygons of O(k) edges total.
Each edge can intersect each convex polygon at most twice, so I € O(kl) (and

examples can be found where this is tight [4]). So the run-time of our algorithm

is O(klogk + kl). O

6.4 Computing projections for hiding features

Another application of view point selection is industrial design, where we might
wish to make certain features easily visible or prominent, while some other features
(such as service trap doors or unsightly wiring) should be hidden. Thus we would
like to force edges, vertices or faces not to be on the silhouette; we say that these

features are hidden from the silhouette. Note that for a convex polyhedron a vertex

CHAPTER 6. VIEW POINT SELECTION 143

(a) (b)

Figure 6.6: (a) The arrangement 4; the desired viewing regions are shown shaded.

(b) The corresponding modified dual graph. Some edges and vertices have been

omitted for clarity’s sake.

is hidden from the silhouette if and only if all its incident edges are hidden from
the silhouette. So for hiding a vertex from the silhouette it suffices to explain how

to hide edges.

Lemma 6.5 The set of all view points from which a set of k edges is not on the

silhouette under orthogonal projections can be computed in O(k*) time.

Proof. Each double-wedge from which an edge is on the silhouette also defines,
by its complement, a double-wedge from which the edge is not on the silhouette.
Since we are considering orthogonal projections, we can translate all double-wedges
such that all hyper-planes that define them intersect the origin. Therefore, the
hyper-plane arrangement now has only O(k?) cells and can be computed in O(k?)

time. By using a traversal technique similar to the one in Section 6.3.1, we can

CHAPTER 6. VIEW POINT SELECTION 144

check whether there is any cell in which all edges are hidden from the silhouette
in O(k?) time. O

Corollary 6.2 The set of all view points from which a set of vertices is not on the

silhouette under orthogonal projections can be computed in O(n?) time.

Proof. All k vertices are not on the silhouette if and only if all of their adjacent

edges are hidden from the silhouette, and there are O(n) such adjacent edges. O

Unlike a vertex, it is not true that a face is hidden from the silhouette if and
only if all of its incident edges are hidden from the silhouette. Rather, a face is
hidden from the silhouette if and only if it is invisible or it is visible and all of its
incident edges are hidden from the silhouette. But this difference in the definitions

is not very difficult to handle (see the following lemma).

Lemma 6.6 The set of all view points from which a set of faces is not on the

silhouette under orthogonal projections can be computed in O(n?) time.

Proof. For each face f in the given set we have two cones from which f is not
on the silhouette. One cone is defined by the whole half-space from which f is
invisible (i.e. the half-space that does not define f.) The other cone corresponds
to the view directions from which f is visible and all of its adjacent edges are not
in the silhouette. This cone is computed as follows. For each adjacent edge e of f
there is exactly one wedge from which f is visible and e is not in the silhouette.
After translating all such wedges to the origin, their intersection gives the desired

cone for f.

CHAPTER 6. VIEW POINT SELECTION 145

The time required to compute the second cone for f (as discussed above) is no
more than O(dlog d), where d is the degree of f, since each wedge is the intersection
of two half-spaces [68]. So the total time for computing the pair of cones for all
faces is O(nlogn). After having all these pairs of cones we can compute their
intersection, and then using a traversal technique similar to one in Section 6.3.1 we

can find the cells in which all faces are not in the silhouette in O(nz) time. O

Note that we can at the same time force some edges, vertices and faces on the
silhouette and hide some other edges vertices and faces from the silhouette. With

similar proofs as in the above lemmas and corollary, this can be done in O(nr?) time.

Theorem 6.5 Let P be a convexr polyhedron with n vertices. Let £,E' be sets of
edges, V., V' be sets of vertices, and F,F' be sets of faces of P. All view points from
which all elements of £,V ,F are on the silhouette while all elements of E', V', F' are

hidden under orthogonal projections can be found in O(n?) time. The time reduces

to O((|E] + |E'])?) if only edges are specified.

Before we conclude this hiding section, we note that hiding edges unfortunately
cannot easily be made adaptive in the number of paths that these edges form. The
main obstacle is that Corollary 6.1 (“there are only two viewing regions”) does not
necessarily hold for hiding edges in one path. For example, consider the polyhedron
in Figure 6.7 which is similar to the one in Figure 6.2. The path consisting of e,
and e; 1s not on the silhouette from at least four viewing regions. Two views from
two different viewing regions are shown in (a) and (c); the other two viewing regions

are origin-symmetric to the ones illustrated here.

CHAPTER 6. VIEW POINT SELECTION 146

@ (b) (©
Figure 6.7: The polyhedron has more than two viewing regions with the path
consisting of edges e; and ez not on the silhouette. (a) e; is invisible and ey is visible.
(b) The path is partially not on the silhouette because of e; on the silhouette. (c)

Both e; and ey are invisible.

Chapter 7

Conclusions and Open Problems

In this thesis we have studied the problems of reconstruction and visualization
of polygons and polyhedra using their projections. In particular, we studied four
types of problem: (i) reconstruction of polygons, (ii) reconstruction of polyhedra,
(iii) equiprojective polyhedra, and (iv) visualization of polyhedra. Below is the

summary of our results and open problems in each type.

Reconstruction of polygons. We have considered the problem of reconstruct-
ing a closed convex polygon given the number of visible edges from each of a set
of orthogonal view directions. We have given necessary and sufficient conditions
for the existence of a feasible polygon that realizes the projection and given an
algorithm to construct one when it exists. We have also shown how to find the
minimum and maximum size of a feasible polygon. We assumed that edges of a
feasible polygon are not parallel to the view directions or collinear with the view
points. Similar problems when we allow the edges to be collinear with view points

can be considered as future work.

We have studied some special cases for non-convex polygons and for perspective

147

CHAPTER 7. CONCLUSIONS AND OPEN PROBLEMS 148

projections. We have shown that we can always create a non-convex polygon when
all directions see at least two edges. Here the size of the feasible polygon becomes
proportional to the sum of the number of visible edges from all directions. We did
not consider a partially visible edge as visible. Is it somehow possible to define the

visibility of these edges and consider them in the creation of feasible polygons?

We briefly studied the problem of constructing convex polygons from perspective
projections. We have shown that we can always construct a feasible polygon when
the view points are in convex position. Here the size of the feasible polygon becomes
equal to the sum of the number of visible edges from all directions. We think that it
will be challenging to find feasible polygons when the view points are not in convex

but arbitrary positions.

Finally, for both non-convex polygons and perspective projections it would be
interesting to see algorithms for creating feasible polygons when the polygon size

1s given.

Reconstruction of polyhedra. We have studied creating polyhedra from projec-
tions. Here again our main focus was to create convex polyhedra from orthogonal
projections. When the view directions are in one plane we proved that a feasible
polyhedron can be created from a feasible polygon and vice versa, which implies
that the necessary and sufficient condition for the existence of a feasible polyhedron
is same as that for a feasible polygon. Like in 2D, we assumed that the faces of
a feasible polyhedron are not co-planar with the view points. Problems similar to

ones that we studied here can also be considered without this assumption.

Next we have considered the case when the view directions are covered by two
planes. We have shown that the existence of a feasible polyhedron for each plane

of directions separately is not enough for the existence of one feasible polyhedron

CHAPTER 7. CONCLUSIONS AND OPEN PROBLEMS 149

for all directions. We have shown that when all directions see at least four faces,
we can always create a feasible polyhedron if it exists. Our algorithm for creating
a feasible polyhedron is by finding a valid assignment and a valid selection normal-
points. For the case when the number of visible edges from the directions are not
necessarily four or higher, we have shown that for all possible valid assignments
there may not be any valid selection; it remains open to decide the existence of a

feasible polyhedron for this case.

It would be interesting to see an algorithm to decide the existence of a feasible
polyhedron when the view directions are covered by more than two planes. Our

conjecture is that this problem is NP-hard.

We always assumed that the planes covering the directions of § are given. It is

immediate to ask how fast can we do that?

Equiprojective polyhedra. We have studied equiprojective polyhedra as a spe-
cial case of the problem of reconstruction of polyhedra where all projections have
the same characteristics. We have given a characterization of boundary-vertex
equiprojective polyhedra. From there we have given an O(n log n)-time recognition

algorithm to recognize boundary-vertex equiprojective polyhedra.

We have shown that there is no 3- or 4-boundary vertex equiprojective polyhe-
dron and the triangular prism is the only 5-boundary vertex equiprojective poly-

hedron.

Finally we extended the definition of equiprojective polyhedra to visible-vertex,
visible-edge, and visible-face equiprojective polyhedra. Among these three classes of
polyhedra, we have given a characterization of visible-face equiprojective polyhedra
and shown that such a polyhedron can be recognized in O(nlogn) time. We have

also shown some relations among these three classes and discovered that generalized

CHAPTER 7. CONCLUSIONS AND OPEN PROBLEMS 150

zonohedra are visible-vertex and visible-edge equiprojective.

Several interesting questions remain to be answered for equiprojective poly-
hedra. We leave open the question of an algorithm to generate all boundary-
vertex equiprojective polyhedra, or even to generate just the face-compensating
ones. Note that there are algorithms to generate zonohedra [34]. Our most inter-
esting example, the non-face compensating boundary-vertex equiprojective polyhe-
dron in Figure 5.3(a), is formed by adjoining two prisms. Can all boundary-vertex
equiprojective polyhedra be constructed in some way from zonohedra and other

face-compensating polyhedra?

For visible-vertex, visible-edge, and visible-face equiprojective polyhedra we
only discovered that generalized zonohedra fall into all of them. Is there any other

polyhedron that fall in these three classes? We conjecture that the answers is no.

Finally what are the smallest visible-vertex and visible-edge equiprojective poly-

hedra?

Visualization of polyhedra. Finally we have studied the question of how to
find all projections of a polyhedron that satisfy certain properties. We focused
on how to force a given set of edges on the silhouette of a convex polyhedron,
and gave an efficient algorithm to do so, as well as an adaptive algorithm for
orthogonal projections if the edges are in one or very few connected paths. The
most immediate open problem is whether such an adaptive algorithm exists for

perspective projection. Also, can the time complexities be improved further?

We also briefly studied how to hide edges from the silhouette of a convex poly-
hedron. But here the time complexities are higher than that for forcing edges in the
silhouette. The reasons are that the technique of transversal theory (Theorem 6.1)

cannot be applied, since the resulting shapes are not convex and compact. More-

CHAPTER 7. CONCLUSIONS AND OPEN PROBLEMS 151

over, an adaptive algorithm cannot be considered here since Corollary 6.1 does not
hold in this case. So how can we efficiently find all view points from which a given

set of edges is hidden?

Finally, all our results were for convex polyhedra. What are efficient algorithms
for computing projections of non-convex polyhedra such that the silhouette satisfies

given properties?

Glossary

Chapters 3 and 4

7, "t The symbols , and " are used ober the symbols to distinguish them in their

respective planes.
;2 The i-th view difference in a proper d-i set §: max{0,n;;; — n;}.
d; j: The view difference associated with the {i, j}-th d-polygon.

6;: The chord (lune) of circle ¢ (sphere s), which is centered at the origin, that is

invisible from d; but visible from d;;.

6; ;: The spherical polygon (also called a d-polygon) resulting from the intersection
of the i-th and j-th d-lunes from two groups of S.

A;: The i-th final view difference in a proper d-i set S.
A, ;: The final view difference associated with the {z, j}-th d-polygon.
C, R: A column and a row of a matrix.

(di,n;): The i-th d-i pair of a d-i set according to a circular sequence of the direc-

tions.

152

CHAPTER 7. CONCLUSIONS AND OPEN PROBLEMS 153

D: Sum of all view differences in a proper d-i set S.

D(N): Sum of all view differences in a proper d-i set S(N) as a function of N

when N is unknown.
hi: The visible half-circle/hemisphere of d;.
K: Number of directions (d-i pairs) in a d-i set S.
N: Size of the feasible polygon/polyhedron.
S: A d-i set.
S: A proper d-i set.
S(N): A proper d-i set whose integers are function of N when N is unknown.
d-i pair (d,n): A d-i pair of a view direction or view point d and an integer n.
d-1 set: A set of d-i pairs.

d-arc: The arc of the circle ¢, which is centered at the origin, that is invisible and

visible from two consecutive directions of S.

d-lune: The spherical lune of the sphere s, which is centered at the origin, that is

invisible and visible from two consecutive directions of S.

d-polygon: The spherical polygon resulting from the intersection of two or more

d-lunes.

i-th view difference: Minimum number of edges (faces) of a feasible polygon
(polyhedron) that are invisible from d; but visible from d,;1, also can be

written as max{0,n;.; — n;}.

CHAPTER 7. CONCLUSIONS AND OPEN PROBLEMS 154
i-th final view difference: The number of edges (faces) of a feasible polygon
(polyhedron) that are invisible from d; but visible from d; ;.

{7, 7}-th view difference: Minimum number of normal-points of a feasible poly-

hedron that should be within the {, j}-th d-polygon 8, ;.

{7, 7}-th final view difference: Exact number of normal-points of a feasible poly-

hedron that are within the {i, j}-th d-polygon 6, ;.

feasible polygon (polyhedron) for S A convex polygon (polyhedron) such that
from each d-i pair (d,n) of S the the number of visible edges (faces) from d

1s n.

poly-sum: The sum of the final view differences of the d-polygons that are within

a d-lune (similarly within a visible hemisphere).

proper d-i set: A set of d-i pairs where for each d-i pair (d,n) there is another

d-i pair (d', N — n) such that the direction d' is opposite to the direction d.

Chapter 5

S4: The shadow of a convex polyhedron from direction d.

La(f): The lower chain of f with respect to d: the set of edges of f whose adjacent

faces other than f are invisible from d.

Ua(f): The upper chain of f with respect to d: the set of edges of f whose adjacent

faces other than f are visible from d.

compensating pair of edge-face pairs: A pair of edge-face pairs (e, f) and (¢, f')

such that e and €’ are parallel and f and f’ are either parallel or the same.

edge-face pair (e, f): An edge e and one of its adjacent faces f.

Bibliography

1]

[4]

[7]

P. K. Agarwal and M. Sharir. Applications of a new space partitioning tech-
nique. Discrete and Computational Geometry, 9:11-38, 1993.

P. K. Agarwal and M. Sharir. On the number of views of polyhedral terrains.
Discrete and Computational Geometry, 12:177-182, 1994.

B. Aronov, H. Bronnimann, D. Halperin, and R. Schiffenbauer. On the number
of views of polyhedral scenes. In 3rd Japanese Conference on Discrete and

Computational Geometry, pages 81-90, Tokyo, Japan, November 2000.

B. Aronov and M. Sharir. The common exterior of convex polygons in the

plane. Computational Geometry: Theory and Applications, 8(3):139-149, 1997.

D. Avis and K. Fukuda. Reverse search for enumeration. Discrete and Applied

Mathematics, 6(1-3):21-46, 1996.

I. J. Balaben. An optimal algorithm for finding segments intersections. In
11th ACM Symposium on Computational Geometry, pages 211-219, Vancou-
ver, British Columbia, Canada, June 1995.

W. W. R. Ball and H. S. M. Coxeter. Mathematical Recreations and Essays.

University of Toronto Press, Toronto, 1974.

135

BIBLIOGRAPHY 156

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear Programming and
Network Flows. John Wiley, New Jersey, 2005.

F. Benichou and G. Elber. Output sensitive extraction of silhouettes from
polygonal geometry. In 7th Pacific Conference on Computer Graphics and
Applications, pages 6069, Seoul, Korea, October 1999.

S. Bereg. 3D realization of two triangulations of a convex polygon. In 20th Eu-
ropean Workshop Computational Geometry, pages 49-52, Seville, Spain, March
2004.

P. Bose, F. Gomez, P. Ramos, and G. T. Toussaint. Drawing nice projections of

objects in space. Journal of Visual Communication and Image Representation,

10(2):155-172, 1999.

A. Bottino, L. Jaulin, and A. Laurentini. Reconstructing 3D objects from
silhouettes with unknown viewpoints: The case of planar orthographic views.
In 8th Iberoamerican Congress on Pattern Recognition, pages 153-162, Havana,

Cuba, November 2003.

A. Bottino and A. Laurentini. Introducing a new problem: Shape-from-
silhouette when the relative positions of the viewpoints is unknown. IEEFE
Transactions on Pattern Analysis and Machine Intelligence, 25(11):1484-1493,
2003.

P. Brunet, I. Navazo, J. Rossignac, and C. Saona-Vazquez. Hoops: 3D curves as
conservative occluders for cell-visibility. Computer Graphics Forum, 20(3):431-

442, 2001.

T. Burger and P. Gritzmann. Finding optimal shadows of polytopes. Discrete
and Computational Geometry, 24(2-3):219-240, 2000.

BIBLIOGRAPHY 157

[16]

[17]

[18]

[19]

[20]

[21]
[22]
23]

[24]

[25]

[26]

T. Burger, P. Gritzmann, and V. Klee. Polytope projection and projection
polytopes. American Mathematical Monthly, 103(9):742-755, 1996.

T. M. Chan. Output-sensitive results on convex hulls, extreme points, and

related problems. Discrete and Computational Geometry, 16(4):369-387, 1996.

B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line
segments in the plane. Journal of ACM, 39(1):1-54, 1992.

B. Chazelle and J. Matousek. Derandomizing an output-sensitive convex hull
algorithm in three dimensions. Computational Geometry: Theory and Appli-

cation, 5(1):27-32, 1995.

B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal upper bounds for sim-
plex range searching and new zone theorems. Discrete and Computational

Geometry, 8:407-429, 1992.

V. Chvatal. Linear Programming. W. H. Freeman, New York, 1983.

M. B. Clowes. On seeing things. Artificial Intelligence, 2(1):79-116, 1971.
H. S. M. Coxeter. Regular Polytopes. Macmillan, New York, 1963.

C. Croft, K. Falconer, and R. Guy. Unsolved Problems in Geometry. Springer-
Verlag, New York, 1991.

P. R. Cromwell. Polyhedra. Cambridge University Press, Cambridge, 1997.

G. Das and M. T. Goodrich. On the complexity of optimization problems for
3-dimensional convex polyhedra and decision trees. Computational Geometry:

Theory and Applications, 8(3):123-137, 1997.

BIBLIOGRAPHY 138

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

M. de Berg, D. Halperin, M. Overmars, , and M. van Kreveld. Sparse arrange-
ments and the number of views of polyhedral scenes. International Journal of

Computational Geometry Applications, 7(3):175-195, 1997.

B. V. Dekster. Convex hulls of spatial polygons with a fixed convex projection.
Contributions to Algebra and Geometry, 36(1):123-134, 1995.

E. D. Demaine and J. Erickson. Open problems on polytope reconstruction.

Manuscript, 1999.

P. Eades, M. E. Houle, and R. Webber. Finding the best viewpoints for three-
dimensional graph drawings. In 5th International Symposium on Graph Draw-

ing, pages 87-98, Rome, Italy, September 1998.

H. Edelsbrunner, L. Guibas, and M. Sharir. The upper envelope of piece-
wise linear functions: Algorithms and applications. Discrete Computational

Geometry, 4:311-336, 19809.

A. Efrat, L. Guibas, O. Hall-Holt, and L. Zhang. On incremental rendering
of silhouette maps of a polyhedral scene. In 11th ACM-SIAM Symposium on

Discrete Algorithms, pages 910-917, San Francisco, California, January 2000.

D. Eppstein. The geometry junkyard: Zonohedra. http://www.ics.uci.

edu/"~eppstein/junkyard/zono.html.

D. Eppstein. Zonohedra and zonotopes. Mathematica in Education and
Research, 5(4):15-21, 1996. http://www.ics.uci.edu/ eppstein/pubs/

p-zono.html.

R. Gardner. Geometric Tomography. Cambridge University Press, Cambridge,
1995.

BIBLIOGRAPHY 139

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Z. Gigus, J. canny, and R. Seidel. Efficiently computing and representing
aspect graphs of polyhedral objects. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 13(6):542-551, 1991.

Z. Gigus and J. Malik. Computing the aspect graph for line drawings of polyhe-
dral objects. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(2):113-122, 1990.

F. Gomez, F. Hurtado, T. Sellares, and G. Toussaint. Nice perspetive projec-
tions. Journal of Visual Communication and Image Representation, 12(4):387—

400, 2001.

J. E. Goodman, R. Pollack, and R. Wenger. Geometric transversals theory.
In J. Pach, editor, New Trends in Discrete and Computational Geometry.
Springer-Verlag, 1993.

G. W. Hart. Encyclopedia of polyhedra. http://www.georgehart.com/

virtual-polyhedra/vp.html.

M. Hasan and A. Lubiw. Equiprojective polyhedra. In 15th Canadian Con-
ference on Computational Geometry, pages 47-50, Halifax, canada, August
2003.

F. S. Hillier and G. J. Lieberman. Introduction to Operations Research.
McGraw-Hill Higher Education, Boston, 2005.

C. H. Hoffman. Geometric and Solid Modelling: An Introduction. Morgan
Kaufmann, California, 1989.

D. A. Huffman. Impossible objects as nonsense sentences. In B. Meltzer and

D. Michie, editors, Machine Intelligence, volume 6, pages 295-323, 1971.

BIBLIOGRAPHY 160

[45]

[49]

[50]

[51]

[52]

[53]

C. S. Kaplan and G. W. Hart. Symmetrohedra: Polyhedra from symmetric
placement of regular polygons. In Bridges 2001: Mathematical Connections
wn Art, Music and Science, Winfield, Kensas, July 2001. http://www.cgl.

uwaterloo.ca/~csk/papers/bridges2001.html.

W. Karush. The Crescent Dictionary of Mathematics. The MacMillan Com-
pany, New York, 1962.

H. S. Kasan and K. D. Kumar. Introductory Operations Research: Theory and
Applications. Springer, Berlin, 2004.

L. Kettner and E. Welzl. Contour edge analysis for polyhedron projections. In
W. Strasser, R. Klein, and R. Rau, editors, Geometric Modeling: Theory and
Practice, pages 379-394. Springer, 1997.

J. J. Koenderink. What does the occluding contour tell us about solid shape?
Perception, 13(3):321-330, 1984.

M. R. Korn and C. R. Dyer. 3D multiview object representations for model-
based object recognition. Pattern Recognition, 20(1):91-103, 1987.

A. Laurentini. How many 2D silhouettes does it take to reconstruct a 3D

object? Computer Vision and Image Understanding, 67(1), 1997.

H. Lipson and M. Shpitalni. Optimization-based reconstruction of a 3D object
from a single freehand line drawing. Computer Aided Design, 28(8):651-663,
1996.

L. A. Lyusternik. Conver Figures and Polyhedra. Dover, New York, 1963.
Translated from Russian by T. J. Smith.

BIBLIOGRAPHY 161

[54]

[55]

[58]

[59]

[60]

[61]

[62]

A. K. Macworth. Interpreting pictures of polyhedral scenes. Artificial Intelli-
gence, 4(2):121-137, 1973.

G. Markowsky and M. A. Wesley. Fleshing out wire frames. IBM Journal of
Research and Development, 24(5):582-597, 1980.

G. Markowsky and M. A. Wesley. Fleshing out projections. IBM Journal of
Research and Development, 25(6):934-954, 1981.

B. Marlin and G. Toussaint. Constructing convex 3-polytopes from two tri-
angulations of a polygon. In 14th Canadian Conference on Computational

Geometry, pages 36-39, Lethbridge, Alberta, August 2002.

W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan. Image-
based visual hulls. In SIGGRAPH 2000, pages 369-374, New Orleans,
Louisiana, July 2000.

M. McKenna and R. Seidel. Finding the optimal shadows of a convex polytope.
In 1st ACM Symposium on Computational Geometry, pages 24-28, Baltimore,
Maryland, June 1985.

Melles Griot Corporation. Machine Vision Guide, 2003. http://www.

mellesgriot.com/products/machinevision/1if 3.htm.

J. Miller. Low-cost in-process machine vision gauging system. Technical report,
Department of Electrical and Computer Engineering, University of Michigan-
Dearborn, April 1998. http://www.engin.umd.umich.edu/ceep/reports/

96-97/jmiller.html.

J. A, Muratore. Mlumination for machine vision. http://www.

pinnaclevision.co.uk/i1lum02.htm.

BIBLIOGRAPHY 162

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

I. Nagendra and U. Gujar. 3-D objects from 2-D orthographic views— a survey.
Computer and Graphics, 12(1):111-114, 1988.

G. Nembhauser, A. R. Kan, and M. Todd, editors. Optimization, volume 1 of
Handbooks in Operations Research and Management Science. Elsevier, Ams-

terdam, 1989.

M. Penna. A shape from shading analysis for a single perspective image of a
polyhedron. IEEE Transaction of Pattern Analysis and Machine Intelligence,
11(6):545-554, 1989.

H. Plantinga and C. R. Dyer. Visibility, occlusion, and the aspect graph.
International Journal of Computer Vision, 5(2):137-160, 1990.

M. Pop, G. Barequet, C. A. Duncan, M. T. Goodrich, W. Huang, and S. Ku-
mar. Efficient perspective-accurate silhouette computation and applications.
In 17th ACM Symposium on Computational Geometry, pages 60-68, Mas-
sachusetts, June 2001.

F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York, 1985.

P. J. Ryan. Euclidean and Non-Euclidean Geometry: An Analytic Approach.
Cambridge University Press, Cambridge, Massachusetts, 1986.

R. D. Schiftenbauer. A Survey of Aspect Graph. PhD thesis, Department of

Computer and Information Science, Polytechnic University, New York, 2001.

W. B. Seales and C. R. Dyer. Viewpoint from occluding contour. Computer
Vision, Graphics and Image Processing: Image Understanding, 1992.

BIBLIOGRAPHY 163

[72]

73]

[76]

[77]

(78]

[79]

[80]

[81]

G. Shephard. Twenty problems on convex polyhedra—II. Math. Gaz., 52:359—
367, 1968.

Siemens. Qutline inspection with SIMATIC VS 110. Product literature.
http://www.ad.siemens.de/dipdata/mk/pdf/e20001-a60-p285-x-7600.

pdf.

SIGHTech Vision Systems. Eyebot Application, Inspecting Hard Disk Media.

Product literature. http://www.sightech.com/hard disk app.note.pdf.

S. Skiena. Geometric Probing. PhD thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign, 1988.

S. Skiena. Problems in geometric probing. Algorithmica, 7(4):599-605, 1989.

S. Skiena. Geometric reconstruction problems. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry. CRC
Press, Boca Rotan, New York, 1997.

J. Stolfi. Oriented Projective Geometry: A Framework for Geometric Compu-
tations. Academic Press, New York, 1991.

K. Sugihara. A necessary and sufficient condition for a picture to represent a
polyhedral scene. IEEFE Trans. on Pattern Analysis and Machine Intelligence,
6(5):578-586, 1984.

K. Sugihara. Machine Interpretation of Line Drawing. The MIT Press Series
in Artificial Intelligence. MIT Press, Cambridge, Massachusetts, 1986.

J. Taylor. Zonohedra and generalized zonohedra. American Mathematical

Monthly, 99(2):108-111, 1992.

BIBLIOGRAPHY 164

[82]

[83]

[84]

[85]

[36]

[87]

G. Toussaint. The complexity of computing nice viewpoints of objects in
space. In Vision Geometry IX, Proc. SPIE International Symposium on Optical
Science and Technology, pages 1-11, San Diego, California, July 30-August 4
2000.

P. A. C. Varley. Automatic creation of boundary-representation models from
single line drawings. PhD thesis, Department of Computer Science, University

of Wales College of Cardift, 2003.

W. Wang and G. G. Grinstein. Survey of 3d solid reconstruction from 2d
projection line drawings. Computer Graphics Forum, 12(2):137-158, 1993.

E. W. Weisstein. Latin square. From Math World— A Wolfram Web Resource,

http://www.mathworld.wolfram.com/LatinSquare.html.

Q.-W. Yan, C. L. P. Chen, and Z. Tang. Efficient algorithm for the reconstruc-
tion of 3d objects from orthograpgics projections. Computer Aided Design,
26(9):699-717, 1994.

G. M. Ziegler. Lectures on Polytopes. Springer-Verlag, Berlin, 1995.

